connectedComponents: peep-hole optimizations, mostly surrouding the fact that cv...
authorJason Newton <jason@utopiacompression.com>
Sat, 25 Aug 2012 09:31:52 +0000 (02:31 -0700)
committerJason Newton <jason@utopiacompression.com>
Mon, 5 Nov 2012 16:10:35 +0000 (08:10 -0800)
modules/imgproc/include/opencv2/imgproc/imgproc.hpp
modules/imgproc/src/connectedcomponents.cpp
samples/cpp/connected_components.cpp

index 3d80cfe..0cb761b 100644 (file)
@@ -1091,9 +1091,24 @@ enum { TM_SQDIFF=0, TM_SQDIFF_NORMED=1, TM_CCORR=2, TM_CCORR_NORMED=3, TM_CCOEFF
 CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ,
                                  OutputArray result, int method );
 
+
+struct CV_EXPORTS ConnectedComponentStats
+{
+    int32_t lower_x;
+    int32_t lower_y;
+    int32_t upper_x;
+    int32_t upper_y;
+    double centroid_x;
+    double centroid_y;
+    uint64_t integral_x;
+    uint64_t integral_y;
+    uint32_t area;
+};
 //! computes the connected components labeled image of boolean image I with 4 or 8 way connectivity - returns N, the total
-//number of labels [0, N-1] where 0 represents the background label.
+//number of labels [0, N-1] where 0 represents the background label. L's value type determines the label type, an important
+//consideration based on the total number of labels or alternatively the total number of pixels.
 CV_EXPORTS_W uint64_t connectedComponents(Mat &L, const Mat &I, int connectivity = 8);
+CV_EXPORTS_W uint64_t connectedComponents(Mat &L, const Mat &I, std::vector<ConnectedComponentStats> &statsv, int connectivity = 8);
 
 
 //! mode of the contour retrieval algorithm
index cc83f97..50a1ca1 100644 (file)
 //M*/
 //
 #include "precomp.hpp"
+#include <vector>
 
 namespace cv{
     namespace connectedcomponents{
-    using std::vector;
+
+    template<typename LabelT>
+    struct NoOp{
+        NoOp(){
+        }
+        void init(const LabelT labels){
+            (void) labels;
+        }
+        inline
+        void operator()(int r, int c, LabelT l){
+            (void) r;
+            (void) c;
+            (void) l;
+        }
+        void finish(){}
+    };
+    template<typename LabelT>
+    struct CCStatsOp{
+        std::vector<cv::ConnectedComponentStats> &statsv;
+        CCStatsOp(std::vector<cv::ConnectedComponentStats> &_statsv): statsv(_statsv){
+        }
+        inline
+        void init(const LabelT nlabels){
+            statsv.clear();
+            cv::ConnectedComponentStats stats = cv::ConnectedComponentStats();
+            stats.lower_x = std::numeric_limits<LabelT>::max();
+            stats.lower_y = std::numeric_limits<LabelT>::max();
+            stats.upper_x = std::numeric_limits<LabelT>::min();
+            stats.upper_y = std::numeric_limits<LabelT>::min();
+            stats.centroid_x = 0;
+            stats.centroid_y = 0;
+            stats.integral_x = 0;
+            stats.integral_y = 0;
+            stats.area = 0;
+            statsv.resize(nlabels, stats);
+        }
+        void operator()(int r, int c, LabelT l){
+            ConnectedComponentStats &stats = statsv[l];
+            if(c > stats.upper_x){
+                stats.upper_x = c;
+            }else{
+                if(c < stats.lower_x){
+                    stats.lower_x = c;
+                }
+            }
+            if(r > stats.upper_y){
+                stats.upper_y = r;
+            }else{
+                if(r < stats.lower_y){
+                    stats.lower_y = r;
+                }
+            }
+            stats.integral_x += c;
+            stats.integral_y += r;
+            stats.area++;
+        }
+        void finish(){
+            for(size_t l = 0; l < statsv.size(); ++l){
+                ConnectedComponentStats &stats = statsv[l];
+                stats.lower_x = std::min(stats.lower_x, stats.upper_x);
+                stats.lower_y = std::min(stats.lower_y, stats.upper_y);
+                stats.centroid_x = stats.integral_x / double(stats.area);
+                stats.centroid_y = stats.integral_y / double(stats.area);
+            }
+        }
+    };
 
