COMPMID-3237: Implement NEQLSTMLayer
authorMichele Di Giorgio <michele.digiorgio@arm.com>
Mon, 9 Mar 2020 19:32:33 +0000 (19:32 +0000)
committerGeorgios Pinitas <georgios.pinitas@arm.com>
Mon, 20 Apr 2020 11:06:59 +0000 (11:06 +0000)
COMPMID-3082: Extend NEQLSTMLayer with enhancements

Change-Id: I88175b7bf69494a4eae510b74176fe8a0d6cd770
Signed-off-by: Michele Di Giorgio <michele.digiorgio@arm.com>
Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/2969
Tested-by: Arm Jenkins <bsgcomp@arm.com>
Reviewed-by: Sang-Hoon Park <sang-hoon.park@arm.com>
Reviewed-by: Sheri Zhang <sheri.zhang@arm.com>
Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>

14 files changed:
Android.bp
arm_compute/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.h
arm_compute/core/utils/misc/InfoHelpers.h
arm_compute/runtime/NEON/NEFunctions.h
arm_compute/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCore.h
arm_compute/runtime/NEON/functions/NELSTMLayer.h
arm_compute/runtime/NEON/functions/NEQLSTMLayer.h [new file with mode: 0644]
arm_compute/runtime/common/LSTMParams.h
src/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.cpp
src/core/NEON/kernels/NEGEMMLowpReductionKernel.cpp
src/runtime/CL/functions/CLLSTMLayer.cpp
src/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCore.cpp
src/runtime/NEON/functions/NELSTMLayer.cpp
src/runtime/NEON/functions/NEQLSTMLayer.cpp [new file with mode: 0644]

index 80ea3e36b8cecf4262b2b46289dcbe10cf61a646..7a04eec29f8748e830752329a7baedeff6805542 100644 (file)
@@ -694,6 +694,7 @@ cc_library_static {
         "src/runtime/NEON/functions/NEPixelWiseMultiplication.cpp",
         "src/runtime/NEON/functions/NEPoolingLayer.cpp",
         "src/runtime/NEON/functions/NEPriorBoxLayer.cpp",
+        "src/runtime/NEON/functions/NEQLSTMLayer.cpp",
         "src/runtime/NEON/functions/NEQuantizationLayer.cpp",
         "src/runtime/NEON/functions/NERNNLayer.cpp",
         "src/runtime/NEON/functions/NEROIAlignLayer.cpp",
index c6b40eb30eabe5f0b7e4b4f3bbc044da77501ac4..8f47c5089dcc73b4736db0c1cf11d6f5547de683 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2017-2019 ARM Limited.
+ * Copyright (c) 2017-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -63,14 +63,14 @@ public:
      * kernels change the layout of the original matrices to be more cache-friendly.
      *
      * @param[in]  input0 Input tensor containing the interleaved Matrix A. Data type supported: U8/QASYMM8/S8/QASYMM8_SIGNED
-     * @param[in]  input1 Input tensor containing the transposed1xW Matrix B. Data type supported: U8/QASYMM8/S8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL
+     * @param[in]  input1 Input tensor containing the transposed1xW Matrix B. Data type supported: U8/QASYMM8/S8/QASYMM8_SIGNED/QSYMM8/QSYMM8_PER_CHANNEL
      * @param[out] output Output tensor to store the result of matrix multiplication. Data type supported: S32
      */
     void configure(const ITensor *input0, const ITensor *input1, ITensor *output);
     /** Static function to check if given info will lead to a valid configuration of @ref NEGEMMLowpMatrixMultiplyKernel
      *
      * @param[in] input0 Input tensor info containing the interleaved Matrix A. Data type supported: U8/QASYMM8/S8/QASYMM8_SIGNED
-     * @param[in] input1 Input tensor info containing the transposed Matrix B. Data type supported: U8/QASYMM8/S8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL
+     * @param[in] input1 Input tensor info containing the transposed Matrix B. Data type supported: U8/QASYMM8/S8/QASYMM8_SIGNED/QSYMM8/QSYMM8_PER_CHANNEL
      * @param[in] output Output tensor info to store the result of matrix multiplication. Data type supported: S32
      *
      * @return a status
index b572de2433742c3836ab0921aa691ec272fbc787..8cf701c12475e8a1fb7f383e1c4512cedabd6b6b 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2019 ARM Limited.
+ * Copyright (c) 2019-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -26,6 +26,7 @@
 
 #include "arm_compute/core/Error.h"
 #include "arm_compute/core/Types.h"
+#include "arm_compute/runtime/common/LSTMParams.h"
 
