#define LCD_MAXBYTES 256 /* max burst write */
#define KEYPAD_BUFFER 64
-#define INPUT_POLL_TIME (HZ/50) /* poll the keyboard this every second */
-#define KEYPAD_REP_START (10) /* a key starts to repeat after this times INPUT_POLL_TIME */
-#define KEYPAD_REP_DELAY (2) /* a key repeats this times INPUT_POLL_TIME */
-#define FLASH_LIGHT_TEMPO (200) /* keep the light on this times INPUT_POLL_TIME for each flash */
+/* poll the keyboard this every second */
+#define INPUT_POLL_TIME (HZ/50)
+/* a key starts to repeat after this times INPUT_POLL_TIME */
+#define KEYPAD_REP_START (10)
+/* a key repeats this times INPUT_POLL_TIME */
+#define KEYPAD_REP_DELAY (2)
+
+/* keep the light on this times INPUT_POLL_TIME for each flash */
+#define FLASH_LIGHT_TEMPO (200)
/* converts an r_str() input to an active high, bits string : 000BAOSE */
#define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3)
#define PNL_PERRORP 0x08 /* direct input, active low */
#define PNL_PBIDIR 0x20 /* bi-directional ports */
-#define PNL_PINTEN 0x10 /* high to read data in or-ed with data out */
+/* high to read data in or-ed with data out */
+#define PNL_PINTEN 0x10
#define PNL_PSELECP 0x08 /* inverted output, active low */
#define PNL_PINITP 0x04 /* direct output, active low */
#define PNL_PAUTOLF 0x02 /* inverted output, active low */
#define LCD_FLAG_N 0x0040 /* 2-rows mode */
#define LCD_FLAG_L 0x0080 /* backlight enabled */
-#define LCD_ESCAPE_LEN 24 /* 24 chars max for an LCD escape command */
+#define LCD_ESCAPE_LEN 24 /* max chars for LCD escape command */
#define LCD_ESCAPE_CHAR 27 /* use char 27 for escape command */
/* macros to simplify use of the parallel port */
#define w_dtr(x, y) do { parport_write_data((x)->port, (y)); } while (0)
/* this defines which bits are to be used and which ones to be ignored */
-static __u8 scan_mask_o; /* logical or of the output bits involved in the scan matrix */
-static __u8 scan_mask_i; /* logical or of the input bits involved in the scan matrix */
+/* logical or of the output bits involved in the scan matrix */
+static __u8 scan_mask_o;
+/* logical or of the input bits involved in the scan matrix */
+static __u8 scan_mask_i;
typedef __u64 pmask_t;
__u8 rise_timer, fall_timer, high_timer;
union {
- struct { /* this structure is valid when type == INPUT_TYPE_STD */
+ struct { /* valid when type == INPUT_TYPE_STD */
void (*press_fct) (int);
void (*release_fct) (int);
int press_data;
int release_data;
} std;
- struct { /* this structure is valid when type == INPUT_TYPE_KBD */
- /* strings can be full-length (ie. non null-terminated) */
+ struct { /* valid when type == INPUT_TYPE_KBD */
+ /* strings can be non null-terminated */
char press_str[sizeof(void *) + sizeof(int)];
char repeat_str[sizeof(void *) + sizeof(int)];
char release_str[sizeof(void *) + sizeof(int)];
* 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
* <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
*/
-static pmask_t phys_read; /* what has just been read from the I/O ports */
-static pmask_t phys_read_prev; /* previous phys_read */
-static pmask_t phys_curr; /* stabilized phys_read (phys_read|phys_read_prev) */
-static pmask_t phys_prev; /* previous phys_curr */
-static char inputs_stable; /* 0 means that at least one logical signal needs be computed */
+
+/* what has just been read from the I/O ports */
+static pmask_t phys_read;
+/* previous phys_read */
+static pmask_t phys_read_prev;
+/* stabilized phys_read (phys_read|phys_read_prev) */
+static pmask_t phys_curr;
+/* previous phys_curr */
+static pmask_t phys_prev;
+/* 0 means that at least one logical signal needs be computed */
+static char inputs_stable;
/* these variables are specific to the keypad */
static char keypad_buffer[KEYPAD_BUFFER];
static wait_queue_head_t keypad_read_wait;
/* lcd-specific variables */
-static unsigned long int lcd_flags; /* contains the LCD config state */
-static unsigned long int lcd_addr_x; /* contains the LCD X offset */
-static unsigned long int lcd_addr_y; /* contains the LCD Y offset */
-static char lcd_escape[LCD_ESCAPE_LEN + 1]; /* current escape sequence, 0 terminated */
-static int lcd_escape_len = -1; /* not in escape state. >=0 = escape cmd len */
+
+/* contains the LCD config state */
+static unsigned long int lcd_flags;
+/* contains the LCD X offset */
+static unsigned long int lcd_addr_x;
+/* contains the LCD Y offset */
+static unsigned long int lcd_addr_y;
+/* current escape sequence, 0 terminated */
+static char lcd_escape[LCD_ESCAPE_LEN + 1];
+/* not in escape state. >=0 = escape cmd len */
+static int lcd_escape_len = -1;
/*
* Bit masks to convert LCD signals to parallel port outputs.
static int lcd_type = -1;
module_param(lcd_type, int, 0000);
MODULE_PARM_DESC(lcd_type,
- "LCD type: 0=none, 1=old //, 2=serial ks0074, 3=hantronix //, 4=nexcom //, 5=compiled-in");
+ "LCD type: 0=none, 1=old //, 2=serial ks0074, "
+ "3=hantronix //, 4=nexcom //, 5=compiled-in");
static int lcd_proto = -1;
module_param(lcd_proto, int, 0000);
-MODULE_PARM_DESC(lcd_proto, "LCD communication: 0=parallel (//), 1=serial,"
+MODULE_PARM_DESC(lcd_proto,
+ "LCD communication: 0=parallel (//), 1=serial,"
"2=TI LCD Interface");
static int lcd_charset = -1;
static int keypad_type = -1;
module_param(keypad_type, int, 0000);
MODULE_PARM_DESC(keypad_type,
- "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
+ "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, "
+ "3=nexcom 4 keys");
static int profile = DEFAULT_PROFILE;
module_param(profile, int, 0000);
MODULE_PARM_DESC(profile,
- "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; 4=16x2 nexcom; default=40x2, old kp");
+ "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
+ "4=16x2 nexcom; default=40x2, old kp");
/*
* These are the parallel port pins the LCD control signals are connected to.
