Update for non Eigen users
authoredgarriba <edgar.riba@gmail.com>
Fri, 1 Aug 2014 08:48:39 +0000 (10:48 +0200)
committeredgarriba <edgar.riba@gmail.com>
Fri, 1 Aug 2014 08:48:39 +0000 (10:48 +0200)
modules/calib3d/src/dls.cpp
modules/calib3d/src/dls.h
modules/calib3d/src/solvepnp.cpp

index c8d9260..ef1ad58 100644 (file)
 #  include "opencv2/core/eigen.hpp"
 #endif
 
-
-//#include <Eigen/Eigenvalues>
-//#include <Eigen/Core>
-
 using namespace std;
 
 dls::dls(const cv::Mat& opoints, const cv::Mat& ipoints)
 {
 
+
        N =  std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F));
        p = cv::Mat(3, N, CV_64F);
        z = cv::Mat(3, N, CV_64F);
@@ -136,8 +133,6 @@ void dls::run_kernel(const cv::Mat& pp)
        int count = 0;
        for (int k = 0; k < 27; ++k)
        {
-               // TODO: solve implementation for complex numbers
-
                //  V(:,k) = V(:,k)/V(1,k);
                cv::Mat V_kA = eigenvec_r.col(k); // 27x1
                cv::Mat V_kB = cv::Mat(1, 1, z.depth(), V_kA.at<double>(0)); // 1x1
@@ -145,9 +140,11 @@ void dls::run_kernel(const cv::Mat& pp)
                cv::Mat( V_k.t()).copyTo( eigenvec_r.col(k) );
 
                //if (imag(V(2,k)) == 0)
+#ifdef HAVE_EIGEN
                const double epsilon = 1e-4;
            if( eigenval_i.at<double>(k,0) >= -epsilon && eigenval_i.at<double>(k,0) <= epsilon )
-               { // it should work without checking imaginari part
+#endif
+               {
 
                        double stmp[3];
                        stmp[0] = eigenvec_r.at<double>(9, k);
@@ -282,8 +279,6 @@ void dls::build_coeff_matrix(const cv::Mat& pp, cv::Mat& Mtilde, cv::Mat& D)
 void dls::compute_eigenvec(const cv::Mat& Mtilde, cv::Mat& eigenval_real, cv::Mat& eigenval_imag,
                                                                                          cv::Mat& eigenvec_real, cv::Mat& eigenvec_imag)
 {
-       // EIGENVALUES AND EIGENVECTORS
-
 #ifdef HAVE_EIGEN
        Eigen::MatrixXd Mtilde_eig, zeros_eig;
        cv::cv2eigen(Mtilde, Mtilde_eig);
@@ -305,6 +300,10 @@ void dls::compute_eigenvec(const cv::Mat& Mtilde, cv::Mat& eigenval_real, cv::Ma
        cv::eigen2cv(eigval_imag, eigenval_imag);
        cv::eigen2cv(eigvec_real, eigenvec_real);
        cv::eigen2cv(eigvec_imag, eigenvec_imag);
+#else
+       EigenvalueDecomposition es(Mtilde);
+       eigenval_real = es.eigenvalues();
+       eigenvec_real = es.eigenvectors();
 #endif
 
 }
index a8250fa..83f014f 100644 (file)
@@ -4,7 +4,7 @@
 #include "precomp.hpp"
 
 using namespace std;
-
+using namespace cv;
 
 class dls
 {
@@ -66,4 +66,696 @@ private:
        double cost__;                                                  // optimal found solution
 };
 
+
+class EigenvalueDecomposition {
+private:
+
+    // Holds the data dimension.
+    int n;
+
+    // Stores real/imag part of a complex division.
+    double cdivr, cdivi;
+
+    // Pointer to internal memory.
+    double *d, *e, *ort;
+    double **V, **H;
+
+    // Holds the computed eigenvalues.
+    Mat _eigenvalues;
+
+    // Holds the computed eigenvectors.
+    Mat _eigenvectors;
+
+    // Allocates memory.
