--- /dev/null
+//===------ llvm/DataLayout.h - Data size & alignment info ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines target properties related to datatype size/offset/alignment
+// information. It uses lazy annotations to cache information about how
+// structure types are laid out and used.
+//
+// This structure should be created once, filled in if the defaults are not
+// correct and then passed around by const&. None of the members functions
+// require modification to the object.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_DATALAYOUT_H
+#define LLVM_DATALAYOUT_H
+
+#include "llvm/Pass.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/DataTypes.h"
+
+namespace llvm {
+
+class Value;
+class Type;
+class IntegerType;
+class StructType;
+class StructLayout;
+class GlobalVariable;
+class LLVMContext;
+template<typename T>
+class ArrayRef;
+
+/// Enum used to categorize the alignment types stored by TargetAlignElem
+enum AlignTypeEnum {
+ INTEGER_ALIGN = 'i', ///< Integer type alignment
+ VECTOR_ALIGN = 'v', ///< Vector type alignment
+ FLOAT_ALIGN = 'f', ///< Floating point type alignment
+ AGGREGATE_ALIGN = 'a', ///< Aggregate alignment
+ STACK_ALIGN = 's' ///< Stack objects alignment
+};
+
+/// Target alignment element.
+///
+/// Stores the alignment data associated with a given alignment type (pointer,
+/// integer, vector, float) and type bit width.
+///
+/// @note The unusual order of elements in the structure attempts to reduce
+/// padding and make the structure slightly more cache friendly.
+struct TargetAlignElem {
+ unsigned AlignType : 8; ///< Alignment type (AlignTypeEnum)
+ unsigned TypeBitWidth : 24; ///< Type bit width
+ unsigned ABIAlign : 16; ///< ABI alignment for this type/bitw
+ unsigned PrefAlign : 16; ///< Pref. alignment for this type/bitw
+
+ /// Initializer
+ static TargetAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
+ unsigned pref_align, uint32_t bit_width);
+ /// Equality predicate
+ bool operator==(const TargetAlignElem &rhs) const;
+};
+
+/// DataLayout - This class holds a parsed version of the target data layout
+/// string in a module and provides methods for querying it. The target data
+/// layout string is specified *by the target* - a frontend generating LLVM IR
+/// is required to generate the right target data for the target being codegen'd
+/// to. If some measure of portability is desired, an empty string may be
+/// specified in the module.
+class DataLayout : public ImmutablePass {
+private:
+ bool LittleEndian; ///< Defaults to false
+ unsigned PointerMemSize; ///< Pointer size in bytes
+ unsigned PointerABIAlign; ///< Pointer ABI alignment
+ unsigned PointerPrefAlign; ///< Pointer preferred alignment
+ unsigned StackNaturalAlign; ///< Stack natural alignment
+
+ SmallVector<unsigned char, 8> LegalIntWidths; ///< Legal Integers.
+
+ /// Alignments- Where the primitive type alignment data is stored.
+ ///
+ /// @sa init().
+ /// @note Could support multiple size pointer alignments, e.g., 32-bit
+ /// pointers vs. 64-bit pointers by extending TargetAlignment, but for now,
+ /// we don't.
+ SmallVector<TargetAlignElem, 16> Alignments;
+
+ /// InvalidAlignmentElem - This member is a signal that a requested alignment
+ /// type and bit width were not found in the SmallVector.
+ static const TargetAlignElem InvalidAlignmentElem;
+
+ // The StructType -> StructLayout map.
+ mutable void *LayoutMap;
+
+ //! Set/initialize target alignments
+ void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
+ unsigned pref_align, uint32_t bit_width);
+ unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
+ bool ABIAlign, Type *Ty) const;
+ //! Internal helper method that returns requested alignment for type.
+ unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
+
+ /// Valid alignment predicate.
+ ///
+ /// Predicate that tests a TargetAlignElem reference returned by get() against
+ /// InvalidAlignmentElem.
+ bool validAlignment(const TargetAlignElem &align) const {
+ return &align != &InvalidAlignmentElem;
+ }
+
+ /// Initialise a DataLayout object with default values, ensure that the
+ /// target data pass is registered.
+ void init();
+
+public:
+ /// Default ctor.
+ ///
+ /// @note This has to exist, because this is a pass, but it should never be
+ /// used.
+ DataLayout();
+
+ /// Constructs a DataLayout from a specification string. See init().
+ explicit DataLayout(StringRef TargetDescription)
+ : ImmutablePass(ID) {
+ std::string errMsg = parseSpecifier(TargetDescription, this);
+ assert(errMsg == "" && "Invalid target data layout string.");
+ (void)errMsg;
+ }
+
+ /// Parses a target data specification string. Returns an error message
+ /// if the string is malformed, or the empty string on success. Optionally
+ /// initialises a DataLayout object if passed a non-null pointer.