 namespace arm_compute
 {
@@ -58,6 +59,38 @@ inline bool is_relu6(ActivationLayerInfo activation_info)
                                  && activation_info.a() == 6.f;
     return activation_info.enabled() && (is_lu_bounded_relu || is_bounded_relu);
 }
+
+/** Build LSTMParams<ITensorInfo> object by extracting the metadata from each
+ * tensor.
+ *
+ * @param[in]  lstm_params      The LSTMParams<T> object containing the tensors.
+ * @param[out] lstm_params_info The LSTMParams<ITensorInfo> to be constructed.
+ *
+ */
+template <typename T>
+inline void build_lstm_params_tensor_info(const LSTMParams<T>     &lstm_params,
+                                          LSTMParams<ITensorInfo> *lstm_params_info)
+{
+    if(lstm_params.has_peephole_opt())
+    {
+        ARM_COMPUTE_ERROR_ON_NULLPTR(lstm_params.cell_to_forget_weights(), lstm_params.cell_to_output_weights());
+        lstm_params_info->set_peephole_params(lstm_params.cell_to_forget_weights()->info(), lstm_params.cell_to_output_weights()->info());
+    }
+    if(lstm_params.has_projection())
+    {
+        ARM_COMPUTE_ERROR_ON_NULLPTR(lstm_params.projection_weights());
+        lstm_params_info->set_projection_params(lstm_params.projection_weights()->info(),
+                                                lstm_params.projection_bias() != nullptr ? lstm_params.projection_bias()->info() : nullptr);
+    }
+    if(!lstm_params.has_cifg_opt())
+    {
+        ARM_COMPUTE_ERROR_ON_NULLPTR(lstm_params.input_to_input_weights(), lstm_params.recurrent_to_input_weights(), lstm_params.input_gate_bias());
+
+        const ITensorInfo *cell_to_input_weights_info = (lstm_params.has_peephole_opt()) ? lstm_params.cell_to_input_weights()->info() : nullptr;
+        lstm_params_info->set_cifg_params(lstm_params.input_to_input_weights()->info(), lstm_params.recurrent_to_input_weights()->info(),
+                                          cell_to_input_weights_info, lstm_params.input_gate_bias()->info());
+    }
+}
 } // namespace info_helpers
 } // namespace utils
 } // namespace arm_compute
index abad8d482ed09db9e00abfd665f2fae249afd18a..de364fa9af57c45b6cac6304151bb59e43ad2a22 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2016-2019 ARM Limited.
+ * Copyright (c) 2016-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
 #include "arm_compute/runtime/NEON/functions/NEPixelWiseMultiplication.h"
 #include "arm_compute/runtime/NEON/functions/NEPoolingLayer.h"
 #include "arm_compute/runtime/NEON/functions/NEPriorBoxLayer.h"
+#include "arm_compute/runtime/NEON/functions/NEQLSTMLayer.h"
 #include "arm_compute/runtime/NEON/functions/NEQuantizationLayer.h"
 #include "arm_compute/runtime/NEON/functions/NERNNLayer.h"
 #include "arm_compute/runtime/NEON/functions/NEROIAlignLayer.h"
index 74dedcf4c531e1751b0e1abda5fcd628fbd23163..11683c5b95d25f0601540eb9976aaf8fc6637a19 100644 (file)
@@ -84,7 +84,7 @@ public:
      * @note The @p output type is S32 if @p gemm_info.type == GEMMLowpOutputStageType::NONE. It is QASYMM8/QASYMM8_SIGNED otherwise
      *
      * @param[in]  a         First input tensor  (Matrix A). Data type supported: QASYMM8/QASYMM8_SIGNED.
-     * @param[in]  b         Second input tensor (Matrix B). Data type supported: same as @p a
+     * @param[in]  b         Second input tensor (Matrix B). Data type supported: QASYMM8/QASYMM8_SIGNED/QSYMM8/QSYMM8_PER_CHANNEL.
      * @param[in]  c         Third input tensor  (Matrix C). It can be a nullptr. Data type supported: S32
      * @param[out] output    Output tensor. Data type supported: Data type supported: S32/QASYMM8/QASYMM8_SIGNED
      * @param[in]  gemm_info (Optional) Specifies if the matrix A and/or matrix B have been reshaped and
@@ -96,7 +96,7 @@ public:
      * @note The @p output type is S32 if @p gemm_info.type == GEMMLowpOutputStageType::NONE. It is QASYMM8/QASYMM8_SIGNED otherwise
      *
      * @param[in] a         First input tensor info  (Matrix A). Data type supported: QASYMM8/QASYMM8_SIGNED.
-     * @param[in] b         Second input tensor info (Matrix B). Data type supported: same as @p a
+     * @param[in] b         Second input tensor info (Matrix B). Data type supported: QASYMM8/QASYMM8_SIGNED/QSYMM8/QSYMM8_PER_CHANNEL.
      * @param[in] c         Third input tensor  info (Matrix C). It can be a nullptr. Data type supported: S32
      * @param[in] output    Output tensor info. Data type supported: Data type supported: S32/QASYMM8/QASYMM8_SIGNED
      * @param[in] gemm_info (Optional) Specifies if the matrix A and/or matrix B have been reshaped and
index ae13d0c36f2fd8a0538724f55f8739218424598b..e85e87b88ec28f23d74482ef4dcc147128d04854 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018-2019 ARM Limited.
+ * Copyright (c) 2018-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -68,22 +68,23 @@ public:
      * @param[out] cell_state_out              2D tensor with dimensions [num_units, batch_size]. Data type supported: Same as @p input.
      * @param[out] output                      Destination tensor. Output is a 2D tensor with dimensions [output_size, batch_size].
      *                                         Data types supported: Same as @p input.
-     * @param[in]  lstm_params                 (Optional) Weights tensors used in peephole optimization:
-     *                                         input_to_input_weights         2D weights tensor with dimensions [input_size, num_units]. Data type supported: Same as @p input.
-     *                                         recurrent_to_input_weights     2D weights tensor with dimensions [output_size, num_units]. Data type supported: Same as @p input.
-     *                                         cell_to_input_weights          1D weights tensor with dimensions [num_units]. Can be nullptr. Data type supported: Same as @p input.
-     *                                         cell_to_forget_weights         1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input.
-     *                                         cell_to_output_weights         1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input.
-     *                                         input_gate_bias                1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input
-     *                                         projection_weights             2D weights tensor with dimensions [output_size, num_units]. Data type supported: Same as @p input.
-     *                                         projection_bias                1D weights tensor with dimensions [output_size]. Data type supported: Same as @p input.
-     *                                         input_layer_norm_coefficients  1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input.
-     *                                         forget_layer_norm_coefficients 1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input.
-     *                                         cell_layer_norm_coefficients   1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input.
-     *                                         output_layer_norm_coefficients 1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input.
+     * @param[in]  lstm_params                 Weights tensors used in peephole optimization:
+     *                                         input_to_input_weights     (Optional) 2D weights tensor with dimensions [input_size, num_units]. Data type supported: Same as @p input.
+     *                                         recurrent_to_input_weights (Optional) 2D weights tensor with dimensions [output_size, num_units]. Data type supported: Same as @p input.
+     *                                         cell_to_input_weights      (Optional) 1D weights tensor with dimensions [num_units]. Can be nullptr. Data type supported: Same as @p input.
+     *                                         cell_to_forget_weights     (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input.
+     *                                         cell_to_output_weights     (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input.
+     *                                         input_gate_bias            (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input
+     *                                         projection_weights         (Optional) 2D weights tensor with dimensions [output_size, num_units]. Data type supported: Same as @p input.
+     *                                         projection_bias            (Optional) 1D weights tensor with dimensions [output_size]. Data type supported: Same as @p input.
+     *                                         input_layer_norm_weights   (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input.
+     *                                         forget_layer_norm_weights  (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input.
+     *                                         cell_layer_norm_weights    (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input.
+     *                                         output_layer_norm_weights  (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input.
      * @param[in]  activation_info             Contains activation information described in @ref ActivationLayerInfo.
      * @param[in]  cell_threshold              The clipping threshold for the cell state, such that values are bound within [-cell_clip, cell_clip]. If set to 0.0 then clipping is disabled.
-     * @param[in]  projection_threshold        The clipping threshold for the output from the projection layer, such that values are bound within [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
+     * @param[in]  projection_threshold        The clipping threshold for the output from the projection layer, such that values are bound within [-proj_clip, proj_clip].
+     *                                         If set to 0.0 then clipping is disabled.
      */
     void configure(const ITensor *input,
                    const ITensor *input_to_forget_weights, const ITensor *input_to_cell_weights, const ITensor *input_to_output_weights,
@@ -112,22 +113,23 @@ public:
      * @param[in] cell_state_out              2D tensor with dimensions [num_units, batch_size]. Data type supported: Same as @p input.
      * @param[in] output                      Destination tensor. Output is a 2D tensor with dimensions [output_size, batch_size].
      *                                        Data types supported: Same as @p input.
-     * @param[in] lstm_params                 (Optional) Weights tensors used in peephole optimization:
-     *                                        input_to_input_weights         2D weights tensor with dimensions [input_size, num_units]. Data type supported: Same as @p input.
-     *                                        recurrent_to_input_weights     2D weights tensor with dimensions [output_size, num_units]. Data type supported: Same as @p input.
-     *                                        cell_to_input_weights          1D weights tensor with dimensions [num_units]. Can be nullptr. Data type supported: Same as @p input.
-     *                                        cell_to_forget_weights         1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input.
-     *                                        cell_to_output_weights         1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input.
-     *                                        input_gate_bias                1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input
-     *                                        projection_weights             2D weights tensor with dimensions [output_size, num_units]. Data type supported: Same as @p input.
-     *                                        projection_bias                1D weights tensor with dimensions [output_size]. Data type supported: Same as @p input.
-     *                                        input_layer_norm_coefficients  1D weights tensor info with dimensions [num_units]. Data type supported: Same as @p input.
-     *                                        forget_layer_norm_coefficients 1D weights tensor info with dimensions [num_units]. Data type supported: Same as @p input.
-     *                                        cell_layer_norm_coefficients   1D weights tensor info with dimensions [num_units]. Data type supported: Same as @p input.
-     *                                        output_layer_norm_coefficients 1D weights tensor info with dimensions [num_units]. Data type supported: Same as @p input.
+     * @param[in] lstm_params                 Weights tensors used in peephole optimization:
+     *                                        input_to_input_weights     (Optional) 2D weights tensor with dimensions [input_size, num_units]. Data type supported: Same as @p input.
+     *                                        recurrent_to_input_weights (Optional) 2D weights tensor with dimensions [output_size, num_units]. Data type supported: Same as @p input.
+     *                                        cell_to_input_weights      (Optional) 1D weights tensor with dimensions [num_units]. Can be nullptr. Data type supported: Same as @p input.
+     *                                        cell_to_forget_weights     (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input.
+     *                                        cell_to_output_weights     (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input.
+     *                                        input_gate_bias            (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input
+     *                                        projection_weights         (Optional) 2D weights tensor with dimensions [output_size, num_units]. Data type supported: Same as @p input.
+     *                                        projection_bias            (Optional) 1D weights tensor with dimensions [output_size]. Data type supported: Same as @p input.
+     *                                        input_layer_norm_weights   (Optional) 1D weights tensor info with dimensions [num_units]. Data type supported: Same as @p input.
+     *                                        forget_layer_norm_weights  (Optional) 1D weights tensor info with dimensions [num_units]. Data type supported: Same as @p input.
+     *                                        cell_layer_norm_weights    (Optional) 1D weights tensor info with dimensions [num_units]. Data type supported: Same as @p input.
+     *                                        output_layer_norm_weights  (Optional) 1D weights tensor info with dimensions [num_units]. Data type supported: Same as @p input.
      * @param[in] activation_info             Contains activation information described in @ref ActivationLayerInfo.
      * @param[in] cell_threshold              The clipping threshold for the cell state, such that values are bound within [-cell_clip, cell_clip]. If set to 0.0 then clipping is disabled.
-     * @param[in] projection_threshold        The clipping threshold for the output from the projection layer, such that values are bound within [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
+     * @param[in] projection_threshold        The clipping threshold for the output from the projection layer, such that values are bound within [-proj_clip, proj_clip].
+     *                                        If set to 0.0 then clipping is disabled.
      *
      * @return a status
      */
diff --git a/arm_compute/runtime/NEON/functions/NEQLSTMLayer.h b/arm_compute/runtime/NEON/functions/NEQLSTMLayer.h
new file mode 100644 (file)
index 0000000..a37909b
--- /dev/null
@@ -0,0 +1,332 @@
+/*
+ * Copyright (c) 2020 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ARM_COMPUTE_NEQLSTMLAYER_H
+#define ARM_COMPUTE_NEQLSTMLAYER_H
+
+#include "arm_compute/core/NEON/kernels/NEArithmeticAdditionKernel.h"
+#include "arm_compute/core/NEON/kernels/NEArithmeticSubtractionKernel.h"
+#include "arm_compute/core/NEON/kernels/NEGEMMLowpReductionKernel.h"
+#include "arm_compute/core/NEON/kernels/NEPixelWiseMultiplicationKernel.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/runtime/NEON/functions/NEActivationLayer.h"
+#include "arm_compute/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCore.h"
+#include "arm_compute/runtime/NEON/functions/NEGEMMLowpOutputStage.h"
+#include "arm_compute/runtime/NEON/functions/NETranspose.h"
+
+#include "arm_compute/runtime/common/LSTMParams.h"
+
+namespace arm_compute
+{
+// Forward declarations
+class ITensor;
+
+/** Basic function to run @ref NEQLSTMLayer
+ *
+ * This function calls the following NEON functions/kernels:
+ *
+ * -# @ref NEActivationLayer                                     Activation functions (tanh and logistic)
+ * -# @ref NEArithmeticAdditionKernel                            Elementwise addition
+ * -# @ref NEArithmeticSubtractionKernel                         Elementwise subtraction
+ * -# @ref NEGEMMLowpMatrixMultiplyCore                          Quantized matrix multiplication core. Accumulators are 32-bit integers
+ * -# @ref NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPoint   Convert 32-bit integers into QSYMM16
+ * -# @ref NEGEMMLowpMatrixAReductionKernel                      For precomputing effective biases to use
+ * -# @ref NEPixelWiseMultiplicationKernel                       Elementwise multiplication
+ * -# @ref NETranspose                                           Transpose function for reshaping the weights
+ * */
+class NEQLSTMLayer : public IFunction
+{
+public:
+    /** Default constructor */
+    NEQLSTMLayer(std::shared_ptr<IMemoryManager> memory_manager = nullptr);
+    /** Prevent instances of this class from being copied (As this class contains pointers) */
+    NEQLSTMLayer(const NEQLSTMLayer &) = delete;
+    /** Default move constructor */
+    NEQLSTMLayer(NEQLSTMLayer &&) = default;
+    /** Prevent instances of this class from being copied (As this class contains pointers) */
+    NEQLSTMLayer &operator=(const NEQLSTMLayer &) = delete;
+    /** Default move assignment operator */
+    NEQLSTMLayer &operator=(NEQLSTMLayer &&) = default;
+    /** Initialize function's tensors.
+     *
+     * @param[in]  input                       Source tensor. Input is a 2D tensor with dimensions [input_size, batch_size]. Data types supported: QASYMM8_SIGNED.
+     * @param[in]  input_to_forget_weights     2D weights tensor with dimensions [input_size, num_units]. Data type supported: QSYMM8.
+     * @param[in]  input_to_cell_weights       2D weights tensor with dimensions [input_size, num_units]. Data type supported: QSYMM8.
+     * @param[in]  input_to_output_weights     2D weights tensor with dimensions [input_size, num_units]. Data type supported: QSYMM8.
+     * @param[in]  recurrent_to_forget_weights 2D weights tensor with dimensions [output_size, num_units]. Data type supported: QSYMM8.
+     * @param[in]  recurrent_to_cell_weights   2D weights tensor with dimensions [output_size, num_units]. Data type supported: QSYMM8.
+     * @param[in]  recurrent_to_output_weights 2D weights tensor with dimensions [output_size, num_units]. Data type supported: QSYMM8.
+     * @param[in]  forget_gate_bias            1D weights tensor with dimensions [num_units]. Data type supported: S32.
+     * @param[in]  cell_bias                   1D weights tensor with dimensions [num_units]. Data type supported: S32.
+     * @param[in]  output_gate_bias            1D weights tensor with dimensions [num_units]. Data type supported: S32.
+     * @param[in]  cell_state_in               2D tensor with dimensions [output_size, batch_size]. Data type supported:  QSYMM16.
+     * @param[in]  output_state_in             2D tensor with dimensions [num_units, batch_size]. Data type supported: Same as @p input.
+     * @param[out] cell_state_out              Destination tensor. Output is a 2D tensor with dimensions [output_size, batch_size]. Data type supported:  QSYMM16.
+     * @param[out] output_state_out            Destination tensor. Output is a 2D tensor with dimensions [num_units, batch_size].Data types supported: Same as @p input.
+     * @param[in]  lstm_params                 Weights tensors used in peephole, CIFG and layer normalization optimizations:
+     *                                         input_intermediate_scale   Scale of the intermediate result of matmul, i.e. input to layer normalization, at input gate.
+     *                                         forget_intermediate_scale  Scale of the intermediate result of matmul, i.e. input to layer normalization, at forget gate.
+     *                                         cell_intermediate_scale    Scale of the intermediate result of matmul, i.e. input to layer normalization, at cell gate.
+     *                                         output_intermediate_scale  Scale of the intermediate result of matmul, i.e. input to layer normalization, at output gate.
+     *                                         hidden_state_zero          The zero point of the hidden state.
+     *                                         hidden_state_scale         The scale of the hidden state.
+     *                                         input_to_input_weights     (Optional) 2D weights tensor with dimensions [input_size, num_units]. Data type supported: QSYMM8.
+     *                                         recurrent_to_input_weights (Optional) 2D weights tensor with dimensions [output_size, num_units]. Data type supported: QSYMM8.
+     *                                         cell_to_input_weights      (Optional) 1D weights tensor with dimensions [num_units]. Can be nullptr. Data type supported: QSYMM16.
+     *                                         cell_to_forget_weights     (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
+     *                                         cell_to_output_weights     (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
