[mlir][llvm] Add memcpy support for mem2reg/sroa.
authorThéo Degioanni <theo.degioanni@nextsilicon.com>
Fri, 16 Jun 2023 08:34:59 +0000 (08:34 +0000)
committerThéo Degioanni <theo.degioanni@nextsilicon.com>
Fri, 16 Jun 2023 08:35:20 +0000 (08:35 +0000)
This revision introduces SROA and mem2reg support for the family of
memcpy-like intrinsics (memcpy, memcpy.inline and memmove).

The mem2reg implementation transforms memcpys of full types into loads
and store. Memcpy between two promotable slots always disappear.

The SROA implementation transforms memcpys of *entire* aggregate types
into memcpys of all of their fields.

Reviewed By: gysit

Differential Revision: https://reviews.llvm.org/D152898

mlir/include/mlir/Dialect/LLVMIR/LLVMIntrinsicOps.td
mlir/lib/Dialect/LLVMIR/IR/LLVMMemorySlot.cpp
mlir/test/Dialect/LLVMIR/mem2reg-intrinsics.mlir
mlir/test/Dialect/LLVMIR/sroa-intrinsics.mlir

index ce59aae..af2b635 100644 (file)
@@ -207,8 +207,11 @@ def LLVM_UMaxOp : LLVM_BinarySameArgsIntrOpI<"umax">;
 def LLVM_UMinOp : LLVM_BinarySameArgsIntrOpI<"umin">;
 
 class LLVM_MemcpyIntrOpBase<string name> :
-    LLVM_ZeroResultIntrOp<name, [0, 1, 2], [], /*requiresAccessGroup=*/1,
-                                               /*requiresAliasAnalysis=*/1> {
+    LLVM_ZeroResultIntrOp<name, [0, 1, 2],
+    [DeclareOpInterfaceMethods<PromotableMemOpInterface>,
+     DeclareOpInterfaceMethods<DestructurableAccessorOpInterface>,
+     DeclareOpInterfaceMethods<SafeMemorySlotAccessOpInterface>],
+    /*requiresAccessGroup=*/1, /*requiresAliasAnalysis=*/1> {
   dag args = (ins Arg<LLVM_AnyPointer,"",[MemWrite]>:$dst,
                   Arg<LLVM_AnyPointer,"",[MemRead]>:$src,
                   AnySignlessInteger:$len, I1Attr:$isVolatile);
@@ -245,9 +248,11 @@ def LLVM_MemcpyOp : LLVM_MemcpyIntrOpBase<"memcpy">;
 def LLVM_MemmoveOp : LLVM_MemcpyIntrOpBase<"memmove">;
 
 def LLVM_MemcpyInlineOp :
-    LLVM_ZeroResultIntrOp<"memcpy.inline", [0, 1], [],
-                          /*requiresAccessGroup=*/1,
-                          /*requiresAliasAnalysis=*/1> {
+    LLVM_ZeroResultIntrOp<"memcpy.inline", [0, 1],
+    [DeclareOpInterfaceMethods<PromotableMemOpInterface>,
+     DeclareOpInterfaceMethods<DestructurableAccessorOpInterface>,
+     DeclareOpInterfaceMethods<SafeMemorySlotAccessOpInterface>],
+    /*requiresAccessGroup=*/1, /*requiresAliasAnalysis=*/1> {
   dag args = (ins Arg<LLVM_AnyPointer,"",[MemWrite]>:$dst,
                   Arg<LLVM_AnyPointer,"",[MemRead]>:$src,
                   APIntAttr:$len, I1Attr:$isVolatile);
index 65c3d02..43d17fe 100644 (file)
@@ -19,6 +19,7 @@
 #include "mlir/IR/ValueRange.h"
 #include "mlir/Interfaces/DataLayoutInterfaces.h"
 #include "mlir/Interfaces/MemorySlotInterfaces.h"
+#include "llvm/ADT/STLExtras.h"
 #include "llvm/ADT/TypeSwitch.h"
 
 using namespace mlir;
@@ -414,35 +415,65 @@ DeletionKind LLVM::GEPOp::rewire(const DestructurableMemorySlot &slot,
 }
 
 //===----------------------------------------------------------------------===//
-// Interfaces for memset
+// Utilities for memory intrinsics
 //===----------------------------------------------------------------------===//
 
-/// Returns the length of the given memset in bytes if it can be known at
-/// compile-time on a best-effort basis, nothing otherwise.
-static std::optional<uint64_t> getStaticMemsetLen(LLVM::MemsetOp op) {
-  IntegerAttr::ValueType memsetLen;
-  if (!matchPattern(op.getLen(), m_ConstantInt(&memsetLen)))
-    return {};
+namespace {
 
-  if (memsetLen.getBitWidth() > 64)
+/// Returns the length of the given memory intrinsic in bytes if it can be known
+/// at compile-time on a best-effort basis, nothing otherwise.
+template <class MemIntr>
+std::optional<uint64_t> getStaticMemIntrLen(MemIntr op) {
+  APInt memIntrLen;
+  if (!matchPattern(op.getLen(), m_ConstantInt(&memIntrLen)))
+    return {};
+  if (memIntrLen.getBitWidth() > 64)
     return {};
+  return memIntrLen.getZExtValue();
+}
 