     //Find the root of the tree of node i
     template<typename LabelT>
     inline static
-    LabelT findRoot(const vector<LabelT> &P, LabelT i){
+    LabelT findRoot(const LabelT *P, LabelT i){
         LabelT root = i;
         while(P[root] < root){
             root = P[root];
@@ -60,7 +126,7 @@ namespace cv{
     //Make all nodes in the path of node i point to root
     template<typename LabelT>
     inline static
-    void setRoot(vector<LabelT> &P, LabelT i, LabelT root){
+    void setRoot(LabelT *P, LabelT i, LabelT root){
         while(P[i] < i){
             LabelT j = P[i];
             P[i] = root;
@@ -72,7 +138,7 @@ namespace cv{
     //Find the root of the tree of the node i and compress the path in the process
     template<typename LabelT>
     inline static
-    LabelT find(vector<LabelT> &P, LabelT i){
+    LabelT find(LabelT *P, LabelT i){
         LabelT root = findRoot(P, i);
         setRoot(P, i, root);
         return root;
@@ -81,7 +147,7 @@ namespace cv{
     //unite the two trees containing nodes i and j and return the new root
     template<typename LabelT>
     inline static
-    LabelT set_union(vector<LabelT> &P, LabelT i, LabelT j){
+    LabelT set_union(LabelT *P, LabelT i, LabelT j){
         LabelT root = findRoot(P, i);
         if(i != j){
             LabelT rootj = findRoot(P, j);
@@ -97,9 +163,9 @@ namespace cv{
     //Flatten the Union Find tree and relabel the components
     template<typename LabelT>
     inline static
-    LabelT flattenL(vector<LabelT> &P){
+    LabelT flattenL(LabelT *P, LabelT length){
         LabelT k = 1;
-        for(size_t i = 1; i < P.size(); ++i){
+        for(LabelT i = 1; i < length; ++i){
             if(P[i] < i){
                 P[i] = P[P[i]];
             }else{
@@ -109,137 +175,155 @@ namespace cv{
         return k;
     }
 