+    template<typename _Tp>
+    _Tp *alloc_1d(int m) {
+        return new _Tp[m];
+    }
+
+    // Allocates memory.
+    template<typename _Tp>
+    _Tp *alloc_1d(int m, _Tp val) {
+        _Tp *arr = alloc_1d<_Tp> (m);
+        for (int i = 0; i < m; i++)
+            arr[i] = val;
+        return arr;
+    }
+
+    // Allocates memory.
+    template<typename _Tp>
+    _Tp **alloc_2d(int m, int _n) {
+        _Tp **arr = new _Tp*[m];
+        for (int i = 0; i < m; i++)
+            arr[i] = new _Tp[_n];
+        return arr;
+    }
+
+    // Allocates memory.
+    template<typename _Tp>
+    _Tp **alloc_2d(int m, int _n, _Tp val) {
+        _Tp **arr = alloc_2d<_Tp> (m, _n);
+        for (int i = 0; i < m; i++) {
+            for (int j = 0; j < _n; j++) {
+                arr[i][j] = val;
+            }
+        }
+        return arr;
+    }
+
+    void cdiv(double xr, double xi, double yr, double yi) {
+        double r, dv;
+        if (std::abs(yr) > std::abs(yi)) {
+            r = yi / yr;
+            dv = yr + r * yi;
+            cdivr = (xr + r * xi) / dv;
+            cdivi = (xi - r * xr) / dv;
+        } else {
+            r = yr / yi;
+            dv = yi + r * yr;
+            cdivr = (r * xr + xi) / dv;
+            cdivi = (r * xi - xr) / dv;
+        }
+    }
+
+    // Nonsymmetric reduction from Hessenberg to real Schur form.
+
+    void hqr2() {
+
+        //  This is derived from the Algol procedure hqr2,
+        //  by Martin and Wilkinson, Handbook for Auto. Comp.,
+        //  Vol.ii-Linear Algebra, and the corresponding
+        //  Fortran subroutine in EISPACK.
+
+        // Initialize
+        int nn = this->n;
+        int n1 = nn - 1;
+        int low = 0;
+        int high = nn - 1;
+        double eps = std::pow(2.0, -52.0);
+        double exshift = 0.0;
+        double p = 0, q = 0, r = 0, s = 0, z = 0, t, w, x, y;
+
+        // Store roots isolated by balanc and compute matrix norm
+
+        double norm = 0.0;
+        for (int i = 0; i < nn; i++) {
+            if (i < low || i > high) {
+                d[i] = H[i][i];
+                e[i] = 0.0;
+            }
+            for (int j = std::max(i - 1, 0); j < nn; j++) {
+                norm = norm + std::abs(H[i][j]);
+            }
+        }
+
+        // Outer loop over eigenvalue index
+        int iter = 0;
+        while (n1 >= low) {
+
+            // Look for single small sub-diagonal element
+            int l = n1;
+            while (l > low) {
+                s = std::abs(H[l - 1][l - 1]) + std::abs(H[l][l]);
+                if (s == 0.0) {
+                    s = norm;
+                }
+                if (std::abs(H[l][l - 1]) < eps * s) {
+                    break;
+                }
+                l--;
+            }
+
+            // Check for convergence
+            // One root found
+
+            if (l == n1) {
+                H[n1][n1] = H[n1][n1] + exshift;
+                d[n1] = H[n1][n1];
+                e[n1] = 0.0;
+                n1--;
+                iter = 0;
+
+                // Two roots found
+
+            } else if (l == n1 - 1) {
+                w = H[n1][n1 - 1] * H[n1 - 1][n1];
+                p = (H[n1 - 1][n1 - 1] - H[n1][n1]) / 2.0;
+                q = p * p + w;
+                z = std::sqrt(std::abs(q));
+                H[n1][n1] = H[n1][n1] + exshift;
+                H[n1 - 1][n1 - 1] = H[n1 - 1][n1 - 1] + exshift;