+ static std::string parseSpecifier(StringRef TargetDescription, DataLayout* td = 0);
+
+ /// Initialize target data from properties stored in the module.
+ explicit DataLayout(const Module *M);
+
+ DataLayout(const DataLayout &TD) :
+ ImmutablePass(ID),
+ LittleEndian(TD.isLittleEndian()),
+ PointerMemSize(TD.PointerMemSize),
+ PointerABIAlign(TD.PointerABIAlign),
+ PointerPrefAlign(TD.PointerPrefAlign),
+ LegalIntWidths(TD.LegalIntWidths),
+ Alignments(TD.Alignments),
+ LayoutMap(0)
+ { }
+
+ ~DataLayout(); // Not virtual, do not subclass this class
+
+ /// Target endianness...
+ bool isLittleEndian() const { return LittleEndian; }
+ bool isBigEndian() const { return !LittleEndian; }
+
+ /// getStringRepresentation - Return the string representation of the
+ /// DataLayout. This representation is in the same format accepted by the
+ /// string constructor above.
+ std::string getStringRepresentation() const;
+
+ /// isLegalInteger - This function returns true if the specified type is
+ /// known to be a native integer type supported by the CPU. For example,
+ /// i64 is not native on most 32-bit CPUs and i37 is not native on any known
+ /// one. This returns false if the integer width is not legal.
+ ///
+ /// The width is specified in bits.
+ ///
+ bool isLegalInteger(unsigned Width) const {
+ for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i)
+ if (LegalIntWidths[i] == Width)
+ return true;
+ return false;
+ }
+
+ bool isIllegalInteger(unsigned Width) const {
+ return !isLegalInteger(Width);
+ }
+
+ /// Returns true if the given alignment exceeds the natural stack alignment.
+ bool exceedsNaturalStackAlignment(unsigned Align) const {
+ return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
+ }
+
+ /// fitsInLegalInteger - This function returns true if the specified type fits
+ /// in a native integer type supported by the CPU. For example, if the CPU
+ /// only supports i32 as a native integer type, then i27 fits in a legal
+ // integer type but i45 does not.
+ bool fitsInLegalInteger(unsigned Width) const {
+ for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i)
+ if (Width <= LegalIntWidths[i])
+ return true;
+ return false;
+ }
+
+ /// Target pointer alignment
+ unsigned getPointerABIAlignment() const { return PointerABIAlign; }
+ /// Return target's alignment for stack-based pointers
+ unsigned getPointerPrefAlignment() const { return PointerPrefAlign; }
+ /// Target pointer size
+ unsigned getPointerSize() const { return PointerMemSize; }
+ /// Target pointer size, in bits
+ unsigned getPointerSizeInBits() const { return 8*PointerMemSize; }
+
+ /// Size examples:
+ ///
+ /// Type SizeInBits StoreSizeInBits AllocSizeInBits[*]
+ /// ---- ---------- --------------- ---------------
+ /// i1 1 8 8
+ /// i8 8 8 8
+ /// i19 19 24 32
+ /// i32 32 32 32
+ /// i100 100 104 128
+ /// i128 128 128 128
+ /// Float 32 32 32
+ /// Double 64 64 64
+ /// X86_FP80 80 80 96
+ ///
+ /// [*] The alloc size depends on the alignment, and thus on the target.
+ /// These values are for x86-32 linux.
+
+ /// getTypeSizeInBits - Return the number of bits necessary to hold the
+ /// specified type. For example, returns 36 for i36 and 80 for x86_fp80.
+ uint64_t getTypeSizeInBits(Type* Ty) const;
+
+ /// getTypeStoreSize - Return the maximum number of bytes that may be
+ /// overwritten by storing the specified type. For example, returns 5
+ /// for i36 and 10 for x86_fp80.
+ uint64_t getTypeStoreSize(Type *Ty) const {
+ return (getTypeSizeInBits(Ty)+7)/8;
+ }
+
+ /// getTypeStoreSizeInBits - Return the maximum number of bits that may be
+ /// overwritten by storing the specified type; always a multiple of 8. For
+ /// example, returns 40 for i36 and 80 for x86_fp80.
+ uint64_t getTypeStoreSizeInBits(Type *Ty) const {
+ return 8*getTypeStoreSize(Ty);
+ }
+
+ /// getTypeAllocSize - Return the offset in bytes between successive objects
+ /// of the specified type, including alignment padding. This is the amount
+ /// that alloca reserves for this type. For example, returns 12 or 16 for
+ /// x86_fp80, depending on alignment.
+ uint64_t getTypeAllocSize(Type* Ty) const {
+ // Round up to the next alignment boundary.