-    ////Flatten the Union Find tree - inconsistent labels
-    //void flatten(int P[], int size){
-    //    for(int i = 1; i < size; ++i){
-    //        P[i] = P[P[i]];
-    //    }
-    //}
-    const int G4[2][2] = {{-1, 0}, {0, -1}};//b, d neighborhoods
-    const int G8[4][2] = {{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}};//a, b, c, d neighborhoods
     //Based on "Two Strategies to Speed up Connected Components Algorithms", the SAUF (Scan array union find) variant
     //using decision trees
     //Kesheng Wu, et al
-    template<typename LabelT, typename PixelT, int connectivity = 8>
+    //Note: rows are encoded as position in the "rows" array to save lookup times
+    //reference for 4-way: {{-1, 0}, {0, -1}};//b, d neighborhoods
+    const int G4[2][2] = {{1, 0}, {0, -1}};//b, d neighborhoods
+    //reference for 8-way: {{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}};//a, b, c, d neighborhoods
+    const int G8[4][2] = {{1, -1}, {1, 0}, {1, 1}, {0, -1}};//a, b, c, d neighborhoods
+    template<typename LabelT, typename PixelT, typename StatsOp = NoOp<LabelT>, int connectivity = 8>
     struct LabelingImpl{
-    LabelT operator()(Mat &L, const Mat &I){
+    LabelT operator()(Mat &L, const Mat &I, StatsOp &sop){
         const int rows = L.rows;
         const int cols = L.cols;
-        size_t nPixels = size_t(rows) * cols;
-        vector<LabelT> P; P.push_back(0);
-        LabelT l = 1;
+        size_t Plength = (size_t(rows + 3 - 1)/3) * (size_t(cols + 3 - 1)/3);
+        if(connectivity == 4){
+            Plength = 4 * Plength;//a quick and dirty upper bound, an exact answer exists if you want to find it
+            //the 4 comes from the fact that a 3x3 block can never have more than 4 unique labels
+        }
+        LabelT *P = (LabelT *) fastMalloc(sizeof(LabelT) * Plength);
+        P[0] = 0;
+        LabelT lunique = 1;
         //scanning phase
         for(int r_i = 0; r_i < rows; ++r_i){
-            for(int c_i = 0; c_i < cols; ++c_i){
-                if(!I.at<PixelT>(r_i, c_i)){
-                    L.at<LabelT>(r_i, c_i) = 0;
-                    continue;
-                }
-                if(connectivity == 8){
-                    const int a = 0;
-                    const int b = 1;
-                    const int c = 2;
-                    const int d = 3;
-
-                    bool T[4];
-
-                    for(size_t i = 0; i < 4; ++i){
-                        int gr = r_i + G8[i][0];
-                        int gc = c_i + G8[i][1];
-                        T[i] = false;
-                        if(gr >= 0 && gr < rows && gc >= 0 && gc < cols){
-                            if(I.at<PixelT>(gr, gc)){
-                                T[i] = true;
-                            }
-                        }
+            LabelT *Lrow = (LabelT *)(L.data + L.step.p[0] * r_i);
+            LabelT *Lrow_prev = (LabelT *)(((char *)Lrow) - L.step.p[0]);
+            const PixelT *Irow = (PixelT *)(I.data + I.step.p[0] * r_i);
+            const PixelT *Irow_prev = (const PixelT *)(((char *)Irow) - I.step.p[0]);
+            LabelT *Lrows[2] = {
+                Lrow,
+                Lrow_prev
+            };
+            const PixelT *Irows[2] = {
+                Irow,
+                Irow_prev
+            };
+            if(connectivity == 8){
+                const int a = 0;
+                const int b = 1;
+                const int c = 2;
+                const int d = 3;
+                const bool T_a_r = (r_i - G8[a][0]) >= 0;
+                const bool T_b_r = (r_i - G8[b][0]) >= 0;
+                const bool T_c_r = (r_i - G8[c][0]) >= 0;
+                for(int c_i = 0; Irows[0] != Irow + cols; ++Irows[0], c_i++){
+                    if(!*Irows[0]){
+                        Lrow[c_i] = 0;
+                        continue;
                     }
+                    Irows[1] = Irow_prev + c_i;
+                    Lrows[0] = Lrow + c_i;
+                    Lrows[1] = Lrow_prev + c_i;
+                    const bool T_a = T_a_r && (c_i + G8[a][1]) >= 0   && *(Irows[G8[a][0]] + G8[a][1]);
+                    const bool T_b = T_b_r                            && *(Irows[G8[b][0]] + G8[b][1]);
+                    const bool T_c = T_c_r && (c_i + G8[c][1]) < cols && *(Irows[G8[c][0]] + G8[c][1]);
+                    const bool T_d =          (c_i + G8[d][1]) >= 0   && *(Irows[G8[d][0]] + G8[d][1]);
 