+     *                                         input_gate_bias            (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: S32.
+     *                                         projection_weights         (Optional) 2D weights tensor with dimensions [output_size, num_units]. Data type supported: QSYMM8.
+     *                                         projection_bias            (Optional) 1D weights tensor with dimensions [output_size]. S32.
+     *                                         input_layer_norm_weights   (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
+     *                                         forget_layer_norm_weights  (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
+     *                                         cell_layer_norm_weights    (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
+     *                                         output_layer_norm_weights  (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
+     *                                         cell_threshold             (Optional) The clipping threshold for the cell state, such that values are bound within [-cell_clip, cell_clip].
+     *                                                                               If set to 0.0 then clipping is disabled.
+     *                                         projection_threshold       (Optional) The clipping threshold for the output from the projection layer, such that values are bound within
+     *                                                                               [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
+     */
+    void configure(const ITensor *input,
+                   const ITensor *input_to_forget_weights, const ITensor *input_to_cell_weights, const ITensor *input_to_output_weights,
+                   const ITensor *recurrent_to_forget_weights, const ITensor *recurrent_to_cell_weights, const ITensor *recurrent_to_output_weights,
+                   const ITensor *forget_gate_bias, const ITensor *cell_bias, const ITensor *output_gate_bias,
+                   const ITensor *cell_state_in, const ITensor *output_state_in,
+                   ITensor *cell_state_out, ITensor *output_state_out,
+                   const LSTMParams<ITensor> &lstm_params);
+
+    /** Static function to check if given info will lead to a valid configuration of @ref NEQLSTMLayer
+     *
+     * @param[in]  input                       Source tensor info. Input is a 2D tensor info with dimensions [input_size, batch_size]. Data types supported: QASYMM8_SIGNED.
+     * @param[in]  input_to_forget_weights     2D weights tensor info with dimensions [input_size, num_units]. Data type supported: QSYMM8.
+     * @param[in]  input_to_cell_weights       2D weights tensor info with dimensions [input_size, num_units]. Data type supported: QSYMM8.
+     * @param[in]  input_to_output_weights     2D weights tensor info with dimensions [input_size, num_units]. Data type supported: QSYMM8.
+     * @param[in]  recurrent_to_forget_weights 2D weights tensor info with dimensions [output_size, num_units]. Data type supported: QSYMM8.
+     * @param[in]  recurrent_to_cell_weights   2D weights tensor info with dimensions [output_size, num_units]. Data type supported: QSYMM8.
+     * @param[in]  recurrent_to_output_weights 2D weights tensor info with dimensions [output_size, num_units]. Data type supported: QSYMM8.
+     * @param[in]  forget_gate_bias            1D weights tensor info with dimensions [num_units]. Data type supported: S32.
+     * @param[in]  cell_bias                   1D weights tensor info with dimensions [num_units]. Data type supported: S32.
+     * @param[in]  output_gate_bias            1D weights tensor info with dimensions [num_units]. Data type supported: S32.
+     * @param[in]  cell_state_in               2D tensor info with dimensions [num_units, batch_size]. Data type supported:  QSYMM16.
+     * @param[in]  output_state_in             2D tensor info with dimensions [output_size, batch_size]. Data type supported: Same as @p input.
+     * @param[out] cell_state_out              Destination tensor info. Output is a 2D tensor info with dimensions [num_units, batch_size]. Data type supported:  QSYMM16.
+     * @param[out] output_state_out            Destination tensor info. Output is a 2D tensor info with dimensions [output_size, batch_size].Data types supported: Same as @p input.
+     * @param[in]  lstm_params                 Weights tensors info used in peephole, CIFG and layer normalization optimizations:
+     *                                         input_intermediate_scale   Scale of the intermediate result of matmul, i.e. input to layer normalization, at input gate.
+     *                                         forget_intermediate_scale  Scale of the intermediate result of matmul, i.e. input to layer normalization, at forget gate.
+     *                                         cell_intermediate_scale    Scale of the intermediate result of matmul, i.e. input to layer normalization, at cell gate.
+     *                                         output_intermediate_scale  Scale of the intermediate result of matmul, i.e. input to layer normalization, at output gate.
+     *                                         hidden_state_zero          The zero point of the hidden state.
+     *                                         hidden_state_scale         The scale of the hidden state.
+     *                                         input_to_input_weights     (Optional) 2D weights tensor with dimensions [input_size, num_units]. Data type supported: QSYMM8.
+     *                                         recurrent_to_input_weights (Optional) 2D weights tensor with dimensions [output_size, num_units]. Data type supported: QSYMM8.
+     *                                         cell_to_input_weights      (Optional) 1D weights tensor with dimensions [num_units]. Can be nullptr. Data type supported: QSYMM16.
+     *                                         cell_to_forget_weights     (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
+     *                                         cell_to_output_weights     (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
+     *                                         input_gate_bias            (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: S32.
+     *                                         projection_weights         (Optional) 2D weights tensor with dimensions [output_size, num_units]. Data type supported: QSYMM8.
+     *                                         projection_bias            (Optional) 1D weights tensor with dimensions [output_size]. S32.
+     *                                         input_layer_norm_weights   (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
+     *                                         forget_layer_norm_weights  (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
+     *                                         cell_layer_norm_weights    (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
+     *                                         output_layer_norm_weights  (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
+     *                                         cell_threshold             (Optional) The clipping threshold for the cell state, such that values are bound within [-cell_clip, cell_clip].
+     *                                                                               If set to 0.0 then clipping is disabled.
+     *                                         projection_threshold       (Optional) The clipping threshold for the output from the projection layer, such that values are bound within
+     *                                                                               [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
+     * @return a status
+     */
+    static Status validate(const ITensorInfo *input,
+                           const ITensorInfo *input_to_forget_weights, const ITensorInfo *input_to_cell_weights, const ITensorInfo *input_to_output_weights,
+                           const ITensorInfo *recurrent_to_forget_weights, const ITensorInfo *recurrent_to_cell_weights, const ITensorInfo *recurrent_to_output_weights,
+                           const ITensorInfo *forget_gate_bias, const ITensorInfo *cell_bias, const ITensorInfo *output_gate_bias,
+                           const ITensorInfo *cell_state_in, const ITensorInfo *output_state_in,
+                           const ITensorInfo *cell_state_out, const ITensorInfo *output_state_out,
+                           const LSTMParams<ITensorInfo> &lstm_params);
+
+    // Inherited methods overridden:
+    void run() override;
+    void prepare() override;
+
+private:
+    /** Internal method to configure matrix multiplication plus output stage of each gate.
+     *
+     * @param[in] mm             Matrix multiplication function to use.
+     * @param[in] outstage       Output stage function to use.
+     * @param[in] gemmlowp_info  GEMMLowp metadata to be used by the output stage.
+     * @param[in] mm_input       Input tensor to matrix multiplication function.
+     * @param[in] mm_weights     Weights tensor to matrix multiplication function.
+     * @param[in] bias           Bias tensor to matrix multiplication function.
+     * @param[in] outstage_res   Tensor to be used for storing the result of the output stage.
+     * @param[in] gemmlowp_scale Real multiplier to be used computing multiplier and shift for requantization.
+     * @param[in] mm_res_info    Tensor info to be used to initialize matrix multiplication result tensor.
+     * @param[in] mm_res_info    Tensor info to be used to initialize output stage result tensor.
+     *
+     */
+    void configure_mm(NEGEMMLowpMatrixMultiplyCore &mm, NEGEMMLowpOutputStage &outstage, GEMMLowpOutputStageInfo &gemmlowp_info,
+                      const ITensor *mm_input, const ITensor *mm_weights, const ITensor *bias, Tensor *mm_res,
+                      Tensor *outstage_res, float gemmlowp_scale,
+                      const TensorInfo &mm_res_info, const TensorInfo &outstage_tensor_info);
+
+    MemoryGroup _memory_group{};
+
+    // Functions used
+    NETranspose                      _transpose_input_to_forget_weights{};
+    NETranspose                      _transpose_input_to_cell_weights{};
+    NETranspose                      _transpose_input_to_output_weights{};
+    NETranspose                      _transpose_input_to_input_weights{};
+    NETranspose                      _transpose_recurrent_to_forget_weights{};
+    NETranspose                      _transpose_recurrent_to_cell_weights{};
+    NETranspose                      _transpose_recurrent_to_output_weights{};
+    NETranspose                      _transpose_recurrent_to_input_weights{};
+    NETranspose                      _transpose_projection_weights{};
+    NEGEMMLowpMatrixAReductionKernel _input_to_input_reduction{};
+    NEGEMMLowpMatrixAReductionKernel _recurrent_to_input_reduction{};
+    NEGEMMLowpMatrixAReductionKernel _input_to_forget_reduction{};
+    NEGEMMLowpMatrixAReductionKernel _recurrent_to_forget_reduction{};
+    NEGEMMLowpMatrixAReductionKernel _input_to_cell_reduction{};
+    NEGEMMLowpMatrixAReductionKernel _recurrent_to_cell_reduction{};
+    NEGEMMLowpMatrixAReductionKernel _input_to_output_reduction{};
+    NEGEMMLowpMatrixAReductionKernel _recurrent_to_output_reduction{};
+    NEGEMMLowpMatrixAReductionKernel _projection_reduction{};
+    NEArithmeticAdditionKernel       _projection_bias_add{};
+    NEGEMMLowpMatrixMultiplyCore     _mm_input_to_forget{};
+    NEGEMMLowpMatrixMultiplyCore     _mm_recurrent_to_forget{};
+    NEPixelWiseMultiplicationKernel  _pixelwise_mul_cell_to_forget{};
+    NEGEMMLowpOutputStage            _input_to_forget_outstage{};
+    NEGEMMLowpOutputStage            _recurrent_to_forget_outstage{};
+    NEGEMMLowpOutputStage            _cell_to_forget_outstage{};
+    NEArithmeticAdditionKernel       _accumulate_input_recurrent_forget{};
+    NEArithmeticAdditionKernel       _accumulate_cell_forget{};
+    NEActivationLayer                _forget_gate_sigmoid{};
+    NEGEMMLowpMatrixMultiplyCore     _mm_input_to_cell{};
+    NEGEMMLowpOutputStage            _input_to_cell_outstage{};
+    NEGEMMLowpMatrixMultiplyCore     _mm_recurrent_to_cell{};
+    NEGEMMLowpOutputStage            _recurrent_to_cell_outstage{};
+    NEArithmeticAdditionKernel       _accumulate_input_recurrent_modulation{};
+    NEActivationLayer                _cell_gate_tanh{};
+    NEArithmeticSubtractionKernel    _input_gate_sub{};
+    NEGEMMLowpMatrixMultiplyCore     _mm_input_to_input{};
+    NEGEMMLowpOutputStage            _input_to_input_outstage{};
+    NEGEMMLowpMatrixMultiplyCore     _mm_recurrent_to_input{};
+    NEGEMMLowpOutputStage            _recurrent_to_input_outstage{};
+    NEArithmeticAdditionKernel       _accumulate_input_recurrent_input{};
+    NEPixelWiseMultiplicationKernel  _pixelwise_mul_cell_to_input{};
+    NEGEMMLowpOutputStage            _cell_to_input_outstage{};
+    NEArithmeticAdditionKernel       _accumulate_cell_input{};
+    NEActivationLayer                _input_gate_tanh{};
+    NEPixelWiseMultiplicationKernel  _pixelwise_mul_forget_cell{};
+    NEPixelWiseMultiplicationKernel  _pixelwise_mul_input_cell{};
+    NEArithmeticAdditionKernel       _add_forget_cell{};
+    NEActivationLayer                _cell_clip{};
+    NEGEMMLowpMatrixMultiplyCore     _mm_input_to_output{};
+    NEGEMMLowpOutputStage            _input_to_output_outstage{};
+    NEGEMMLowpMatrixMultiplyCore     _mm_recurrent_to_output{};
+    NEGEMMLowpOutputStage            _recurrent_to_output_outstage{};
+    NEArithmeticAdditionKernel       _accumulate_input_recurrent_output{};
+    NEPixelWiseMultiplicationKernel  _pixelwise_mul_cell_to_output{};
+    NEArithmeticAdditionKernel       _accumulate_cell_to_output{};
+    NEActivationLayer                _output_gate_sigmoid{};
+    NEActivationLayer                _hidden_tanh{};
+    NEPixelWiseMultiplicationKernel  _pixelwise_mul_hidden{};
+    NEGEMMLowpOutputStage            _hidden_outstage{};
+    NEGEMMLowpMatrixMultiplyCore     _mm_projection{};
+    NEGEMMLowpOutputStage            _projection_outstage{};
+    NEArithmeticAdditionKernel       _accumulate_projection{};
+    NEActivationLayer                _projection_clip{};
+
+    // Tensor pointers
+    const ITensor *_input_to_input_weights
+    {
+        nullptr
+    };
+    const ITensor *_recurrent_to_input_weights{ nullptr };
+    const ITensor *_projection_bias{ nullptr };
+    const ITensor *_input_to_forget_weights{ nullptr };
+    const ITensor *_input_to_cell_weights{ nullptr };
+    const ITensor *_input_to_output_weights{ nullptr };
+    const ITensor *_recurrent_to_forget_weights{ nullptr };
+    const ITensor *_recurrent_to_cell_weights{ nullptr };
+    const ITensor *_recurrent_to_output_weights{ nullptr };
+    const ITensor *_projection_weights{ nullptr };
+
+    // Temporary tensors
+    Tensor _input_to_forget_weights_transposed{ nullptr };
+    Tensor _input_to_cell_weights_transposed{ nullptr };
+    Tensor _input_to_output_weights_transposed{ nullptr };
+    Tensor _input_to_input_weights_transposed{ nullptr };
+    Tensor _recurrent_to_forget_weights_transposed{ nullptr };
+    Tensor _recurrent_to_cell_weights_transposed{ nullptr };
+    Tensor _recurrent_to_output_weights_transposed{ nullptr };
+    Tensor _recurrent_to_input_weights_transposed{ nullptr };
+    Tensor _projection_weights_transposed{ nullptr };
+    Tensor _input_to_input_eff_bias{ nullptr };
+    Tensor _recurrent_to_input_eff_bias{ nullptr };
+    Tensor _input_to_forget_eff_bias{ nullptr };
+    Tensor _recurrent_to_forget_eff_bias{ nullptr };
+    Tensor _input_to_cell_eff_bias{ nullptr };
+    Tensor _recurrent_to_cell_eff_bias{ nullptr };
+    Tensor _input_to_output_eff_bias{ nullptr };
+    Tensor _recurrent_to_output_eff_bias{ nullptr };
+    Tensor _projection_reduction_res{ nullptr };
+    Tensor _projection_eff_bias{ nullptr };
+    Tensor _mm_input_to_forget_res{ nullptr };
+    Tensor _mm_recurrent_to_forget_res{ nullptr };
+    Tensor _mul_cell_to_forget_res{ nullptr };
+    Tensor _input_to_forget_outstage_res{ nullptr };
+    Tensor _cell_to_forget_outstage_res{ nullptr };
+    Tensor _recurrent_to_forget_outstage_res{ nullptr };
+    Tensor _forget_gate{ nullptr };
+    Tensor _mm_input_to_cell_res{ nullptr };
+    Tensor _input_to_cell_outstage_res{ nullptr };
+    Tensor _mm_recurrent_to_cell_res{ nullptr };
+    Tensor _recurrent_to_cell_outstage_res{ nullptr };
+    Tensor _cell_gate{ nullptr };
+    Tensor _mul_input_cell_res{ nullptr };
+    Tensor _mm_input_to_input_res{ nullptr };
+    Tensor _input_to_input_outstage_res{ nullptr };
+    Tensor _mm_recurrent_to_input_res{ nullptr };
+    Tensor _mul_cell_to_input_res{ nullptr };
+    Tensor _cell_to_input_outstage_res{ nullptr };
+    Tensor _recurrent_to_input_outstage_res{ nullptr };
+    Tensor _input_gate{ nullptr };
+    Tensor _mm_input_to_output_res{ nullptr };
+    Tensor _input_to_output_outstage_res{ nullptr };
+    Tensor _mm_recurrent_to_output_res{ nullptr };
+    Tensor _mul_cell_to_output_res{ nullptr };
+    Tensor _recurrent_to_output_outstage_res{ nullptr };
+    Tensor _output_gate{ nullptr };
+    Tensor _hidden_mul_res{ nullptr };
+    Tensor _mm_projection_res{ nullptr };
+    Tensor _projection_outstage_res{ nullptr };
+    Tensor _ones{ nullptr };
+
+    bool _is_prepared{ false };
+    bool _has_cifg{ false };
+    bool _has_cell_clipping{ false };
+    bool _has_projection{ false };
+    bool _has_projection_clipping{ false };
+    bool _has_peephole{ false };
+};
+} // namespace arm_compute
+#endif /* ARM_COMPUTE_NEQLSTMLAYER_H */
index f16945730e856e79a4667bce32ae18c6f225e3b4..e21ddd7af1f54a6d2d7312fbede195202438081d 100644 (file)
@@ -54,10 +54,10 @@ public:
           _output_layer_norm_weights(nullptr),
           _cell_clip(0.f),
           _projection_clip(0.0f),
-          _input_gate_matmul_scale(0.0f),
-          _forget_gate_matmul_scale(0.0f),
-          _cell_gate_matmul_scale(0.0f),
-          _output_gate_matmul_scale(0.0f),
+          _input_intermediate_scale(0.0f),
+          _forget_intermediate_scale(0.0f),
+          _cell_intermediate_scale(0.0f),
+          _output_intermediate_scale(0.0f),
           _hidden_state_zero(0.0f),
           _hidden_state_scale(0),
           _has_peephole_opt(false),
@@ -74,10 +74,10 @@ public:
     ~LSTMParams() = default;
     /** Set CIFG tensor parameters.
      *
-     * @param[in] input_to_input_weights     2D weights tensor with dimensions [input_size, num_units]. Data types supported: F16/F32.
+     * @param[in] input_to_input_weights     2D weights tensor with dimensions [input_size, num_units]. Data types supported: QSYMM8/F16/F32.
      * @param[in] recurrent_to_input_weights 2D weights tensor with dimensions [output_size, num_units]. Data type supported: Same as @p input_to_input_weights.
      * @param[in] cell_to_input_weights      1D weights tensor with dimensions [num_units]. Can be nullptr. Data type supported: Same as @p input_to_input_weights.
-     * @param[in] input_gate_bias            1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input_to_input_weights
+     * @param[in] input_gate_bias            1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input_to_input_weights, S32 when @p input_to_input_weights is QSYMM8
      *
      * @return Reference to this LSTMParams object
      */
@@ -92,8 +92,8 @@ public:
     }
     /** Set projection tensor parameters.
      *
-     * @param[in] projection_weights 2D weights tensor with dimensions [output_size, num_units]. Data type supported: Data types supported: F16/F32.
-     * @param[in] projection_bias    1D weights tensor with dimensions [output_size]. Data type supported: Same as @p projection_weights.
+     * @param[in] projection_weights 2D weights tensor with dimensions [output_size, num_units]. Data type supported: Data types supported: QSYMM8/F16/F32.
+     * @param[in] projection_bias    1D weights tensor with dimensions [output_size]. Data type supported: Same as @p projection_weights, S32 when @p input_to_input_weights is QSYMM8.
      *
      * @return Reference to this LSTMParams object
      */
@@ -106,8 +106,8 @@ public:
     }
     /** Set peephole tensor parameters.
      *
-     * @param[in] cell_to_forget_weights 1D weights tensor with dimensions [num_units]. Data type supported: Data types supported: F16/F32.
-     * @param[in] cell_to_output_weights 1D weights tensor with dimensions [num_units]. Data type supported: Same as @p cell_to_input_weights.
+     * @param[in] cell_to_forget_weights 1D weights tensor with dimensions [num_units]. Data type supported: Data types supported: QSYMM16/F16/F32.
+     * @param[in] cell_to_output_weights 1D weights tensor with dimensions [num_units]. Data type supported: Same as @p cell_to_forget_weights.
      *
      * @return Reference to this LSTMParams object
      */
@@ -120,7 +120,7 @@ public:
     }
     /** Set layer normalization tensor parameters.
      *
-     * @param[in] input_layer_norm_weights  1D weights tensor with dimensions [num_units]. Data type supported: Data types supported: F16/F32.
+     * @param[in] input_layer_norm_weights  1D weights tensor with dimensions [num_units]. Data type supported: Data types supported: QSYMM16/F16/F32.
      * @param[in] forget_layer_norm_weights 1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input_layer_norm_weights.
      * @param[in] cell_layer_norm_weights   1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input_layer_norm_weights.
      * @param[in] output_layer_norm_weights 1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input_layer_norm_weights.
@@ -164,19 +164,19 @@ public:
 