+ return RoundUpAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
+ }
+
+ /// getTypeAllocSizeInBits - Return the offset in bits between successive
+ /// objects of the specified type, including alignment padding; always a
+ /// multiple of 8. This is the amount that alloca reserves for this type.
+ /// For example, returns 96 or 128 for x86_fp80, depending on alignment.
+ uint64_t getTypeAllocSizeInBits(Type* Ty) const {
+ return 8*getTypeAllocSize(Ty);
+ }
+
+ /// getABITypeAlignment - Return the minimum ABI-required alignment for the
+ /// specified type.
+ unsigned getABITypeAlignment(Type *Ty) const;
+
+ /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
+ /// an integer type of the specified bitwidth.
+ unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
+
+
+ /// getCallFrameTypeAlignment - Return the minimum ABI-required alignment
+ /// for the specified type when it is part of a call frame.
+ unsigned getCallFrameTypeAlignment(Type *Ty) const;
+
+
+ /// getPrefTypeAlignment - Return the preferred stack/global alignment for
+ /// the specified type. This is always at least as good as the ABI alignment.
+ unsigned getPrefTypeAlignment(Type *Ty) const;
+
+ /// getPreferredTypeAlignmentShift - Return the preferred alignment for the
+ /// specified type, returned as log2 of the value (a shift amount).
+ ///
+ unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
+
+ /// getIntPtrType - Return an unsigned integer type that is the same size or
+ /// greater to the host pointer size.
+ ///
+ IntegerType *getIntPtrType(LLVMContext &C) const;
+
+ /// getIndexedOffset - return the offset from the beginning of the type for
+ /// the specified indices. This is used to implement getelementptr.
+ ///
+ uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const;
+
+ /// getStructLayout - Return a StructLayout object, indicating the alignment
+ /// of the struct, its size, and the offsets of its fields. Note that this
+ /// information is lazily cached.
+ const StructLayout *getStructLayout(StructType *Ty) const;
+
+ /// getPreferredAlignment - Return the preferred alignment of the specified
+ /// global. This includes an explicitly requested alignment (if the global
+ /// has one).
+ unsigned getPreferredAlignment(const GlobalVariable *GV) const;
+
+ /// getPreferredAlignmentLog - Return the preferred alignment of the
+ /// specified global, returned in log form. This includes an explicitly
+ /// requested alignment (if the global has one).
+ unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
+
+ /// RoundUpAlignment - Round the specified value up to the next alignment
+ /// boundary specified by Alignment. For example, 7 rounded up to an
+ /// alignment boundary of 4 is 8. 8 rounded up to the alignment boundary of 4
+ /// is 8 because it is already aligned.
+ template <typename UIntTy>
+ static UIntTy RoundUpAlignment(UIntTy Val, unsigned Alignment) {
+ assert((Alignment & (Alignment-1)) == 0 && "Alignment must be power of 2!");
+ return (Val + (Alignment-1)) & ~UIntTy(Alignment-1);
+ }
+
+ static char ID; // Pass identification, replacement for typeid
+};
+
+/// StructLayout - used to lazily calculate structure layout information for a
+/// target machine, based on the DataLayout structure.
+///
+class StructLayout {
+ uint64_t StructSize;
+ unsigned StructAlignment;
+ unsigned NumElements;
+ uint64_t MemberOffsets[1]; // variable sized array!
+public:
+
+ uint64_t getSizeInBytes() const {
+ return StructSize;
+ }
+
+ uint64_t getSizeInBits() const {
+ return 8*StructSize;
+ }
+
+ unsigned getAlignment() const {
+ return StructAlignment;
+ }
+
+ /// getElementContainingOffset - Given a valid byte offset into the structure,
+ /// return the structure index that contains it.
+ ///
+ unsigned getElementContainingOffset(uint64_t Offset) const;
+
+ uint64_t getElementOffset(unsigned Idx) const {
+ assert(Idx < NumElements && "Invalid element idx!");
+ return MemberOffsets[Idx];
+ }
+
+ uint64_t getElementOffsetInBits(unsigned Idx) const {
+ return getElementOffset(Idx)*8;
+ }
+
+private:
+ friend class DataLayout; // Only DataLayout can create this class
+ StructLayout(StructType *ST, const DataLayout &TD);
+};
+
+} // End llvm namespace
+
+#endif
--- /dev/null
+//===-- TargetData.cpp - Data size & alignment routines --------------------==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines target properties related to datatype size/offset/alignment
+// information.
+//
+// This structure should be created once, filled in if the defaults are not
+// correct and then passed around by const&. None of the members functions
+// require modification to the object.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Target/TargetData.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/Mutex.h"
+#include "llvm/ADT/DenseMap.h"
+#include <algorithm>
+#include <cstdlib>
+using namespace llvm;
+
+// Handle the Pass registration stuff necessary to use TargetData's.