                     //decision tree
-                    if(T[b]){
+                    if(T_b){
                         //copy(b)
-                        L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G8[b][0], c_i + G8[b][1]);
+                        *Lrows[0] = *(Lrows[G8[b][0]] + G8[b][1]);
                     }else{//not b
-                        if(T[c]){
-                            if(T[a]){
+                        if(T_c){
+                            if(T_a){
                                 //copy(c, a)
-                                L.at<LabelT>(r_i, c_i) = set_union(P, L.at<LabelT>(r_i + G8[c][0], c_i + G8[c][1]), L.at<LabelT>(r_i + G8[a][0], c_i + G8[a][1]));
+                                *Lrows[0] = set_union(P, *(Lrows[G8[c][0]] + G8[c][1]), *(Lrows[G8[a][0]] + G8[a][1]));
                             }else{
-                                if(T[d]){
+                                if(T_d){
                                     //copy(c, d)
-                                    L.at<LabelT>(r_i, c_i) = set_union(P, L.at<LabelT>(r_i + G8[c][0], c_i + G8[c][1]), L.at<LabelT>(r_i + G8[d][0], c_i + G8[d][1]));
+                                    *Lrows[0] = set_union(P, *(Lrows[G8[c][0]] + G8[c][1]), *(Lrows[G8[d][0]] + G8[d][1]));
                                 }else{
                                     //copy(c)
-                                    L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G8[c][0], c_i + G8[c][1]);
+                                    *Lrows[0] = *(Lrows[G8[c][0]] + G8[c][1]);
                                 }
                             }
                         }else{//not c
-                            if(T[a]){
+                            if(T_a){
                                 //copy(a)
-                                L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G8[a][0], c_i + G8[a][1]);
+                                *Lrows[0] = *(Lrows[G8[a][0]] + G8[a][1]);
                             }else{
-                                if(T[d]){
+                                if(T_d){
                                     //copy(d)
-                                    L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G8[d][0], c_i + G8[d][1]);
+                                    *Lrows[0] = *(Lrows[G8[d][0]] + G8[d][1]);
                                 }else{
                                     //new label
-                                    L.at<LabelT>(r_i, c_i) = l;
-                                    P.push_back(l);//P[l] = l;
-                                    l = l + 1;
+                                    *Lrows[0] = lunique;
+                                    P[lunique] = lunique;
+                                    lunique = lunique + 1;
                                 }
                             }
                         }
                     }
-                }else{
-                    //B & D only
-                    const int b = 0;
-                    const int d = 1;
-                    assert(connectivity == 4);
-                    bool T[2];
-                    for(size_t i = 0; i < 2; ++i){
-                        int gr = r_i + G4[i][0];
-                        int gc = c_i + G4[i][1];
-                        T[i] = false;
-                        if(gr >= 0 && gr < rows && gc >= 0 && gc < cols){
-                            if(I.at<PixelT>(gr, gc)){
-                                T[i] = true;
-                            }
-                        }
+                }
+            }else{
+                //B & D only
+                assert(connectivity == 4);
+                const int b = 0;
+                const int d = 1;
+                const bool T_b_r = (r_i - G4[b][0]) >= 0;
+                for(int c_i = 0; Irows[0] != Irow + cols; ++Irows[0], c_i++){
+                    if(!*Irows[0]){
+                        Lrow[c_i] = 0;
+                        continue;
                     }
-
-                    if(T[b]){
-                        if(T[d]){
+                    Irows[1] = Irow_prev + c_i;
+                    Lrows[0] = Lrow + c_i;
+                    Lrows[1] = Lrow_prev + c_i;
+                    const bool T_b = T_b_r                            && *(Irows[G4[b][0]] + G4[b][1]);
+                    const bool T_d =          (c_i + G4[d][1]) >= 0   && *(Irows[G4[d][0]] + G4[d][1]);
+                    if(T_b){
+                        if(T_d){
                             //copy(d, b)
-                            L.at<LabelT>(r_i, c_i) = set_union(P, L.at<LabelT>(r_i + G4[d][0], c_i + G4[d][1]), L.at<LabelT>(r_i + G4[b][0], c_i + G4[b][1]));
+                            *Lrows[0] = set_union(P, *(Lrows[G4[d][0]] + G4[d][1]), *(Lrows[G4[b][0]] + G4[b][1]));
                         }else{
                             //copy(b)
-                            L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G4[b][0], c_i + G4[b][1]);
+                            *Lrows[0] = *(Lrows[G4[b][0]] + G4[b][1]);
                         }
                     }else{
-                        if(T[d]){
+                        if(T_d){
                             //copy(d)
-                            L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G4[d][0], c_i + G4[d][1]);
+                            *Lrows[0] = *(Lrows[G4[d][0]] + G4[d][1]);
                         }else{
                             //new label
-                            L.at<LabelT>(r_i, c_i) = l;
-                            P.push_back(l);//P[l] = l;
-                            l = l + 1;
+                            *Lrows[0] = lunique;
+                            P[lunique] = lunique;
+                            lunique = lunique + 1;
                         }
                     }
-
                 }
             }
         }
 
