namespace llvm {
+static void inversePermutation(ArrayRef<unsigned> Indices,
+ SmallVectorImpl<int> &Mask) {
+ Mask.clear();
+ const unsigned E = Indices.size();
+ Mask.resize(E, E + 1);
+ for (unsigned I = 0; I < E; ++I)
+ Mask[Indices[I]] = I;
+}
+
namespace slpvectorizer {
/// Bottom Up SLP Vectorizer.
using StoreList = SmallVector<StoreInst *, 8>;
using ExtraValueToDebugLocsMap =
MapVector<Value *, SmallVector<Instruction *, 2>>;
+ using OrdersType = SmallVector<unsigned, 4>;
BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
/// \returns The best order of instructions for vectorization.
Optional<ArrayRef<unsigned>> bestOrder() const {
+ assert(llvm::all_of(
+ NumOpsWantToKeepOrder,
+ [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) {
+ return D.getFirst().size() ==
+ VectorizableTree[0]->Scalars.size();
+ }) &&
+ "All orders must have the same size as number of instructions in "
+ "tree node.");
auto I = std::max_element(
NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
[](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
return makeArrayRef(I->getFirst());
}
+ /// Builds the correct order for root instructions.
+ /// If some leaves have the same instructions to be vectorized, we may
+ /// incorrectly evaluate the best order for the root node (it is built for the
+ /// vector of instructions without repeated instructions and, thus, has less
+ /// elements than the root node). This function builds the correct order for
+ /// the root node.
+ /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves
+ /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first
+ /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should
+ /// be reordered, the best order will be \<1, 0\>. We need to extend this
+ /// order for the root node. For the root node this order should look like
+ /// \<3, 0, 1, 2\>. This function extends the order for the reused
+ /// instructions.
+ void findRootOrder(OrdersType &Order) {
+ // If the leaf has the same number of instructions to vectorize as the root
+ // - order must be set already.
+ unsigned RootSize = VectorizableTree[0]->Scalars.size();
+ if (Order.size() == RootSize)
+ return;
+ SmallVector<unsigned, 4> RealOrder(Order.size());
+ std::swap(Order, RealOrder);
+ SmallVector<int, 4> Mask;
+ inversePermutation(RealOrder, Mask);
+ for (int I = 0, E = Mask.size(); I < E; ++I)
+ Order[I] = Mask[I];
+ // The leaf has less number of instructions - need to find the true order of
+ // the root.
+ // Scan the nodes starting from the leaf back to the root.
+ const TreeEntry *PNode = VectorizableTree.back().get();
+ while (PNode) {
+ const TreeEntry &Node = *PNode;
+ PNode = Node.UserTreeIndices.back().UserTE;
+ if (Node.ReuseShuffleIndices.empty())
+ continue;
+ // Build the order for the parent node.
+ OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize);
+ SmallVector<unsigned, 4> OrderCounter(Order.size(), 0);
+ // The algorithm of the order extension is:
+ // 1. Calculate the number of the same instructions for the order.
+ // 2. Calculate the index of the new order: total number of instructions
+ // with order less than the order of the current instruction + reuse
+ // number of the current instruction.
+ // 3. The new order is just the index of the instruction in the original
+ // vector of the instructions.
+ for (unsigned I : Node.ReuseShuffleIndices)
+ ++OrderCounter[Order[I]];
+ SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0);
+ for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) {
+ unsigned ReusedIdx = Node.ReuseShuffleIndices[I];
+ unsigned OrderIdx = Order[ReusedIdx];
+ unsigned NewIdx = 0;
+ for (unsigned J = 0; J < OrderIdx; ++J)
+ NewIdx += OrderCounter[J];
+ NewIdx += CurrentCounter[OrderIdx];
+ ++CurrentCounter[OrderIdx];
+ assert(NewOrder[NewIdx] == RootSize &&
+ "The order index should not be written already.");
+ NewOrder[NewIdx] = I;
+ }
+ std::swap(Order, NewOrder);
+ // If the size of the order is the same as number of instructions in the
+ // root node, no need to extend it more.