+
+// Register the default SparcV9 implementation...
+INITIALIZE_PASS(TargetData, "targetdata", "Target Data Layout", false, true)
+char TargetData::ID = 0;
+
+//===----------------------------------------------------------------------===//
+// Support for StructLayout
+//===----------------------------------------------------------------------===//
+
+StructLayout::StructLayout(StructType *ST, const TargetData &TD) {
+ assert(!ST->isOpaque() && "Cannot get layout of opaque structs");
+ StructAlignment = 0;
+ StructSize = 0;
+ NumElements = ST->getNumElements();
+
+ // Loop over each of the elements, placing them in memory.
+ for (unsigned i = 0, e = NumElements; i != e; ++i) {
+ Type *Ty = ST->getElementType(i);
+ unsigned TyAlign = ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty);
+
+ // Add padding if necessary to align the data element properly.
+ if ((StructSize & (TyAlign-1)) != 0)
+ StructSize = TargetData::RoundUpAlignment(StructSize, TyAlign);
+
+ // Keep track of maximum alignment constraint.
+ StructAlignment = std::max(TyAlign, StructAlignment);
+
+ MemberOffsets[i] = StructSize;
+ StructSize += TD.getTypeAllocSize(Ty); // Consume space for this data item
+ }
+
+ // Empty structures have alignment of 1 byte.
+ if (StructAlignment == 0) StructAlignment = 1;
+
+ // Add padding to the end of the struct so that it could be put in an array
+ // and all array elements would be aligned correctly.
+ if ((StructSize & (StructAlignment-1)) != 0)
+ StructSize = TargetData::RoundUpAlignment(StructSize, StructAlignment);
+}
+
+
+/// getElementContainingOffset - Given a valid offset into the structure,
+/// return the structure index that contains it.
+unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const {
+ const uint64_t *SI =
+ std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset);
+ assert(SI != &MemberOffsets[0] && "Offset not in structure type!");
+ --SI;
+ assert(*SI <= Offset && "upper_bound didn't work");
+ assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) &&
+ (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) &&
+ "Upper bound didn't work!");
+
+ // Multiple fields can have the same offset if any of them are zero sized.
+ // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop
+ // at the i32 element, because it is the last element at that offset. This is
+ // the right one to return, because anything after it will have a higher
+ // offset, implying that this element is non-empty.
+ return SI-&MemberOffsets[0];
+}
+
+//===----------------------------------------------------------------------===//
+// TargetAlignElem, TargetAlign support
+//===----------------------------------------------------------------------===//
+
+TargetAlignElem
+TargetAlignElem::get(AlignTypeEnum align_type, unsigned abi_align,
+ unsigned pref_align, uint32_t bit_width) {
+ assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
+ TargetAlignElem retval;
+ retval.AlignType = align_type;
+ retval.ABIAlign = abi_align;
+ retval.PrefAlign = pref_align;
+ retval.TypeBitWidth = bit_width;
+ return retval;
+}
+
+bool
+TargetAlignElem::operator==(const TargetAlignElem &rhs) const {
+ return (AlignType == rhs.AlignType
+ && ABIAlign == rhs.ABIAlign
+ && PrefAlign == rhs.PrefAlign
+ && TypeBitWidth == rhs.TypeBitWidth);
+}
+
+const TargetAlignElem
+TargetData::InvalidAlignmentElem = { (AlignTypeEnum)0xFF, 0, 0, 0 };
+
+//===----------------------------------------------------------------------===//
+// TargetData Class Implementation
+//===----------------------------------------------------------------------===//
+
+/// getInt - Get an integer ignoring errors.
+static int getInt(StringRef R) {
+ int Result = 0;
+ R.getAsInteger(10, Result);
+ return Result;
+}
+
+void TargetData::init() {
+ initializeTargetDataPass(*PassRegistry::getPassRegistry());
+
+ LayoutMap = 0;
+ LittleEndian = false;
+ PointerMemSize = 8;
+ PointerABIAlign = 8;
+ PointerPrefAlign = PointerABIAlign;
+ StackNaturalAlign = 0;
+
+ // Default alignments
+ setAlignment(INTEGER_ALIGN, 1, 1, 1); // i1
+ setAlignment(INTEGER_ALIGN, 1, 1, 8); // i8
+ setAlignment(INTEGER_ALIGN, 2, 2, 16); // i16
+ setAlignment(INTEGER_ALIGN, 4, 4, 32); // i32
+ setAlignment(INTEGER_ALIGN, 4, 8, 64); // i64
+ setAlignment(FLOAT_ALIGN, 2, 2, 16); // half
+ setAlignment(FLOAT_ALIGN, 4, 4, 32); // float
+ setAlignment(FLOAT_ALIGN, 8, 8, 64); // double
+ setAlignment(FLOAT_ALIGN, 16, 16, 128); // ppcf128, quad, ...