         //analysis
-        LabelT nLabels = flattenL(P);
+        LabelT nLabels = flattenL(P, lunique);
+        sop.init(nLabels);
 
-        //assign final labels
-        for(size_t r = 0; r < rows; ++r){
-            for(size_t c = 0; c < cols; ++c){
-                L.at<LabelT>(r, c) = P[L.at<LabelT>(r, c)];
+        for(int r_i = 0; r_i < rows; ++r_i){
+            LabelT *Lrow_start = (LabelT *)(L.data + L.step.p[0] * r_i);
+            LabelT *Lrow_end = Lrow_start + cols;
+            LabelT *Lrow = Lrow_start;
+            for(int c_i = 0; Lrow != Lrow_end; ++Lrow, ++c_i){
+                const LabelT l = P[*Lrow];
+                *Lrow = l;
+                sop(r_i, c_i, l);
             }
         }
 
+        sop.finish();
+        fastFree(P);
+
         return nLabels;
     }//End function LabelingImpl operator()
 
@@ -247,7 +331,8 @@ namespace cv{
 }//end namespace connectedcomponents
 
 //L's type must have an appropriate depth for the number of pixels in I
-uint64_t connectedComponents(Mat &L, const Mat &I, int connectivity){
+template<typename StatsOp>
+uint64_t connectedComponents_sub1(Mat &L, const Mat &I, int connectivity, StatsOp &sop){
     CV_Assert(L.rows == I.rows);
     CV_Assert(L.cols == I.cols);
     CV_Assert(L.channels() == 1 && I.channels() == 1);
@@ -261,98 +346,102 @@ uint64_t connectedComponents(Mat &L, const Mat &I, int connectivity){
     if(lDepth == CV_8U){
         if(iDepth == CV_8U || iDepth == CV_8S){
             if(connectivity == 4){
-                return (uint64_t) LabelingImpl<uint8_t, uint8_t, 4>()(L, I);
+                return (uint64_t) LabelingImpl<uint8_t, uint8_t, StatsOp, 4>()(L, I, sop);
             }else{
-                return (uint64_t) LabelingImpl<uint8_t, uint8_t, 8>()(L, I);
+                return (uint64_t) LabelingImpl<uint8_t, uint8_t, StatsOp, 8>()(L, I, sop);
             }
         }else if(iDepth == CV_16U || iDepth == CV_16S){
             if(connectivity == 4){
-                return (uint64_t) LabelingImpl<uint8_t, uint16_t, 4>()(L, I);
+                return (uint64_t) LabelingImpl<uint8_t, uint16_t, StatsOp, 4>()(L, I, sop);
             }else{
-                return (uint64_t) LabelingImpl<uint8_t, uint16_t, 8>()(L, I);
+                return (uint64_t) LabelingImpl<uint8_t, uint16_t, StatsOp, 8>()(L, I, sop);
             }
         }else if(iDepth == CV_32S){
             if(connectivity == 4){
-                return (uint64_t) LabelingImpl<uint8_t, int32_t, 4>()(L, I);
+                return (uint64_t) LabelingImpl<uint8_t, int32_t, StatsOp, 4>()(L, I, sop);
             }else{
-                return (uint64_t) LabelingImpl<uint8_t, int32_t, 8>()(L, I);
+                return (uint64_t) LabelingImpl<uint8_t, int32_t, StatsOp, 8>()(L, I, sop);
             }
         }else if(iDepth == CV_32F){
             if(connectivity == 4){
-                return (uint64_t) LabelingImpl<uint8_t, float, 4>()(L, I);
+                return (uint64_t) LabelingImpl<uint8_t, float, StatsOp, 4>()(L, I, sop);
             }else{
-                return (uint64_t) LabelingImpl<uint8_t, float, 8>()(L, I);
+                return (uint64_t) LabelingImpl<uint8_t, float, StatsOp, 8>()(L, I, sop);
             }
         }else if(iDepth == CV_64F){
             if(connectivity == 4){
-                return (uint64_t) LabelingImpl<uint8_t, double, 4>()(L, I);
+                return (uint64_t) LabelingImpl<uint8_t, double, StatsOp, 4>()(L, I, sop);
             }else{
-                return (uint64_t) LabelingImpl<uint8_t, double, 8>()(L, I);
+                return (uint64_t) LabelingImpl<uint8_t, double, StatsOp, 8>()(L, I, sop);
             }
         }
     }else if(lDepth == CV_16U){
         if(iDepth == CV_8U || iDepth == CV_8S){
             if(connectivity == 4){
-                return (uint64_t) LabelingImpl<uint16_t, uint8_t, 4>()(L, I);
+                return (uint64_t) LabelingImpl<uint16_t, uint8_t, StatsOp, 4>()(L, I, sop);
             }else{
-                return (uint64_t) LabelingImpl<uint16_t, uint8_t, 8>()(L, I);
+                return (uint64_t) LabelingImpl<uint16_t, uint8_t, StatsOp, 8>()(L, I, sop);
             }
         }else if(iDepth == CV_16U || iDepth == CV_16S){
             if(connectivity == 4){