-  return memsetLen.getZExtValue();
+/// Returns the length of the given memory intrinsic in bytes if it can be known
+/// at compile-time on a best-effort basis, nothing otherwise.
+/// Because MemcpyInlineOp has its length encoded as an attribute, this requires
+/// specialized handling.
+template <>
+std::optional<uint64_t> getStaticMemIntrLen(LLVM::MemcpyInlineOp op) {
+  APInt memIntrLen = op.getLen();
+  if (memIntrLen.getBitWidth() > 64)
+    return {};
+  return memIntrLen.getZExtValue();
 }
 
-/// Returns whether one can be sure the memset does not write outside of the
-/// bounds of the given slot, on a best-effort basis.
-static bool definitelyWritesOnlyWithinSlot(LLVM::MemsetOp op,
-                                           const MemorySlot &slot,
+} // namespace
+
+/// Returns whether one can be sure the memory intrinsic does not write outside
+/// of the bounds of the given slot, on a best-effort basis.
+template <class MemIntr>
+static bool definitelyWritesOnlyWithinSlot(MemIntr op, const MemorySlot &slot,
                                            DataLayout &dataLayout) {
   if (!isa<LLVM::LLVMPointerType>(slot.ptr.getType()) ||
       op.getDst() != slot.ptr)
     return false;
 
-  std::optional<uint64_t> memsetLen = getStaticMemsetLen(op);
-  return memsetLen && *memsetLen <= dataLayout.getTypeSize(slot.elemType);
+  std::optional<uint64_t> memIntrLen = getStaticMemIntrLen(op);
+  return memIntrLen && *memIntrLen <= dataLayout.getTypeSize(slot.elemType);
+}
+
+/// Checks whether all indices are i32. This is used to check GEPs can index
+/// into them.
+static bool areAllIndicesI32(const DestructurableMemorySlot &slot) {
+  Type i32 = IntegerType::get(slot.ptr.getContext(), 32);
+  return llvm::all_of(llvm::make_first_range(slot.elementPtrs),
+                      [&](Attribute index) {
+                        auto intIndex = dyn_cast<IntegerAttr>(index);
+                        return intIndex && intIndex.getType() == i32;
+                      });
 }
 
+//===----------------------------------------------------------------------===//
+// Interfaces for memset
+//===----------------------------------------------------------------------===//
+
 bool LLVM::MemsetOp::loadsFrom(const MemorySlot &slot) { return false; }
 
 bool LLVM::MemsetOp::storesTo(const MemorySlot &slot) {
@@ -459,8 +490,8 @@ Value LLVM::MemsetOp::getStored(const MemorySlot &slot,
 
         assert(intType.getWidth() % 8 == 0);
 
-        // Build the memset integer by repeatedly shifting the value and or-ing
-        // it with the previous value.
+        // Build the memset integer by repeatedly shifting the value and
+        // or-ing it with the previous value.
         uint64_t coveredBits = 8;
         Value currentValue =
             rewriter.create<LLVM::ZExtOp>(getLoc(), intType, getVal());
@@ -499,7 +530,7 @@ bool LLVM::MemsetOp::canUsesBeRemoved(
     return false;
 
   DataLayout layout = DataLayout::closest(*this);
-  return getStaticMemsetLen(*this) == layout.getTypeSize(slot.elemType);
+  return getStaticMemIntrLen(*this) == layout.getTypeSize(slot.elemType);
 }
 
 DeletionKind LLVM::MemsetOp::removeBlockingUses(
@@ -527,6 +558,9 @@ bool LLVM::MemsetOp::canRewire(const DestructurableMemorySlot &slot,
            .getSubelementIndexMap())
     return false;
 
+  if (!areAllIndicesI32(slot))
+    return false;
+
   DataLayout dataLayout = DataLayout::closest(*this);
   return definitelyWritesOnlyWithinSlot(*this, slot, dataLayout);
 }
@@ -588,6 +622,302 @@ DeletionKind LLVM::MemsetOp::rewire(const DestructurableMemorySlot &slot,
 }
 
