--- /dev/null
+# Model Section : Model
+[Model]
+Type = NeuralModel # Model Type : Regression, KNN, NeuralNetwork
+Learning_rate = 0.0001 # Learning Rate
+Decay_rate = 0.96 # for the decay_rate for the decayed learning rate
+Decay_steps = 1000 # decay step for the exponential decayed learning rate
+Epochs = 20 # Epoch
+Optimizer = adam # Optimizer : sgd (stochastic gradien decent),
+ # adam (Adamtive Moment Estimation)
+loss = cross # Cost(loss) function : mse (mean squared error)
+ # cross (cross entropy)
+batch_size = 9
+save_path = "model.bin" # model path to save / read
+beta1 = 0.9 # beta 1 for adam
+beta2 = 0.9999 # beta 2 for adam
+epsilon = 1e-7 # epsilon for adam
+
+[DataSet]
+BufferSize=9
+TrainData="trainingSet.dat"
+ValidData="trainingSet.dat"
+LabelData="label.dat"
+
+# Layer Section : Name
+[inputlayer]
+Type = input
+Input_Shape = 1:1:62720 # Input Layer Dimension
+bias_initializer = zeros # Zero Bias
+Normalization = true
+
+[outputlayer]
+Type = fully_connected
+Unit = 2 # Output Layer Dimension ( = Weight Width )
+bias_initializer = zeros
+Activation = sigmoid # activation : sigmoid, softmax
+Weight_Decay = l2norm
+weight_Decay_Lambda = 0.005