convex hull converted to C++; other 2 functions in convhull.cpp are yet to be finished.
authorVadim Pisarevsky <vadim.pisarevsky@gmail.com>
Fri, 18 Jan 2013 20:26:01 +0000 (00:26 +0400)
committerVadim Pisarevsky <vadim.pisarevsky@gmail.com>
Fri, 18 Jan 2013 20:26:01 +0000 (00:26 +0400)
modules/imgproc/src/contours.cpp
modules/imgproc/src/convhull.cpp

index 01f0393..9078d70 100644 (file)
@@ -1813,77 +1813,6 @@ double cv::matchShapes( InputArray _contour1,
 }
 
 
-void cv::convexHull( InputArray _points, OutputArray _hull, bool clockwise, bool returnPoints )
-{
-    Mat points = _points.getMat();
-    int nelems = points.checkVector(2), depth = points.depth();
-    CV_Assert(nelems >= 0 && (depth == CV_32F || depth == CV_32S));
-
-    if( nelems == 0 )
-    {
-        _hull.release();
-        return;
-    }
-
-    returnPoints = !_hull.fixedType() ? returnPoints : _hull.type() != CV_32S;
-    Mat hull(nelems, 1, returnPoints ? CV_MAKETYPE(depth, 2) : CV_32S);
-    CvMat _cpoints = points, _chull = hull;
-    cvConvexHull2(&_cpoints, &_chull, clockwise ? CV_CLOCKWISE : CV_COUNTER_CLOCKWISE, returnPoints);
-    _hull.create(_chull.rows, 1, hull.type(), -1, true);
-    Mat dhull = _hull.getMat(), shull(dhull.size(), dhull.type(), hull.data);
-    shull.copyTo(dhull);
-}
-
-
-void cv::convexityDefects( InputArray _points, InputArray _hull, OutputArray _defects )
-{
-    Mat points = _points.getMat();
-    int ptnum = points.checkVector(2, CV_32S);
-    CV_Assert( ptnum > 3 );
-    Mat hull = _hull.getMat();
-    CV_Assert( hull.checkVector(1, CV_32S) > 2 );
-    Ptr<CvMemStorage> storage = cvCreateMemStorage();
-
-    CvMat c_points = points, c_hull = hull;
-    CvSeq* seq = cvConvexityDefects(&c_points, &c_hull, storage);
-    int i, n = seq->total;
-
-    if( n == 0 )
-    {
-        _defects.release();
-        return;
-    }
-
-    _defects.create(n, 1, CV_32SC4);
-    Mat defects = _defects.getMat();
-
-    SeqIterator<CvConvexityDefect> it = Seq<CvConvexityDefect>(seq).begin();
-    CvPoint* ptorg = (CvPoint*)points.data;
-
-    for( i = 0; i < n; i++, ++it )
-    {
-        CvConvexityDefect& d = *it;
-        int idx0 = (int)(d.start - ptorg);
-        int idx1 = (int)(d.end - ptorg);
-        int idx2 = (int)(d.depth_point - ptorg);
-        CV_Assert( 0 <= idx0 && idx0 < ptnum );
-        CV_Assert( 0 <= idx1 && idx1 < ptnum );
-        CV_Assert( 0 <= idx2 && idx2 < ptnum );
-        CV_Assert( d.depth >= 0 );
-        int idepth = cvRound(d.depth*256);
-        defects.at<Vec4i>(i) = Vec4i(idx0, idx1, idx2, idepth);
-    }
-}
-
-
-bool cv::isContourConvex( InputArray _contour )
-{
-    Mat contour = _contour.getMat();
-    CV_Assert(contour.checkVector(2) >= 0 &&
-              (contour.depth() == CV_32F || contour.depth() == CV_32S));
-    CvMat c = Mat(contour);
-    return cvCheckContourConvexity(&c) > 0;
-}
 
 cv::RotatedRect cv::fitEllipse( InputArray _points )
 {
index 145c55e..a067638 100644 (file)
@@ -40,7 +40,9 @@
 //M*/
 
 #include "precomp.hpp"
+#include <iostream>
 
+#if 0
 static int
 icvSklansky_32s( CvPoint** array, int start, int end, int* stack, int nsign, int sign2 )
 {
@@ -113,7 +115,6 @@ icvSklansky_32s( CvPoint** array, int start, int end, int* stack, int nsign, int
     return --stacksize;
 }
 
-
 static int
 icvSklansky_32f( CvPoint2D32f** array, int start, int end, int* stack, int nsign, int sign2 )
 {
@@ -751,7 +752,7 @@ cvCheckContourConvexity( const CvArr* array )
             dydx0 = dy * dx0;
 
             /* find orientation */
-            /*orient = -dy0 * dx + dx0 * dy;