 //===----------------------------------------------------------------------===//
+// Interfaces for memcpy/memmove
+//===----------------------------------------------------------------------===//
+
+template <class MemcpyLike>
+static bool memcpyLoadsFrom(MemcpyLike op, const MemorySlot &slot) {
+  return op.getSrc() == slot.ptr;
+}
+
+template <class MemcpyLike>
+static bool memcpyStoresTo(MemcpyLike op, const MemorySlot &slot) {
+  return op.getDst() == slot.ptr;
+}
+
+template <class MemcpyLike>
+static Value memcpyGetStored(MemcpyLike op, const MemorySlot &slot,
+                             RewriterBase &rewriter) {
+  return rewriter.create<LLVM::LoadOp>(op.getLoc(), slot.elemType, op.getSrc());
+}
+
+template <class MemcpyLike>
+static bool
+memcpyCanUsesBeRemoved(MemcpyLike op, const MemorySlot &slot,
+                       const SmallPtrSetImpl<OpOperand *> &blockingUses,
+                       SmallVectorImpl<OpOperand *> &newBlockingUses) {
+  // If source and destination are the same, memcpy behavior is undefined and
+  // memmove is a no-op. Because there is no memory change happening here,
+  // simplifying such operations is left to canonicalization.
+  if (op.getDst() == op.getSrc())
+    return false;
+
+  if (op.getIsVolatile())
+    return false;
+
+  DataLayout layout = DataLayout::closest(op);
+  return getStaticMemIntrLen(op) == layout.getTypeSize(slot.elemType);
+}
+
+template <class MemcpyLike>
+static DeletionKind
+memcpyRemoveBlockingUses(MemcpyLike op, const MemorySlot &slot,
+                         const SmallPtrSetImpl<OpOperand *> &blockingUses,
+                         RewriterBase &rewriter, Value reachingDefinition) {
+  if (op.loadsFrom(slot))
+    rewriter.create<LLVM::StoreOp>(op.getLoc(), reachingDefinition,
+                                   op.getDst());
+  return DeletionKind::Delete;
+}
+
+template <class MemcpyLike>
+static LogicalResult
+memcpyEnsureOnlySafeAccesses(MemcpyLike op, const MemorySlot &slot,
+                             SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
+  DataLayout dataLayout = DataLayout::closest(op);
+  // While rewiring memcpy-like intrinsics only supports full copies, partial
+  // copies are still safe accesses so it is enough to only check for writes
+  // within bounds.
+  return success(definitelyWritesOnlyWithinSlot(op, slot, dataLayout));
+}
+
+template <class MemcpyLike>
+static bool memcpyCanRewire(MemcpyLike op, const DestructurableMemorySlot &slot,
+                            SmallPtrSetImpl<Attribute> &usedIndices,
+                            SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
+  if (op.getIsVolatile())
+    return false;
+
+  if (!slot.elemType.cast<DestructurableTypeInterface>()
+           .getSubelementIndexMap())
+    return false;
+
+  if (!areAllIndicesI32(slot))
+    return false;
+
+  // Only full copies are supported.
+  DataLayout dataLayout = DataLayout::closest(op);
+  if (getStaticMemIntrLen(op) != dataLayout.getTypeSize(slot.elemType))
+    return false;
+
+  if (op.getSrc() == slot.ptr)
+    for (Attribute index : llvm::make_first_range(slot.elementPtrs))
+      usedIndices.insert(index);
+
+  return true;
+}
+
+namespace {
+
+template <class MemcpyLike>
+void createMemcpyLikeToReplace(RewriterBase &rewriter, const DataLayout &layout,
+                               MemcpyLike toReplace, Value dst, Value src,
+                               Type toCpy, bool isVolatile) {
+  Value memcpySize = rewriter.create<LLVM::ConstantOp>(
+      toReplace.getLoc(), IntegerAttr::get(toReplace.getLen().getType(),
+                                           layout.getTypeSize(toCpy)));
+  rewriter.create<MemcpyLike>(toReplace.getLoc(), dst, src, memcpySize,
+                              isVolatile);
+}
+
+template <>
+void createMemcpyLikeToReplace(RewriterBase &rewriter, const DataLayout &layout,
+                               LLVM::MemcpyInlineOp toReplace, Value dst,
+                               Value src, Type toCpy, bool isVolatile) {
+  Type lenType = IntegerType::get(toReplace->getContext(),
+                                  toReplace.getLen().getBitWidth());
+  rewriter.create<LLVM::MemcpyInlineOp>(
+      toReplace.getLoc(), dst, src,
+      IntegerAttr::get(lenType, layout.getTypeSize(toCpy)), isVolatile);
+}
+
+} // namespace
+
+/// Rewires a memcpy-like operation. Only copies to or from the full slot are
+/// supported.
+template <class MemcpyLike>
+static DeletionKind memcpyRewire(MemcpyLike op,
+                                 const DestructurableMemorySlot &slot,
+                                 DenseMap<Attribute, MemorySlot> &subslots,
+                                 RewriterBase &rewriter) {
+  if (subslots.empty())
+    return DeletionKind::Delete;
+
+  DataLayout layout = DataLayout::closest(op);
+
+  assert((slot.ptr == op.getDst()) != (slot.ptr == op.getSrc()));
+  bool isDst = slot.ptr == op.getDst();
+
+#ifndef NDEBUG
+  size_t slotsTreated = 0;
+#endif
+
+  // It was previously checked that index types are consistent, so this type can
+  // be fetched now.
+  Type indexType = cast<IntegerAttr>(subslots.begin()->first).getType();
+  for (size_t i = 0, e = slot.elementPtrs.size(); i != e; i++) {
+    Attribute index = IntegerAttr::get(indexType, i);
+    if (!subslots.contains(index))
+      continue;
+    const MemorySlot &subslot = subslots.at(index);
+
+#ifndef NDEBUG
+    slotsTreated++;
+#endif
+
+    // First get a pointer to the equivalent of this subslot from the source
+    // pointer.
+    SmallVector<LLVM::GEPArg> gepIndices{
+        0, static_cast<int32_t>(
+               cast<IntegerAttr>(index).getValue().getZExtValue())};
+    Value subslotPtrInOther = rewriter.create<LLVM::GEPOp>(
+        op.getLoc(), LLVM::LLVMPointerType::get(op.getContext()), slot.elemType,