-                return (uint64_t) LabelingImpl<uint16_t, uint16_t, 4>()(L, I);
+                return (uint64_t) LabelingImpl<uint16_t, uint16_t, StatsOp, 4>()(L, I, sop);
             }else{
-                return (uint64_t) LabelingImpl<uint16_t, uint16_t, 8>()(L, I);
+                return (uint64_t) LabelingImpl<uint16_t, uint16_t, StatsOp, 8>()(L, I, sop);
             }
         }else if(iDepth == CV_32S){
             if(connectivity == 4){
-                return (uint64_t) LabelingImpl<uint16_t, int32_t, 4>()(L, I);
+                return (uint64_t) LabelingImpl<uint16_t, int32_t, StatsOp, 4>()(L, I, sop);
             }else{
-                return (uint64_t) LabelingImpl<uint16_t, int32_t, 8>()(L, I);
+                return (uint64_t) LabelingImpl<uint16_t, int32_t, StatsOp, 8>()(L, I, sop);
             }
         }else if(iDepth == CV_32F){
             if(connectivity == 4){
-                return (uint64_t) LabelingImpl<uint16_t, float, 4>()(L, I);
+                return (uint64_t) LabelingImpl<uint16_t, float, StatsOp, 4>()(L, I, sop);
             }else{
-                return (uint64_t) LabelingImpl<uint16_t, float, 8>()(L, I);
+                return (uint64_t) LabelingImpl<uint16_t, float, StatsOp, 8>()(L, I, sop);
             }
         }else if(iDepth == CV_64F){
             if(connectivity == 4){
-                return (uint64_t) LabelingImpl<uint16_t, double, 4>()(L, I);
+                return (uint64_t) LabelingImpl<uint16_t, double, StatsOp, 4>()(L, I, sop);
             }else{
-                return (uint64_t) LabelingImpl<uint16_t, double, 8>()(L, I);
+                return (uint64_t) LabelingImpl<uint16_t, double, StatsOp, 8>()(L, I, sop);
             }
         }
     }else if(lDepth == CV_32S){
+        //note that signed types don't really make sense here and not being able to use uint32_t matters for scientific projects
+        //OpenCV: how should we proceed?  .at<T> typechecks in debug mode
         if(iDepth == CV_8U || iDepth == CV_8S){
             if(connectivity == 4){
-                return (uint64_t) LabelingImpl<int32_t, uint8_t, 4>()(L, I);
+                return (uint64_t) LabelingImpl<int32_t, uint8_t, StatsOp, 4>()(L, I, sop);
             }else{
-                return (uint64_t) LabelingImpl<int32_t, uint8_t, 8>()(L, I);
+                return (uint64_t) LabelingImpl<int32_t, uint8_t, StatsOp, 8>()(L, I, sop);
             }
         }else if(iDepth == CV_16U || iDepth == CV_16S){
             if(connectivity == 4){
-                return (uint64_t) LabelingImpl<int32_t, uint16_t, 4>()(L, I);
+                return (uint64_t) LabelingImpl<int32_t, uint16_t, StatsOp, 4>()(L, I, sop);
             }else{
-                return (uint64_t) LabelingImpl<int32_t, uint16_t, 8>()(L, I);
+                return (uint64_t) LabelingImpl<int32_t, uint16_t, StatsOp, 8>()(L, I, sop);
             }
         }else if(iDepth == CV_32S){
             if(connectivity == 4){
-                return (uint64_t) LabelingImpl<int32_t, int32_t, 4>()(L, I);
+                return (uint64_t) LabelingImpl<int32_t, int32_t, StatsOp, 4>()(L, I, sop);
             }else{
-                return (uint64_t) LabelingImpl<int32_t, int32_t, 8>()(L, I);
+                return (uint64_t) LabelingImpl<int32_t, int32_t, StatsOp, 8>()(L, I, sop);
             }
         }else if(iDepth == CV_32F){
             if(connectivity == 4){
-                return (uint64_t) LabelingImpl<int32_t, float, 4>()(L, I);
+                return (uint64_t) LabelingImpl<int32_t, float, StatsOp, 4>()(L, I, sop);
             }else{
-                return (uint64_t) LabelingImpl<int32_t, float, 8>()(L, I);
+                return (uint64_t) LabelingImpl<int32_t, float, StatsOp, 8>()(L, I, sop);
             }
         }else if(iDepth == CV_64F){
             if(connectivity == 4){
-                return (uint64_t) LabelingImpl<int32_t, double, 4>()(L, I);
+                return (uint64_t) LabelingImpl<int32_t, double, StatsOp, 4>()(L, I, sop);
             }else{
-                return (uint64_t) LabelingImpl<int32_t, double, 8>()(L, I);
+                return (uint64_t) LabelingImpl<int32_t, double, StatsOp, 8>()(L, I, sop);
             }
+        }else{
+            CV_Assert(false);
         }
     }
 