+                x = H[n1][n1];
+
+                // Real pair
+
+                if (q >= 0) {
+                    if (p >= 0) {
+                        z = p + z;
+                    } else {
+                        z = p - z;
+                    }
+                    d[n1 - 1] = x + z;
+                    d[n1] = d[n1 - 1];
+                    if (z != 0.0) {
+                        d[n1] = x - w / z;
+                    }
+                    e[n1 - 1] = 0.0;
+                    e[n1] = 0.0;
+                    x = H[n1][n1 - 1];
+                    s = std::abs(x) + std::abs(z);
+                    p = x / s;
+                    q = z / s;
+                    r = std::sqrt(p * p + q * q);
+                    p = p / r;
+                    q = q / r;
+
+                    // Row modification
+
+                    for (int j = n1 - 1; j < nn; j++) {
+                        z = H[n1 - 1][j];
+                        H[n1 - 1][j] = q * z + p * H[n1][j];
+                        H[n1][j] = q * H[n1][j] - p * z;
+                    }
+
+                    // Column modification
+
+                    for (int i = 0; i <= n1; i++) {
+                        z = H[i][n1 - 1];
+                        H[i][n1 - 1] = q * z + p * H[i][n1];
+                        H[i][n1] = q * H[i][n1] - p * z;
+                    }
+
+                    // Accumulate transformations
+
+                    for (int i = low; i <= high; i++) {
+                        z = V[i][n1 - 1];
+                        V[i][n1 - 1] = q * z + p * V[i][n1];
+                        V[i][n1] = q * V[i][n1] - p * z;
+                    }
+
+                    // Complex pair
+
+                } else {
+                    d[n1 - 1] = x + p;
+                    d[n1] = x + p;
+                    e[n1 - 1] = z;
+                    e[n1] = -z;
+                }
+                n1 = n1 - 2;
+                iter = 0;
+
+                // No convergence yet
+
+            } else {
+
+                // Form shift
+
+                x = H[n1][n1];
+                y = 0.0;
+                w = 0.0;
+                if (l < n1) {
+                    y = H[n1 - 1][n1 - 1];
+                    w = H[n1][n1 - 1] * H[n1 - 1][n1];
+                }
+
+                // Wilkinson's original ad hoc shift
+
+                if (iter == 10) {
+                    exshift += x;
+                    for (int i = low; i <= n1; i++) {
+                        H[i][i] -= x;
+                    }
+                    s = std::abs(H[n1][n1 - 1]) + std::abs(H[n1 - 1][n1 - 2]);
+                    x = y = 0.75 * s;
+                    w = -0.4375 * s * s;
+                }
+
+                // MATLAB's new ad hoc shift
+
+                if (iter == 30) {
+                    s = (y - x) / 2.0;
+                    s = s * s + w;
+                    if (s > 0) {
+                        s = std::sqrt(s);
+                        if (y < x) {
+                            s = -s;
+                        }
+                        s = x - w / ((y - x) / 2.0 + s);
+                        for (int i = low; i <= n1; i++) {
+                            H[i][i] -= s;
+                        }
+                        exshift += s;
+                        x = y = w = 0.964;
+                    }
+                }
+
+                iter = iter + 1; // (Could check iteration count here.)