+        isDst ? op.getSrc() : op.getDst(), gepIndices);
+
+    // Then create a new memcpy out of this source pointer.
+    createMemcpyLikeToReplace(rewriter, layout, op,
+                              isDst ? subslot.ptr : subslotPtrInOther,
+                              isDst ? subslotPtrInOther : subslot.ptr,
+                              subslot.elemType, op.getIsVolatile());
+  }
+
+  assert(subslots.size() == slotsTreated);
+
+  return DeletionKind::Delete;
+}
+
+bool LLVM::MemcpyOp::loadsFrom(const MemorySlot &slot) {
+  return memcpyLoadsFrom(*this, slot);
+}
+
+bool LLVM::MemcpyOp::storesTo(const MemorySlot &slot) {
+  return memcpyStoresTo(*this, slot);
+}
+
+Value LLVM::MemcpyOp::getStored(const MemorySlot &slot,
+                                RewriterBase &rewriter) {
+  return memcpyGetStored(*this, slot, rewriter);
+}
+
+bool LLVM::MemcpyOp::canUsesBeRemoved(
+    const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
+    SmallVectorImpl<OpOperand *> &newBlockingUses) {
+  return memcpyCanUsesBeRemoved(*this, slot, blockingUses, newBlockingUses);
+}
+
+DeletionKind LLVM::MemcpyOp::removeBlockingUses(
+    const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
+    RewriterBase &rewriter, Value reachingDefinition) {
+  return memcpyRemoveBlockingUses(*this, slot, blockingUses, rewriter,
+                                  reachingDefinition);
+}
+
+LogicalResult LLVM::MemcpyOp::ensureOnlySafeAccesses(
+    const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
+  return memcpyEnsureOnlySafeAccesses(*this, slot, mustBeSafelyUsed);
+}
+
+bool LLVM::MemcpyOp::canRewire(const DestructurableMemorySlot &slot,
+                               SmallPtrSetImpl<Attribute> &usedIndices,
+                               SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
+  return memcpyCanRewire(*this, slot, usedIndices, mustBeSafelyUsed);
+}
+
+DeletionKind LLVM::MemcpyOp::rewire(const DestructurableMemorySlot &slot,
+                                    DenseMap<Attribute, MemorySlot> &subslots,
+                                    RewriterBase &rewriter) {
+  return memcpyRewire(*this, slot, subslots, rewriter);
+}
+
+bool LLVM::MemcpyInlineOp::loadsFrom(const MemorySlot &slot) {
+  return memcpyLoadsFrom(*this, slot);
+}
+
+bool LLVM::MemcpyInlineOp::storesTo(const MemorySlot &slot) {
+  return memcpyStoresTo(*this, slot);
+}
+
+Value LLVM::MemcpyInlineOp::getStored(const MemorySlot &slot,
+                                      RewriterBase &rewriter) {
+  return memcpyGetStored(*this, slot, rewriter);
+}
+
+bool LLVM::MemcpyInlineOp::canUsesBeRemoved(
+    const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
+    SmallVectorImpl<OpOperand *> &newBlockingUses) {
+  return memcpyCanUsesBeRemoved(*this, slot, blockingUses, newBlockingUses);
+}
+
+DeletionKind LLVM::MemcpyInlineOp::removeBlockingUses(
+    const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
+    RewriterBase &rewriter, Value reachingDefinition) {
+  return memcpyRemoveBlockingUses(*this, slot, blockingUses, rewriter,
+                                  reachingDefinition);
+}
+
+LogicalResult LLVM::MemcpyInlineOp::ensureOnlySafeAccesses(
+    const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
+  return memcpyEnsureOnlySafeAccesses(*this, slot, mustBeSafelyUsed);
+}
+
+bool LLVM::MemcpyInlineOp::canRewire(
+    const DestructurableMemorySlot &slot,
+    SmallPtrSetImpl<Attribute> &usedIndices,
+    SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
+  return memcpyCanRewire(*this, slot, usedIndices, mustBeSafelyUsed);
+}
+
+DeletionKind
+LLVM::MemcpyInlineOp::rewire(const DestructurableMemorySlot &slot,
+                             DenseMap<Attribute, MemorySlot> &subslots,
+                             RewriterBase &rewriter) {
+  return memcpyRewire(*this, slot, subslots, rewriter);
+}
+
+bool LLVM::MemmoveOp::loadsFrom(const MemorySlot &slot) {
+  return memcpyLoadsFrom(*this, slot);
+}
+
+bool LLVM::MemmoveOp::storesTo(const MemorySlot &slot) {
+  return memcpyStoresTo(*this, slot);
+}
+
+Value LLVM::MemmoveOp::getStored(const MemorySlot &slot,
+                                 RewriterBase &rewriter) {
+  return memcpyGetStored(*this, slot, rewriter);
+}
+
+bool LLVM::MemmoveOp::canUsesBeRemoved(
+    const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
+    SmallVectorImpl<OpOperand *> &newBlockingUses) {
+  return memcpyCanUsesBeRemoved(*this, slot, blockingUses, newBlockingUses);
+}
+
+DeletionKind LLVM::MemmoveOp::removeBlockingUses(
+    const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
+    RewriterBase &rewriter, Value reachingDefinition) {
+  return memcpyRemoveBlockingUses(*this, slot, blockingUses, rewriter,
+                                  reachingDefinition);
+}
+
+LogicalResult LLVM::MemmoveOp::ensureOnlySafeAccesses(
+    const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
+  return memcpyEnsureOnlySafeAccesses(*this, slot, mustBeSafelyUsed);
+}
+
+bool LLVM::MemmoveOp::canRewire(const DestructurableMemorySlot &slot,
+                                SmallPtrSetImpl<Attribute> &usedIndices,
+                                SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
+  return memcpyCanRewire(*this, slot, usedIndices, mustBeSafelyUsed);
+}
+
+DeletionKind LLVM::MemmoveOp::rewire(const DestructurableMemorySlot &slot,
+                                     DenseMap<Attribute, MemorySlot> &subslots,
+                                     RewriterBase &rewriter) {
+  return memcpyRewire(*this, slot, subslots, rewriter);
+}
+
+//===----------------------------------------------------------------------===//
 // Interfaces for destructurable types
 //===----------------------------------------------------------------------===//
 