     /** Set scale of the intermediate results of matmul of each layer parameters.
      *
-     * @param[in] input_gate_matmul_scale  Scale of the intermediate result of matmul, i.e. input to layer normalization, at input gate.
-     * @param[in] forget_gate_matmul_scale Scale of the intermediate result of matmul, i.e. input to layer normalization, at forget gate.
-     * @param[in] cell_gate_matmul_scale   Scale of the intermediate result of matmul, i.e. input to layer normalization, at cell gate.
-     * @param[in] output_gate_matmul_scale Scale of the intermediate result of matmul, i.e. input to layer normalization, at output gate.
+     * @param[in] input_intermediate_scale  Scale of the intermediate result of matmul, i.e. input to layer normalization, at input gate.
+     * @param[in] forget_intermediate_scale Scale of the intermediate result of matmul, i.e. input to layer normalization, at forget gate.
+     * @param[in] cell_intermediate_scale   Scale of the intermediate result of matmul, i.e. input to layer normalization, at cell gate.
+     * @param[in] output_intermediate_scale Scale of the intermediate result of matmul, i.e. input to layer normalization, at output gate.
      *
      * @return Reference to this LSTMParams object
      */
-    LSTMParams &set_matmul_scale_params(float input_gate_matmul_scale, float forget_gate_matmul_scale, float cell_gate_matmul_scale, float output_gate_matmul_scale)
+    LSTMParams &set_matmul_scale_params(float input_intermediate_scale, float forget_intermediate_scale, float cell_intermediate_scale, float output_intermediate_scale)
     {
-        _input_gate_matmul_scale  = input_gate_matmul_scale;
-        _forget_gate_matmul_scale = forget_gate_matmul_scale;
-        _cell_gate_matmul_scale   = cell_gate_matmul_scale;
-        _output_gate_matmul_scale = output_gate_matmul_scale;
+        _input_intermediate_scale  = input_intermediate_scale;
+        _forget_intermediate_scale = forget_intermediate_scale;
+        _cell_intermediate_scale   = cell_intermediate_scale;
+        _output_intermediate_scale = output_intermediate_scale;
         return *this;
     }
 