+            /* orient = -dy0 * dx + dx0 * dy;
                orientation |= (orient > 0) ? 1 : 2;
              */
             orientation |= (dydx0 > dxdy0) ? 1 : ((dydx0 < dxdy0) ? 2 : 3);
@@ -792,7 +793,7 @@ cvCheckContourConvexity( const CvArr* array )
             dydx0 = dy * dx0;
 
             /* find orientation */
-            /*orient = -dy0 * dx + dx0 * dy;
+            /* orient = -dy0 * dx + dx0 * dy;
                orientation |= (orient > 0) ? 1 : 2;
              */
             orientation |= (dydx0 > dxdy0) ? 1 : ((dydx0 < dxdy0) ? 2 : 3);
@@ -811,5 +812,737 @@ cvCheckContourConvexity( const CvArr* array )
     return flag;
 }
 
+void cv::convexHull( InputArray _points, OutputArray _hull, bool clockwise, bool returnPoints )
+{
+    Mat points = _points.getMat();
+    int nelems = points.checkVector(2), depth = points.depth();
+    CV_Assert(nelems >= 0 && (depth == CV_32F || depth == CV_32S));
+
+    if( nelems == 0 )
+    {
+        _hull.release();
+        return;
+    }
+
+    returnPoints = !_hull.fixedType() ? returnPoints : _hull.type() != CV_32S;
+    Mat hull(nelems, 1, returnPoints ? CV_MAKETYPE(depth, 2) : CV_32S);
+    CvMat _cpoints = points, _chull = hull;
+    cvConvexHull2(&_cpoints, &_chull, clockwise ? CV_CLOCKWISE : CV_COUNTER_CLOCKWISE, returnPoints);
+    _hull.create(_chull.rows, 1, hull.type(), -1, true);
+    Mat dhull = _hull.getMat(), shull(dhull.size(), dhull.type(), hull.data);
+    shull.copyTo(dhull);
+    std::cout << "convex hull: " << dhull;
+}
+
+#else
+
+namespace cv
+{
+
+template<typename _Tp>
+static int Sklansky_( Point_<_Tp>** array, int start, int end, int* stack, int nsign, int sign2 )
+{
+    int incr = end > start ? 1 : -1;
+    // prepare first triangle
+    int pprev = start, pcur = pprev + incr, pnext = pcur + incr;
+    int stacksize = 3;
+
+    if( start == end ||
+       (array[start]->x == array[end]->x &&
+        array[start]->y == array[end]->y) )
+    {
+        stack[0] = start;
+        return 1;
+    }
+
+    stack[0] = pprev;
+    stack[1] = pcur;
+    stack[2] = pnext;
+
+    end += incr; // make end = afterend
+
+    while( pnext != end )
+    {
+        // check the angle p1,p2,p3
+        _Tp cury = array[pcur]->y;
+        _Tp nexty = array[pnext]->y;
+        _Tp by = nexty - cury;
+
+        if( CV_SIGN( by ) != nsign )
+        {
+            _Tp ax = array[pcur]->x - array[pprev]->x;
+            _Tp bx = array[pnext]->x - array[pcur]->x;
+            _Tp ay = cury - array[pprev]->y;
+            _Tp convexity = ay*bx - ax*by; // if >0 then convex angle
+
+            if( CV_SIGN( convexity ) == sign2 && (ax != 0 || ay != 0) )
+            {
+                pprev = pcur;
+                pcur = pnext;
+                pnext += incr;
+                stack[stacksize] = pnext;
+                stacksize++;
+            }
+            else
+            {
+                if( pprev == start )
+                {
+                    pcur = pnext;
+                    stack[1] = pcur;
+                    pnext += incr;
+                    stack[2] = pnext;
+                }
+                else
+                {
+                    stack[stacksize-2] = pnext;
+                    pcur = pprev;
+                    pprev = stack[stacksize-4];
+                    stacksize--;
+                }
+            }
+        }
+        else
+        {
+            pnext += incr;
+            stack[stacksize-1] = pnext;
+        }
+    }
+    
+    return --stacksize;
+}
+
+
+template<typename _Tp>
+struct CHullCmpPoints
+{
+    bool operator()(const Point_<_Tp>* p1, const Point_<_Tp>* p2) const
