[Example] Add missing model file
authorJihoon Lee <jhoon.it.lee@samsung.com>
Tue, 25 Aug 2020 07:44:46 +0000 (16:44 +0900)
committerJijoong Moon <jijoong.moon@samsung.com>
Tue, 25 Aug 2020 07:58:31 +0000 (16:58 +0900)
Add missing model file that are excluded from .gitignore by force

**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped

Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Applications/Tizen_native/CustomShortcut/res/mobilenetv2.tflite [new file with mode: 0644]
Applications/Tizen_native/CustomShortcut/res/model.ini [new file with mode: 0644]

diff --git a/Applications/Tizen_native/CustomShortcut/res/mobilenetv2.tflite b/Applications/Tizen_native/CustomShortcut/res/mobilenetv2.tflite
new file mode 100644 (file)
index 0000000..7e8bfb1
Binary files /dev/null and b/Applications/Tizen_native/CustomShortcut/res/mobilenetv2.tflite differ
diff --git a/Applications/Tizen_native/CustomShortcut/res/model.ini b/Applications/Tizen_native/CustomShortcut/res/model.ini
new file mode 100644 (file)
index 0000000..97fc414
--- /dev/null
@@ -0,0 +1,37 @@
+# Model Section : Model
+[Model]
+Type = NeuralModel     # Model Type : Regression, KNN, NeuralNetwork
+Learning_rate = 0.0001         # Learning Rate
+Decay_rate = 0.96      # for the decay_rate for the decayed learning rate
+Decay_steps = 1000       # decay step for the exponential decayed learning rate
+Epochs = 20            # Epoch
+Optimizer = adam       # Optimizer : sgd (stochastic gradien decent),
+                       #             adam (Adamtive Moment Estimation)
+loss = cross           # Cost(loss) function : mse (mean squared error)
+                        #                       cross (cross entropy)
+batch_size = 9
+save_path = "model.bin"        # model path to save / read
+beta1 = 0.9            # beta 1 for adam
+beta2 = 0.9999 # beta 2 for adam
+epsilon = 1e-7 # epsilon for adam
+
+[DataSet]
+BufferSize=9
+TrainData="trainingSet.dat"
+ValidData="trainingSet.dat"
+LabelData="label.dat"
+
+# Layer Section : Name
+[inputlayer]
+Type = input
+Input_Shape = 1:1:62720        # Input Layer Dimension
+bias_initializer = zeros       # Zero Bias
+Normalization = true
+
+[outputlayer]
+Type = fully_connected
+Unit = 2               # Output Layer Dimension ( = Weight Width )
+bias_initializer = zeros
+Activation = sigmoid   # activation : sigmoid, softmax
+Weight_Decay = l2norm
+weight_Decay_Lambda = 0.005