+ if (Order.size() == RootSize)
+ break;
+ }
+ assert((!PNode || Order.size() == RootSize) &&
+ "Root node is expected or the size of the order must be the same as "
+ "the number of elements in the root node.");
+ assert(llvm::all_of(Order,
+ [RootSize](unsigned Val) { return Val != RootSize; }) &&
+ "All indices must be initialized");
+ }
+
/// \return The vector element size in bits to use when vectorizing the
/// expression tree ending at \p V. If V is a store, the size is the width of
/// the stored value. Otherwise, the size is the width of the largest loaded
SmallVector<int, 4> ReuseShuffleIndices;
/// Does this entry require reordering?
- ArrayRef<unsigned> ReorderIndices;
+ SmallVector<unsigned, 4> ReorderIndices;
/// Points back to the VectorizableTree.
///
Last->State = Vectorized ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
ReuseShuffleIndices.end());
- Last->ReorderIndices = ReorderIndices;
+ Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
Last->setOperations(S);
if (Vectorized) {
for (int i = 0, e = VL.size(); i != e; ++i) {
/// List of users to ignore during scheduling and that don't need extracting.
ArrayRef<Value *> UserIgnoreList;
- using OrdersType = SmallVector<unsigned, 4>;
/// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
/// sorted SmallVectors of unsigned.
struct OrdersTypeDenseMapInfo {
});
// Insert new order with initial value 0, if it does not exist,
// otherwise return the iterator to the existing one.
- auto StoredCurrentOrderAndNum =
- NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
- ++StoredCurrentOrderAndNum->getSecond();
newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
- ReuseShuffleIndicies,
- StoredCurrentOrderAndNum->getFirst());
+ ReuseShuffleIndicies, CurrentOrder);
+ findRootOrder(CurrentOrder);
+ ++NumOpsWantToKeepOrder[CurrentOrder];
// This is a special case, as it does not gather, but at the same time
// we are not extending buildTree_rec() towards the operands.
ValueList Op0;
LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
} else {
// Need to reorder.
- auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
- ++I->getSecond();
TreeEntry *TE =
newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
- ReuseShuffleIndicies, I->getFirst());
+ ReuseShuffleIndicies, CurrentOrder);
TE->setOperandsInOrder();
LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
+ findRootOrder(CurrentOrder);
+ ++NumOpsWantToKeepOrder[CurrentOrder];
}
return;
}
buildTree_rec(Operands, Depth + 1, {TE, 0});
LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
} else {
- // Need to reorder.
- auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
- ++(I->getSecond());
TreeEntry *TE =
newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
- ReuseShuffleIndicies, I->getFirst());
+ ReuseShuffleIndicies, CurrentOrder);
TE->setOperandsInOrder();
buildTree_rec(Operands, Depth + 1, {TE, 0});
LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
+ findRootOrder(CurrentOrder);
+ ++NumOpsWantToKeepOrder[CurrentOrder];
}
return;
}
return V;
}
-static void inversePermutation(ArrayRef<unsigned> Indices,
- SmallVectorImpl<int> &Mask) {
- Mask.clear();
- const unsigned E = Indices.size();
- Mask.resize(E);
- for (unsigned I = 0; I < E; ++I)
- Mask[Indices[I]] = I;
-}
-
Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
IRBuilder<>::InsertPointGuard Guard(Builder);
ArrayRef<Value *> VL = makeArrayRef(&ReducedVals[i], ReduxWidth);
V.buildTree(VL, ExternallyUsedValues, IgnoreList);
Optional<ArrayRef<unsigned>> Order = V.bestOrder();
- // TODO: Handle orders of size less than number of elements in the vector.
- if (Order && Order->size() == VL.size()) {
+ if (Order) {
+ assert(Order->size() == VL.size() &&
+ "Order size must be the same as number of vectorized "
+ "instructions.");
// TODO: reorder tree nodes without tree rebuilding.