+    { return p1->x < p2->x || (p1->x == p2->x && p1->y < p2->y); }
+};
+
+
+void convexityDefects( InputArray _points, InputArray _hull, OutputArray _defects )
+{
+    Mat points = _points.getMat();
+    int ptnum = points.checkVector(2, CV_32S);
+    CV_Assert( ptnum > 3 );
+    Mat hull = _hull.getMat();
+    CV_Assert( hull.checkVector(1, CV_32S) > 2 );
+    Ptr<CvMemStorage> storage = cvCreateMemStorage();
+
+    CvMat c_points = points, c_hull = hull;
+    CvSeq* seq = cvConvexityDefects(&c_points, &c_hull, storage);
+    int i, n = seq->total;
+
+    if( n == 0 )
+    {
+        _defects.release();
+        return;
+    }
+
+    _defects.create(n, 1, CV_32SC4);
+    Mat defects = _defects.getMat();
+
+    SeqIterator<CvConvexityDefect> it = Seq<CvConvexityDefect>(seq).begin();
+    CvPoint* ptorg = (CvPoint*)points.data;
+
+    for( i = 0; i < n; i++, ++it )
+    {
+        CvConvexityDefect& d = *it;
+        int idx0 = (int)(d.start - ptorg);
+        int idx1 = (int)(d.end - ptorg);
+        int idx2 = (int)(d.depth_point - ptorg);
+        CV_Assert( 0 <= idx0 && idx0 < ptnum );
+        CV_Assert( 0 <= idx1 && idx1 < ptnum );
+        CV_Assert( 0 <= idx2 && idx2 < ptnum );
+        CV_Assert( d.depth >= 0 );
+        int idepth = cvRound(d.depth*256);
+        defects.at<Vec4i>(i) = Vec4i(idx0, idx1, idx2, idepth);
+    }
+}
+
+
+bool isContourConvex( InputArray _contour )
+{
+    Mat contour = _contour.getMat();
+    CV_Assert(contour.checkVector(2) >= 0 &&
+              (contour.depth() == CV_32F || contour.depth() == CV_32S));
+    CvMat c = Mat(contour);
+    return cvCheckContourConvexity(&c) > 0;
+}
+
+
+void convexHull( InputArray _points, OutputArray _hull, bool clockwise, bool returnPoints )
+{
+    Mat points = _points.getMat();
+    int i, total = points.checkVector(2), depth = points.depth(), nout = 0;
+    int miny_ind = 0, maxy_ind = 0;
+    CV_Assert(total >= 0 && (depth == CV_32F || depth == CV_32S));
+
+    if( total == 0 )
+    {
+        _hull.release();
+        return;
+    }
+
+    returnPoints = !_hull.fixedType() ? returnPoints : _hull.type() != CV_32S;
+
+    bool is_float = depth == CV_32F;
+    AutoBuffer<Point*> _pointer(total);
+    AutoBuffer<int> _stack(total + 2), _hullbuf(total);
+    Point** pointer = _pointer;
+    Point2f** pointerf = (Point2f**)pointer;
+    Point* data0 = (Point*)points.data;
+    int* stack = _stack;
+    int* hullbuf = _hullbuf;
+
+    CV_Assert(points.isContinuous());
+
+    for( i = 0; i < total; i++ )
+        pointer[i] = &data0[i];
+
+    // sort the point set by x-coordinate, find min and max y
+    if( !is_float )
+    {
+        std::sort(pointer, pointer + total, CHullCmpPoints<int>());
+        for( i = 1; i < total; i++ )
+        {
+            int y = pointer[i]->y;
+            if( pointer[miny_ind]->y > y )
+                miny_ind = i;
+            if( pointer[maxy_ind]->y < y )
+                maxy_ind = i;
+        }
+    }
+    else
+    {
+        std::sort(pointerf, pointerf + total, CHullCmpPoints<float>());
+        for( i = 1; i < total; i++ )
+        {
+            float y = pointerf[i]->y;
+            if( pointerf[miny_ind]->y > y )
+                miny_ind = i;
+            if( pointerf[maxy_ind]->y < y )
+                maxy_ind = i;
+        }
+    }
+
+    if( pointer[0]->x == pointer[total-1]->x &&
+        pointer[0]->y == pointer[total-1]->y )
+    {
+        hullbuf[nout++] = 0;
+    }
+    else
+    {
+        // upper half
+        int *tl_stack = stack;
+        int tl_count = !is_float ?