+
+                // Look for two consecutive small sub-diagonal elements
+                int m = n1 - 2;
+                while (m >= l) {
+                    z = H[m][m];
+                    r = x - z;
+                    s = y - z;
+                    p = (r * s - w) / H[m + 1][m] + H[m][m + 1];
+                    q = H[m + 1][m + 1] - z - r - s;
+                    r = H[m + 2][m + 1];
+                    s = std::abs(p) + std::abs(q) + std::abs(r);
+                    p = p / s;
+                    q = q / s;
+                    r = r / s;
+                    if (m == l) {
+                        break;
+                    }
+                    if (std::abs(H[m][m - 1]) * (std::abs(q) + std::abs(r)) < eps * (std::abs(p)
+                                                                                     * (std::abs(H[m - 1][m - 1]) + std::abs(z) + std::abs(
+                                                                                                                                           H[m + 1][m + 1])))) {
+                        break;
+                    }
+                    m--;
+                }
+
+                for (int i = m + 2; i <= n1; i++) {
+                    H[i][i - 2] = 0.0;
+                    if (i > m + 2) {
+                        H[i][i - 3] = 0.0;
+                    }
+                }
+
+                // Double QR step involving rows l:n and columns m:n
+
+                for (int k = m; k <= n1 - 1; k++) {
+                    bool notlast = (k != n1 - 1);
+                    if (k != m) {
+                        p = H[k][k - 1];
+                        q = H[k + 1][k - 1];
+                        r = (notlast ? H[k + 2][k - 1] : 0.0);
+                        x = std::abs(p) + std::abs(q) + std::abs(r);
+                        if (x != 0.0) {
+                            p = p / x;
+                            q = q / x;
+                            r = r / x;
+                        }
+                    }
+                    if (x == 0.0) {
+                        break;
+                    }
+                    s = std::sqrt(p * p + q * q + r * r);
+                    if (p < 0) {
+                        s = -s;
+                    }
+                    if (s != 0) {
+                        if (k != m) {
+                            H[k][k - 1] = -s * x;
+                        } else if (l != m) {
+                            H[k][k - 1] = -H[k][k - 1];
+                        }
+                        p = p + s;
+                        x = p / s;
+                        y = q / s;
+                        z = r / s;
+                        q = q / p;
+                        r = r / p;
+
+                        // Row modification
+
+                        for (int j = k; j < nn; j++) {
+                            p = H[k][j] + q * H[k + 1][j];
+                            if (notlast) {
+                                p = p + r * H[k + 2][j];
+                                H[k + 2][j] = H[k + 2][j] - p * z;
+                            }
+                            H[k][j] = H[k][j] - p * x;
+                            H[k + 1][j] = H[k + 1][j] - p * y;
+                        }
+
+                        // Column modification
+
+                        for (int i = 0; i <= std::min(n1, k + 3); i++) {
+                            p = x * H[i][k] + y * H[i][k + 1];
+                            if (notlast) {
+                                p = p + z * H[i][k + 2];
+                                H[i][k + 2] = H[i][k + 2] - p * r;
+                            }
+                            H[i][k] = H[i][k] - p;
+                            H[i][k + 1] = H[i][k + 1] - p * q;
+                        }
+
+                        // Accumulate transformations
+
+                        for (int i = low; i <= high; i++) {
+                            p = x * V[i][k] + y * V[i][k + 1];
+                            if (notlast) {
+                                p = p + z * V[i][k + 2];
+                                V[i][k + 2] = V[i][k + 2] - p * r;
+                            }
+                            V[i][k] = V[i][k] - p;
+                            V[i][k + 1] = V[i][k + 1] - p * q;
+                        }
+                    } // (s != 0)
+                } // k loop
+            } // check convergence
+        } // while (n1 >= low)
+
+        // Backsubstitute to find vectors of upper triangular form
+
+        if (norm == 0.0) {
+            return;
+        }
+
+        for (n1 = nn - 1; n1 >= 0; n1--) {
+            p = d[n1];
+            q = e[n1];
+
+            // Real vector
+
+            if (q == 0) {
+                int l = n1;
+                H[n1][n1] = 1.0;
+                for (int i = n1 - 1; i >= 0; i--) {
+                    w = H[i][i] - p;
+                    r = 0.0;
+                    for (int j = l; j <= n1; j++) {
+                        r = r + H[i][j] * H[j][n1];
+                    }
+                    if (e[i] < 0.0) {
+                        z = w;
+                        s = r;
+                    } else {
+                        l = i;
+                        if (e[i] == 0.0) {
+                            if (w != 0.0) {
+                                H[i][n1] = -r / w;