index e0b0d29..4a262f7 100644 (file)
@@ -143,3 +143,157 @@ llvm.func @only_byte_aligned_integers_memset() -> i10 {
   %2 = llvm.load %1 {alignment = 4 : i64} : !llvm.ptr -> i10
   llvm.return %2 : i10
 }
+
+// -----
+
+// CHECK-LABEL: llvm.func @basic_memcpy
+// CHECK-SAME: (%[[SOURCE:.*]]: !llvm.ptr)
+llvm.func @basic_memcpy(%source: !llvm.ptr) -> i32 {
+  %0 = llvm.mlir.constant(1 : i32) : i32
+  %1 = llvm.alloca %0 x i32 : (i32) -> !llvm.ptr
+  %is_volatile = llvm.mlir.constant(false) : i1
+  %memcpy_len = llvm.mlir.constant(4 : i32) : i32
+  "llvm.intr.memcpy"(%1, %source, %memcpy_len) <{isVolatile = false}> : (!llvm.ptr, !llvm.ptr, i32) -> ()
+  // CHECK-NOT: "llvm.intr.memcpy"
+  // CHECK: %[[LOADED:.*]] = llvm.load %[[SOURCE]] : !llvm.ptr -> i32
+  // CHECK-NOT: "llvm.intr.memcpy"
+  %2 = llvm.load %1 : !llvm.ptr -> i32
+  // CHECK: llvm.return %[[LOADED]] : i32
+  llvm.return %2 : i32
+}
+
+// -----
+
+// CHECK-LABEL: llvm.func @basic_memcpy_dest
+// CHECK-SAME: (%[[DESTINATION:.*]]: !llvm.ptr)
+llvm.func @basic_memcpy_dest(%destination: !llvm.ptr) -> i32 {
+  %0 = llvm.mlir.constant(1 : i32) : i32
+  // CHECK: %[[DATA:.*]] = llvm.mlir.constant(42 : i32) : i32
+  %data = llvm.mlir.constant(42 : i32) : i32
+  %is_volatile = llvm.mlir.constant(false) : i1
+  %memcpy_len = llvm.mlir.constant(4 : i32) : i32
+
+  %1 = llvm.alloca %0 x i32 : (i32) -> !llvm.ptr
+  llvm.store %data, %1 : i32, !llvm.ptr
+  "llvm.intr.memcpy"(%destination, %1, %memcpy_len) <{isVolatile = false}> : (!llvm.ptr, !llvm.ptr, i32) -> ()
+  // CHECK-NOT: "llvm.intr.memcpy"
+  // CHECK: llvm.store %[[DATA]], %[[DESTINATION]] : i32, !llvm.ptr
+  // CHECK-NOT: "llvm.intr.memcpy"
+
+  %2 = llvm.load %1 : !llvm.ptr -> i32
+  // CHECK: llvm.return %[[DATA]] : i32
+  llvm.return %2 : i32
+}
+
+// -----
+
+// CHECK-LABEL: llvm.func @double_memcpy
+llvm.func @double_memcpy() -> i32 {
+  %0 = llvm.mlir.constant(1 : i32) : i32
+  // CHECK-NEXT: %[[DATA:.*]] = llvm.mlir.constant(42 : i32) : i32
+  %data = llvm.mlir.constant(42 : i32) : i32
+  %is_volatile = llvm.mlir.constant(false) : i1
+  %memcpy_len = llvm.mlir.constant(4 : i32) : i32
+
+  %1 = llvm.alloca %0 x i32 : (i32) -> !llvm.ptr
+  %2 = llvm.alloca %0 x i32 : (i32) -> !llvm.ptr
+  llvm.store %data, %1 : i32, !llvm.ptr
+  "llvm.intr.memcpy"(%2, %1, %memcpy_len) <{isVolatile = false}> : (!llvm.ptr, !llvm.ptr, i32) -> ()
+
+  %res = llvm.load %2 : !llvm.ptr -> i32
+  // CHECK-NEXT: llvm.return %[[DATA]] : i32
+  llvm.return %res : i32
+}
+
+// -----
+
+// CHECK-LABEL: llvm.func @ignore_self_memcpy
+llvm.func @ignore_self_memcpy() -> i32 {
+  // CHECK-DAG: %[[ALLOCA_LEN:.*]] = llvm.mlir.constant(1 : i32) : i32
+  %0 = llvm.mlir.constant(1 : i32) : i32
+  %is_volatile = llvm.mlir.constant(false) : i1
+  %memcpy_len = llvm.mlir.constant(4 : i32) : i32
+
+  // CHECK-DAG: %[[ALLOCA:.*]] = llvm.alloca %[[ALLOCA_LEN]] x i32
+  %1 = llvm.alloca %0 x i32 : (i32) -> !llvm.ptr
+  // CHECK: "llvm.intr.memcpy"(%[[ALLOCA]], %[[ALLOCA]]
+  "llvm.intr.memcpy"(%1, %1, %memcpy_len) <{isVolatile = false}> : (!llvm.ptr, !llvm.ptr, i32) -> ()