@@ -187,7 +187,7 @@ public:
      *
      * @return Reference to this LSTMParams object
      */
-    LSTMParams &set_matmul_scale_params(int32_t hidden_state_zero, float hidden_state_scale)
+    LSTMParams &set_hidden_state_params(int32_t hidden_state_zero, float hidden_state_scale)
     {
         _hidden_state_zero  = hidden_state_zero;
         _hidden_state_scale = hidden_state_scale;
@@ -264,24 +264,24 @@ public:
         return _projection_clip;
     }
 
-    float input_gate_matmul_scale() const
+    float input_intermediate_scale() const
     {
-        return _input_gate_matmul_scale;
+        return _input_intermediate_scale;
     }
 
-    float forget_gate_matmul_scale() const
+    float forget_intermediate_scale() const
     {
-        return _forget_gate_matmul_scale;
+        return _forget_intermediate_scale;
     }
 
-    float cell_gate_matmul_scale() const
+    float cell_intermediate_scale() const
     {
-        return _cell_gate_matmul_scale;
+        return _cell_intermediate_scale;
     }
 
-    float output_gate_matmul_scale() const
+    float output_intermediate_scale() const
     {
-        return _output_gate_matmul_scale;
+        return _output_intermediate_scale;
     }
 
     int32_t hidden_state_zero() const
@@ -329,10 +329,10 @@ private:
     const T *_output_layer_norm_weights;
     float    _cell_clip;
     float    _projection_clip;
-    float    _input_gate_matmul_scale;
-    float    _forget_gate_matmul_scale;
-    float    _cell_gate_matmul_scale;
-    float    _output_gate_matmul_scale;
+    float    _input_intermediate_scale;
+    float    _forget_intermediate_scale;
+    float    _cell_intermediate_scale;
+    float    _output_intermediate_scale;
     float    _hidden_state_zero;
     int32_t  _hidden_state_scale;
     bool     _has_peephole_opt;
index 3082ff25d7b33bc8e96331485554fb41d613fde4..10336e544a3b2ce076a6b0104a9702c3a73d10d4 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2017-2019 ARM Limited.
+ * Copyright (c) 2017-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -723,7 +723,7 @@ namespace
 Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output)
 {
     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S8, DataType::U8);
-    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8_PER_CHANNEL, DataType::S8, DataType::U8);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8, DataType::QSYMM8_PER_CHANNEL, DataType::S8, DataType::U8);
     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32);
 
     TensorShape in0_shape = input0->tensor_shape();
index b7e862c81f227ddc628a0750e6df4b84b9c54d4a..1acdb1efcee7eb891f9e3a260d6e86417e51d6dd 100644 (file)
@@ -45,7 +45,7 @@ namespace
 Status validate_arguments_matrix_a_reduction(const ITensorInfo *input, const ITensorInfo *output)
 {
     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
-    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8);
 
     if(output->total_size() > 0)
     {
@@ -77,7 +77,7 @@ std::pair<Status, Window> validate_and_configure_window_matrix_a_reduction(ITens
 Status validate_arguments_matrix_b_reduction(const ITensorInfo *input, const ITensorInfo *output)
 {
     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
-    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8_PER_CHANNEL);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8, DataType::QSYMM8_PER_CHANNEL);
 
     if(output->total_size() > 0)
     {
@@ -287,6 +287,7 @@ void NEGEMMLowpMatrixAReductionKernel::run(const Window &window, const ThreadInf
             run_internal<uint8_t>(window);
             break;
         case DataType::QASYMM8_SIGNED:
+        case DataType::QSYMM8:
         case DataType::QSYMM8_PER_CHANNEL:
             run_internal<int8_t>(window);
             break;
@@ -535,6 +536,7 @@ void NEGEMMLowpMatrixBReductionKernel::run(const Window &window, const ThreadInf
             run_internal<uint8_t>(window, info);
             break;
         case DataType::QASYMM8_SIGNED:
+        case DataType::QSYMM8:
         case DataType::QSYMM8_PER_CHANNEL:
             run_internal<int8_t>(window, info);
             break;
index 793d5ca1a9d042d7de44970bbb78ec5223121d2d..3a3917784b50946263fe7f8c082bb6b339289723 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018-2019 ARM Limited.
+ * Copyright (c) 2018-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
  */
 #include "arm_compute/runtime/CL/functions/CLLSTMLayer.h"
 
-#include "arm_compute/core/PixelValue.h"
 #include "arm_compute/core/Utils.h"
 #include "arm_compute/core/Validate.h"
+#include "arm_compute/core/utils/misc/InfoHelpers.h"
 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
 #include "arm_compute/runtime/CL/CLScheduler.h"
 
-#include <cmath>
-#include <memory>
-#include <tuple>
-
-using namespace arm_compute;
+namespace arm_compute
+{
 using namespace arm_compute::misc::shape_calculator;
+using namespace arm_compute::utils::info_helpers;
 
 CLLSTMLayer::CLLSTMLayer(std::shared_ptr<IMemoryManager> memory_manager)
     : _memory_group(std::move(memory_manager)), _fully_connected_input_gate(), _accum_input_gate1(), _subtract_input_gate(), _pixelwise_mul_input_gate(), _activation_input_gate(),
@@ -71,22 +69,8 @@ void CLLSTMLayer::configure(const ICLTensor *input,
     _is_layer_norm_lstm = lstm_params.use_layer_norm();
 
     // Set lstm parameters
-    LSTMParams<ITensorInfo> lstm_params_info;
-    if(lstm_params.has_peephole_opt())
-    {
-        lstm_params_info.set_peephole_params(lstm_params.cell_to_forget_weights()->info(), lstm_params.cell_to_output_weights()->info());
-    }
-    if(lstm_params.has_projection())
-    {
-        lstm_params_info.set_projection_params(lstm_params.projection_weights()->info(),
-                                               lstm_params.projection_bias() != nullptr ? lstm_params.projection_bias()->info() : nullptr);
-    }
-    if(!lstm_params.has_cifg_opt())
-    {
-        const ITensorInfo *cell_to_input_weights_info = (lstm_params.has_peephole_opt()) ? lstm_params.cell_to_input_weights()->info() : nullptr;
-        lstm_params_info.set_cifg_params(lstm_params.input_to_input_weights()->info(), lstm_params.recurrent_to_input_weights()->info(),
-                                         cell_to_input_weights_info, lstm_params.input_gate_bias()->info());
-    }
+    LSTMParams<ITensorInfo> lstm_params_info{};
+    build_lstm_params_tensor_info(lstm_params, &lstm_params_info);
 
     // Validate
     ARM_COMPUTE_ERROR_THROW_ON(CLLSTMLayer::validate(input->info(), input_to_forget_weights->info(),
@@ -729,3 +713,4 @@ void CLLSTMLayer::prepare()
         _is_prepared = true;
     }
 }
+} // namespace arm_compute
index a6ebcacf298be2bc97fb58bf605ba51a320fa0f4..f0fa61657b51fcc91acfbf71e00589f36024dd24 100644 (file)
@@ -268,7 +268,7 @@ void NEGEMMLowpMatrixMultiplyCore::configure(const ITensor *a, const ITensor *b,
 Status NEGEMMLowpMatrixMultiplyCore::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *output, const GEMMInfo &gemm_info)
 {
     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
-    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(b, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8_PER_CHANNEL);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(b, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8, DataType::QSYMM8_PER_CHANNEL);
     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
     ARM_COMPUTE_RETURN_ERROR_ON_MSG(c != nullptr && gemm_info.gemmlowp_output_stage().type == GEMMLowpOutputStageType::NONE, "Bias addition not supported in NEGEMMLowpMatrixMultiplyCore for output S32");
     ARM_COMPUTE_RETURN_ERROR_ON_MSG((a)->dimension(0) != (b)->dimension(1),
index ee2b2f4b284df452470e80120101d09087e81ae6..aac63e76437ab38a7139105ecdb9d6ed91c2ce8e 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018-2019 ARM Limited.
+ * Copyright (c) 2018-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
  */
 #include "arm_compute/runtime/NEON/functions/NELSTMLayer.h"
 
-#include "arm_compute/core/PixelValue.h"
 #include "arm_compute/core/Utils.h"
 #include "arm_compute/core/Validate.h"
+#include "arm_compute/core/utils/misc/InfoHelpers.h"
 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
 #include "arm_compute/runtime/common/LSTMParams.h"
 
-#include <cmath>
-#include <memory>
-#include <tuple>
-
-using namespace arm_compute;
+namespace arm_compute
+{
 using namespace arm_compute::misc::shape_calculator;
+using namespace arm_compute::utils::info_helpers;
 