+            Sklansky_( pointer, 0, maxy_ind, tl_stack, -1, 1) :
+            Sklansky_( pointerf, 0, maxy_ind, tl_stack, -1, 1);
+        int *tr_stack = stack + tl_count;
+        int tr_count = !is_float ?
+            Sklansky_( pointer, total-1, maxy_ind, tr_stack, -1, -1) :
+            Sklansky_( pointerf, total-1, maxy_ind, tr_stack, -1, -1);
+
+        // gather upper part of convex hull to output
+        if( !clockwise )
+        {
+            std::swap( tl_stack, tr_stack );
+            std::swap( tl_count, tr_count );
+        }
+
+        for( i = 0; i < tl_count-1; i++ )
+            hullbuf[nout++] = pointer[tl_stack[i]] - data0;
+        for( i = tr_count - 1; i > 0; i-- )
+            hullbuf[nout++] = pointer[tr_stack[i]] - data0;
+        int stop_idx = tr_count > 2 ? tr_stack[1] : tl_count > 2 ? tl_stack[tl_count - 2] : -1;
+        
+        // lower half
+        int *bl_stack = stack;
+        int bl_count = !is_float ?
+            Sklansky_( pointer, 0, miny_ind, bl_stack, 1, -1) :
+            Sklansky_( pointerf, 0, miny_ind, bl_stack, 1, -1);
+        int *br_stack = stack + bl_count;
+        int br_count = !is_float ?
+            Sklansky_( pointer, total-1, miny_ind, br_stack, 1, 1) :
+            Sklansky_( pointerf, total-1, miny_ind, br_stack, 1, 1);
+
+        if( clockwise )
+        {
+            std::swap( bl_stack, br_stack );
+            std::swap( bl_count, br_count );
+        }
+
+        if( stop_idx >= 0 )
+        {
+            int check_idx = bl_count > 2 ? bl_stack[1] :
+            bl_count + br_count > 2 ? br_stack[2-bl_count] : -1;
+            if( check_idx == stop_idx || (check_idx >= 0 &&
+                                          pointer[check_idx]->x == pointer[stop_idx]->x &&
+                                          pointer[check_idx]->y == pointer[stop_idx]->y) )
+            {
+                // if all the points lie on the same line, then
+                // the bottom part of the convex hull is the mirrored top part
+                // (except the exteme points).