+                            } else {
+                                H[i][n1] = -r / (eps * norm);
+                            }
+
+                            // Solve real equations
+
+                        } else {
+                            x = H[i][i + 1];
+                            y = H[i + 1][i];
+                            q = (d[i] - p) * (d[i] - p) + e[i] * e[i];
+                            t = (x * s - z * r) / q;
+                            H[i][n1] = t;
+                            if (std::abs(x) > std::abs(z)) {
+                                H[i + 1][n1] = (-r - w * t) / x;
+                            } else {
+                                H[i + 1][n1] = (-s - y * t) / z;
+                            }
+                        }
+
+                        // Overflow control
+
+                        t = std::abs(H[i][n1]);
+                        if ((eps * t) * t > 1) {
+                            for (int j = i; j <= n1; j++) {
+                                H[j][n1] = H[j][n1] / t;
+                            }
+                        }
+                    }
+                }
+                // Complex vector
+            } else if (q < 0) {
+                int l = n1 - 1;
+
+                // Last vector component imaginary so matrix is triangular
+
+                if (std::abs(H[n1][n1 - 1]) > std::abs(H[n1 - 1][n1])) {
+                    H[n1 - 1][n1 - 1] = q / H[n1][n1 - 1];
+                    H[n1 - 1][n1] = -(H[n1][n1] - p) / H[n1][n1 - 1];
+                } else {
+                    cdiv(0.0, -H[n1 - 1][n1], H[n1 - 1][n1 - 1] - p, q);
+                    H[n1 - 1][n1 - 1] = cdivr;
+                    H[n1 - 1][n1] = cdivi;
+                }
+                H[n1][n1 - 1] = 0.0;
+                H[n1][n1] = 1.0;
+                for (int i = n1 - 2; i >= 0; i--) {
+                    double ra, sa, vr, vi;
+                    ra = 0.0;
+                    sa = 0.0;
+                    for (int j = l; j <= n1; j++) {
+                        ra = ra + H[i][j] * H[j][n1 - 1];
+                        sa = sa + H[i][j] * H[j][n1];
+                    }
+                    w = H[i][i] - p;
+
+                    if (e[i] < 0.0) {
+                        z = w;
+                        r = ra;
+                        s = sa;
+                    } else {
+                        l = i;
+                        if (e[i] == 0) {
+                            cdiv(-ra, -sa, w, q);
+                            H[i][n1 - 1] = cdivr;
+                            H[i][n1] = cdivi;
+                        } else {
+
+                            // Solve complex equations
+
+                            x = H[i][i + 1];
+                            y = H[i + 1][i];
+                            vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q;
+                            vi = (d[i] - p) * 2.0 * q;
+                            if (vr == 0.0 && vi == 0.0) {
+                                vr = eps * norm * (std::abs(w) + std::abs(q) + std::abs(x)
+                                                   + std::abs(y) + std::abs(z));
+                            }
+                            cdiv(x * r - z * ra + q * sa,
+                                 x * s - z * sa - q * ra, vr, vi);
+                            H[i][n1 - 1] = cdivr;
+                            H[i][n1] = cdivi;
+                            if (std::abs(x) > (std::abs(z) + std::abs(q))) {
+                                H[i + 1][n1 - 1] = (-ra - w * H[i][n1 - 1] + q
+                                                   * H[i][n1]) / x;
+                                H[i + 1][n1] = (-sa - w * H[i][n1] - q * H[i][n1
+                                                                            - 1]) / x;
+                            } else {
+                                cdiv(-r - y * H[i][n1 - 1], -s - y * H[i][n1], z,
+                                     q);
+                                H[i + 1][n1 - 1] = cdivr;
+                                H[i + 1][n1] = cdivi;
+                            }
+                        }
+
+                        // Overflow control
+
+                        t = std::max(std::abs(H[i][n1 - 1]), std::abs(H[i][n1]));
+                        if ((eps * t) * t > 1) {
+                            for (int j = i; j <= n1; j++) {
+                                H[j][n1 - 1] = H[j][n1 - 1] / t;
+                                H[j][n1] = H[j][n1] / t;
+                            }
+                        }
+                    }
+                }
+            }
+        }
+
+        // Vectors of isolated roots
+
+        for (int i = 0; i < nn; i++) {
+            if (i < low || i > high) {
+                for (int j = i; j < nn; j++) {
+                    V[i][j] = H[i][j];
+                }
+            }
+        }
+
+        // Back transformation to get eigenvectors of original matrix
+
+        for (int j = nn - 1; j >= low; j--) {
+            for (int i = low; i <= high; i++) {
+                z = 0.0;
+                for (int k = low; k <= std::min(j, high); k++) {
+                    z = z + V[i][k] * H[k][j];
+                }
+                V[i][j] = z;
+            }
+        }
+    }
+
+    // Nonsymmetric reduction to Hessenberg form.