SmallVector<Value *, 4> ReorderedOps(VL.size());
llvm::transform(*Order, ReorderedOps.begin(),
@h = common dso_local global float 0.000000e+00, align 4
define dso_local void @j() local_unnamed_addr {
-; CHECK-LABEL: define {{[^@]+}}@j(
+; CHECK-LABEL: @j(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP0:%.*]] = load i32*, i32** @b, align 8
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds i32, i32* [[TMP0]], i64 4
; CHECK-NEXT: [[ARRAYIDX2:%.*]] = getelementptr inbounds i32, i32* [[TMP0]], i64 5
; CHECK-NEXT: [[TMP1:%.*]] = bitcast i32* [[ARRAYIDX]] to <2 x i32>*
; CHECK-NEXT: [[TMP2:%.*]] = load <2 x i32>, <2 x i32>* [[TMP1]], align 4
-; CHECK-NEXT: [[REORDER_SHUFFLE1:%.*]] = shufflevector <2 x i32> [[TMP2]], <2 x i32> undef, <2 x i32> <i32 1, i32 0>
; CHECK-NEXT: [[ARRAYIDX3:%.*]] = getelementptr inbounds i32, i32* [[TMP0]], i64 13
; CHECK-NEXT: [[TMP3:%.*]] = bitcast i32* [[ARRAYIDX1]] to <2 x i32>*
; CHECK-NEXT: [[TMP4:%.*]] = load <2 x i32>, <2 x i32>* [[TMP3]], align 4
-; CHECK-NEXT: [[REORDER_SHUFFLE:%.*]] = shufflevector <2 x i32> [[TMP4]], <2 x i32> undef, <2 x i32> <i32 1, i32 0>
-; CHECK-NEXT: [[TMP5:%.*]] = add nsw <2 x i32> [[REORDER_SHUFFLE]], [[REORDER_SHUFFLE1]]
+; CHECK-NEXT: [[TMP5:%.*]] = add nsw <2 x i32> [[TMP4]], [[TMP2]]
; CHECK-NEXT: [[TMP6:%.*]] = sitofp <2 x i32> [[TMP5]] to <2 x float>
; CHECK-NEXT: [[TMP7:%.*]] = fmul <2 x float> [[TMP6]], <float 1.000000e+01, float 1.000000e+01>
-; CHECK-NEXT: [[TMP8:%.*]] = fsub <2 x float> <float 0.000000e+00, float 1.000000e+00>, [[TMP7]]
-; CHECK-NEXT: [[SHUFFLE:%.*]] = shufflevector <2 x float> [[TMP8]], <2 x float> undef, <4 x i32> <i32 0, i32 1, i32 0, i32 1>
-; CHECK-NEXT: [[TMP9:%.*]] = extractelement <4 x float> [[SHUFFLE]], i32 1
+; CHECK-NEXT: [[TMP8:%.*]] = fsub <2 x float> <float 1.000000e+00, float 0.000000e+00>, [[TMP7]]
+; CHECK-NEXT: [[SHUFFLE:%.*]] = shufflevector <2 x float> [[TMP8]], <2 x float> undef, <4 x i32> <i32 0, i32 0, i32 1, i32 1>
+; CHECK-NEXT: [[TMP9:%.*]] = extractelement <4 x float> [[SHUFFLE]], i32 0
; CHECK-NEXT: store float [[TMP9]], float* @g, align 4
-; CHECK-NEXT: [[TMP10:%.*]] = fadd <4 x float> [[SHUFFLE]], <float -1.000000e+00, float -1.000000e+00, float 1.000000e+00, float 1.000000e+00>
-; CHECK-NEXT: [[TMP11:%.*]] = extractelement <4 x float> [[TMP10]], i32 2
+; CHECK-NEXT: [[TMP10:%.*]] = fadd <4 x float> [[SHUFFLE]], <float -1.000000e+00, float 1.000000e+00, float -1.000000e+00, float 1.000000e+00>
+; CHECK-NEXT: [[TMP11:%.*]] = extractelement <4 x float> [[TMP10]], i32 3
; CHECK-NEXT: store float [[TMP11]], float* @c, align 4
-; CHECK-NEXT: [[TMP12:%.*]] = extractelement <4 x float> [[TMP10]], i32 0