+                bl_count = MIN( bl_count, 2 );
+                br_count = MIN( br_count, 2 );
+            }
+        }
+
+        for( i = 0; i < bl_count-1; i++ )
+            hullbuf[nout++] = pointer[bl_stack[i]] - data0;
+        for( i = br_count-1; i > 0; i-- )
+            hullbuf[nout++] = pointer[br_stack[i]] - data0;
+    }
+
+    if( !returnPoints )
+        Mat(nout, 1, CV_32S, hullbuf).copyTo(_hull);
+    else
+    {
+        _hull.create(nout, 1, CV_MAKETYPE(depth, 2));
+        Mat hull = _hull.getMat();
+        size_t step = !hull.isContinuous() ? hull.step[0] : sizeof(Point);
+        for( i = 0; i < nout; i++ )
+            *(Point*)(hull.data + i*step) = data0[hullbuf[i]];
+    }
+}
+
+}
+
+CV_IMPL CvSeq*
+cvConvexHull2( const CvArr* array, void* hull_storage,
+               int orientation, int return_points )
+{
+    union { CvContour* c; CvSeq* s; } hull;
+    hull.s = 0;
+
+    CvMat* mat = 0;
+    CvContour contour_header;
+    union { CvContour c; CvSeq s; } hull_header;
+    CvSeqBlock block, hullblock;
+    CvSeq* ptseq = 0;
+    CvSeq* hullseq = 0;
+
+    if( CV_IS_SEQ( array ))
+    {
+        ptseq = (CvSeq*)array;
+        if( !CV_IS_SEQ_POINT_SET( ptseq ))
+            CV_Error( CV_StsBadArg, "Unsupported sequence type" );
+        if( hull_storage == 0 )
+            hull_storage = ptseq->storage;
+    }
+    else
+    {
+        ptseq = cvPointSeqFromMat( CV_SEQ_KIND_GENERIC, array, &contour_header, &block );
+    }
+
+    if( CV_IS_STORAGE( hull_storage ))
+    {
+        if( return_points )
+        {
+            hullseq = cvCreateSeq(CV_SEQ_KIND_CURVE|CV_SEQ_ELTYPE(ptseq)|
+                                  CV_SEQ_FLAG_CLOSED|CV_SEQ_FLAG_CONVEX,
+                                  sizeof(CvContour), sizeof(CvPoint),(CvMemStorage*)hull_storage );
+        }
+        else
+        {
+            hullseq = cvCreateSeq(
+                                  CV_SEQ_KIND_CURVE|CV_SEQ_ELTYPE_PPOINT|
+                                  CV_SEQ_FLAG_CLOSED|CV_SEQ_FLAG_CONVEX,
+                                  sizeof(CvContour), sizeof(CvPoint*), (CvMemStorage*)hull_storage );
+        }
+    }
+    else
+    {
+        if( !CV_IS_MAT( hull_storage ))
+            CV_Error(CV_StsBadArg, "Destination must be valid memory storage or matrix");
+
+        mat = (CvMat*)hull_storage;
+
+        if( (mat->cols != 1 && mat->rows != 1) || !CV_IS_MAT_CONT(mat->type))
+            CV_Error( CV_StsBadArg,
+                     "The hull matrix should be continuous and have a single row or a single column" );
+
+        if( mat->cols + mat->rows - 1 < ptseq->total )
+            CV_Error( CV_StsBadSize, "The hull matrix size might be not enough to fit the hull" );
+
+        if( CV_MAT_TYPE(mat->type) != CV_SEQ_ELTYPE(ptseq) &&
+           CV_MAT_TYPE(mat->type) != CV_32SC1 )
+            CV_Error( CV_StsUnsupportedFormat,
+                     "The hull matrix must have the same type as input or 32sC1 (integers)" );
+
+        hullseq = cvMakeSeqHeaderForArray(
+                                          CV_SEQ_KIND_CURVE|CV_MAT_TYPE(mat->type)|CV_SEQ_FLAG_CLOSED,
+                                          sizeof(contour_header), CV_ELEM_SIZE(mat->type), mat->data.ptr,
+                                          mat->cols + mat->rows - 1, &hull_header.s, &hullblock );
+        cvClearSeq( hullseq );
+    }
+
+    int hulltype = CV_SEQ_ELTYPE(hullseq);
+    int total = ptseq->total;
+    if( total == 0 )
+    {
+        if( mat )
+            CV_Error( CV_StsBadSize,