static int lcd_e_pin = PIN_NOT_SET;
module_param(lcd_e_pin, int, 0000);
MODULE_PARM_DESC(lcd_e_pin,
- "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
+ "# of the // port pin connected to LCD 'E' signal, "
+ "with polarity (-17..17)");
static int lcd_rs_pin = PIN_NOT_SET;
module_param(lcd_rs_pin, int, 0000);
MODULE_PARM_DESC(lcd_rs_pin,
- "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
+ "# of the // port pin connected to LCD 'RS' signal, "
+ "with polarity (-17..17)");
static int lcd_rw_pin = PIN_NOT_SET;
module_param(lcd_rw_pin, int, 0000);
MODULE_PARM_DESC(lcd_rw_pin,
- "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
+ "# of the // port pin connected to LCD 'RW' signal, "
+ "with polarity (-17..17)");
static int lcd_bl_pin = PIN_NOT_SET;
module_param(lcd_bl_pin, int, 0000);
MODULE_PARM_DESC(lcd_bl_pin,
- "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
+ "# of the // port pin connected to LCD backlight, "
+ "with polarity (-17..17)");
static int lcd_da_pin = PIN_NOT_SET;
module_param(lcd_da_pin, int, 0000);
MODULE_PARM_DESC(lcd_da_pin,
- "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
+ "# of the // port pin connected to serial LCD 'SDA' "
+ "signal, with polarity (-17..17)");
static int lcd_cl_pin = PIN_NOT_SET;
module_param(lcd_cl_pin, int, 0000);
MODULE_PARM_DESC(lcd_cl_pin,
- "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
+ "# of the // port pin connected to serial LCD 'SCL' "
+ "signal, with polarity (-17..17)");
static unsigned char *lcd_char_conv;
/* FIXME: this should be converted to a bit array containing signals states */
static struct {
- unsigned char e; /* parallel LCD E (data latch on falling edge) */
- unsigned char rs; /* parallel LCD RS (0 = cmd, 1 = data) */
- unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
- unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
- unsigned char cl; /* serial LCD clock (latch on rising edge) */
- unsigned char da; /* serial LCD data */
+ unsigned char e; /* parallel LCD E (data latch on falling edge) */
+ unsigned char rs; /* parallel LCD RS (0 = cmd, 1 = data) */
+ unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
+ unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
+ unsigned char cl; /* serial LCD clock (latch on rising edge) */
+ unsigned char da; /* serial LCD data */
} bits;
static void init_scan_timer(void);
c_bit = PNL_PAUTOLF;
inv = !inv;
break;
- case PIN_INITP: /* init, direct */
+ case PIN_INITP: /* init, direct */
c_bit = PNL_PINITP;
break;
case PIN_SELECP: /* select_in, inverted */
}
}
-/* send a serial byte to the LCD panel. The caller is responsible for locking if needed. */
+/* send a serial byte to the LCD panel. The caller is responsible for locking
+ if needed. */
static void lcd_send_serial(int byte)
{
int bit;
/* the data bit is set on D0, and the clock on STROBE.
- * LCD reads D0 on STROBE's rising edge.
- */
+ * LCD reads D0 on STROBE's rising edge. */
for (bit = 0; bit < 8; bit++) {
bits.cl = BIT_CLR; /* CLK low */
panel_set_bits();
bits.da = byte & 1;
panel_set_bits();
- udelay(2); /* maintain the data during 2 us before CLK up */
+ udelay(2); /* maintain the data during 2 us before CLK up */
bits.cl = BIT_SET; /* CLK high */
panel_set_bits();
- udelay(1); /* maintain the strobe during 1 us */
+ udelay(1); /* maintain the strobe during 1 us */
byte >>= 1;
}
}
spin_lock(&pprt_lock);
/* present the data to the data port */
w_dtr(pprt, cmd);
- udelay(20); /* maintain the data during 20 us before the strobe */
+ udelay(20); /* maintain the data during 20 us before the strobe */
bits.e = BIT_SET;
bits.rs = BIT_CLR;
bits.rw = BIT_CLR;
set_ctrl_bits();
- udelay(40); /* maintain the strobe during 40 us */
+ udelay(40); /* maintain the strobe during 40 us */
bits.e = BIT_CLR;
set_ctrl_bits();
- udelay(120); /* the shortest command takes at least 120 us */
+ udelay(120); /* the shortest command takes at least 120 us */
spin_unlock(&pprt_lock);
}
spin_lock(&pprt_lock);
/* present the data to the data port */
w_dtr(pprt, data);
- udelay(20); /* maintain the data during 20 us before the strobe */
+ udelay(20); /* maintain the data during 20 us before the strobe */
bits.e = BIT_SET;
bits.rs = BIT_SET;
bits.rw = BIT_CLR;
set_ctrl_bits();
- udelay(40); /* maintain the strobe during 40 us */
+ udelay(40); /* maintain the strobe during 40 us */
bits.e = BIT_CLR;
set_ctrl_bits();
- udelay(45); /* the shortest data takes at least 45 us */
+ udelay(45); /* the shortest data takes at least 45 us */
spin_unlock(&pprt_lock);
}
{
lcd_write_cmd(0x80 /* set DDRAM address */
| (lcd_addr_y ? lcd_hwidth : 0)
- /* we force the cursor to stay at the end of the line if it wants to go farther */
+ /* we force the cursor to stay at the end of the
+ line if it wants to go farther */
| ((lcd_addr_x < lcd_bwidth) ? lcd_addr_x &
(lcd_hwidth - 1) : lcd_bwidth - 1));
}
for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
/* present the data to the data port */
w_dtr(pprt, ' ');
- udelay(20); /* maintain the data during 20 us before the strobe */
+
+ /* maintain the data during 20 us before the strobe */
+ udelay(20);
bits.e = BIT_SET;
bits.rs = BIT_SET;
bits.rw = BIT_CLR;
set_ctrl_bits();
- udelay(40); /* maintain the strobe during 40 us */