 NELSTMLayer::NELSTMLayer(std::shared_ptr<IMemoryManager> memory_manager)
     : _memory_group(std::move(memory_manager)), _fully_connected_input_gate(), _accum_input_gate1(), _subtract_input_gate(), _pixelwise_mul_input_gate(), _activation_input_gate(),
@@ -71,22 +69,8 @@ void NELSTMLayer::configure(const ITensor *input,
     _is_layer_norm_lstm = lstm_params.use_layer_norm();
 
     // Set lstm parameters
-    LSTMParams<ITensorInfo> lstm_params_info;
-    if(lstm_params.has_peephole_opt())
-    {
-        lstm_params_info.set_peephole_params(lstm_params.cell_to_forget_weights()->info(), lstm_params.cell_to_output_weights()->info());
-    }
-    if(lstm_params.has_projection())
-    {
-        lstm_params_info.set_projection_params(lstm_params.projection_weights()->info(),
-                                               lstm_params.projection_bias() != nullptr ? lstm_params.projection_bias()->info() : nullptr);
-    }
-    if(!lstm_params.has_cifg_opt())
-    {
-        const ITensorInfo *cell_to_input_weights_info = (lstm_params.has_peephole_opt()) ? lstm_params.cell_to_input_weights()->info() : nullptr;
-        lstm_params_info.set_cifg_params(lstm_params.input_to_input_weights()->info(), lstm_params.recurrent_to_input_weights()->info(),
-                                         cell_to_input_weights_info, lstm_params.input_gate_bias()->info());
-    }
+    LSTMParams<ITensorInfo> lstm_params_info{};
+    build_lstm_params_tensor_info(lstm_params, &lstm_params_info);
 