+                     "Point sequence can not be empty if the output is matrix" );
+        return hull.s;
+    }
+
+    cv::AutoBuffer<cv::Point> _ptbuf(total);
+    cv::Point* ptbuf = _ptbuf;
+    cv::Mat h0;
+
+    cvCvtSeqToArray(ptseq, ptbuf);
+    cv::convexHull(cv::Mat(total, 1, CV_SEQ_ELTYPE(ptseq), ptbuf), h0,
+                   orientation == CV_CLOCKWISE, CV_MAT_CN(hulltype) == 2);
+
+    if( hulltype == CV_SEQ_ELTYPE_PPOINT )
+    {
+        const int* idx = h0.ptr<int>();
+        int ctotal = (int)h0.total();
+        for( int i = 0; i < ctotal; i++ )
+        {
+            void* ptr = cvGetSeqElem(ptseq, idx[i]);
+            cvSeqPush( hullseq, &ptr );
+        }
+    }
+    else
+        cvSeqPushMulti(hullseq, h0.data, (int)h0.total());
+
+    if( mat )
+    {
+        if( mat->rows > mat->cols )
+            mat->rows = hullseq->total;
+        else
+            mat->cols = hullseq->total;
+    }
+    else
+    {
+        hull.s = hullseq;
+        hull.c->rect = cvBoundingRect( ptseq,
+                                       ptseq->header_size < (int)sizeof(CvContour) ||
+                                       &ptseq->flags == &contour_header.flags );
+    }
+    
+    return hull.s;
+}
+
+
+/* contour must be a simple polygon */
+/* it must have more than 3 points  */
+CV_IMPL CvSeq* cvConvexityDefects( const CvArr* array,
+                                  const CvArr* hullarray,
+                                  CvMemStorage* storage )
+{
+    CvSeq* defects = 0;
+
+    int i, index;
+    CvPoint* hull_cur;
+
+    /* is orientation of hull different from contour one */
+    int rev_orientation;
+
+    CvContour contour_header;
+    union { CvContour c; CvSeq s; } hull_header;
+    CvSeqBlock block, hullblock;
+    CvSeq *ptseq = (CvSeq*)array, *hull = (CvSeq*)hullarray;
+
+    CvSeqReader hull_reader;
+    CvSeqReader ptseq_reader;
+    CvSeqWriter writer;
+    int is_index;
+
+    if( CV_IS_SEQ( ptseq ))
+    {
+        if( !CV_IS_SEQ_POINT_SET( ptseq ))
+            CV_Error( CV_StsUnsupportedFormat,
+                     "Input sequence is not a sequence of points" );
+        if( !storage )
+            storage = ptseq->storage;
+    }
+    else
+    {
+        ptseq = cvPointSeqFromMat( CV_SEQ_KIND_GENERIC, array, &contour_header, &block );
+    }
+
+    if( CV_SEQ_ELTYPE( ptseq ) != CV_32SC2 )
+        CV_Error( CV_StsUnsupportedFormat, "Floating-point coordinates are not supported here" );
+
+    if( CV_IS_SEQ( hull ))
+    {
+        int hulltype = CV_SEQ_ELTYPE( hull );
+        if( hulltype != CV_SEQ_ELTYPE_PPOINT && hulltype != CV_SEQ_ELTYPE_INDEX )
+            CV_Error( CV_StsUnsupportedFormat,
+                     "Convex hull must represented as a sequence "
+                     "of indices or sequence of pointers" );
+        if( !storage )
+            storage = hull->storage;
+    }
+    else
+    {
+        CvMat* mat = (CvMat*)hull;
+
+        if( !CV_IS_MAT( hull ))
+            CV_Error(CV_StsBadArg, "Convex hull is neither sequence nor matrix");
+
+        if( (mat->cols != 1 && mat->rows != 1) ||
+           !CV_IS_MAT_CONT(mat->type) || CV_MAT_TYPE(mat->type) != CV_32SC1 )
+            CV_Error( CV_StsBadArg,
+                     "The matrix should be 1-dimensional and continuous array of int's" );
+
+        if( mat->cols + mat->rows - 1 > ptseq->total )
+            CV_Error( CV_StsBadSize, "Convex hull is larger than the point sequence" );
+
+        hull = cvMakeSeqHeaderForArray(
+                                       CV_SEQ_KIND_CURVE|CV_MAT_TYPE(mat->type)|CV_SEQ_FLAG_CLOSED,