+ /* maintain the strobe during 40 us */
+ udelay(40);
bits.e = BIT_CLR;
set_ctrl_bits();
- udelay(45); /* the shortest data takes at least 45 us */
+ /* the shortest data takes at least 45 us */
+ udelay(45);
}
spin_unlock(&pprt_lock);
long_sleep(10);
- lcd_write_cmd(0x06); /* entry mode set : increment, cursor shifting */
+ /* entry mode set : increment, cursor shifting */
+ lcd_write_cmd(0x06);
lcd_clear_display();
}
*
*/
+static inline int handle_lcd_special_code(void)
+{
+ /* LCD special codes */
+
+ int processed = 0;
+
+ char *esc = lcd_escape + 2;
+ int oldflags = lcd_flags;
+
+ /* check for display mode flags */
+ switch (*esc) {
+ case 'D': /* Display ON */
+ lcd_flags |= LCD_FLAG_D;
+ processed = 1;
+ break;
+ case 'd': /* Display OFF */
+ lcd_flags &= ~LCD_FLAG_D;
+ processed = 1;
+ break;
+ case 'C': /* Cursor ON */
+ lcd_flags |= LCD_FLAG_C;
+ processed = 1;
+ break;
+ case 'c': /* Cursor OFF */
+ lcd_flags &= ~LCD_FLAG_C;
+ processed = 1;
+ break;
+ case 'B': /* Blink ON */
+ lcd_flags |= LCD_FLAG_B;
+ processed = 1;
+ break;
+ case 'b': /* Blink OFF */
+ lcd_flags &= ~LCD_FLAG_B;
+ processed = 1;
+ break;
+ case '+': /* Back light ON */
+ lcd_flags |= LCD_FLAG_L;
+ processed = 1;
+ break;
+ case '-': /* Back light OFF */
+ lcd_flags &= ~LCD_FLAG_L;
+ processed = 1;
+ break;
+ case '*':
+ /* flash back light using the keypad timer */
+ if (scan_timer.function != NULL) {
+ if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
+ lcd_backlight(1);
+ light_tempo = FLASH_LIGHT_TEMPO;
+ }
+ processed = 1;
+ break;
+ case 'f': /* Small Font */
+ lcd_flags &= ~LCD_FLAG_F;
+ processed = 1;
+ break;
+ case 'F': /* Large Font */
+ lcd_flags |= LCD_FLAG_F;
+ processed = 1;
+ break;
+ case 'n': /* One Line */
+ lcd_flags &= ~LCD_FLAG_N;
+ processed = 1;
+ break;
+ case 'N': /* Two Lines */
+ lcd_flags |= LCD_FLAG_N;
+ break;
+ case 'l': /* Shift Cursor Left */
+ if (lcd_addr_x > 0) {
+ /* back one char if not at end of line */
+ if (lcd_addr_x < lcd_bwidth)
+ lcd_write_cmd(0x10);
+ lcd_addr_x--;
+ }
+ processed = 1;
+ break;
+ case 'r': /* shift cursor right */
+ if (lcd_addr_x < lcd_width) {
+ /* allow the cursor to pass the end of the line */
+ if (lcd_addr_x <
+ (lcd_bwidth - 1))
+ lcd_write_cmd(0x14);
+ lcd_addr_x++;
+ }
+ processed = 1;
+ break;
+ case 'L': /* shift display left */
+ lcd_left_shift++;
+ lcd_write_cmd(0x18);
+ processed = 1;
+ break;
+ case 'R': /* shift display right */
+ lcd_left_shift--;
+ lcd_write_cmd(0x1C);
+ processed = 1;
+ break;
+ case 'k': { /* kill end of line */
+ int x;
+ for (x = lcd_addr_x; x < lcd_bwidth; x++)
+ lcd_write_data(' ');
+
+ /* restore cursor position */
+ lcd_gotoxy();
+ processed = 1;
+ break;
+ }
+ case 'I': /* reinitialize display */
+ lcd_init_display();
+ lcd_left_shift = 0;
+ processed = 1;
+ break;
+ case 'G': {
+ /* Generator : LGcxxxxx...xx; must have <c> between '0'
+ * and '7', representing the numerical ASCII code of the
+ * redefined character, and <xx...xx> a sequence of 16
+ * hex digits representing 8 bytes for each character.
+ * Most LCDs will only use 5 lower bits of the 7 first
+ * bytes.
+ */
+
+ unsigned char cgbytes[8];
+ unsigned char cgaddr;
+ int cgoffset;
+ int shift;
+ char value;
+ int addr;
+
+ if (strchr(esc, ';') == NULL)
+ break;
+
+ esc++;
+
+ cgaddr = *(esc++) - '0';
+ if (cgaddr > 7) {
+ processed = 1;
+ break;
+ }
+
+ cgoffset = 0;
+ shift = 0;
+ value = 0;
+ while (*esc && cgoffset < 8) {
+ shift ^= 4;
+ if (*esc >= '0' && *esc <= '9')
+ value |= (*esc - '0') << shift;
+ else if (*esc >= 'A' && *esc <= 'Z')
+ value |= (*esc - 'A' + 10) << shift;
+ else if (*esc >= 'a' && *esc <= 'z')
+ value |= (*esc - 'a' + 10) << shift;
+ else {
+ esc++;
+ continue;
+ }
+
+ if (shift == 0) {
+ cgbytes[cgoffset++] = value;
+ value = 0;
+ }
+
+ esc++;
+ }
+
+ lcd_write_cmd(0x40 | (cgaddr * 8));
+ for (addr = 0; addr < cgoffset; addr++)
+ lcd_write_data(cgbytes[addr]);
+
+ /* ensures that we stop writing to CGRAM */
+ lcd_gotoxy();
+ processed = 1;
+ break;
+ }
+ case 'x': /* gotoxy : LxXXX[yYYY]; */
+ case 'y': /* gotoxy : LyYYY[xXXX]; */
+ if (strchr(esc, ';') == NULL)
+ break;
+
+ while (*esc) {
+ if (*esc == 'x') {
+ esc++;
+ lcd_addr_x = 0;
+ while (isdigit(*esc)) {
+ lcd_addr_x = lcd_addr_x * 10 +
+ (*esc - '0');
+ esc++;
+ }
+ } else if (*esc == 'y') {
+ esc++;
+ lcd_addr_y = 0;
+ while (isdigit(*esc)) {
+ lcd_addr_y = lcd_addr_y * 10 +
+ (*esc - '0');
+ esc++;
+ }
+ } else
+ break;
+ }
+
+ lcd_gotoxy();
+ processed = 1;
+ break;
+ }
+
+ /* Check wether one flag was changed */
+ if (oldflags != lcd_flags) {
+ /* check whether one of B,C,D flags were changed */
+ if ((oldflags ^ lcd_flags) &
+ (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
+ /* set display mode */
+ lcd_write_cmd(0x08
+ | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
+ | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
+ | ((lcd_flags & LCD_FLAG_B) ? 1 : 0));
+ /* check whether one of F,N flags was changed */
+ else if ((oldflags ^ lcd_flags) & (LCD_FLAG_F | LCD_FLAG_N))
+ lcd_write_cmd(0x30
+ | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
+ | ((lcd_flags & LCD_FLAG_N) ? 8 : 0));
+ /* check wether L flag was changed */
+ else if ((oldflags ^ lcd_flags) & (LCD_FLAG_L)) {