+
+  %res = llvm.load %1 : !llvm.ptr -> i32
+  llvm.return %res : i32
+}
+
+// -----
+
+// CHECK-LABEL: llvm.func @ignore_partial_memcpy
+// CHECK-SAME: (%[[SOURCE:.*]]: !llvm.ptr)
+llvm.func @ignore_partial_memcpy(%source: !llvm.ptr) -> i32 {
+  // CHECK-DAG: %[[ALLOCA_LEN:.*]] = llvm.mlir.constant(1 : i32) : i32
+  %0 = llvm.mlir.constant(1 : i32) : i32
+  %is_volatile = llvm.mlir.constant(false) : i1
+  // CHECK-DAG: %[[MEMCPY_LEN:.*]] = llvm.mlir.constant(2 : i32) : i32
+  %memcpy_len = llvm.mlir.constant(2 : i32) : i32
+
+  // CHECK-DAG: %[[ALLOCA:.*]] = llvm.alloca %[[ALLOCA_LEN]] x i32
+  %1 = llvm.alloca %0 x i32 : (i32) -> !llvm.ptr
+  // CHECK: "llvm.intr.memcpy"(%[[ALLOCA]], %[[SOURCE]], %[[MEMCPY_LEN]]) <{isVolatile = false}>
+  "llvm.intr.memcpy"(%1, %source, %memcpy_len) <{isVolatile = false}> : (!llvm.ptr, !llvm.ptr, i32) -> ()
+
+  %res = llvm.load %1 : !llvm.ptr -> i32
+  llvm.return %res : i32
+}
+
+// -----
+
+// CHECK-LABEL: llvm.func @ignore_volatile_memcpy
+// CHECK-SAME: (%[[SOURCE:.*]]: !llvm.ptr)
+llvm.func @ignore_volatile_memcpy(%source: !llvm.ptr) -> i32 {
+  // CHECK-DAG: %[[ALLOCA_LEN:.*]] = llvm.mlir.constant(1 : i32) : i32
+  // CHECK-DAG: %[[MEMCPY_LEN:.*]] = llvm.mlir.constant(4 : i32) : i32
+  %0 = llvm.mlir.constant(1 : i32) : i32
+  %is_volatile = llvm.mlir.constant(false) : i1
+  %memcpy_len = llvm.mlir.constant(4 : i32) : i32
+
+  // CHECK-DAG: %[[ALLOCA:.*]] = llvm.alloca %[[ALLOCA_LEN]] x i32
+  %1 = llvm.alloca %0 x i32 : (i32) -> !llvm.ptr
+  // CHECK: "llvm.intr.memcpy"(%[[ALLOCA]], %[[SOURCE]], %[[MEMCPY_LEN]]) <{isVolatile = true}>
+  "llvm.intr.memcpy"(%1, %source, %memcpy_len) <{isVolatile = true}> : (!llvm.ptr, !llvm.ptr, i32) -> ()
+
+  %res = llvm.load %1 : !llvm.ptr -> i32
+  llvm.return %res : i32
+}
+
+// -----
+
+// CHECK-LABEL: llvm.func @basic_memmove
+// CHECK-SAME: (%[[SOURCE:.*]]: !llvm.ptr)
+llvm.func @basic_memmove(%source: !llvm.ptr) -> i32 {
+  %0 = llvm.mlir.constant(1 : i32) : i32
+  %1 = llvm.alloca %0 x i32 : (i32) -> !llvm.ptr
+  %is_volatile = llvm.mlir.constant(false) : i1
+  %memmove_len = llvm.mlir.constant(4 : i32) : i32
+  "llvm.intr.memmove"(%1, %source, %memmove_len) <{isVolatile = false}> : (!llvm.ptr, !llvm.ptr, i32) -> ()
+  // CHECK-NOT: "llvm.intr.memmove"
+  // CHECK: %[[LOADED:.*]] = llvm.load %[[SOURCE]] : !llvm.ptr -> i32
+  // CHECK-NOT: "llvm.intr.memmove"
+  %2 = llvm.load %1 : !llvm.ptr -> i32
+  // CHECK: llvm.return %[[LOADED]] : i32
+  llvm.return %2 : i32
+}
+
+// -----
+
+// CHECK-LABEL: llvm.func @basic_memcpy_inline
+// CHECK-SAME: (%[[SOURCE:.*]]: !llvm.ptr)
+llvm.func @basic_memcpy_inline(%source: !llvm.ptr) -> i32 {
+  %0 = llvm.mlir.constant(1 : i32) : i32
+  %1 = llvm.alloca %0 x i32 : (i32) -> !llvm.ptr
+  %is_volatile = llvm.mlir.constant(false) : i1
+  "llvm.intr.memcpy.inline"(%1, %source) <{isVolatile = false, len = 4 : i32}> : (!llvm.ptr, !llvm.ptr) -> ()
+  // CHECK-NOT: "llvm.intr.memcpy.inline"
+  // CHECK: %[[LOADED:.*]] = llvm.load %[[SOURCE]] : !llvm.ptr -> i32