     // Validate
     ARM_COMPUTE_ERROR_THROW_ON(NELSTMLayer::validate(input->info(), input_to_forget_weights->info(),
@@ -726,3 +710,4 @@ void NELSTMLayer::prepare()
         _is_prepared = true;
     }
 }
+} // namespace arm_compute
diff --git a/src/runtime/NEON/functions/NEQLSTMLayer.cpp b/src/runtime/NEON/functions/NEQLSTMLayer.cpp
new file mode 100644 (file)
index 0000000..3aa77b2
--- /dev/null
@@ -0,0 +1,850 @@
+/*
+ * Copyright (c) 2020 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/runtime/NEON/functions/NEQLSTMLayer.h"
+
+#include "arm_compute/core/KernelDescriptors.h"
+#include "arm_compute/core/QuantizationInfo.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/utils/misc/InfoHelpers.h"
+#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
+#include "arm_compute/runtime/NEON/NEScheduler.h"
+
+namespace arm_compute
+{
+using namespace arm_compute::utils::info_helpers;
+namespace
+{
+Status validate_mm(GEMMLowpOutputStageInfo &gemmlowp_info, const ITensorInfo *mm_input, const ITensorInfo *mm_weights, const ITensorInfo *bias,
+                   float gemmlowp_scale, const TensorInfo *mm_res_info, const TensorInfo *outstage_tensor_info)
+{
+    ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixMultiplyCore::validate(mm_input, mm_weights, nullptr, mm_res_info));
+    ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(gemmlowp_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift));
+    ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpOutputStage::validate(mm_res_info, bias, outstage_tensor_info, gemmlowp_info));
+    return Status{};
+}
+} // namespace
+
+NEQLSTMLayer::NEQLSTMLayer(std::shared_ptr<IMemoryManager> memory_manager)
+{
+    _memory_group = MemoryGroup(std::move(memory_manager));
+}
+
+void NEQLSTMLayer::configure_mm(NEGEMMLowpMatrixMultiplyCore &mm, NEGEMMLowpOutputStage &outstage, GEMMLowpOutputStageInfo &gemmlowp_info,
+                                const ITensor *mm_input, const ITensor *mm_weights, const ITensor *bias,
+                                Tensor *mm_res, Tensor *outstage_res, float gemmlowp_scale,
+                                const TensorInfo &mm_res_info, const TensorInfo &outstage_tensor_info)
+{
+    _memory_group.manage(mm_res);
+    _memory_group.manage(outstage_res);
+
+    mm_res->allocator()->init(mm_res_info);
+    outstage_res->allocator()->init(outstage_tensor_info);
+
+    // Configure matrix-multiplication
+    mm.configure(mm_input, mm_weights, nullptr, mm_res);
+
+    // Configure output stage
+    quantization::calculate_quantized_multiplier(gemmlowp_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift);
+    outstage.configure(mm_res, bias, outstage_res, gemmlowp_info);
+    mm_res->allocator()->allocate();
+}
+
+void NEQLSTMLayer::configure(const ITensor *input,
+                             const ITensor *input_to_forget_weights, const ITensor *input_to_cell_weights, const ITensor *input_to_output_weights,
+                             const ITensor *recurrent_to_forget_weights, const ITensor *recurrent_to_cell_weights, const ITensor *recurrent_to_output_weights,
+                             const ITensor *forget_gate_bias, const ITensor *cell_bias, const ITensor *output_gate_bias,
+                             const ITensor *cell_state_in, const ITensor *output_state_in,
+                             ITensor *cell_state_out, ITensor *output_state_out,
+                             const LSTMParams<ITensor> &lstm_params)
+{
+    ARM_COMPUTE_UNUSED(forget_gate_bias);
+    ARM_COMPUTE_UNUSED(cell_bias);
+    ARM_COMPUTE_UNUSED(output_gate_bias);
+    ARM_COMPUTE_ERROR_ON_NULLPTR(input, input_to_forget_weights, input_to_cell_weights, input_to_output_weights,
+                                 recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights,
+                                 forget_gate_bias, cell_bias, output_gate_bias, cell_state_in, output_state_in, cell_state_out, output_state_out);
+
+    // Set lstm parameters
+    LSTMParams<ITensorInfo> lstm_params_info{};
+    build_lstm_params_tensor_info(lstm_params, &lstm_params_info);
+
+    // Validate
+    ARM_COMPUTE_ERROR_THROW_ON(NEQLSTMLayer::validate(input->info(), input_to_forget_weights->info(), input_to_cell_weights->info(), input_to_output_weights->info(),
+                                                      recurrent_to_forget_weights->info(), recurrent_to_cell_weights->info(), recurrent_to_output_weights->info(),
+                                                      forget_gate_bias->info(), cell_bias->info(), output_gate_bias->info(),
+                                                      cell_state_in->info(), output_state_in->info(), cell_state_out->info(), output_state_out->info(), lstm_params_info));
+
+    const int batch_size = input->info()->dimension(1);
+    const int num_units  = input_to_output_weights->info()->dimension(1);
+
+    const UniformQuantizationInfo qinput           = input->info()->quantization_info().uniform();
+    const UniformQuantizationInfo qcell_state_in   = cell_state_in->info()->quantization_info().uniform();
+    const UniformQuantizationInfo qoutput_state_in = output_state_in->info()->quantization_info().uniform();
+
+    _projection_bias             = lstm_params.projection_bias();
+    _input_to_forget_weights     = input_to_forget_weights;
+    _input_to_cell_weights       = input_to_cell_weights;
+    _input_to_output_weights     = input_to_output_weights;
+    _recurrent_to_forget_weights = recurrent_to_forget_weights;
+    _recurrent_to_cell_weights   = recurrent_to_cell_weights;
+    _recurrent_to_output_weights = recurrent_to_output_weights;
+    _projection_weights          = lstm_params.projection_weights();
+
+    _has_cifg       = lstm_params.has_cifg_opt();
+    _has_projection = lstm_params.has_projection();
+    _has_peephole   = lstm_params.has_peephole_opt();
+
+    // Calculate and decompose effective scales for optimizing matmul calculation
+    const int32_t cell_shift = log2(qcell_state_in.scale);
+
+    // Calculate quantized parameters for clipping.
+    int16_t quantized_cell_clip = 0;
+    if(lstm_params.cell_clip() > 0.0f)
+    {
+        quantized_cell_clip = quantize_qsymm16(lstm_params.cell_clip(), qcell_state_in);
+    }
+    _has_cell_clipping = quantized_cell_clip > 0;
+
+    // Precompute effective bias for optimizing the matmul computations.
+    if(!_has_cifg)
+    {
+        _input_to_input_weights     = lstm_params.input_to_input_weights();
+        _recurrent_to_input_weights = lstm_params.recurrent_to_input_weights();
+
+        _input_to_input_reduction.configure(_input_to_input_weights, &_input_to_input_eff_bias, GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true));
+        _recurrent_to_input_reduction.configure(_recurrent_to_input_weights, &_recurrent_to_input_eff_bias, GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true));
+    }
+    _input_to_forget_reduction.configure(input_to_forget_weights, &_input_to_forget_eff_bias, GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true));
+    _recurrent_to_forget_reduction.configure(recurrent_to_forget_weights, &_recurrent_to_forget_eff_bias, GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true));
+    _input_to_cell_reduction.configure(input_to_cell_weights, &_input_to_cell_eff_bias, GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true));
+    _recurrent_to_cell_reduction.configure(recurrent_to_cell_weights, &_recurrent_to_cell_eff_bias, GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true));
+    _input_to_output_reduction.configure(input_to_output_weights, &_input_to_output_eff_bias, GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true));
+    _recurrent_to_output_reduction.configure(recurrent_to_output_weights, &_recurrent_to_output_eff_bias, GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true));
+    if(_projection_bias != nullptr)
+    {
+        _projection_reduction.configure(_projection_weights, &_projection_reduction_res, GEMMLowpReductionKernelInfo(num_units, false, lstm_params.hidden_state_zero(), true));
+        _projection_bias_add.configure(_projection_bias, &_projection_reduction_res, &_projection_eff_bias, ConvertPolicy::SATURATE);
+    }
+
+    // Pre-transpose weights to be used in GEMM.
+    _transpose_input_to_forget_weights.configure(input_to_forget_weights, &_input_to_forget_weights_transposed);
+    _transpose_input_to_cell_weights.configure(input_to_cell_weights, &_input_to_cell_weights_transposed);
+    _transpose_input_to_output_weights.configure(input_to_output_weights, &_input_to_output_weights_transposed);
+    _transpose_recurrent_to_forget_weights.configure(recurrent_to_forget_weights, &_recurrent_to_forget_weights_transposed);
+    _transpose_recurrent_to_cell_weights.configure(recurrent_to_cell_weights, &_recurrent_to_cell_weights_transposed);
+    _transpose_recurrent_to_output_weights.configure(recurrent_to_output_weights, &_recurrent_to_output_weights_transposed);
+    if(!_has_cifg)
+    {
+        _transpose_input_to_input_weights.configure(lstm_params.input_to_input_weights(), &_input_to_input_weights_transposed);
+        _transpose_recurrent_to_input_weights.configure(lstm_params.recurrent_to_input_weights(), &_recurrent_to_input_weights_transposed);
+    }
+    if(_has_projection)
+    {
+        _transpose_projection_weights.configure(_projection_weights, &_projection_weights_transposed);
+    }
+
+    GEMMLowpOutputStageInfo gemmlowp_info;
+    gemmlowp_info.type               = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
+    gemmlowp_info.gemmlowp_min_bound = std::numeric_limits<int16_t>::lowest();
+    gemmlowp_info.gemmlowp_max_bound = std::numeric_limits<int16_t>::max();
+    gemmlowp_info.output_data_type   = DataType::QSYMM16;
+
+    const TensorInfo mm_out_info(TensorShape(num_units, batch_size), 1, DataType::S32);
+    // Forget gate.
+    const TensorInfo forget_gate_outstage_info(mm_out_info.tensor_shape(), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.forget_intermediate_scale(), 0));
+    const float      input_to_forget_scale = input_to_forget_weights->info()->quantization_info().uniform().scale * qinput.scale / lstm_params.forget_intermediate_scale();
+    configure_mm(_mm_input_to_forget, _input_to_forget_outstage, gemmlowp_info,
+                 input, &_input_to_forget_weights_transposed, &_input_to_forget_eff_bias,
+                 &_mm_input_to_forget_res, &_input_to_forget_outstage_res, input_to_forget_scale,
+                 mm_out_info, forget_gate_outstage_info);
+
+    const float recurrent_to_forget_scale = recurrent_to_forget_weights->info()->quantization_info().uniform().scale * qoutput_state_in.scale / lstm_params.forget_intermediate_scale();
+    configure_mm(_mm_recurrent_to_forget, _recurrent_to_forget_outstage, gemmlowp_info,
+                 output_state_in, &_recurrent_to_forget_weights_transposed, &_recurrent_to_forget_eff_bias,
+                 &_mm_recurrent_to_forget_res, &_recurrent_to_forget_outstage_res, recurrent_to_forget_scale,
+                 mm_out_info, forget_gate_outstage_info);
+
+    _accumulate_input_recurrent_forget.configure(&_input_to_forget_outstage_res, &_recurrent_to_forget_outstage_res, &_recurrent_to_forget_outstage_res, ConvertPolicy::SATURATE);
+    _input_to_forget_outstage_res.allocator()->allocate();
+
+    if(_has_peephole)
+    {
+        _memory_group.manage(&_mul_cell_to_forget_res);
+        _pixelwise_mul_cell_to_forget.configure(cell_state_in, lstm_params.cell_to_forget_weights(), &_mul_cell_to_forget_res, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
+        _cell_to_forget_outstage_res.allocator()->init(TensorInfo(_mul_cell_to_forget_res.info()->tensor_shape(), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.forget_intermediate_scale(), 0)));
+        _memory_group.manage(&_cell_to_forget_outstage_res);
+        const float cell_to_forget_scale = std::pow(2, cell_shift) * lstm_params.cell_to_forget_weights()->info()->quantization_info().uniform().scale / lstm_params.forget_intermediate_scale();
+        quantization::calculate_quantized_multiplier(cell_to_forget_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift);
+        _cell_to_forget_outstage.configure(&_mul_cell_to_forget_res, nullptr, &_cell_to_forget_outstage_res, gemmlowp_info);
+        _mul_cell_to_forget_res.allocator()->allocate();
+        _accumulate_cell_forget.configure(&_recurrent_to_forget_outstage_res, &_cell_to_forget_outstage_res, &_recurrent_to_forget_outstage_res, ConvertPolicy::SATURATE);
+        _cell_to_forget_outstage_res.allocator()->allocate();
+    }
+
+    // Output quantization info of Sigmoid and Tanh activations
+    const QuantizationInfo sigmoid_tanh_outqinfo(1.f / 32768.f, 0);
+
+    const TensorInfo forget_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo);
+    _memory_group.manage(&_forget_gate);
+    _forget_gate.allocator()->init(forget_gate_info);
+    _forget_gate_sigmoid.configure(&_recurrent_to_forget_outstage_res, &_forget_gate, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
+    _recurrent_to_forget_outstage_res.allocator()->allocate();
+
+    // Modulation gate.
+    const TensorInfo cell_outstage_info(mm_out_info.tensor_shape(), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.cell_intermediate_scale(), 0));
+    const float      input_to_cell_scale = input_to_cell_weights->info()->quantization_info().uniform().scale * qinput.scale / lstm_params.cell_intermediate_scale();
+    configure_mm(_mm_input_to_cell, _input_to_cell_outstage, gemmlowp_info,
+                 input, &_input_to_cell_weights_transposed, &_input_to_cell_eff_bias,
+                 &_mm_input_to_cell_res, &_input_to_cell_outstage_res, input_to_cell_scale,
+                 mm_out_info, cell_outstage_info);
+
+    const float recurrent_to_cell_scale = recurrent_to_cell_weights->info()->quantization_info().uniform().scale * qoutput_state_in.scale / lstm_params.cell_intermediate_scale();
+    configure_mm(_mm_recurrent_to_cell, _recurrent_to_cell_outstage, gemmlowp_info,
+                 output_state_in, &_recurrent_to_cell_weights_transposed, &_recurrent_to_cell_eff_bias,
+                 &_mm_recurrent_to_cell_res, &_recurrent_to_cell_outstage_res, recurrent_to_cell_scale,
+                 mm_out_info, cell_outstage_info);
+
+    _accumulate_input_recurrent_modulation.configure(&_input_to_cell_outstage_res, &_recurrent_to_cell_outstage_res, &_recurrent_to_cell_outstage_res, ConvertPolicy::SATURATE);
+    _input_to_cell_outstage_res.allocator()->allocate();
+
+    const TensorInfo cell_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo);
+    _memory_group.manage(&_cell_gate);
+    _cell_gate.allocator()->init(cell_gate_info);
+    _cell_gate_tanh.configure(&_recurrent_to_cell_outstage_res, &_cell_gate, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.f, 1.f));
+    _recurrent_to_cell_outstage_res.allocator()->allocate();
+
+    // Input gate.
+    const TensorInfo input_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo);
+    _input_gate.allocator()->init(input_gate_info);
+    _memory_group.manage(&_input_gate);
+    if(_has_cifg)
+    {
+        _ones.allocator()->init(*_forget_gate.info());
+        _input_gate_sub.configure(&_ones, &_forget_gate, &_input_gate, ConvertPolicy::SATURATE);
+        _ones.allocator()->allocate();
+    }
+    else
+    {
+        const TensorInfo input_outstage_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.input_intermediate_scale(), 0));
+        const float      input_to_input_scale = _input_to_input_weights->info()->quantization_info().uniform().scale * qinput.scale / lstm_params.input_intermediate_scale();
+        configure_mm(_mm_input_to_input, _input_to_input_outstage, gemmlowp_info,
+                     input, &_input_to_input_weights_transposed, &_input_to_input_eff_bias,
+                     &_mm_input_to_input_res, &_input_to_input_outstage_res, input_to_input_scale,
+                     mm_out_info, input_outstage_info);
+
+        const float recurrent_to_input_scale = _recurrent_to_input_weights->info()->quantization_info().uniform().scale * qoutput_state_in.scale / lstm_params.input_intermediate_scale();
+        configure_mm(_mm_recurrent_to_input, _recurrent_to_input_outstage, gemmlowp_info,
+                     input, &_recurrent_to_input_weights_transposed, &_recurrent_to_input_eff_bias,
+                     &_mm_recurrent_to_input_res, &_recurrent_to_input_outstage_res, recurrent_to_input_scale,
+                     mm_out_info, input_outstage_info);
+        _accumulate_input_recurrent_input.configure(&_input_to_input_outstage_res, &_recurrent_to_input_outstage_res, &_recurrent_to_input_outstage_res, ConvertPolicy::SATURATE);
+        _input_to_input_outstage_res.allocator()->allocate();
+
+        if(_has_peephole)
+        {
+            _memory_group.manage(&_mul_cell_to_input_res);
+            _pixelwise_mul_cell_to_input.configure(cell_state_in, lstm_params.cell_to_input_weights(), &_mul_cell_to_input_res, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
+            const float cell_to_input_scale = std::pow(2, cell_shift) * lstm_params.cell_to_input_weights()->info()->quantization_info().uniform().scale / lstm_params.input_intermediate_scale();
+            quantization::calculate_quantized_multiplier(cell_to_input_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift);
+            _cell_to_input_outstage_res.allocator()->init(TensorInfo(_mul_cell_to_input_res.info()->tensor_shape(), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.input_intermediate_scale(), 0)));
+            _memory_group.manage(&_cell_to_input_outstage_res);
+            _cell_to_input_outstage.configure(&_mul_cell_to_input_res, nullptr, &_cell_to_input_outstage_res, gemmlowp_info);
+            _mul_cell_to_input_res.allocator()->allocate();
+            _accumulate_cell_input.configure(&_recurrent_to_input_outstage_res, &_cell_to_input_outstage_res, &_recurrent_to_input_outstage_res, ConvertPolicy::SATURATE);
+            _cell_to_input_outstage_res.allocator()->allocate();
+        }
+
+        _input_gate_tanh.configure(&_recurrent_to_input_outstage_res, &_input_gate, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.f, 1.f));
+        _recurrent_to_input_outstage_res.allocator()->allocate();
+    }
+    // Cell.
+    // TODO(COMPMID-3395): Perform multiplication in the quantized domain in NEPixelWiseMultiplicationKernel
+    _pixelwise_mul_forget_cell.configure(&_forget_gate, cell_state_in, &_forget_gate, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
+    const float      cell_gate_scale      = _cell_gate.info()->quantization_info().uniform().scale;
+    const float      mul_input_cell_scale = cell_gate_scale * std::pow(2, 15 + cell_shift);
+    const TensorInfo mul_input_cell_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, QuantizationInfo(mul_input_cell_scale, 0));
+    _memory_group.manage(&_mul_input_cell_res);
+    _mul_input_cell_res.allocator()->init(mul_input_cell_info);
+    _pixelwise_mul_input_cell.configure(&_input_gate, &_cell_gate, &_mul_input_cell_res, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
+    _cell_gate.allocator()->allocate();
+    _add_forget_cell.configure(&_forget_gate, &_mul_input_cell_res, cell_state_out, ConvertPolicy::SATURATE);
+    _mul_input_cell_res.allocator()->allocate();
+    _forget_gate.allocator()->allocate();
+    if(_has_cell_clipping)
+    {
+        _cell_clip.configure(cell_state_out, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, -quantized_cell_clip, quantized_cell_clip));
+    }
+    // Output gate.
+    const TensorInfo output_outstage_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.output_intermediate_scale(), 0));
+    const float      input_to_output_scale = input_to_output_weights->info()->quantization_info().uniform().scale * qinput.scale / lstm_params.output_intermediate_scale();
+    configure_mm(_mm_input_to_output, _input_to_output_outstage, gemmlowp_info,
+                 input, &_input_to_output_weights_transposed, &_input_to_output_eff_bias,
+                 &_mm_input_to_output_res, &_input_to_output_outstage_res, input_to_output_scale,
+                 mm_out_info, output_outstage_info);
+
+    const float recurrent_to_output_scale = recurrent_to_output_weights->info()->quantization_info().uniform().scale * qoutput_state_in.scale / lstm_params.output_intermediate_scale();
+    configure_mm(_mm_recurrent_to_output, _recurrent_to_output_outstage, gemmlowp_info,
+                 output_state_in, &_recurrent_to_output_weights_transposed, &_recurrent_to_output_eff_bias,
+                 &_mm_recurrent_to_output_res, &_recurrent_to_output_outstage_res, recurrent_to_output_scale,
+                 mm_out_info, output_outstage_info);
+
+    _accumulate_input_recurrent_output.configure(&_recurrent_to_output_outstage_res, &_input_to_output_outstage_res, &_recurrent_to_output_outstage_res, ConvertPolicy::SATURATE);
+    _input_to_output_outstage_res.allocator()->allocate();
+
+    if(_has_peephole)
+    {
+        // TODO(COMPMID-3395): Perform multiplication in the quantized domain in NEPixelWiseMultiplicationKernel
+        // Here we are not using the output stage because all operations are done in float
+        // const float cell_to_output_scale = std::pow(2, cell_shift) * lstm_params.cell_to_output_weights()->info()->quantization_info().uniform().scale / lstm_params.output_intermediate_scale();
+        // quantization::calculate_quantized_multiplier(cell_to_output_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift);
+        _memory_group.manage(&_mul_cell_to_output_res);
+        _pixelwise_mul_cell_to_output.configure(cell_state_out, lstm_params.cell_to_output_weights(), &_mul_cell_to_output_res, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
+        _accumulate_cell_to_output.configure(&_recurrent_to_output_outstage_res, &_mul_cell_to_output_res, &_recurrent_to_output_outstage_res, ConvertPolicy::SATURATE);
+        _mul_cell_to_output_res.allocator()->allocate();
+    }
+
+    const TensorInfo output_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo);
+    _memory_group.manage(&_output_gate);
+    _output_gate.allocator()->init(output_gate_info);
+    _output_gate_sigmoid.configure(&_recurrent_to_output_outstage_res, &_output_gate, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
+    _recurrent_to_output_outstage_res.allocator()->allocate();
+
+    // Hidden.
+    _hidden_tanh.configure(cell_state_out, &_input_gate, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.f, 1.f));
+    // TODO(COMPMID-3395): Perform multiplication in the quantized domain in NEPixelWiseMultiplicationKernel
+    _memory_group.manage(&_hidden_mul_res);
+    const TensorInfo hidden_mul_res(_input_gate.info()->tensor_shape(), 1, DataType::S32);
+    _hidden_mul_res.allocator()->init(hidden_mul_res);
+    _pixelwise_mul_hidden.configure(&_output_gate, &_input_gate, &_hidden_mul_res, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
+    _output_gate.allocator()->allocate();
+    _input_gate.allocator()->allocate();
+    const float hidden_state_scale = std::pow(2, -15) / lstm_params.hidden_state_scale() * std::pow(2, -15);
+    quantization::calculate_quantized_multiplier(hidden_state_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift);
+    gemmlowp_info.gemmlowp_offset  = lstm_params.hidden_state_zero();
+    gemmlowp_info.output_data_type = output_state_in->info()->data_type();
+    _hidden_outstage.configure(&_hidden_mul_res, nullptr, output_state_out, gemmlowp_info);
+    _hidden_mul_res.allocator()->allocate();
+
+    // Projection.
+    if(_has_projection)
+    {
+        const TensorInfo              projection_outstage_info(*output_state_out->info());
+        const UniformQuantizationInfo qprojection      = _projection_weights->info()->quantization_info().uniform();
+        const float                   projection_scale = qprojection.scale * lstm_params.hidden_state_scale() / qoutput_state_in.scale;
+        gemmlowp_info.gemmlowp_offset                  = qoutput_state_in.offset;
+        gemmlowp_info.gemmlowp_min_bound               = std::numeric_limits<int8_t>::lowest();
+        gemmlowp_info.gemmlowp_max_bound               = std::numeric_limits<int8_t>::max();
+        gemmlowp_info.output_data_type                 = DataType::QASYMM8_SIGNED;
+
+        configure_mm(_mm_projection, _projection_outstage, gemmlowp_info,
+                     output_state_out, &_projection_weights_transposed, &_projection_eff_bias,
+                     &_mm_projection_res, &_projection_outstage_res, projection_scale,
+                     mm_out_info, projection_outstage_info);
+
+        _accumulate_projection.configure(&_projection_outstage_res, output_state_out, output_state_out, ConvertPolicy::SATURATE);
+        _projection_outstage_res.allocator()->allocate();
+
+        int8_t quantized_projection_clip{ 0 };
+        if(lstm_params.projection_clip() > 0.0f)
+        {
+            quantized_projection_clip = utility::clamp<int8_t>(lstm_params.projection_clip() / qprojection.scale, -128, 127);
+        }
+
+        if(quantized_projection_clip > 0)
+        {
+            _projection_clip.configure(output_state_out, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, -quantized_projection_clip, quantized_projection_clip));
+            _has_projection_clipping = true;
+        }
+    }
+}
+
+Status NEQLSTMLayer::validate(const ITensorInfo *input,
+                              const ITensorInfo *input_to_forget_weights, const ITensorInfo *input_to_cell_weights, const ITensorInfo *input_to_output_weights,
+                              const ITensorInfo *recurrent_to_forget_weights, const ITensorInfo *recurrent_to_cell_weights, const ITensorInfo *recurrent_to_output_weights,
+                              const ITensorInfo *forget_gate_bias, const ITensorInfo *cell_bias, const ITensorInfo *output_gate_bias,
+                              const ITensorInfo *cell_state_in, const ITensorInfo *output_state_in,
+                              const ITensorInfo *cell_state_out, const ITensorInfo *output_state_out,
+                              const LSTMParams<ITensorInfo> &lstm_params)
+{
+    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_forget_weights, recurrent_to_cell_weights,
+                                        recurrent_to_output_weights, forget_gate_bias, cell_bias, output_gate_bias, cell_state_in, output_state_in, cell_state_out, output_state_out);
+
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8_SIGNED);
+    ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->num_dimensions() != 2, "Input must have exactly 2 dimensions");
+
+    const unsigned int input_size  = input->dimension(0);
+    const unsigned int batch_size  = input->dimension(1);
+    const unsigned int num_units   = input_to_output_weights->dimension(1);
+    const unsigned int output_size = recurrent_to_output_weights->dimension(0);
+
+    ARM_COMPUTE_RETURN_ERROR_ON(input_to_output_weights->num_dimensions() != 2);
+    ARM_COMPUTE_RETURN_ERROR_ON(input_to_output_weights->dimension(0) != input_size);
+    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input_to_output_weights, input_to_forget_weights, input_to_cell_weights);
+    ARM_COMPUTE_RETURN_ERROR_ON(recurrent_to_output_weights->num_dimensions() != 2);
+    ARM_COMPUTE_RETURN_ERROR_ON(recurrent_to_output_weights->dimension(1) != num_units);
+    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(recurrent_to_output_weights, recurrent_to_forget_weights, recurrent_to_cell_weights);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input_to_forget_weights, 1, DataType::QSYMM8);
+    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_to_forget_weights, input_to_cell_weights, input_to_output_weights,