+; CHECK-NEXT: [[TMP12:%.*]] = extractelement <4 x float> [[TMP10]], i32 2
; CHECK-NEXT: store float [[TMP12]], float* @d, align 4
-; CHECK-NEXT: [[TMP13:%.*]] = extractelement <4 x float> [[TMP10]], i32 3
+; CHECK-NEXT: [[TMP13:%.*]] = extractelement <4 x float> [[TMP10]], i32 1
; CHECK-NEXT: store float [[TMP13]], float* @e, align 4
-; CHECK-NEXT: [[TMP14:%.*]] = extractelement <4 x float> [[TMP10]], i32 1
+; CHECK-NEXT: [[TMP14:%.*]] = extractelement <4 x float> [[TMP10]], i32 0
; CHECK-NEXT: store float [[TMP14]], float* @f, align 4
; CHECK-NEXT: [[ARRAYIDX15:%.*]] = getelementptr inbounds i32, i32* [[TMP0]], i64 14
; CHECK-NEXT: [[ARRAYIDX18:%.*]] = getelementptr inbounds i32, i32* [[TMP0]], i64 15
; CHECK-NEXT: [[TMP15:%.*]] = load i32, i32* @a, align 4
; CHECK-NEXT: [[CONV19:%.*]] = sitofp i32 [[TMP15]] to float
-; CHECK-NEXT: [[TMP16:%.*]] = insertelement <4 x float> undef, float [[CONV19]], i32 0
-; CHECK-NEXT: [[TMP17:%.*]] = insertelement <4 x float> [[TMP16]], float -1.000000e+00, i32 1
-; CHECK-NEXT: [[TMP18:%.*]] = extractelement <4 x float> [[SHUFFLE]], i32 0
-; CHECK-NEXT: [[TMP19:%.*]] = insertelement <4 x float> [[TMP17]], float [[TMP18]], i32 2
-; CHECK-NEXT: [[TMP20:%.*]] = insertelement <4 x float> [[TMP19]], float -1.000000e+00, i32 3
-; CHECK-NEXT: [[TMP21:%.*]] = fsub <4 x float> [[TMP10]], [[TMP20]]
-; CHECK-NEXT: [[TMP22:%.*]] = fadd <4 x float> [[TMP10]], [[TMP20]]
-; CHECK-NEXT: [[TMP23:%.*]] = shufflevector <4 x float> [[TMP21]], <4 x float> [[TMP22]], <4 x i32> <i32 0, i32 5, i32 2, i32 7>
-; CHECK-NEXT: [[TMP24:%.*]] = fptosi <4 x float> [[TMP23]] to <4 x i32>
-; CHECK-NEXT: [[TMP25:%.*]] = bitcast i32* [[ARRAYIDX1]] to <4 x i32>*
-; CHECK-NEXT: store <4 x i32> [[TMP24]], <4 x i32>* [[TMP25]], align 4
+; CHECK-NEXT: [[TMP16:%.*]] = insertelement <4 x float> <float -1.000000e+00, float -1.000000e+00, float undef, float undef>, float [[CONV19]], i32 2
+; CHECK-NEXT: [[TMP17:%.*]] = extractelement <4 x float> [[SHUFFLE]], i32 2
+; CHECK-NEXT: [[TMP18:%.*]] = insertelement <4 x float> [[TMP16]], float [[TMP17]], i32 3
+; CHECK-NEXT: [[TMP19:%.*]] = fadd <4 x float> [[TMP10]], [[TMP18]]
+; CHECK-NEXT: [[TMP20:%.*]] = fsub <4 x float> [[TMP10]], [[TMP18]]
+; CHECK-NEXT: [[TMP21:%.*]] = shufflevector <4 x float> [[TMP19]], <4 x float> [[TMP20]], <4 x i32> <i32 0, i32 1, i32 6, i32 7>
+; CHECK-NEXT: [[TMP22:%.*]] = fptosi <4 x float> [[TMP21]] to <4 x i32>
+; CHECK-NEXT: [[REORDER_SHUFFLE:%.*]] = shufflevector <4 x i32> [[TMP22]], <4 x i32> undef, <4 x i32> <i32 2, i32 0, i32 3, i32 1>
+; CHECK-NEXT: [[TMP23:%.*]] = bitcast i32* [[ARRAYIDX1]] to <4 x i32>*