+ setAlignment(VECTOR_ALIGN, 8, 8, 64); // v2i32, v1i64, ...
+ setAlignment(VECTOR_ALIGN, 16, 16, 128); // v16i8, v8i16, v4i32, ...
+ setAlignment(AGGREGATE_ALIGN, 0, 8, 0); // struct
+}
+
+std::string TargetData::parseSpecifier(StringRef Desc, TargetData *td) {
+
+ if (td)
+ td->init();
+
+ while (!Desc.empty()) {
+ std::pair<StringRef, StringRef> Split = Desc.split('-');
+ StringRef Token = Split.first;
+ Desc = Split.second;
+
+ if (Token.empty())
+ continue;
+
+ Split = Token.split(':');
+ StringRef Specifier = Split.first;
+ Token = Split.second;
+
+ assert(!Specifier.empty() && "Can't be empty here");
+
+ switch (Specifier[0]) {
+ case 'E':
+ if (td)
+ td->LittleEndian = false;
+ break;
+ case 'e':
+ if (td)
+ td->LittleEndian = true;
+ break;
+ case 'p': {
+ // Pointer size.
+ Split = Token.split(':');
+ int PointerMemSizeBits = getInt(Split.first);
+ if (PointerMemSizeBits < 0 || PointerMemSizeBits % 8 != 0)
+ return "invalid pointer size, must be a positive 8-bit multiple";
+ if (td)
+ td->PointerMemSize = PointerMemSizeBits / 8;
+
+ // Pointer ABI alignment.
+ Split = Split.second.split(':');
+ int PointerABIAlignBits = getInt(Split.first);
+ if (PointerABIAlignBits < 0 || PointerABIAlignBits % 8 != 0) {
+ return "invalid pointer ABI alignment, "
+ "must be a positive 8-bit multiple";
+ }
+ if (td)
+ td->PointerABIAlign = PointerABIAlignBits / 8;
+
+ // Pointer preferred alignment.
+ Split = Split.second.split(':');
+ int PointerPrefAlignBits = getInt(Split.first);
+ if (PointerPrefAlignBits < 0 || PointerPrefAlignBits % 8 != 0) {
+ return "invalid pointer preferred alignment, "
+ "must be a positive 8-bit multiple";
+ }
+ if (td) {
+ td->PointerPrefAlign = PointerPrefAlignBits / 8;
+ if (td->PointerPrefAlign == 0)
+ td->PointerPrefAlign = td->PointerABIAlign;
+ }
+ break;
+ }
+ case 'i':
+ case 'v':
+ case 'f':
+ case 'a':
+ case 's': {
+ AlignTypeEnum AlignType;
+ char field = Specifier[0];
+ switch (field) {
+ default:
+ case 'i': AlignType = INTEGER_ALIGN; break;
+ case 'v': AlignType = VECTOR_ALIGN; break;
+ case 'f': AlignType = FLOAT_ALIGN; break;
+ case 'a': AlignType = AGGREGATE_ALIGN; break;
+ case 's': AlignType = STACK_ALIGN; break;
+ }
+ int Size = getInt(Specifier.substr(1));
+ if (Size < 0) {
+ return std::string("invalid ") + field + "-size field, "
+ "must be positive";
+ }
+
+ Split = Token.split(':');
+ int ABIAlignBits = getInt(Split.first);
+ if (ABIAlignBits < 0 || ABIAlignBits % 8 != 0) {
+ return std::string("invalid ") + field +"-abi-alignment field, "
+ "must be a positive 8-bit multiple";
+ }
+ unsigned ABIAlign = ABIAlignBits / 8;
+
+ Split = Split.second.split(':');
+
+ int PrefAlignBits = getInt(Split.first);
+ if (PrefAlignBits < 0 || PrefAlignBits % 8 != 0) {
+ return std::string("invalid ") + field +"-preferred-alignment field, "
+ "must be a positive 8-bit multiple";
+ }
+ unsigned PrefAlign = PrefAlignBits / 8;
+ if (PrefAlign == 0)
+ PrefAlign = ABIAlign;
+
+ if (td)
+ td->setAlignment(AlignType, ABIAlign, PrefAlign, Size);
+ break;
+ }
+ case 'n': // Native integer types.
+ Specifier = Specifier.substr(1);
+ do {
+ int Width = getInt(Specifier);
+ if (Width <= 0) {
+ return std::string("invalid native integer size \'") + Specifier.str() +
+ "\', must be a positive integer.";
+ }
+ if (td && Width != 0)
+ td->LegalIntWidths.push_back(Width);
+ Split = Token.split(':');
+ Specifier = Split.first;
+ Token = Split.second;
+ } while (!Specifier.empty() || !Token.empty());
+ break;
+ case 'S': { // Stack natural alignment.