+                                       sizeof(CvContour), CV_ELEM_SIZE(mat->type), mat->data.ptr,
+                                       mat->cols + mat->rows - 1, &hull_header.s, &hullblock );
+    }
+
+    is_index = CV_SEQ_ELTYPE(hull) == CV_SEQ_ELTYPE_INDEX;
+
+    if( !storage )
+        CV_Error( CV_StsNullPtr, "NULL storage pointer" );
+
+    defects = cvCreateSeq( CV_SEQ_KIND_GENERIC, sizeof(CvSeq), sizeof(CvConvexityDefect), storage );
+
+    if( ptseq->total < 4 || hull->total < 3)
+    {
+        //CV_ERROR( CV_StsBadSize,
+        //    "point seq size must be >= 4, convex hull size must be >= 3" );
+        return defects;
+    }
+
+    /* recognize co-orientation of ptseq and its hull */
+    {
+        int sign = 0;
+        int index1, index2, index3;
+
+        if( !is_index )
+        {
+            CvPoint* pos = *CV_SEQ_ELEM( hull, CvPoint*, 0 );
+            index1 = cvSeqElemIdx( ptseq, pos );
+
+            pos = *CV_SEQ_ELEM( hull, CvPoint*, 1 );
+            index2 = cvSeqElemIdx( ptseq, pos );
+
+            pos = *CV_SEQ_ELEM( hull, CvPoint*, 2 );
+            index3 = cvSeqElemIdx( ptseq, pos );
+        }
+        else
+        {
+            index1 = *CV_SEQ_ELEM( hull, int, 0 );
+            index2 = *CV_SEQ_ELEM( hull, int, 1 );
+            index3 = *CV_SEQ_ELEM( hull, int, 2 );
+        }
+
+        sign += (index2 > index1) ? 1 : 0;
+        sign += (index3 > index2) ? 1 : 0;
+        sign += (index1 > index3) ? 1 : 0;
+
+        rev_orientation = (sign == 2) ? 0 : 1;
+    }
+
+    cvStartReadSeq( ptseq, &ptseq_reader, 0 );
+    cvStartReadSeq( hull, &hull_reader, rev_orientation );
+
+    if( !is_index )
+    {
+        hull_cur = *(CvPoint**)hull_reader.prev_elem;
+        index = cvSeqElemIdx( ptseq, (char*)hull_cur, 0 );
+    }
+    else
+    {
+        index = *(int*)hull_reader.prev_elem;
+        hull_cur = CV_GET_SEQ_ELEM( CvPoint, ptseq, index );
+    }
+    cvSetSeqReaderPos( &ptseq_reader, index );
+    cvStartAppendToSeq( defects, &writer );
+
+    /* cycle through ptseq and hull with computing defects */
+    for( i = 0; i < hull->total; i++ )
+    {
+        CvConvexityDefect defect;
+        int is_defect = 0;
+        double dx0, dy0;
+        double depth = 0, scale;
+        CvPoint* hull_next;
+
+        if( !is_index )
+            hull_next = *(CvPoint**)hull_reader.ptr;
+        else
+        {
+            int t = *(int*)hull_reader.ptr;
+            hull_next = CV_GET_SEQ_ELEM( CvPoint, ptseq, t );
+        }
+
+        dx0 = (double)hull_next->x - (double)hull_cur->x;
+        dy0 = (double)hull_next->y - (double)hull_cur->y;
+        assert( dx0 != 0 || dy0 != 0 );
+        scale = 1./sqrt(dx0*dx0 + dy0*dy0);
+
+        defect.start = hull_cur;
+        defect.end = hull_next;
+
+        for(;;)
+        {
+            /* go through ptseq to achieve next hull point */
+            CV_NEXT_SEQ_ELEM( sizeof(CvPoint), ptseq_reader );
+
+            if( ptseq_reader.ptr == (schar*)hull_next )
+                break;
+            else
+            {
+                CvPoint* cur = (CvPoint*)ptseq_reader.ptr;
+
+                /* compute distance from current point to hull edge */
+                double dx = (double)cur->x - (double)hull_cur->x;
+                double dy = (double)cur->y - (double)hull_cur->y;
+
+                /* compute depth */
+                double dist = fabs(-dy0*dx + dx0*dy) * scale;
+
+                if( dist > depth )
+                {
+                    depth = dist;
+                    defect.depth_point = cur;