+; CHECK-NEXT: store <4 x i32> [[REORDER_SHUFFLE]], <4 x i32>* [[TMP23]], align 4
; CHECK-NEXT: ret void
;
entry:
; CHECK-NEXT: [[TMP0:%.*]] = insertelement <2 x i16> undef, i16 [[T]], i32 0
; CHECK-NEXT: [[TMP1:%.*]] = insertelement <2 x i16> [[TMP0]], i16 undef, i32 1
; CHECK-NEXT: [[TMP2:%.*]] = sext <2 x i16> [[TMP1]] to <2 x i32>
-; CHECK-NEXT: [[REORDER_SHUFFLE:%.*]] = shufflevector <2 x i32> [[TMP2]], <2 x i32> undef, <2 x i32> <i32 1, i32 0>
-; CHECK-NEXT: [[TMP3:%.*]] = sub nsw <2 x i32> <i32 63, i32 undef>, [[REORDER_SHUFFLE]]
+; CHECK-NEXT: [[TMP3:%.*]] = sub nsw <2 x i32> <i32 undef, i32 63>, [[TMP2]]
; CHECK-NEXT: [[TMP4:%.*]] = sub <2 x i32> [[TMP3]], undef
-; CHECK-NEXT: [[SHUFFLE5:%.*]] = shufflevector <2 x i32> [[TMP4]], <2 x i32> undef, <4 x i32> <i32 0, i32 1, i32 1, i32 1>
-; CHECK-NEXT: [[TMP5:%.*]] = add <4 x i32> [[SHUFFLE5]], <i32 undef, i32 15, i32 31, i32 47>
+; CHECK-NEXT: [[SHUFFLE5:%.*]] = shufflevector <2 x i32> [[TMP4]], <2 x i32> undef, <4 x i32> <i32 0, i32 0, i32 0, i32 1>
+; CHECK-NEXT: [[TMP5:%.*]] = add <4 x i32> [[SHUFFLE5]], <i32 15, i32 31, i32 47, i32 undef>
; CHECK-NEXT: [[TMP6:%.*]] = call i32 @llvm.experimental.vector.reduce.smax.v4i32(<4 x i32> [[TMP5]])
; CHECK-NEXT: [[T19:%.*]] = select i1 undef, i32 [[TMP6]], i32 undef
; CHECK-NEXT: [[T20:%.*]] = icmp sgt i32 [[T19]], 63
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds i32, i32* [[ARR:%.*]], i64 1
; CHECK-NEXT: [[TMP0:%.*]] = bitcast i32* [[ARR]] to <2 x i32>*
; CHECK-NEXT: [[TMP1:%.*]] = load <2 x i32>, <2 x i32>* [[TMP0]], align 4
-; CHECK-NEXT: [[REORDER_SHUFFLE:%.*]] = shufflevector <2 x i32> [[TMP1]], <2 x i32> undef, <2 x i32> <i32 1, i32 0>
-; CHECK-NEXT: [[SHUFFLE:%.*]] = shufflevector <2 x i32> [[REORDER_SHUFFLE]], <2 x i32> undef, <8 x i32> <i32 0, i32 0, i32 0, i32 0, i32 0, i32 0, i32 1, i32 1>
-; CHECK-NEXT: [[TMP2:%.*]] = insertelement <8 x i32> undef, i32 [[A1:%.*]], i32 0
-; CHECK-NEXT: [[TMP3:%.*]] = insertelement <8 x i32> [[TMP2]], i32 [[A2:%.*]], i32 1
-; CHECK-NEXT: [[TMP4:%.*]] = insertelement <8 x i32> [[TMP3]], i32 [[A3:%.*]], i32 2
-; CHECK-NEXT: [[TMP5:%.*]] = insertelement <8 x i32> [[TMP4]], i32 [[A4:%.*]], i32 3
-; CHECK-NEXT: [[TMP6:%.*]] = insertelement <8 x i32> [[TMP5]], i32 [[A5:%.*]], i32 4
-; CHECK-NEXT: [[TMP7:%.*]] = insertelement <8 x i32> [[TMP6]], i32 [[A6:%.*]], i32 5
-; CHECK-NEXT: [[TMP8:%.*]] = insertelement <8 x i32> [[TMP7]], i32 [[A7:%.*]], i32 6
-; CHECK-NEXT: [[TMP9:%.*]] = insertelement <8 x i32> [[TMP8]], i32 [[A8:%.*]], i32 7
+; CHECK-NEXT: [[SHUFFLE:%.*]] = shufflevector <2 x i32> [[TMP1]], <2 x i32> undef, <8 x i32> <i32 0, i32 0, i32 1, i32 1, i32 1, i32 1, i32 1, i32 1>