+ int StackNaturalAlignBits = getInt(Specifier.substr(1));
+ if (StackNaturalAlignBits < 0 || StackNaturalAlignBits % 8 != 0) {
+ return "invalid natural stack alignment (S-field), "
+ "must be a positive 8-bit multiple";
+ }
+ if (td)
+ td->StackNaturalAlign = StackNaturalAlignBits / 8;
+ break;
+ }
+ default:
+ break;
+ }
+ }
+
+ return "";
+}
+
+/// Default ctor.
+///
+/// @note This has to exist, because this is a pass, but it should never be
+/// used.
+TargetData::TargetData() : ImmutablePass(ID) {
+ report_fatal_error("Bad TargetData ctor used. "
+ "Tool did not specify a TargetData to use?");
+}
+
+TargetData::TargetData(const Module *M)
+ : ImmutablePass(ID) {
+ std::string errMsg = parseSpecifier(M->getDataLayout(), this);
+ assert(errMsg == "" && "Module M has malformed target data layout string.");
+ (void)errMsg;
+}
+
+void
+TargetData::setAlignment(AlignTypeEnum align_type, unsigned abi_align,
+ unsigned pref_align, uint32_t bit_width) {
+ assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
+ assert(pref_align < (1 << 16) && "Alignment doesn't fit in bitfield");
+ assert(bit_width < (1 << 24) && "Bit width doesn't fit in bitfield");
+ for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
+ if (Alignments[i].AlignType == align_type &&
+ Alignments[i].TypeBitWidth == bit_width) {
+ // Update the abi, preferred alignments.
+ Alignments[i].ABIAlign = abi_align;
+ Alignments[i].PrefAlign = pref_align;
+ return;
+ }
+ }
+
+ Alignments.push_back(TargetAlignElem::get(align_type, abi_align,
+ pref_align, bit_width));
+}
+
+/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or
+/// preferred if ABIInfo = false) the target wants for the specified datatype.
+unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType,
+ uint32_t BitWidth, bool ABIInfo,
+ Type *Ty) const {
+ // Check to see if we have an exact match and remember the best match we see.
+ int BestMatchIdx = -1;
+ int LargestInt = -1;
+ for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
+ if (Alignments[i].AlignType == AlignType &&
+ Alignments[i].TypeBitWidth == BitWidth)
+ return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign;
+
+ // The best match so far depends on what we're looking for.
+ if (AlignType == INTEGER_ALIGN &&
+ Alignments[i].AlignType == INTEGER_ALIGN) {
+ // The "best match" for integers is the smallest size that is larger than
+ // the BitWidth requested.
+ if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 ||
+ Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth))
+ BestMatchIdx = i;
+ // However, if there isn't one that's larger, then we must use the
+ // largest one we have (see below)
+ if (LargestInt == -1 ||
+ Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth)
+ LargestInt = i;
+ }
+ }
+
+ // Okay, we didn't find an exact solution. Fall back here depending on what
+ // is being looked for.
+ if (BestMatchIdx == -1) {
+ // If we didn't find an integer alignment, fall back on most conservative.
+ if (AlignType == INTEGER_ALIGN) {
+ BestMatchIdx = LargestInt;
+ } else {
+ assert(AlignType == VECTOR_ALIGN && "Unknown alignment type!");
+
+ // By default, use natural alignment for vector types. This is consistent
+ // with what clang and llvm-gcc do.
+ unsigned Align = getTypeAllocSize(cast<VectorType>(Ty)->getElementType());
+ Align *= cast<VectorType>(Ty)->getNumElements();
+ // If the alignment is not a power of 2, round up to the next power of 2.
+ // This happens for non-power-of-2 length vectors.
+ if (Align & (Align-1))
+ Align = NextPowerOf2(Align);
+ return Align;
+ }
+ }
+
+ // Since we got a "best match" index, just return it.
+ return ABIInfo ? Alignments[BestMatchIdx].ABIAlign
+ : Alignments[BestMatchIdx].PrefAlign;
+}
+
+namespace {
+
+class StructLayoutMap {
+ typedef DenseMap<StructType*, StructLayout*> LayoutInfoTy;
+ LayoutInfoTy LayoutInfo;
+
+public:
+ virtual ~StructLayoutMap() {
+ // Remove any layouts.
+ for (LayoutInfoTy::iterator I = LayoutInfo.begin(), E = LayoutInfo.end();
+ I != E; ++I) {
+ StructLayout *Value = I->second;
+ Value->~StructLayout();
+ free(Value);
+ }
+ }
+
+ StructLayout *&operator[](StructType *STy) {
+ return LayoutInfo[STy];
+ }
+
+ // for debugging...