+                    defect.depth = (float)depth;
+                    is_defect = 1;
+                }
+            }
+        }
+        if( is_defect )
+        {
+            CV_WRITE_SEQ_ELEM( defect, writer );
+        }
+
+        hull_cur = hull_next;
+        if( rev_orientation )
+        {
+            CV_PREV_SEQ_ELEM( hull->elem_size, hull_reader );
+        }
+        else
+        {
+            CV_NEXT_SEQ_ELEM( hull->elem_size, hull_reader );
+        }
+    }
+
+    return cvEndWriteSeq( &writer );
+}
+
+
+CV_IMPL int
+cvCheckContourConvexity( const CvArr* array )
+{
+    int flag = -1;
+
+    int i;
+    int orientation = 0;
+    CvSeqReader reader;
+    CvContour contour_header;
+    CvSeqBlock block;
+    CvSeq* contour = (CvSeq*)array;
+
+    if( CV_IS_SEQ(contour) )
+    {
+        if( !CV_IS_SEQ_POINT_SET(contour))
+            CV_Error( CV_StsUnsupportedFormat,
+                     "Input sequence must be polygon (closed 2d curve)" );
+    }
+    else
+    {
+        contour = cvPointSeqFromMat(CV_SEQ_KIND_CURVE|CV_SEQ_FLAG_CLOSED, array, &contour_header, &block );
+    }
+
+    if( contour->total == 0 )
+        return -1;
+
+    cvStartReadSeq( contour, &reader, 0 );
+    flag = 1;
+
+    if( CV_SEQ_ELTYPE( contour ) == CV_32SC2 )
+    {
+        CvPoint *prev_pt = (CvPoint*)reader.prev_elem;
+        CvPoint *cur_pt = (CvPoint*)reader.ptr;
+
+        int dx0 = cur_pt->x - prev_pt->x;
+        int dy0 = cur_pt->y - prev_pt->y;
+
+        for( i = 0; i < contour->total; i++ )
+        {
+            int dxdy0, dydx0;
+            int dx, dy;
+
+            /*int orient; */
+            CV_NEXT_SEQ_ELEM( sizeof(CvPoint), reader );
+            prev_pt = cur_pt;
+            cur_pt = (CvPoint *) reader.ptr;
+
+            dx = cur_pt->x - prev_pt->x;
+            dy = cur_pt->y - prev_pt->y;
+            dxdy0 = dx * dy0;
+            dydx0 = dy * dx0;
+
+            /* find orientation */
+            /* orient = -dy0 * dx + dx0 * dy;
+             orientation |= (orient > 0) ? 1 : 2;
+             */
+            orientation |= (dydx0 > dxdy0) ? 1 : ((dydx0 < dxdy0) ? 2 : 3);
+
+            if( orientation == 3 )
+            {
+                flag = 0;
+                break;
+            }
+
+            dx0 = dx;
+            dy0 = dy;
+        }
+    }
+    else
+    {
+        CV_Assert( CV_SEQ_ELTYPE(contour) == CV_32FC2 );
+
+        CvPoint2D32f *prev_pt = (CvPoint2D32f*)reader.prev_elem;
+        CvPoint2D32f *cur_pt = (CvPoint2D32f*)reader.ptr;
+
+        float dx0 = cur_pt->x - prev_pt->x;
+        float dy0 = cur_pt->y - prev_pt->y;
+
+        for( i = 0; i < contour->total; i++ )
+        {
+            float dxdy0, dydx0;
+            float dx, dy;
+
+            /*int orient; */
+            CV_NEXT_SEQ_ELEM( sizeof(CvPoint2D32f), reader );
+            prev_pt = cur_pt;
+            cur_pt = (CvPoint2D32f*) reader.ptr;
+
+            dx = cur_pt->x - prev_pt->x;
+            dy = cur_pt->y - prev_pt->y;
+            dxdy0 = dx * dy0;
+            dydx0 = dy * dx0;
+            
+            /* find orientation */
+            /* orient = -dy0 * dx + dx0 * dy;
+             orientation |= (orient > 0) ? 1 : 2;
+             */
+            orientation |= (dydx0 > dxdy0) ? 1 : ((dydx0 < dxdy0) ? 2 : 3);
+            
+            if( orientation == 3 )
+            {
+                flag = 0;
+                break;
+            }
+            
+            dx0 = dx;
+            dy0 = dy;
+        }
+    }
+    
+    return flag;
+}
+
+#endif
 
 /* End of file. */