+; CHECK-NEXT: [[TMP2:%.*]] = insertelement <8 x i32> undef, i32 [[A7:%.*]], i32 0
+; CHECK-NEXT: [[TMP3:%.*]] = insertelement <8 x i32> [[TMP2]], i32 [[A8:%.*]], i32 1
+; CHECK-NEXT: [[TMP4:%.*]] = insertelement <8 x i32> [[TMP3]], i32 [[A1:%.*]], i32 2
+; CHECK-NEXT: [[TMP5:%.*]] = insertelement <8 x i32> [[TMP4]], i32 [[A2:%.*]], i32 3
+; CHECK-NEXT: [[TMP6:%.*]] = insertelement <8 x i32> [[TMP5]], i32 [[A3:%.*]], i32 4
+; CHECK-NEXT: [[TMP7:%.*]] = insertelement <8 x i32> [[TMP6]], i32 [[A4:%.*]], i32 5
+; CHECK-NEXT: [[TMP8:%.*]] = insertelement <8 x i32> [[TMP7]], i32 [[A5:%.*]], i32 6
+; CHECK-NEXT: [[TMP9:%.*]] = insertelement <8 x i32> [[TMP8]], i32 [[A6:%.*]], i32 7
; CHECK-NEXT: [[TMP10:%.*]] = add <8 x i32> [[SHUFFLE]], [[TMP9]]
; CHECK-NEXT: [[TMP11:%.*]] = call i32 @llvm.experimental.vector.reduce.umin.v8i32(<8 x i32> [[TMP10]])
; CHECK-NEXT: ret i32 [[TMP11]]
; CHECK-NEXT: [[ARRAYIDX3:%.*]] = getelementptr inbounds i32, i32* [[ARR]], i64 3
; CHECK-NEXT: [[TMP0:%.*]] = bitcast i32* [[ARR]] to <4 x i32>*
; CHECK-NEXT: [[TMP1:%.*]] = load <4 x i32>, <4 x i32>* [[TMP0]], align 4
-; CHECK-NEXT: [[REORDER_SHUFFLE:%.*]] = shufflevector <4 x i32> [[TMP1]], <4 x i32> undef, <4 x i32> <i32 1, i32 2, i32 3, i32 0>
-; CHECK-NEXT: [[SHUFFLE:%.*]] = shufflevector <4 x i32> [[REORDER_SHUFFLE]], <4 x i32> undef, <8 x i32> <i32 0, i32 1, i32 2, i32 0, i32 0, i32 3, i32 1, i32 0>
-; CHECK-NEXT: [[TMP2:%.*]] = insertelement <8 x i32> undef, i32 [[A1:%.*]], i32 0
-; CHECK-NEXT: [[TMP3:%.*]] = insertelement <8 x i32> [[TMP2]], i32 [[A2:%.*]], i32 1
-; CHECK-NEXT: [[TMP4:%.*]] = insertelement <8 x i32> [[TMP3]], i32 [[A3:%.*]], i32 2
-; CHECK-NEXT: [[TMP5:%.*]] = insertelement <8 x i32> [[TMP4]], i32 [[A4:%.*]], i32 3
-; CHECK-NEXT: [[TMP6:%.*]] = insertelement <8 x i32> [[TMP5]], i32 [[A5:%.*]], i32 4
-; CHECK-NEXT: [[TMP7:%.*]] = insertelement <8 x i32> [[TMP6]], i32 [[A6:%.*]], i32 5
+; CHECK-NEXT: [[SHUFFLE:%.*]] = shufflevector <4 x i32> [[TMP1]], <4 x i32> undef, <8 x i32> <i32 0, i32 1, i32 1, i32 1, i32 1, i32 2, i32 2, i32 3>
+; CHECK-NEXT: [[TMP2:%.*]] = insertelement <8 x i32> undef, i32 [[A6:%.*]], i32 0
+; CHECK-NEXT: [[TMP3:%.*]] = insertelement <8 x i32> [[TMP2]], i32 [[A1:%.*]], i32 1
+; CHECK-NEXT: [[TMP4:%.*]] = insertelement <8 x i32> [[TMP3]], i32 [[A4:%.*]], i32 2
+; CHECK-NEXT: [[TMP5:%.*]] = insertelement <8 x i32> [[TMP4]], i32 [[A5:%.*]], i32 3
+; CHECK-NEXT: [[TMP6:%.*]] = insertelement <8 x i32> [[TMP5]], i32 [[A8:%.*]], i32 4
+; CHECK-NEXT: [[TMP7:%.*]] = insertelement <8 x i32> [[TMP6]], i32 [[A2:%.*]], i32 5
; CHECK-NEXT: [[TMP8:%.*]] = insertelement <8 x i32> [[TMP7]], i32 [[A7:%.*]], i32 6