+ if (lcd_flags & (LCD_FLAG_L))
+ lcd_backlight(1);
+ else if (light_tempo == 0)
+ /* switch off the light only when the tempo
+ lighting is gone */
+ lcd_backlight(0);
+ }
+ }
+
+ return processed;
+}
+
static ssize_t lcd_write(struct file *file,
const char *buf, size_t count, loff_t *ppos)
{
-
const char *tmp = buf;
char c;
for (; count-- > 0; (ppos ? (*ppos)++ : 0), ++tmp) {
if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
- schedule(); /* let's be a little nice with other processes that need some CPU */
+ /* let's be a little nice with other processes
+ that need some CPU */
+ schedule();
if (ppos == NULL && file == NULL)
- c = *tmp; /* let's not use get_user() from the kernel ! */
+ /* let's not use get_user() from the kernel ! */
+ c = *tmp;
else if (get_user(c, tmp))
return -EFAULT;
/* first, we'll test if we're in escape mode */
- if ((c != '\n') && lcd_escape_len >= 0) { /* yes, let's add this char to the buffer */
+ if ((c != '\n') && lcd_escape_len >= 0) {
+ /* yes, let's add this char to the buffer */
lcd_escape[lcd_escape_len++] = c;
lcd_escape[lcd_escape_len] = 0;
} else {
- lcd_escape_len = -1; /* aborts any previous escape sequence */
+ /* aborts any previous escape sequence */
+ lcd_escape_len = -1;
switch (c) {
- case LCD_ESCAPE_CHAR: /* start of an escape sequence */
+ case LCD_ESCAPE_CHAR:
+ /* start of an escape sequence */
lcd_escape_len = 0;
lcd_escape[lcd_escape_len] = 0;
break;
- case '\b': /* go back one char and clear it */
+ case '\b':
+ /* go back one char and clear it */
if (lcd_addr_x > 0) {
- if (lcd_addr_x < lcd_bwidth) /* check if we're not at the end of the line */
- lcd_write_cmd(0x10); /* back one char */
+ /* check if we're not at the
+ end of the line */
+ if (lcd_addr_x < lcd_bwidth)
+ /* back one char */
+ lcd_write_cmd(0x10);
lcd_addr_x--;
}
- lcd_write_data(' '); /* replace with a space */
- lcd_write_cmd(0x10); /* back one char again */
+ /* replace with a space */
+ lcd_write_data(' ');
+ /* back one char again */
+ lcd_write_cmd(0x10);
break;
- case '\014': /* quickly clear the display */
+ case '\014':
+ /* quickly clear the display */
lcd_clear_fast();
break;
- case '\n': /* flush the remainder of the current line and go to the
- beginning of the next line */
+ case '\n':
+ /* flush the remainder of the current line and
+ go to the beginning of the next line */
for (; lcd_addr_x < lcd_bwidth; lcd_addr_x++)
lcd_write_data(' ');
lcd_addr_x = 0;
lcd_addr_y = (lcd_addr_y + 1) % lcd_height;
lcd_gotoxy();
break;
- case '\r': /* go to the beginning of the same line */
+ case '\r':
+ /* go to the beginning of the same line */
lcd_addr_x = 0;
lcd_gotoxy();
break;
- case '\t': /* print a space instead of the tab */
+ case '\t':
+ /* print a space instead of the tab */
lcd_print(' ');
break;
- default: /* simply print this char */
+ default:
+ /* simply print this char */
lcd_print(c);
break;
}
}
/* now we'll see if we're in an escape mode and if the current
- escape sequence can be understood.
- */
- if (lcd_escape_len >= 2) { /* minimal length for an escape command */
- int processed = 0; /* 1 means the command has been processed */
+ escape sequence can be understood. */
+ if (lcd_escape_len >= 2) {
+ int processed = 0;
- if (!strcmp(lcd_escape, "[2J")) { /* Clear the display */
- lcd_clear_fast(); /* clear display */
+ if (!strcmp(lcd_escape, "[2J")) {
+ /* clear the display */
+ lcd_clear_fast();
processed = 1;
- } else if (!strcmp(lcd_escape, "[H")) { /* Cursor to home */
+ } else if (!strcmp(lcd_escape, "[H")) {
+ /* cursor to home */
lcd_addr_x = lcd_addr_y = 0;
lcd_gotoxy();
processed = 1;
}
/* codes starting with ^[[L */
else if ((lcd_escape_len >= 3) &&
- (lcd_escape[0] == '[') && (lcd_escape[1] == 'L')) { /* LCD special codes */
-
- char *esc = lcd_escape + 2;
- int oldflags = lcd_flags;
-
- /* check for display mode flags */
- switch (*esc) {
- case 'D': /* Display ON */
- lcd_flags |= LCD_FLAG_D;
- processed = 1;
- break;
- case 'd': /* Display OFF */
- lcd_flags &= ~LCD_FLAG_D;
- processed = 1;
- break;
- case 'C': /* Cursor ON */
- lcd_flags |= LCD_FLAG_C;
- processed = 1;
- break;
- case 'c': /* Cursor OFF */
- lcd_flags &= ~LCD_FLAG_C;
- processed = 1;
- break;
- case 'B': /* Blink ON */
- lcd_flags |= LCD_FLAG_B;
- processed = 1;
- break;
- case 'b': /* Blink OFF */
- lcd_flags &= ~LCD_FLAG_B;
- processed = 1;
- break;
- case '+': /* Back light ON */
- lcd_flags |= LCD_FLAG_L;
- processed = 1;
- break;
- case '-': /* Back light OFF */
- lcd_flags &= ~LCD_FLAG_L;
- processed = 1;
- break;
- case '*': /* flash back light using the keypad timer */
- if (scan_timer.function != NULL) {
- if (light_tempo == 0
- && ((lcd_flags & LCD_FLAG_L)
- == 0))
- lcd_backlight(1);
- light_tempo = FLASH_LIGHT_TEMPO;
- }
- processed = 1;
- break;
- case 'f': /* Small Font */
- lcd_flags &= ~LCD_FLAG_F;
- processed = 1;
- break;
- case 'F': /* Large Font */
- lcd_flags |= LCD_FLAG_F;
- processed = 1;
- break;
- case 'n': /* One Line */
- lcd_flags &= ~LCD_FLAG_N;
- processed = 1;
- break;
- case 'N': /* Two Lines */
- lcd_flags |= LCD_FLAG_N;
- break;
-
- case 'l': /* Shift Cursor Left */
- if (lcd_addr_x > 0) {
- if (lcd_addr_x < lcd_bwidth)
- lcd_write_cmd(0x10); /* back one char if not at end of line */