+ virtual void dump() const {}
+};
+
+} // end anonymous namespace
+
+TargetData::~TargetData() {
+ delete static_cast<StructLayoutMap*>(LayoutMap);
+}
+
+const StructLayout *TargetData::getStructLayout(StructType *Ty) const {
+ if (!LayoutMap)
+ LayoutMap = new StructLayoutMap();
+
+ StructLayoutMap *STM = static_cast<StructLayoutMap*>(LayoutMap);
+ StructLayout *&SL = (*STM)[Ty];
+ if (SL) return SL;
+
+ // Otherwise, create the struct layout. Because it is variable length, we
+ // malloc it, then use placement new.
+ int NumElts = Ty->getNumElements();
+ StructLayout *L =
+ (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1) * sizeof(uint64_t));
+
+ // Set SL before calling StructLayout's ctor. The ctor could cause other
+ // entries to be added to TheMap, invalidating our reference.
+ SL = L;
+
+ new (L) StructLayout(Ty, *this);
+
+ return L;
+}
+
+std::string TargetData::getStringRepresentation() const {
+ std::string Result;
+ raw_string_ostream OS(Result);
+
+ OS << (LittleEndian ? "e" : "E")
+ << "-p:" << PointerMemSize*8 << ':' << PointerABIAlign*8
+ << ':' << PointerPrefAlign*8
+ << "-S" << StackNaturalAlign*8;
+
+ for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
+ const TargetAlignElem &AI = Alignments[i];
+ OS << '-' << (char)AI.AlignType << AI.TypeBitWidth << ':'
+ << AI.ABIAlign*8 << ':' << AI.PrefAlign*8;
+ }
+
+ if (!LegalIntWidths.empty()) {
+ OS << "-n" << (unsigned)LegalIntWidths[0];
+
+ for (unsigned i = 1, e = LegalIntWidths.size(); i != e; ++i)
+ OS << ':' << (unsigned)LegalIntWidths[i];
+ }
+ return OS.str();
+}
+
+
+uint64_t TargetData::getTypeSizeInBits(Type *Ty) const {
+ assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
+ switch (Ty->getTypeID()) {
+ case Type::LabelTyID:
+ case Type::PointerTyID:
+ return getPointerSizeInBits();
+ case Type::ArrayTyID: {
+ ArrayType *ATy = cast<ArrayType>(Ty);
+ return getTypeAllocSizeInBits(ATy->getElementType())*ATy->getNumElements();
+ }
+ case Type::StructTyID:
+ // Get the layout annotation... which is lazily created on demand.
+ return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
+ case Type::IntegerTyID:
+ return cast<IntegerType>(Ty)->getBitWidth();
+ case Type::VoidTyID:
+ return 8;
+ case Type::HalfTyID:
+ return 16;
+ case Type::FloatTyID:
+ return 32;
+ case Type::DoubleTyID:
+ case Type::X86_MMXTyID:
+ return 64;
+ case Type::PPC_FP128TyID:
+ case Type::FP128TyID:
+ return 128;
+ // In memory objects this is always aligned to a higher boundary, but
+ // only 80 bits contain information.
+ case Type::X86_FP80TyID:
+ return 80;
+ case Type::VectorTyID:
+ return cast<VectorType>(Ty)->getBitWidth();
+ default:
+ llvm_unreachable("TargetData::getTypeSizeInBits(): Unsupported type");
+ }
+}
+
+/*!
+ \param abi_or_pref Flag that determines which alignment is returned. true
+ returns the ABI alignment, false returns the preferred alignment.
+ \param Ty The underlying type for which alignment is determined.
+
+ Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
+ == false) for the requested type \a Ty.
+ */
+unsigned TargetData::getAlignment(Type *Ty, bool abi_or_pref) const {
+ int AlignType = -1;
+
+ assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
+ switch (Ty->getTypeID()) {
+ // Early escape for the non-numeric types.
+ case Type::LabelTyID:
+ case Type::PointerTyID:
+ return (abi_or_pref
+ ? getPointerABIAlignment()
+ : getPointerPrefAlignment());
+ case Type::ArrayTyID:
+ return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref);
+
+ case Type::StructTyID: {
+ // Packed structure types always have an ABI alignment of one.
+ if (cast<StructType>(Ty)->isPacked() && abi_or_pref)
+ return 1;
+
+ // Get the layout annotation... which is lazily created on demand.
+ const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
+ unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty);
+ return std::max(Align, Layout->getAlignment());
+ }
+ case Type::IntegerTyID:
+ case Type::VoidTyID:
+ AlignType = INTEGER_ALIGN;
+ break;
+ case Type::HalfTyID:
+ case Type::FloatTyID:
+ case Type::DoubleTyID:
+ // PPC_FP128TyID and FP128TyID have different data contents, but the
+ // same size and alignment, so they look the same here.