+    void orthes() {
+        //  This is derived from the Algol procedures orthes and ortran,
+        //  by Martin and Wilkinson, Handbook for Auto. Comp.,
+        //  Vol.ii-Linear Algebra, and the corresponding
+        //  Fortran subroutines in EISPACK.
+        int low = 0;
+        int high = n - 1;
+
+        for (int m = low + 1; m <= high - 1; m++) {
+
+            // Scale column.
+
+            double scale = 0.0;
+            for (int i = m; i <= high; i++) {
+                scale = scale + std::abs(H[i][m - 1]);
+            }
+            if (scale != 0.0) {
+
+                // Compute Householder transformation.
+
+                double h = 0.0;
+                for (int i = high; i >= m; i--) {
+                    ort[i] = H[i][m - 1] / scale;
+                    h += ort[i] * ort[i];
+                }
+                double g = std::sqrt(h);
+                if (ort[m] > 0) {
+                    g = -g;
+                }
+                h = h - ort[m] * g;
+                ort[m] = ort[m] - g;
+
+                // Apply Householder similarity transformation
+                // H = (I-u*u'/h)*H*(I-u*u')/h)
+
+                for (int j = m; j < n; j++) {
+                    double f = 0.0;
+                    for (int i = high; i >= m; i--) {
+                        f += ort[i] * H[i][j];
+                    }
+                    f = f / h;
+                    for (int i = m; i <= high; i++) {
+                        H[i][j] -= f * ort[i];
+                    }
+                }
+
+                for (int i = 0; i <= high; i++) {
+                    double f = 0.0;
+                    for (int j = high; j >= m; j--) {
+                        f += ort[j] * H[i][j];
+                    }
+                    f = f / h;
+                    for (int j = m; j <= high; j++) {
+                        H[i][j] -= f * ort[j];
+                    }
+                }
+                ort[m] = scale * ort[m];
+                H[m][m - 1] = scale * g;
+            }
+        }
+
+        // Accumulate transformations (Algol's ortran).
+
+        for (int i = 0; i < n; i++) {
+            for (int j = 0; j < n; j++) {
+                V[i][j] = (i == j ? 1.0 : 0.0);
+            }
+        }
+
+        for (int m = high - 1; m >= low + 1; m--) {
+            if (H[m][m - 1] != 0.0) {
+                for (int i = m + 1; i <= high; i++) {
+                    ort[i] = H[i][m - 1];
+                }
+                for (int j = m; j <= high; j++) {
+                    double g = 0.0;
+                    for (int i = m; i <= high; i++) {
+                        g += ort[i] * V[i][j];
+                    }
+                    // Double division avoids possible underflow
+                    g = (g / ort[m]) / H[m][m - 1];
+                    for (int i = m; i <= high; i++) {
+                        V[i][j] += g * ort[i];
+                    }
+                }
+            }
+        }
+    }
+
+    // Releases all internal working memory.
+    void release() {
+        // releases the working data
+        delete[] d;
+        delete[] e;
+        delete[] ort;
+        for (int i = 0; i < n; i++) {
+            delete[] H[i];
+            delete[] V[i];
+        }
+        delete[] H;
+        delete[] V;
+    }
+
+    // Computes the Eigenvalue Decomposition for a matrix given in H.