@@ -360,6 +449,33 @@ uint64_t connectedComponents(Mat &L, const Mat &I, int connectivity){
     return -1;
 }
 
+uint64_t connectedComponents(Mat &L, const Mat &I, int connectivity){
+    int lDepth = L.depth();
+    if(lDepth == CV_8U){
+        connectedcomponents::NoOp<uint8_t> sop; return connectedComponents_sub1(L, I, connectivity, sop);
+    }else if(lDepth == CV_16U){
+        connectedcomponents::NoOp<uint16_t> sop; return connectedComponents_sub1(L, I, connectivity, sop);
+    }else if(lDepth == CV_32S){
+        connectedcomponents::NoOp<uint32_t> sop; return connectedComponents_sub1(L, I, connectivity, sop);
+    }else{
+        CV_Assert(false);
+        return 0;
+    }
+}
+
+uint64_t connectedComponents(Mat &L, const Mat &I, std::vector<ConnectedComponentStats> &statsv, int connectivity){
+    int lDepth = L.depth();
+    if(lDepth == CV_8U){
+        connectedcomponents::CCStatsOp<uint8_t> sop(statsv); return connectedComponents_sub1(L, I, connectivity, sop);
+    }else if(lDepth == CV_16U){
+        connectedcomponents::CCStatsOp<uint16_t> sop(statsv); return connectedComponents_sub1(L, I, connectivity, sop);
+    }else if(lDepth == CV_32S){
+        connectedcomponents::CCStatsOp<uint32_t> sop(statsv); return connectedComponents_sub1(L, I, connectivity, sop);
+    }else{
+        CV_Assert(false);
+        return 0;
+    }
+}
 
 }
 
index 6d3357f..7b362df 100644 (file)
@@ -12,7 +12,7 @@ static void on_trackbar(int, void*)
 {
     Mat bw = threshval < 128 ? (img < threshval) : (img > threshval);
     Mat labelImage(img.size(), CV_32S);
-    int nLabels = connectedComponents(labelImage, bw, 8);
+    uint64_t nLabels = connectedComponents(labelImage, bw, 8);
     Vec3b colors[nLabels];
     colors[0] = Vec3b(0, 0, 0);//background
     for(int label = 1; label < nLabels; ++label){