::google::InitGoogleLogging(argv[0]);
if (argc != 3) {
LOG(ERROR) << "Usage: compute_image_mean input_leveldb output_file";
- return(0);
+ return 1;
}
leveldb::DB* db;
" RANDOM_SHUFFLE_DATA[0 or 1]\n"
"The ImageNet dataset for the training demo is at\n"
" http://www.image-net.org/download-images\n");
- return 0;
+ return 1;
}
std::ifstream infile(argv[2]);
std::vector<std::pair<string, int> > lines;
int main(int argc, char** argv) {
if (argc > 2) {
LOG(ERROR) << "device_query [device_id=0]";
- return 0;
+ return 1;
}
if (argc == 2) {
LOG(INFO) << "Querying device_id=" << argv[1];
::google::InitGoogleLogging(argv[0]);
if (argc != 3) {
LOG(ERROR) << "Usage: finetune_net solver_proto_file pretrained_net";
- return 0;
+ return 1;
}
SolverParameter solver_param;
if (argc < 2 || argc > 5) {
LOG(ERROR) << "net_speed_benchmark net_proto [iterations=50]"
" [CPU/GPU] [Device_id=0]";
- return 0;
+ return 1;
}
if (argc >=3) {
if (argc < 4 || argc > 5) {
LOG(ERROR) << "test_net net_proto pretrained_net_proto iterations "
<< "[CPU/GPU]";
- return 0;
+ return 1;
}
cudaSetDevice(0);
::google::InitGoogleLogging(argv[0]);
if (argc < 2 || argc > 3) {
LOG(ERROR) << "Usage: train_net solver_proto_file [resume_point_file]";
- return 0;
+ return 1;
}
SolverParameter solver_param;