+    void compute() {
+        // Allocate memory for the working data.
+        V = alloc_2d<double> (n, n, 0.0);
+        d = alloc_1d<double> (n);
+        e = alloc_1d<double> (n);
+        ort = alloc_1d<double> (n);
+        // Reduce to Hessenberg form.
+        orthes();
+        // Reduce Hessenberg to real Schur form.
+        hqr2();
+        // Copy eigenvalues to OpenCV Matrix.
+        _eigenvalues.create(1, n, CV_64FC1);
+        for (int i = 0; i < n; i++) {
+            _eigenvalues.at<double> (0, i) = d[i];
+        }
+        // Copy eigenvectors to OpenCV Matrix.
+        _eigenvectors.create(n, n, CV_64FC1);
+        for (int i = 0; i < n; i++)
+            for (int j = 0; j < n; j++)
+                _eigenvectors.at<double> (i, j) = V[i][j];
+        // Deallocate the memory by releasing all internal working data.
+        release();
+    }
+
+public:
+    EigenvalueDecomposition()
+    : n(0) { }
+
+    // Initializes & computes the Eigenvalue Decomposition for a general matrix
+    // given in src. This function is a port of the EigenvalueSolver in JAMA,
+    // which has been released to public domain by The MathWorks and the
+    // National Institute of Standards and Technology (NIST).
+    EigenvalueDecomposition(InputArray src) {
+        compute(src);
+    }
+
+    // This function computes the Eigenvalue Decomposition for a general matrix
+    // given in src. This function is a port of the EigenvalueSolver in JAMA,
+    // which has been released to public domain by The MathWorks and the
+    // National Institute of Standards and Technology (NIST).
+    void compute(InputArray src)
+    {
+        /*if(isSymmetric(src)) {
+            // Fall back to OpenCV for a symmetric matrix!
+            cv::eigen(src, _eigenvalues, _eigenvectors);
+        } else {*/
+            Mat tmp;
+            // Convert the given input matrix to double. Is there any way to
+            // prevent allocating the temporary memory? Only used for copying
+            // into working memory and deallocated after.
+            src.getMat().convertTo(tmp, CV_64FC1);
+            // Get dimension of the matrix.
+            this->n = tmp.cols;
+            // Allocate the matrix data to work on.
+            this->H = alloc_2d<double> (n, n);
+            // Now safely copy the data.
+            for (int i = 0; i < tmp.rows; i++) {
+                for (int j = 0; j < tmp.cols; j++) {
+                    this->H[i][j] = tmp.at<double>(i, j);
+                }
+            }
+            // Deallocates the temporary matrix before computing.
+            tmp.release();
+            // Performs the eigenvalue decomposition of H.
+            compute();
+       // }
+    }
+
+    ~EigenvalueDecomposition() {}
+
+    // Returns the eigenvalues of the Eigenvalue Decomposition.
+    Mat eigenvalues() {  return _eigenvalues; }
+    // Returns the eigenvectors of the Eigenvalue Decomposition.
+    Mat eigenvectors() { return _eigenvectors; }
+};
+
 #endif // DLS_H
index 73eda92..4c1e80b 100644 (file)
@@ -96,21 +96,15 @@ bool cv::solvePnP( InputArray _opoints, InputArray _ipoints,
     }
     else if (flags == DLS)
     {
-       bool result = false;
-#ifdef HAVE_EIGEN
-
        cv::Mat undistortedPoints;
        cv::undistortPoints(ipoints, undistortedPoints, cameraMatrix, distCoeffs);
 
        dls PnP(opoints, undistortedPoints);
 
        cv::Mat R, rvec = _rvec.getMat(), tvec = _tvec.getMat();
-       result = PnP.compute_pose(R, tvec);
+       bool result = PnP.compute_pose(R, tvec);
         if (result)
                cv::Rodrigues(R, rvec);
-#else
-        std::cout << "EIGEN library needed for DLS" << std::endl;
-#endif
         return result;
     }
     else