- lcd_addr_x--;
- }
- processed = 1;
- break;
-
- case 'r': /* shift cursor right */
- if (lcd_addr_x < lcd_width) {
- if (lcd_addr_x < (lcd_bwidth - 1))
- lcd_write_cmd(0x14); /* allow the cursor to pass the end of the line */
- lcd_addr_x++;
- }
- processed = 1;
- break;
-
- case 'L': /* shift display left */
- lcd_left_shift++;
- lcd_write_cmd(0x18);
- processed = 1;
- break;
-
- case 'R': /* shift display right */
- lcd_left_shift--;
- lcd_write_cmd(0x1C);
- processed = 1;
- break;
-
- case 'k':{ /* kill end of line */
- int x;
- for (x = lcd_addr_x; x < lcd_bwidth; x++)
- lcd_write_data(' ');
- lcd_gotoxy(); /* restore cursor position */
- processed = 1;
- break;
- }
- case 'I': /* reinitialize display */
- lcd_init_display();
- lcd_left_shift = 0;
- processed = 1;
- break;
-
- case 'G': /* Generator : LGcxxxxx...xx; */ {
- /* must have <c> between '0' and '7', representing the numerical
- * ASCII code of the redefined character, and <xx...xx> a sequence
- * of 16 hex digits representing 8 bytes for each character. Most
- * LCDs will only use 5 lower bits of the 7 first bytes.
- */
-
- unsigned char cgbytes[8];
- unsigned char cgaddr;
- int cgoffset;
- int shift;
- char value;
- int addr;
-
- if (strchr(esc, ';') == NULL)
- break;
-
- esc++;
-
- cgaddr = *(esc++) - '0';
- if (cgaddr > 7) {
- processed = 1;
- break;
- }
-
- cgoffset = 0;
- shift = 0;
- value = 0;
- while (*esc && cgoffset < 8) {
- shift ^= 4;
- if (*esc >= '0' && *esc <= '9')
- value |= (*esc - '0') << shift;
- else if (*esc >= 'A' && *esc <= 'Z')
- value |= (*esc - 'A' + 10) << shift;
- else if (*esc >= 'a' && *esc <= 'z')
- value |= (*esc - 'a' + 10) << shift;
- else {
- esc++;
- continue;
- }
-
- if (shift == 0) {
- cgbytes[cgoffset++] = value;
- value = 0;
- }
-
- esc++;
- }
-
- lcd_write_cmd(0x40 | (cgaddr * 8));
- for (addr = 0; addr < cgoffset; addr++)
- lcd_write_data(cgbytes[addr]);
-
- lcd_gotoxy(); /* ensures that we stop writing to CGRAM */
- processed = 1;
- break;
- }
- case 'x': /* gotoxy : LxXXX[yYYY]; */
- case 'y': /* gotoxy : LyYYY[xXXX]; */
- if (strchr(esc, ';') == NULL)
- break;
-
- while (*esc) {
- if (*esc == 'x') {
- esc++;
- lcd_addr_x = 0;
- while (isdigit(*esc)) {
- lcd_addr_x =
- lcd_addr_x *
- 10 + (*esc -
- '0');
- esc++;
- }
- } else if (*esc == 'y') {
- esc++;
- lcd_addr_y = 0;
- while (isdigit(*esc)) {
- lcd_addr_y =
- lcd_addr_y *
- 10 + (*esc -
- '0');
- esc++;
- }
- } else
- break;
- }
-
- lcd_gotoxy();
- processed = 1;
- break;
- } /* end of switch */
-
- /* Check wether one flag was changed */
- if (oldflags != lcd_flags) {
- /* check wether one of B,C,D flags was changed */
- if ((oldflags ^ lcd_flags) &
- (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
- /* set display mode */
- lcd_write_cmd(0x08 |
- ((lcd_flags & LCD_FLAG_D) ? 4 : 0) |
- ((lcd_flags & LCD_FLAG_C) ? 2 : 0) |
- ((lcd_flags & LCD_FLAG_B) ? 1 : 0));
- /* check wether one of F,N flags was changed */
- else if ((oldflags ^ lcd_flags) &
- (LCD_FLAG_F | LCD_FLAG_N))
- lcd_write_cmd(0x30 |
- ((lcd_flags & LCD_FLAG_F) ? 4 : 0) |
- ((lcd_flags & LCD_FLAG_N) ? 8 : 0));
- /* check wether L flag was changed */
- else if ((oldflags ^ lcd_flags) &
- (LCD_FLAG_L)) {
- if (lcd_flags & (LCD_FLAG_L))
- lcd_backlight(1);
- else if (light_tempo == 0) /* switch off the light only when the tempo lighting is gone */
- lcd_backlight(0);
- }
- }
+ (lcd_escape[0] == '[') &&
+ (lcd_escape[1] == 'L')) {
+ processed = handle_lcd_special_code();
}
/* LCD special escape codes */
- /* flush the escape sequence if it's been processed or if it is
- getting too long. */
+ /* flush the escape sequence if it's been processed
+ or if it is getting too long. */
if (processed || (lcd_escape_len >= LCD_ESCAPE_LEN))
lcd_escape_len = -1;
- } /* escape codes */
+ } /* escape codes */
}
return tmp - buf;
return 0;
}
-static struct file_operations lcd_fops = {
+static const struct file_operations lcd_fops = {
.write = lcd_write,
.open = lcd_open,
.release = lcd_release,
void lcd_init(void)
{
switch (lcd_type) {
- case LCD_TYPE_OLD: /* parallel mode, 8 bits */
+ case LCD_TYPE_OLD:
+ /* parallel mode, 8 bits */
if (lcd_proto < 0)
lcd_proto = LCD_PROTO_PARALLEL;
if (lcd_charset < 0)
if (lcd_height < 0)
lcd_height = 2;
break;
- case LCD_TYPE_KS0074: /* serial mode, ks0074 */
+ case LCD_TYPE_KS0074:
+ /* serial mode, ks0074 */
if (lcd_proto < 0)
lcd_proto = LCD_PROTO_SERIAL;
if (lcd_charset < 0)
if (lcd_height < 0)
lcd_height = 2;
break;
- case LCD_TYPE_NEXCOM: /* parallel mode, 8 bits, generic */
+ case LCD_TYPE_NEXCOM:
+ /* parallel mode, 8 bits, generic */
if (lcd_proto < 0)
lcd_proto = LCD_PROTO_PARALLEL;
if (lcd_charset < 0)
if (lcd_height < 0)
lcd_height = 2;
break;
- case LCD_TYPE_CUSTOM: /* customer-defined */
+ case LCD_TYPE_CUSTOM:
+ /* customer-defined */
if (lcd_proto < 0)
lcd_proto = DEFAULT_LCD_PROTO;
if (lcd_charset < 0)
lcd_charset = DEFAULT_LCD_CHARSET;
/* default geometry will be set later */
break;
- case LCD_TYPE_HANTRONIX: /* parallel mode, 8 bits, hantronix-like */
+ case LCD_TYPE_HANTRONIX:
+ /* parallel mode, 8 bits, hantronix-like */
default:
if (lcd_proto < 0)
lcd_proto = LCD_PROTO_PARALLEL;
/* before this line, we must NOT send anything to the display.