+  // CHECK-NOT: "llvm.intr.memcpy.inline"
+  %2 = llvm.load %1 : !llvm.ptr -> i32
+  // CHECK: llvm.return %[[LOADED]] : i32
+  llvm.return %2 : i32
+}
index 4b4905f..c2e3458 100644 (file)
@@ -235,3 +235,202 @@ llvm.func @memset_considers_packing() -> i32 {
   %7 = llvm.add %3, %6 : i32
   llvm.return %7 : i32
 }
+
+// -----
+
+// CHECK-LABEL: llvm.func @memcpy_dest
+// CHECK-SAME: (%[[OTHER_ARRAY:.*]]: !llvm.ptr)
+llvm.func @memcpy_dest(%other_array: !llvm.ptr) -> i32 {
+  // CHECK-DAG: %[[ALLOCA_LEN:.*]] = llvm.mlir.constant(1 : i32) : i32
+  // CHECK-DAG: %[[ALLOCA:.*]] = llvm.alloca %[[ALLOCA_LEN]] x i32
+  // After SROA, only one i32 will be actually used, so only 4 bytes will be set.
+  // CHECK-DAG: %[[MEMCPY_LEN:.*]] = llvm.mlir.constant(4 : i32) : i32
+  %0 = llvm.mlir.constant(1 : i32) : i32
+  %1 = llvm.alloca %0 x !llvm.array<10 x i32> : (i32) -> !llvm.ptr
+  %memcpy_len = llvm.mlir.constant(40 : i32) : i32
+  // CHECK: %[[SLOT_IN_OTHER:.*]] = llvm.getelementptr %[[OTHER_ARRAY]][0, 1] : (!llvm.ptr) -> !llvm.ptr, !llvm.array<10 x i32>
+  // CHECK: "llvm.intr.memcpy"(%[[ALLOCA]], %[[SLOT_IN_OTHER]], %[[MEMCPY_LEN]]) <{isVolatile = false}>
+  "llvm.intr.memcpy"(%1, %other_array, %memcpy_len) <{isVolatile = false}> : (!llvm.ptr, !llvm.ptr, i32) -> ()
+  %2 = llvm.getelementptr %1[0, 1] : (!llvm.ptr) -> !llvm.ptr, !llvm.array<10 x i32>
+  %3 = llvm.load %2 : !llvm.ptr -> i32
+  llvm.return %3 : i32
+}
+
+// -----
+
+// CHECK-LABEL: llvm.func @memcpy_src
+// CHECK-SAME: (%[[OTHER_ARRAY:.*]]: !llvm.ptr)
+llvm.func @memcpy_src(%other_array: !llvm.ptr) -> i32 {
+  // CHECK-DAG: %[[ALLOCA_LEN:.*]] = llvm.mlir.constant(1 : i32) : i32
+  // After SROA, only one i32 will be actually used, so only 4 bytes will be set.
+  // CHECK-DAG: %[[MEMCPY_LEN:.*]] = llvm.mlir.constant(4 : i32) : i32
+  // CHECK-COUNT-4: = llvm.alloca %[[ALLOCA_LEN]] x i32
+  %0 = llvm.mlir.constant(1 : i32) : i32
+  %1 = llvm.alloca %0 x !llvm.array<4 x i32> : (i32) -> !llvm.ptr
+  %memcpy_len = llvm.mlir.constant(16 : i32) : i32
+  // Unfortunately because of FileCheck limitations it is not possible to check which slot gets read from.
+  // We can only check that the amount of operations and allocated slots is correct, which should be sufficient
+  // as unused slots are not generated.
+  // CHECK-DAG: %[[SLOT_IN_OTHER:.*]] = llvm.getelementptr %[[OTHER_ARRAY]][0, 0] : (!llvm.ptr) -> !llvm.ptr, !llvm.array<4 x i32>
+  // CHECK-DAG: "llvm.intr.memcpy"(%[[SLOT_IN_OTHER]], %{{.*}}, %[[MEMCPY_LEN]]) <{isVolatile = false}>
+  // CHECK-DAG: %[[SLOT_IN_OTHER:.*]] = llvm.getelementptr %[[OTHER_ARRAY]][0, 1] : (!llvm.ptr) -> !llvm.ptr, !llvm.array<4 x i32>
+  // CHECK-DAG: "llvm.intr.memcpy"(%[[SLOT_IN_OTHER]], %{{.*}}, %[[MEMCPY_LEN]]) <{isVolatile = false}>
+  // CHECK-DAG: %[[SLOT_IN_OTHER:.*]] = llvm.getelementptr %[[OTHER_ARRAY]][0, 2] : (!llvm.ptr) -> !llvm.ptr, !llvm.array<4 x i32>
+  // CHECK-DAG: "llvm.intr.memcpy"(%[[SLOT_IN_OTHER]], %{{.*}}, %[[MEMCPY_LEN]]) <{isVolatile = false}>
+  // CHECK-DAG: %[[SLOT_IN_OTHER:.*]] = llvm.getelementptr %[[OTHER_ARRAY]][0, 3] : (!llvm.ptr) -> !llvm.ptr, !llvm.array<4 x i32>