-; CHECK-NEXT: [[TMP9:%.*]] = insertelement <8 x i32> [[TMP8]], i32 [[A8:%.*]], i32 7
+; CHECK-NEXT: [[TMP9:%.*]] = insertelement <8 x i32> [[TMP8]], i32 [[A3:%.*]], i32 7
; CHECK-NEXT: [[TMP10:%.*]] = add <8 x i32> [[SHUFFLE]], [[TMP9]]
; CHECK-NEXT: [[TMP11:%.*]] = call i32 @llvm.experimental.vector.reduce.umin.v8i32(<8 x i32> [[TMP10]])
; CHECK-NEXT: ret i32 [[TMP11]]
; CHECK-NEXT: [[ARRAYIDX7:%.*]] = getelementptr inbounds i32, i32* [[ARR]], i64 1
; CHECK-NEXT: [[TMP0:%.*]] = bitcast i32* [[ARR]] to <4 x i32>*
; CHECK-NEXT: [[TMP1:%.*]] = load <4 x i32>, <4 x i32>* [[TMP0]], align 4
-; CHECK-NEXT: [[REORDER_SHUFFLE:%.*]] = shufflevector <4 x i32> [[TMP1]], <4 x i32> undef, <4 x i32> <i32 3, i32 2, i32 0, i32 1>
-; CHECK-NEXT: [[SHUFFLE:%.*]] = shufflevector <4 x i32> [[REORDER_SHUFFLE]], <4 x i32> undef, <8 x i32> <i32 0, i32 1, i32 0, i32 2, i32 3, i32 2, i32 1, i32 3>
-; CHECK-NEXT: [[TMP2:%.*]] = insertelement <8 x i32> undef, i32 [[A1:%.*]], i32 0
-; CHECK-NEXT: [[TMP3:%.*]] = insertelement <8 x i32> [[TMP2]], i32 [[A2:%.*]], i32 1
-; CHECK-NEXT: [[TMP4:%.*]] = insertelement <8 x i32> [[TMP3]], i32 [[A3:%.*]], i32 2
-; CHECK-NEXT: [[TMP5:%.*]] = insertelement <8 x i32> [[TMP4]], i32 [[A4:%.*]], i32 3
-; CHECK-NEXT: [[TMP6:%.*]] = insertelement <8 x i32> [[TMP5]], i32 [[A5:%.*]], i32 4
-; CHECK-NEXT: [[TMP7:%.*]] = insertelement <8 x i32> [[TMP6]], i32 [[A6:%.*]], i32 5
-; CHECK-NEXT: [[TMP8:%.*]] = insertelement <8 x i32> [[TMP7]], i32 [[A7:%.*]], i32 6
-; CHECK-NEXT: [[TMP9:%.*]] = insertelement <8 x i32> [[TMP8]], i32 [[A8:%.*]], i32 7
+; CHECK-NEXT: [[SHUFFLE:%.*]] = shufflevector <4 x i32> [[TMP1]], <4 x i32> undef, <8 x i32> <i32 0, i32 0, i32 1, i32 1, i32 2, i32 2, i32 3, i32 3>
+; CHECK-NEXT: [[TMP2:%.*]] = insertelement <8 x i32> undef, i32 [[A4:%.*]], i32 0
+; CHECK-NEXT: [[TMP3:%.*]] = insertelement <8 x i32> [[TMP2]], i32 [[A6:%.*]], i32 1
+; CHECK-NEXT: [[TMP4:%.*]] = insertelement <8 x i32> [[TMP3]], i32 [[A5:%.*]], i32 2
+; CHECK-NEXT: [[TMP5:%.*]] = insertelement <8 x i32> [[TMP4]], i32 [[A8:%.*]], i32 3
+; CHECK-NEXT: [[TMP6:%.*]] = insertelement <8 x i32> [[TMP5]], i32 [[A2:%.*]], i32 4
+; CHECK-NEXT: [[TMP7:%.*]] = insertelement <8 x i32> [[TMP6]], i32 [[A7:%.*]], i32 5
+; CHECK-NEXT: [[TMP8:%.*]] = insertelement <8 x i32> [[TMP7]], i32 [[A1:%.*]], i32 6
+; CHECK-NEXT: [[TMP9:%.*]] = insertelement <8 x i32> [[TMP8]], i32 [[A3:%.*]], i32 7
; CHECK-NEXT: [[TMP10:%.*]] = add <8 x i32> [[SHUFFLE]], [[TMP9]]
; CHECK-NEXT: [[TMP11:%.*]] = call i32 @llvm.experimental.vector.reduce.umin.v8i32(<8 x i32> [[TMP10]])
; CHECK-NEXT: ret i32 [[TMP11]]