* Since lcd_init_display() needs to write data, we have to
- * enable mark the LCD initialized just before.
- */
+ * enable mark the LCD initialized just before. */
lcd_initialized = 1;
lcd_init_display();
PANEL_VERSION);
#endif
lcd_addr_x = lcd_addr_y = 0;
- lcd_must_clear = 1; /* clear the display on the next device opening */
+ /* clear the display on the next device opening */
+ lcd_must_clear = 1;
lcd_gotoxy();
}
return -EINTR;
}
- for (; count-- > 0 && (keypad_buflen > 0); ++i, ++tmp, --keypad_buflen) {
+ for (; count-- > 0 && (keypad_buflen > 0);
+ ++i, ++tmp, --keypad_buflen) {
put_user(keypad_buffer[keypad_start], tmp);
keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
}
return 0;
}
-static struct file_operations keypad_fops = {
+static const struct file_operations keypad_fops = {
.read = keypad_read, /* read */
.open = keypad_open, /* open */
.release = keypad_release, /* close */
}
}
-/* this function scans all the bits involving at least one logical signal, and puts the
- * results in the bitfield "phys_read" (one bit per established contact), and sets
- * "phys_read_prev" to "phys_read".
+/* this function scans all the bits involving at least one logical signal,
+ * and puts the results in the bitfield "phys_read" (one bit per established
+ * contact), and sets "phys_read_prev" to "phys_read".
*
- * Note: to debounce input signals, we will only consider as switched a signal which is
- * stable across 2 measures. Signals which are different between two reads will be kept
- * as they previously were in their logical form (phys_prev). A signal which has just
- * switched will have a 1 in (phys_read ^ phys_read_prev).
+ * Note: to debounce input signals, we will only consider as switched a signal
+ * which is stable across 2 measures. Signals which are different between two
+ * reads will be kept as they previously were in their logical form (phys_prev).
+ * A signal which has just switched will have a 1 in
+ * (phys_read ^ phys_read_prev).
*/
static void phys_scan_contacts(void)
{
phys_read_prev = phys_read;
phys_read = 0; /* flush all signals */
- oldval = r_dtr(pprt) | scan_mask_o; /* keep track of old value, with all outputs disabled */
- w_dtr(pprt, oldval & ~scan_mask_o); /* activate all keyboard outputs (active low) */
- bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i; /* will have a 1 for each bit set to gnd */
- w_dtr(pprt, oldval); /* disable all matrix signals */
+ /* keep track of old value, with all outputs disabled */
+ oldval = r_dtr(pprt) | scan_mask_o;
+ /* activate all keyboard outputs (active low) */
+ w_dtr(pprt, oldval & ~scan_mask_o);
+
+ /* will have a 1 for each bit set to gnd */
+ bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
+ /* disable all matrix signals */
+ w_dtr(pprt, oldval);
/* now that all outputs are cleared, the only active input bits are
* directly connected to the ground
*/
- gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i; /* 1 for each grounded input */
- phys_read |= (pmask_t) gndmask << 40; /* grounded inputs are signals 40-44 */
+ /* 1 for each grounded input */
+ gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
+
+ /* grounded inputs are signals 40-44 */
+ phys_read |= (pmask_t) gndmask << 40;
if (bitmask != gndmask) {
- /* since clearing the outputs changed some inputs, we know that some
- * input signals are currently tied to some outputs. So we'll scan them.
+ /* since clearing the outputs changed some inputs, we know
+ * that some input signals are currently tied to some outputs.
+ * So we'll scan them.
*/
for (bit = 0; bit < 8; bit++) {
bitval = 1 << bit;
}
w_dtr(pprt, oldval); /* disable all outputs */
}
- /* this is easy: use old bits when they are flapping, use new ones when stable */
- phys_curr =
- (phys_prev & (phys_read ^ phys_read_prev)) | (phys_read &
- ~(phys_read ^
- phys_read_prev));
+ /* this is easy: use old bits when they are flapping,
+ * use new ones when stable */
+ phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
+ (phys_read & ~(phys_read ^ phys_read_prev));
+}
+
+static inline int input_state_high(struct logical_input *input)
+{
+#if 0
+ /* FIXME:
+ * this is an invalid test. It tries to catch
+ * transitions from single-key to multiple-key, but
+ * doesn't take into account the contacts polarity.
+ * The only solution to the problem is to parse keys
+ * from the most complex to the simplest combinations,
+ * and mark them as 'caught' once a combination
+ * matches, then unmatch it for all other ones.
+ */
+
+ /* try to catch dangerous transitions cases :
+ * someone adds a bit, so this signal was a false
+ * positive resulting from a transition. We should
+ * invalidate the signal immediately and not call the
+ * release function.
+ * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
+ */
+ if (((phys_prev & input->mask) == input->value)
+ && ((phys_curr & input->mask) > input->value)) {
+ input->state = INPUT_ST_LOW; /* invalidate */
+ return 1;
+ }
+#endif
+
+ if ((phys_curr & input->mask) == input->value) {
+ if ((input->type == INPUT_TYPE_STD) &&
+ (input->high_timer == 0)) {
+ input->high_timer++;
+ if (input->u.std.press_fct != NULL)
+ input->u.std.press_fct(input->u.std.press_data);
+ } else if (input->type == INPUT_TYPE_KBD) {
+ /* will turn on the light */
+ keypressed = 1;
+
+ if (input->high_timer == 0) {
+ char *press_str = input->u.kbd.press_str;
+ if (press_str[0])
+ keypad_send_key(press_str,
+ sizeof(press_str));
+ }
+
+ if (input->u.kbd.repeat_str[0]) {
+ char *repeat_str = input->u.kbd.repeat_str;
+ if (input->high_timer >= KEYPAD_REP_START) {
+ input->high_timer -= KEYPAD_REP_DELAY;
+ keypad_send_key(repeat_str,
+ sizeof(repeat_str));
+ }
+ /* we will need to come back here soon */
+ inputs_stable = 0;
+ }
+
+ if (input->high_timer < 255)
+ input->high_timer++;
+ }
+ return 1;
+ } else {
+ /* else signal falling down. Let's fall through. */
+ input->state = INPUT_ST_FALLING;
+ input->fall_timer = 0;
+ }
+ return 0;
+}
+
+static inline void input_state_falling(struct logical_input *input)
+{
+#if 0
+ /* FIXME !!! same comment as in input_state_high */
+ if (((phys_prev & input->mask) == input->value)
+ && ((phys_curr & input->mask) > input->value)) {
+ input->state = INPUT_ST_LOW; /* invalidate */
+ return;
+ }
+#endif
+
+ if ((phys_curr & input->mask) == input->value) {
+ if (input->type == INPUT_TYPE_KBD) {
+ /* will turn on the light */
+ keypressed = 1;
+
+ if (input->u.kbd.repeat_str[0]) {
+ char *repeat_str = input->u.kbd.repeat_str;
+ if (input->high_timer >= KEYPAD_REP_START)
+ input->high_timer -= KEYPAD_REP_DELAY;
+ keypad_send_key(repeat_str,
+ sizeof(repeat_str));
+ /* we will need to come back here soon */
+ inputs_stable = 0;
+ }
+
+ if (input->high_timer < 255)
+ input->high_timer++;
+ }
+ input->state = INPUT_ST_HIGH;
+ } else if (input->fall_timer >= input->fall_time) {
+ /* call release event */
+ if (input->type == INPUT_TYPE_STD) {
+ void (*release_fct)(int) = input->u.std.release_fct;
+ if (release_fct != NULL)
+ release_fct(input->u.std.release_data);
+ } else if (input->type == INPUT_TYPE_KBD) {
+ char *release_str = input->u.kbd.release_str;
+ if (release_str[0])
+ keypad_send_key(release_str,
+ sizeof(release_str));
+ }
+
+ input->state = INPUT_ST_LOW;
+ } else {
+ input->fall_timer++;
+ inputs_stable = 0;
+ }
}
static void panel_process_inputs(void)
case INPUT_ST_LOW:
if ((phys_curr & input->mask) != input->value)
break;
- /* if all needed ones were already set previously, this means that
- * this logical signal has been activated by the releasing of
- * another combined signal, so we don't want to match.
- * eg: AB -(release B)-> A -(release A)-> 0 : don't match A.
+ /* if all needed ones were already set previously,
+ * this means that this logical signal has been
+ * activated by the releasing of another combined
+ * signal, so we don't want to match.
+ * eg: AB -(release B)-> A -(release A)-> 0 :
+ * don't match A.
*/
if ((phys_prev & input->mask) == input->value)
break;
input->state = INPUT_ST_HIGH;
/* no break here, fall through */
case INPUT_ST_HIGH:
-#if 0
- /* FIXME:
- * this is an invalid test. It tries to catch transitions from single-key
- * to multiple-key, but doesn't take into account the contacts polarity.
- * The only solution to the problem is to parse keys from the most complex
- * to the simplest combinations, and mark them as 'caught' once a combination
- * matches, then unmatch it for all other ones.
- */
-
- /* try to catch dangerous transitions cases :
- * someone adds a bit, so this signal was a false
- * positive resulting from a transition. We should invalidate
- * the signal immediately and not call the release function.
- * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
- */
- if (((phys_prev & input->mask) == input->value)
- && ((phys_curr & input->mask) > input->value)) {
- input->state = INPUT_ST_LOW; /* invalidate */
+ if (input_state_high(input))
break;
- }
-#endif
-
- if ((phys_curr & input->mask) == input->value) {
- if ((input->type == INPUT_TYPE_STD)
- && (input->high_timer == 0)) {
- input->high_timer++;
- if (input->u.std.press_fct != NULL)
- input->u.std.press_fct(input->u.
- std.
- press_data);
- } else if (input->type == INPUT_TYPE_KBD) {
- keypressed = 1; /* will turn on the light */
-
- if (input->high_timer == 0) {
- if (input->u.kbd.press_str[0])
- keypad_send_key(input->
- u.kbd.
- press_str,
- sizeof
- (input->
- u.kbd.
- press_str));
- }
-
- if (input->u.kbd.repeat_str[0]) {
- if (input->high_timer >=
- KEYPAD_REP_START) {
- input->high_timer -=
- KEYPAD_REP_DELAY;
- keypad_send_key(input->
- u.kbd.
- repeat_str,
- sizeof
- (input->
- u.kbd.