+ case Type::PPC_FP128TyID:
+ case Type::FP128TyID:
+ case Type::X86_FP80TyID:
+ AlignType = FLOAT_ALIGN;
+ break;
+ case Type::X86_MMXTyID:
+ case Type::VectorTyID:
+ AlignType = VECTOR_ALIGN;
+ break;
+ default:
+ llvm_unreachable("Bad type for getAlignment!!!");
+ }
+
+ return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSizeInBits(Ty),
+ abi_or_pref, Ty);
+}
+
+unsigned TargetData::getABITypeAlignment(Type *Ty) const {
+ return getAlignment(Ty, true);
+}
+
+/// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
+/// an integer type of the specified bitwidth.
+unsigned TargetData::getABIIntegerTypeAlignment(unsigned BitWidth) const {
+ return getAlignmentInfo(INTEGER_ALIGN, BitWidth, true, 0);
+}
+
+
+unsigned TargetData::getCallFrameTypeAlignment(Type *Ty) const {
+ for (unsigned i = 0, e = Alignments.size(); i != e; ++i)
+ if (Alignments[i].AlignType == STACK_ALIGN)
+ return Alignments[i].ABIAlign;
+
+ return getABITypeAlignment(Ty);
+}
+
+unsigned TargetData::getPrefTypeAlignment(Type *Ty) const {
+ return getAlignment(Ty, false);
+}
+
+unsigned TargetData::getPreferredTypeAlignmentShift(Type *Ty) const {
+ unsigned Align = getPrefTypeAlignment(Ty);
+ assert(!(Align & (Align-1)) && "Alignment is not a power of two!");
+ return Log2_32(Align);
+}
+
+/// getIntPtrType - Return an unsigned integer type that is the same size or
+/// greater to the host pointer size.
+IntegerType *TargetData::getIntPtrType(LLVMContext &C) const {
+ return IntegerType::get(C, getPointerSizeInBits());
+}
+
+
+uint64_t TargetData::getIndexedOffset(Type *ptrTy,
+ ArrayRef<Value *> Indices) const {
+ Type *Ty = ptrTy;
+ assert(Ty->isPointerTy() && "Illegal argument for getIndexedOffset()");
+ uint64_t Result = 0;
+
+ generic_gep_type_iterator<Value* const*>
+ TI = gep_type_begin(ptrTy, Indices);
+ for (unsigned CurIDX = 0, EndIDX = Indices.size(); CurIDX != EndIDX;
+ ++CurIDX, ++TI) {
+ if (StructType *STy = dyn_cast<StructType>(*TI)) {
+ assert(Indices[CurIDX]->getType() ==
+ Type::getInt32Ty(ptrTy->getContext()) &&
+ "Illegal struct idx");
+ unsigned FieldNo = cast<ConstantInt>(Indices[CurIDX])->getZExtValue();
+
+ // Get structure layout information...
+ const StructLayout *Layout = getStructLayout(STy);
+
+ // Add in the offset, as calculated by the structure layout info...
+ Result += Layout->getElementOffset(FieldNo);
+
+ // Update Ty to refer to current element
+ Ty = STy->getElementType(FieldNo);
+ } else {
+ // Update Ty to refer to current element
+ Ty = cast<SequentialType>(Ty)->getElementType();
+
+ // Get the array index and the size of each array element.
+ if (int64_t arrayIdx = cast<ConstantInt>(Indices[CurIDX])->getSExtValue())
+ Result += (uint64_t)arrayIdx * getTypeAllocSize(Ty);
+ }
+ }
+
+ return Result;
+}
+
+/// getPreferredAlignment - Return the preferred alignment of the specified
+/// global. This includes an explicitly requested alignment (if the global
+/// has one).
+unsigned TargetData::getPreferredAlignment(const GlobalVariable *GV) const {
+ Type *ElemType = GV->getType()->getElementType();
+ unsigned Alignment = getPrefTypeAlignment(ElemType);
+ unsigned GVAlignment = GV->getAlignment();
+ if (GVAlignment >= Alignment) {
+ Alignment = GVAlignment;
+ } else if (GVAlignment != 0) {
+ Alignment = std::max(GVAlignment, getABITypeAlignment(ElemType));
+ }
+
+ if (GV->hasInitializer() && GVAlignment == 0) {
+ if (Alignment < 16) {
+ // If the global is not external, see if it is large. If so, give it a
+ // larger alignment.
+ if (getTypeSizeInBits(ElemType) > 128)
+ Alignment = 16; // 16-byte alignment.
+ }
+ }
+ return Alignment;
+}
+
+/// getPreferredAlignmentLog - Return the preferred alignment of the
+/// specified global, returned in log form. This includes an explicitly
+/// requested alignment (if the global has one).
+unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const {
+ return Log2_32(getPreferredAlignment(GV));
+}