+                                                       recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights);
+
+    ARM_COMPUTE_RETURN_ERROR_ON(forget_gate_bias->num_dimensions() != 1);
+    ARM_COMPUTE_RETURN_ERROR_ON(forget_gate_bias->dimension(0) != num_units);
+    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(forget_gate_bias, cell_bias, output_gate_bias);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(forget_gate_bias, 1, DataType::S32);
+    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(forget_gate_bias, cell_bias, output_gate_bias);
+
+    ARM_COMPUTE_RETURN_ERROR_ON(cell_state_in->num_dimensions() != 2);
+    ARM_COMPUTE_RETURN_ERROR_ON(cell_state_in->dimension(0) != num_units);
+    ARM_COMPUTE_RETURN_ERROR_ON(cell_state_in->dimension(1) != batch_size);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(cell_state_in, 1, DataType::QSYMM16);
+
+    ARM_COMPUTE_RETURN_ERROR_ON(output_state_in->num_dimensions() != 2);
+    ARM_COMPUTE_RETURN_ERROR_ON(output_state_in->dimension(0) != output_size);
+    ARM_COMPUTE_RETURN_ERROR_ON(output_state_in->dimension(1) != batch_size);
+    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output_state_in);
+
+    // Check whether peephole weights are all there or none
+    if(lstm_params.has_peephole_opt())
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(lstm_params.cell_to_forget_weights(), lstm_params.cell_to_output_weights());
+        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(lstm_params.cell_to_forget_weights(), 1, DataType::QSYMM16);
+        ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.cell_to_forget_weights()->num_dimensions() != 1);
+        ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.cell_to_forget_weights()->dimension(0) != num_units);
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(lstm_params.cell_to_forget_weights(), lstm_params.cell_to_output_weights());
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(lstm_params.cell_to_forget_weights(), lstm_params.cell_to_output_weights());
+
+        if(!lstm_params.has_cifg_opt())
+        {
+            ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(lstm_params.cell_to_input_weights());
+            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(lstm_params.cell_to_forget_weights(), lstm_params.cell_to_input_weights());
+            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(lstm_params.cell_to_forget_weights(), lstm_params.cell_to_input_weights());
+        }
+    }
+
+    const UniformQuantizationInfo qinput           = input->quantization_info().uniform();
+    const UniformQuantizationInfo qcell_state_in   = cell_state_in->quantization_info().uniform();
+    const UniformQuantizationInfo qoutput_state_in = output_state_in->quantization_info().uniform();
+
+    // Calculate and decompose effective scales for optimizing matmul calculation
+    const int32_t cell_shift = log2(qcell_state_in.scale);
+    ARM_COMPUTE_RETURN_ERROR_ON(cell_shift > -9);
+
+    // Calculate quantized parameters for clipping.
+    int16_t quantized_cell_clip = 0;
+    if(lstm_params.cell_clip() > 0.0f)
+    {
+        quantized_cell_clip = quantize_qsymm16(lstm_params.cell_clip(), qcell_state_in);
+    }
+
+    // Precompute effective bias for optimizing the matmul computations.
+    const TensorInfo eff_bias_info(TensorShape(num_units), 1, DataType::S32);
+    if(!lstm_params.has_cifg_opt())
+    {
+        ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixAReductionKernel::validate(lstm_params.input_to_input_weights(), &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true)));
+        ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixAReductionKernel::validate(lstm_params.recurrent_to_input_weights(), &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset,
+                                                                               true)));
+    }
+    ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixAReductionKernel::validate(input_to_forget_weights, &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true)));
+    ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixAReductionKernel::validate(recurrent_to_forget_weights, &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true)));
+    ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixAReductionKernel::validate(input_to_cell_weights, &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true)));
+    ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixAReductionKernel::validate(recurrent_to_cell_weights, &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true)));
+    ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixAReductionKernel::validate(input_to_output_weights, &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true)));
+    ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixAReductionKernel::validate(recurrent_to_output_weights, &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true)));
+    if(lstm_params.projection_bias() != nullptr)
+    {
+        ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixAReductionKernel::validate(lstm_params.projection_weights(), &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, lstm_params.hidden_state_zero(),
+                                                                               true)));
+        ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAdditionKernel::validate(lstm_params.projection_bias(), &eff_bias_info, &eff_bias_info, ConvertPolicy::SATURATE));
+    }
+
+    const TensorInfo input_weights_transposed(TensorShape(num_units, input_size), 1, input_to_forget_weights->data_type(), input_to_forget_weights->quantization_info());
+    const TensorInfo recurrent_weights_transposed(TensorShape(num_units, output_size), 1, recurrent_to_forget_weights->data_type(), recurrent_to_forget_weights->quantization_info());
+
+    // Validate weights transpose
+    ARM_COMPUTE_RETURN_ON_ERROR(NETranspose::validate(input_to_forget_weights, &input_weights_transposed));
+    ARM_COMPUTE_RETURN_ON_ERROR(NETranspose::validate(input_to_cell_weights, &input_weights_transposed));
+    ARM_COMPUTE_RETURN_ON_ERROR(NETranspose::validate(input_to_output_weights, &input_weights_transposed));
+    ARM_COMPUTE_RETURN_ON_ERROR(NETranspose::validate(recurrent_to_forget_weights, &recurrent_weights_transposed));
+    ARM_COMPUTE_RETURN_ON_ERROR(NETranspose::validate(recurrent_to_cell_weights, &recurrent_weights_transposed));
+    ARM_COMPUTE_RETURN_ON_ERROR(NETranspose::validate(recurrent_to_output_weights, &recurrent_weights_transposed));
+    if(!lstm_params.has_cifg_opt())
+    {
+        ARM_COMPUTE_RETURN_ON_ERROR(NETranspose::validate(lstm_params.input_to_input_weights(), &input_weights_transposed));
+        ARM_COMPUTE_RETURN_ON_ERROR(NETranspose::validate(lstm_params.recurrent_to_input_weights(), &recurrent_weights_transposed));
+    }
+    if(lstm_params.has_projection())
+    {
+        ARM_COMPUTE_RETURN_ON_ERROR(NETranspose::validate(lstm_params.projection_weights(), &recurrent_weights_transposed));
+    }
+
+    GEMMLowpOutputStageInfo gemmlowp_info;
+    gemmlowp_info.type               = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
+    gemmlowp_info.gemmlowp_min_bound = std::numeric_limits<int16_t>::lowest();
+    gemmlowp_info.gemmlowp_max_bound = std::numeric_limits<int16_t>::max();
+    gemmlowp_info.output_data_type   = DataType::QSYMM16;
+
+    // Forget gate.
+    const TensorInfo forget_outstage_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.forget_intermediate_scale(), 0));
+    const TensorInfo mm_out_info(TensorShape(num_units, batch_size), 1, DataType::S32);
+    const float      input_to_forget_scale = input_to_forget_weights->quantization_info().uniform().scale * qinput.scale / lstm_params.forget_intermediate_scale();
+    validate_mm(gemmlowp_info, input, &input_weights_transposed, &eff_bias_info, input_to_forget_scale, &mm_out_info, &forget_outstage_info);
+
+    const float recurrent_to_forget_scale = recurrent_to_forget_weights->quantization_info().uniform().scale * qoutput_state_in.scale / lstm_params.forget_intermediate_scale();
+    validate_mm(gemmlowp_info, input, &recurrent_weights_transposed, &eff_bias_info, recurrent_to_forget_scale, &mm_out_info, &forget_outstage_info);
+
+    ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAdditionKernel::validate(&forget_outstage_info, &forget_outstage_info, &forget_outstage_info, ConvertPolicy::SATURATE));
+
+    if(lstm_params.has_peephole_opt())
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(lstm_params.cell_to_forget_weights(), 1, DataType::QSYMM16);
+        ARM_COMPUTE_RETURN_ON_ERROR(NEPixelWiseMultiplicationKernel::validate(cell_state_in, lstm_params.cell_to_forget_weights(), &mm_out_info, 1.f, ConvertPolicy::SATURATE,
+                                                                              RoundingPolicy::TO_ZERO));
+        const float cell_to_forget_scale = std::pow(2, cell_shift) * lstm_params.cell_to_forget_weights()->quantization_info().uniform().scale / lstm_params.forget_intermediate_scale();
+        ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(cell_to_forget_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift));
+        ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpOutputStage::validate(&mm_out_info, nullptr, &forget_outstage_info, gemmlowp_info));
+        ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAdditionKernel::validate(&forget_outstage_info, &forget_outstage_info, &forget_outstage_info, ConvertPolicy::SATURATE));
+    }
+
+    // Output quantization info of Sigmoid and Tanh activations
+    const QuantizationInfo sigmoid_tanh_outqinfo(1.f / 32768.f, 0);
+
+    const TensorInfo forget_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo);
+    ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayer::validate(&forget_outstage_info, &forget_gate_info, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC)));
+
+    // Modulation gate.
+    const TensorInfo cell_outstage_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.cell_intermediate_scale(), 0));
+    const float      input_to_cell_scale = input_to_cell_weights->quantization_info().uniform().scale * qinput.scale / lstm_params.cell_intermediate_scale();
+    validate_mm(gemmlowp_info, input, &input_weights_transposed, &eff_bias_info, input_to_cell_scale, &mm_out_info, &cell_outstage_info);
+
+    const float recurrent_to_cell_scale = recurrent_to_cell_weights->quantization_info().uniform().scale * qoutput_state_in.scale / lstm_params.cell_intermediate_scale();
+    validate_mm(gemmlowp_info, input, &input_weights_transposed, &eff_bias_info, recurrent_to_cell_scale, &mm_out_info, &cell_outstage_info);
+
+    ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAdditionKernel::validate(&cell_outstage_info, &cell_outstage_info, &cell_outstage_info, ConvertPolicy::SATURATE));
+
+    const TensorInfo cell_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo);
+    ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayer::validate(&cell_outstage_info, &cell_gate_info, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.f, 1.f)));
+
+    // Input gate.
+    const TensorInfo input_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo);
+    if(lstm_params.has_cifg_opt())
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_MSG(lstm_params.input_gate_bias() != nullptr, "Input gate bias must not be present when CIFG is used");
+        ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticSubtractionKernel::validate(&input_gate_info, &forget_gate_info, &forget_gate_info, ConvertPolicy::SATURATE));
+    }
+    else
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(lstm_params.input_to_input_weights(), lstm_params.recurrent_to_input_weights(), lstm_params.input_gate_bias());
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_to_forget_weights, lstm_params.input_to_input_weights(), lstm_params.recurrent_to_input_weights());
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input_to_forget_weights, lstm_params.input_to_input_weights());
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(recurrent_to_forget_weights, lstm_params.recurrent_to_input_weights());
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(forget_gate_bias, lstm_params.input_gate_bias());
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(forget_gate_bias, lstm_params.input_gate_bias());
+
+        ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixMultiplyCore::validate(input, lstm_params.input_to_input_weights(), nullptr, &mm_out_info));
+        const TensorInfo input_outstage_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.input_intermediate_scale(), 0));
+        const float      input_to_input_scale = lstm_params.input_to_input_weights()->quantization_info().uniform().scale * qinput.scale / lstm_params.input_intermediate_scale();
+        validate_mm(gemmlowp_info, input, lstm_params.input_to_input_weights(), &eff_bias_info, input_to_input_scale, &mm_out_info, &input_outstage_info);
+
+        const float recurrent_to_input_scale = lstm_params.recurrent_to_input_weights()->quantization_info().uniform().scale * qoutput_state_in.scale / lstm_params.input_intermediate_scale();
+        validate_mm(gemmlowp_info, input, lstm_params.recurrent_to_input_weights(), &eff_bias_info, recurrent_to_input_scale, &mm_out_info, &input_outstage_info);
+
+        ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAdditionKernel::validate(&input_outstage_info, &input_outstage_info, &input_outstage_info, ConvertPolicy::SATURATE));
+
+        if(lstm_params.has_peephole_opt())
+        {
+            ARM_COMPUTE_RETURN_ON_ERROR(NEPixelWiseMultiplicationKernel::validate(cell_state_in, lstm_params.cell_to_input_weights(), &input_outstage_info, 1.f, ConvertPolicy::SATURATE,
+                                                                                  RoundingPolicy::TO_ZERO));
+            const float cell_to_input_scale = std::pow(2, cell_shift) * lstm_params.cell_to_input_weights()->quantization_info().uniform().scale / lstm_params.input_intermediate_scale();
+            ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(cell_to_input_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift));
+            ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpOutputStage::validate(&input_outstage_info, &eff_bias_info, &input_outstage_info, gemmlowp_info));
+            ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAdditionKernel::validate(&input_outstage_info, &input_outstage_info, &input_outstage_info, ConvertPolicy::SATURATE));
+        }
+
+        ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayer::validate(&input_outstage_info, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.f, 1.f)));
+    }
+    // Cell.
+    ARM_COMPUTE_RETURN_ON_ERROR(NEPixelWiseMultiplicationKernel::validate(&forget_gate_info, cell_state_in, &forget_gate_info, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO));
+    ARM_COMPUTE_RETURN_ON_ERROR(NEPixelWiseMultiplicationKernel::validate(&input_gate_info, cell_state_in, &cell_gate_info, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO));
+    ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAdditionKernel::validate(&forget_gate_info, &cell_gate_info, cell_state_out, ConvertPolicy::SATURATE));
+    if(quantized_cell_clip > 0)
+    {
+        ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayer::validate(cell_state_out, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, -quantized_cell_clip,
+                                                                                                             quantized_cell_clip)));
+    }
+    // Output gate.
+    const TensorInfo output_outstage_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.output_intermediate_scale(), 0));
+    const float      input_to_output_scale = input_to_output_weights->quantization_info().uniform().scale * qinput.scale / lstm_params.output_intermediate_scale();
+    validate_mm(gemmlowp_info, input, &input_weights_transposed, &eff_bias_info, input_to_output_scale, &mm_out_info, &output_outstage_info);
+
+    const float recurrent_to_output_scale = recurrent_to_output_weights->quantization_info().uniform().scale * qoutput_state_in.scale / lstm_params.output_intermediate_scale();
+    validate_mm(gemmlowp_info, output_state_in, &recurrent_weights_transposed, &eff_bias_info, recurrent_to_output_scale, &mm_out_info, &output_outstage_info);
+
+    ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAdditionKernel::validate(&output_outstage_info, &output_outstage_info, &output_outstage_info, ConvertPolicy::SATURATE));
+    if(lstm_params.has_peephole_opt())
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(lstm_params.cell_to_output_weights(), 1, DataType::QSYMM16);
+        // TODO(COMPMID-3395): Perform multiplication in the quantized domain in NEPixelWiseMultiplicationKernel
+        // Here we are not using the output stage because all operations are done in float
+        // const float cell_to_output_scale = std::pow(2, cell_shift) * lstm_params.cell_to_output_weights()->quantization_info().uniform().scale / lstm_params.output_intermediate_scale();
+        // ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(cell_to_output_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift));
+        ARM_COMPUTE_RETURN_ON_ERROR(NEPixelWiseMultiplicationKernel::validate(cell_state_out, lstm_params.cell_to_output_weights(), &output_outstage_info, 1.f, ConvertPolicy::SATURATE,
+                                                                              RoundingPolicy::TO_ZERO));
+        ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAdditionKernel::validate(&output_outstage_info, &output_outstage_info, &output_outstage_info, ConvertPolicy::SATURATE));
+    }
+
+    const TensorInfo output_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo);
+    ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayer::validate(&output_outstage_info, &output_gate_info, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC)));
+
+    // Hidden.
+    ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayer::validate(cell_state_out, &input_gate_info, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.f, 1.f)));
+    const TensorInfo hidden_mul_res(TensorShape(num_units, batch_size), 1, DataType::S32);
+    ARM_COMPUTE_RETURN_ON_ERROR(NEPixelWiseMultiplicationKernel::validate(&output_gate_info, &input_gate_info, &hidden_mul_res, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO));
+    const float hidden_state_scale = std::pow(2, -15) / lstm_params.hidden_state_scale() * std::pow(2, -15);
+    ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(hidden_state_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift));
+    gemmlowp_info.gemmlowp_offset = lstm_params.hidden_state_zero();
+    ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpOutputStage::validate(&hidden_mul_res, nullptr, output_state_out, gemmlowp_info));
+
+    // Projection.
+    if(lstm_params.has_projection())
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(recurrent_to_forget_weights, lstm_params.projection_weights());
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(forget_gate_bias, lstm_params.projection_bias());
+
+        const UniformQuantizationInfo qprojection      = lstm_params.projection_weights()->quantization_info().uniform();
+        const float                   projection_scale = qprojection.scale * lstm_params.hidden_state_scale() / qoutput_state_in.scale;
+        ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(projection_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift));
+        gemmlowp_info.gemmlowp_offset    = qoutput_state_in.offset;
+        gemmlowp_info.gemmlowp_min_bound = std::numeric_limits<int8_t>::lowest();
+        gemmlowp_info.gemmlowp_max_bound = std::numeric_limits<int8_t>::max();
+        gemmlowp_info.output_data_type   = DataType::QASYMM8_SIGNED;
+
+        const TensorInfo projection_outstage_info(*output_state_out);
+        validate_mm(gemmlowp_info, output_state_out, &recurrent_weights_transposed, &eff_bias_info, input_to_output_scale, &mm_out_info, &projection_outstage_info);
+
+        ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAdditionKernel::validate(output_state_out, output_state_out, output_state_out, ConvertPolicy::SATURATE));
+
+        int8_t quantized_projection_clip{ 0 };
+        if(lstm_params.projection_clip() > 0.0f)
+        {
+            quantized_projection_clip = quantize_qasymm8_signed(lstm_params.projection_clip(), qprojection);
+        }
+
+        if(quantized_projection_clip > 0)
+        {
+            ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayer::validate(output_state_out, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, -quantized_projection_clip,
+                                                                                                                   quantized_projection_clip)));
+        }
+    }
+
+    if(cell_state_out->total_size() > 0)
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(cell_state_in, cell_state_out);
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(cell_state_in, cell_state_out);
+    }
+
+    if(output_state_out->total_size() > 0)
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output_state_out);
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output_state_in, output_state_out);
+    }
+
+    return Status{};
+}
+
+void NEQLSTMLayer::run()
+{
+    prepare();
+
+    // Acquire all the temporaries
+    MemoryGroupResourceScope scope_mg(_memory_group);
+
+    // Forget gate.
+    _mm_input_to_forget.run();
+    _input_to_forget_outstage.run();
+
+    _mm_recurrent_to_forget.run();
+    _recurrent_to_forget_outstage.run();
+    NEScheduler::get().schedule(&_accumulate_input_recurrent_forget, Window::DimY);
+
+    if(_has_peephole)
+    {
+        NEScheduler::get().schedule(&_pixelwise_mul_cell_to_forget, Window::DimY);
+        _cell_to_forget_outstage.run();
+        NEScheduler::get().schedule(&_accumulate_cell_forget, Window::DimY);
+    }
+
+    _forget_gate_sigmoid.run();
+
+    // Modulation gate.
+    _mm_input_to_cell.run();
+    _input_to_cell_outstage.run();
+
+    _mm_recurrent_to_cell.run();
+    _recurrent_to_cell_outstage.run();
+    NEScheduler::get().schedule(&_accumulate_input_recurrent_modulation, Window::DimY);
+
+    _cell_gate_tanh.run();
+
+    // Input gate
+    if(_has_cifg)
+    {
+        NEScheduler::get().schedule(&_input_gate_sub, Window::DimY);
+    }
+    else
+    {
+        _mm_input_to_input.run();
+        _input_to_input_outstage.run();
+        _mm_recurrent_to_input.run();
+        _recurrent_to_input_outstage.run();
+        NEScheduler::get().schedule(&_accumulate_input_recurrent_input, Window::DimY);
+
+        if(_has_peephole)
+        {
+            NEScheduler::get().schedule(&_pixelwise_mul_cell_to_input, Window::DimY);
+            _cell_to_input_outstage.run();
+            NEScheduler::get().schedule(&_accumulate_cell_input, Window::DimY);
+        }
+
+        _input_gate_tanh.run();
+    }
+
+    // Cell.
+    NEScheduler::get().schedule(&_pixelwise_mul_forget_cell, Window::DimY);
+    NEScheduler::get().schedule(&_pixelwise_mul_input_cell, Window::DimY);
+    NEScheduler::get().schedule(&_add_forget_cell, Window::DimY);
+    if(_has_cell_clipping)
+    {
+        _cell_clip.run();
+    }
+
+    // Output gate.
+    _mm_input_to_output.run();
+    _input_to_output_outstage.run();
+    _mm_recurrent_to_output.run();
+    _recurrent_to_output_outstage.run();
+    NEScheduler::get().schedule(&_accumulate_input_recurrent_output, Window::DimY);
+    if(_has_peephole)
+    {
+        NEScheduler::get().schedule(&_pixelwise_mul_cell_to_output, Window::DimY);
+        NEScheduler::get().schedule(&_accumulate_cell_to_output, Window::DimY);
+    }
+
+    _output_gate_sigmoid.run();
+
+    // Hidden.
+    _hidden_tanh.run();
+    NEScheduler::get().schedule(&_pixelwise_mul_hidden, Window::DimY);
+    _hidden_outstage.run();
+
+    // Projection.
+    if(_has_projection)
+    {
+        _mm_projection.run();
+        _projection_outstage.run();
+        NEScheduler::get().schedule(&_accumulate_projection, Window::DimY);
+        if(_has_projection_clipping)
+        {
+            _projection_clip.run();
+        }
+    }
+}
+
+void NEQLSTMLayer::prepare()
+{
+    if(!_is_prepared)
+    {
+        // Pre-transpose weights to be used in GEMM.
+        _input_to_forget_weights_transposed.allocator()->allocate();
+        _input_to_cell_weights_transposed.allocator()->allocate();
+        _input_to_output_weights_transposed.allocator()->allocate();
+        _recurrent_to_forget_weights_transposed.allocator()->allocate();
+        _recurrent_to_cell_weights_transposed.allocator()->allocate();
+        _recurrent_to_output_weights_transposed.allocator()->allocate();
+        _transpose_input_to_forget_weights.run();
+        _transpose_input_to_cell_weights.run();
+        _transpose_input_to_output_weights.run();
+        _transpose_recurrent_to_forget_weights.run();
+        _transpose_recurrent_to_cell_weights.run();
+        _transpose_recurrent_to_output_weights.run();
+
+        // Precompute effective biases
+        if(_has_cifg)
+        {
+            std::fill_n(reinterpret_cast<int16_t *>(_ones.buffer()), _ones.info()->total_size() / _ones.info()->element_size(), 32767);
+        }
+        else
+        {
+            _input_to_input_eff_bias.allocator()->allocate();
+            _recurrent_to_input_eff_bias.allocator()->allocate();
+            NEScheduler::get().schedule(&_input_to_input_reduction, Window::DimY);
+            NEScheduler::get().schedule(&_recurrent_to_input_reduction, Window::DimY);
+
+            _input_to_input_weights_transposed.allocator()->allocate();
+            _recurrent_to_input_weights_transposed.allocator()->allocate();
+            _transpose_input_to_input_weights.run();
+            _transpose_recurrent_to_input_weights.run();
+            _input_to_input_weights->mark_as_unused();
+            _recurrent_to_input_weights->mark_as_unused();
+        }
+        _input_to_forget_eff_bias.allocator()->allocate();
+        _recurrent_to_forget_eff_bias.allocator()->allocate();
+        _input_to_cell_eff_bias.allocator()->allocate();
+        _recurrent_to_cell_eff_bias.allocator()->allocate();
+        _input_to_output_eff_bias.allocator()->allocate();
+        _recurrent_to_output_eff_bias.allocator()->allocate();
+        NEScheduler::get().schedule(&_input_to_forget_reduction, Window::DimY);
+        NEScheduler::get().schedule(&_recurrent_to_forget_reduction, Window::DimY);
+        NEScheduler::get().schedule(&_input_to_cell_reduction, Window::DimY);
+        NEScheduler::get().schedule(&_recurrent_to_cell_reduction, Window::DimY);
+        NEScheduler::get().schedule(&_input_to_output_reduction, Window::DimY);
+        NEScheduler::get().schedule(&_recurrent_to_output_reduction, Window::DimY);
+
+        if(_has_projection)
+        {
+            if(_projection_bias != nullptr)
+            {
+                _projection_eff_bias.allocator()->allocate();
+                NEScheduler::get().schedule(&_projection_reduction, Window::DimY);
+                _projection_bias->mark_as_unused();
+            }
+
+            _projection_weights_transposed.allocator()->allocate();
+            _transpose_projection_weights.run();
+            _projection_weights->mark_as_unused();
+        }
+
+        // Mark weights as unused
+        _input_to_forget_weights->mark_as_unused();
+        _input_to_cell_weights->mark_as_unused();
+        _input_to_output_weights->mark_as_unused();
+        _recurrent_to_forget_weights->mark_as_unused();
+        _recurrent_to_cell_weights->mark_as_unused();
+        _recurrent_to_output_weights->mark_as_unused();
+
+        _is_prepared = true;
+    }
+}
+
+} // namespace arm_compute