- repeat_str));
- }
- inputs_stable = 0; /* we will need to come back here soon */
- }
-
- if (input->high_timer < 255)
- input->high_timer++;
- }
- break;
- } else {
- /* else signal falling down. Let's fall through. */
- input->state = INPUT_ST_FALLING;
- input->fall_timer = 0;
- }
/* no break here, fall through */
case INPUT_ST_FALLING:
-#if 0
- /* FIXME !!! same comment as above */
- if (((phys_prev & input->mask) == input->value)
- && ((phys_curr & input->mask) > input->value)) {
- input->state = INPUT_ST_LOW; /* invalidate */
- break;
- }
-#endif
-
- if ((phys_curr & input->mask) == input->value) {
- if (input->type == INPUT_TYPE_KBD) {
- keypressed = 1; /* will turn on the light */
-
- if (input->u.kbd.repeat_str[0]) {
- if (input->high_timer >= KEYPAD_REP_START)
- input->high_timer -= KEYPAD_REP_DELAY;
- keypad_send_key(input->u.kbd.repeat_str,
- sizeof(input->u.kbd.repeat_str));
- inputs_stable = 0; /* we will need to come back here soon */
- }
-
- if (input->high_timer < 255)
- input->high_timer++;
- }
- input->state = INPUT_ST_HIGH;
- break;
- } else if (input->fall_timer >= input->fall_time) {
- /* call release event */
- if (input->type == INPUT_TYPE_STD) {
- if (input->u.std.release_fct != NULL)
- input->u.std.release_fct(input->u.std.release_data);
-
- } else if (input->type == INPUT_TYPE_KBD) {
- if (input->u.kbd.release_str[0])
- keypad_send_key(input->u.kbd.release_str,
- sizeof(input->u.kbd.release_str));
- }
-
- input->state = INPUT_ST_LOW;
- break;
- } else {
- input->fall_timer++;
- inputs_stable = 0;
- break;
- }
+ input_state_falling(input);
}
}
}
if (keypad_enabled && keypad_initialized) {
if (spin_trylock(&pprt_lock)) {
phys_scan_contacts();
- spin_unlock(&pprt_lock); /* no need for the parport anymore */
+
+ /* no need for the parport anymore */
+ spin_unlock(&pprt_lock);
}
if (!inputs_stable || phys_curr != phys_prev)
}
/* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
- * if <omask> or <imask> are non-null, they will be or'ed with the bits corresponding
- * to out and in bits respectively.
+ * if <omask> or <imask> are non-null, they will be or'ed with the bits
+ * corresponding to out and in bits respectively.
* returns 1 if ok, 0 if error (in which case, nothing is written).
*/
static int input_name2mask(char *name, pmask_t *mask, pmask_t *value,
om = im = m = v = 0ULL;
while (*name) {
int in, out, bit, neg;
- for (in = 0; (in < sizeof(sigtab)) && (sigtab[in] != *name); in++)
+ for (in = 0; (in < sizeof(sigtab)) &&
+ (sigtab[in] != *name); in++)
;
if (in >= sizeof(sigtab))
return 0; /* input name not found */
/* tries to bind a callback function to the signal name <name>. The function
* <press_fct> will be called with the <press_data> arg when the signal is
* activated, and so on for <release_fct>/<release_data>
- * Returns the pointer to the new signal if ok, NULL if the signal could not be bound.
+ * Returns the pointer to the new signal if ok, NULL if the signal could not
+ * be bound.
*/
static struct logical_input *panel_bind_callback(char *name,
void (*press_fct) (int),
if (pprt) {
printk(KERN_ERR
- "panel_attach(): port->number=%d parport=%d, already registered !\n",
+ "panel_attach(): port->number=%d parport=%d, "
+ "already registered !\n",
port->number, parport);
return;
}
- pprt = parport_register_device(port, "panel", NULL, NULL, /* pf, kf */
+ pprt = parport_register_device(port, "panel", NULL, NULL, /* pf, kf */
NULL,
/*PARPORT_DEV_EXCL */
0, (void *)&pprt);
if (parport_claim(pprt)) {
printk(KERN_ERR
- "Panel: could not claim access to parport%d. Aborting.\n",
- parport);
+ "Panel: could not claim access to parport%d. "
+ "Aborting.\n", parport);
return;
}
- /* must init LCD first, just in case an IRQ from the keypad is generated at keypad init */
+ /* must init LCD first, just in case an IRQ from the keypad is
+ * generated at keypad init
+ */
if (lcd_enabled) {
lcd_init();
misc_register(&lcd_dev);
if (!pprt) {
printk(KERN_ERR
- "panel_detach(): port->number=%d parport=%d, nothing to unregister.\n",
+ "panel_detach(): port->number=%d parport=%d, "
+ "nothing to unregister.\n",
port->number, parport);
return;
}
/* take care of an eventual profile */
switch (profile) {
- case PANEL_PROFILE_CUSTOM: /* custom profile */
+ case PANEL_PROFILE_CUSTOM:
+ /* custom profile */
if (keypad_type < 0)
keypad_type = DEFAULT_KEYPAD;
if (lcd_type < 0)
lcd_type = DEFAULT_LCD;
break;
- case PANEL_PROFILE_OLD: /* 8 bits, 2*16, old keypad */
+ case PANEL_PROFILE_OLD:
+ /* 8 bits, 2*16, old keypad */
if (keypad_type < 0)
keypad_type = KEYPAD_TYPE_OLD;
if (lcd_type < 0)
if (lcd_hwidth < 0)
lcd_hwidth = 16;
break;
- case PANEL_PROFILE_NEW: /* serial, 2*16, new keypad */
+ case PANEL_PROFILE_NEW:
+ /* serial, 2*16, new keypad */
if (keypad_type < 0)
keypad_type = KEYPAD_TYPE_NEW;
if (lcd_type < 0)
lcd_type = LCD_TYPE_KS0074;
break;
- case PANEL_PROFILE_HANTRONIX: /* 8 bits, 2*16 hantronix-like, no keypad */
+ case PANEL_PROFILE_HANTRONIX:
+ /* 8 bits, 2*16 hantronix-like, no keypad */
if (keypad_type < 0)
keypad_type = KEYPAD_TYPE_NONE;
if (lcd_type < 0)
lcd_type = LCD_TYPE_HANTRONIX;
break;
- case PANEL_PROFILE_NEXCOM: /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
+ case PANEL_PROFILE_NEXCOM:
+ /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
if (keypad_type < 0)
keypad_type = KEYPAD_TYPE_NEXCOM;
if (lcd_type < 0)
lcd_type = LCD_TYPE_NEXCOM;
break;
- case PANEL_PROFILE_LARGE: /* 8 bits, 2*40, old keypad */
+ case PANEL_PROFILE_LARGE:
+ /* 8 bits, 2*40, old keypad */
if (keypad_type < 0)
keypad_type = KEYPAD_TYPE_OLD;
if (lcd_type < 0)
else
printk(KERN_INFO "Panel driver version " PANEL_VERSION
" not yet registered\n");
- /* tells various subsystems about the fact that initialization is finished */
+ /* tells various subsystems about the fact that initialization
+ is finished */
init_in_progress = 0;
return 0;
}