+  // CHECK-DAG: "llvm.intr.memcpy"(%[[SLOT_IN_OTHER]], %{{.*}}, %[[MEMCPY_LEN]]) <{isVolatile = false}>
+  "llvm.intr.memcpy"(%other_array, %1, %memcpy_len) <{isVolatile = false}> : (!llvm.ptr, !llvm.ptr, i32) -> ()
+  %2 = llvm.getelementptr %1[0, 1] : (!llvm.ptr) -> !llvm.ptr, !llvm.array<4 x i32>
+  %3 = llvm.load %2 : !llvm.ptr -> i32
+  llvm.return %3 : i32
+}
+
+// -----
+
+// CHECK-LABEL: llvm.func @memcpy_double
+llvm.func @memcpy_double() -> i32 {
+  // CHECK-DAG: %[[ALLOCA_LEN:.*]] = llvm.mlir.constant(1 : i32) : i32
+  // CHECK-DAG: %[[MEMCPY_LEN:.*]] = llvm.mlir.constant(4 : i32) : i32
+  %0 = llvm.mlir.constant(1 : i32) : i32
+  // CHECK-COUNT-2: = llvm.alloca %[[ALLOCA_LEN]] x i32
+  %1 = llvm.alloca %0 x !llvm.array<1 x i32> : (i32) -> !llvm.ptr
+  %2 = llvm.alloca %0 x !llvm.array<1 x i32> : (i32) -> !llvm.ptr
+  %memcpy_len = llvm.mlir.constant(4 : i32) : i32
+  // CHECK-NOT: "llvm.intr.memcpy"
+  // CHECK: "llvm.intr.memcpy"(%{{.*}}, %{{.*}}, %[[MEMCPY_LEN]]) <{isVolatile = false}>
+  // CHECK-NOT: "llvm.intr.memcpy"
+  "llvm.intr.memcpy"(%1, %2, %memcpy_len) <{isVolatile = false}> : (!llvm.ptr, !llvm.ptr, i32) -> ()
+  %3 = llvm.getelementptr %1[0, 0] : (!llvm.ptr) -> !llvm.ptr, !llvm.array<1 x i32>
+  %4 = llvm.load %3 : !llvm.ptr -> i32
+  llvm.return %4 : i32
+}
+
+// -----
+
+// CHECK-LABEL: llvm.func @memcpy_no_partial
+// CHECK-SAME: (%[[OTHER_ARRAY:.*]]: !llvm.ptr)
+llvm.func @memcpy_no_partial(%other_array: !llvm.ptr) -> i32 {
+  // CHECK-DAG: %[[ALLOCA_LEN:.*]] = llvm.mlir.constant(1 : i32) : i32
+  // CHECK-DAG: %[[ALLOCA:.*]] = llvm.alloca %[[ALLOCA_LEN]] x !llvm.array<10 x i32>
+  // CHECK-DAG: %[[MEMCPY_LEN:.*]] = llvm.mlir.constant(21 : i32) : i32
+  %0 = llvm.mlir.constant(1 : i32) : i32
+  %1 = llvm.alloca %0 x !llvm.array<10 x i32> : (i32) -> !llvm.ptr
+  %memcpy_len = llvm.mlir.constant(21 : i32) : i32
+  // CHECK: "llvm.intr.memcpy"(%[[ALLOCA]], %[[OTHER_ARRAY]], %[[MEMCPY_LEN]]) <{isVolatile = false}>
+  "llvm.intr.memcpy"(%1, %other_array, %memcpy_len) <{isVolatile = false}> : (!llvm.ptr, !llvm.ptr, i32) -> ()
+  %2 = llvm.getelementptr %1[0, 1] : (!llvm.ptr) -> !llvm.ptr, !llvm.array<10 x i32>
+  %3 = llvm.load %2 : !llvm.ptr -> i32
+  llvm.return %3 : i32
+}
+
+// -----
+
+// CHECK-LABEL: llvm.func @memcpy_no_volatile
+// CHECK-SAME: (%[[OTHER_ARRAY:.*]]: !llvm.ptr)
+llvm.func @memcpy_no_volatile(%other_array: !llvm.ptr) -> i32 {
+  // CHECK-DAG: %[[ALLOCA_LEN:.*]] = llvm.mlir.constant(1 : i32) : i32
+  // CHECK-DAG: %[[ALLOCA:.*]] = llvm.alloca %[[ALLOCA_LEN]] x !llvm.array<10 x i32>
+  // CHECK-DAG: %[[MEMCPY_LEN:.*]] = llvm.mlir.constant(40 : i32) : i32
+  %0 = llvm.mlir.constant(1 : i32) : i32
+  %1 = llvm.alloca %0 x !llvm.array<10 x i32> : (i32) -> !llvm.ptr
+  %memcpy_len = llvm.mlir.constant(40 : i32) : i32
+  // CHECK: "llvm.intr.memcpy"(%[[ALLOCA]], %[[OTHER_ARRAY]], %[[MEMCPY_LEN]]) <{isVolatile = true}>
+  "llvm.intr.memcpy"(%1, %other_array, %memcpy_len) <{isVolatile = true}> : (!llvm.ptr, !llvm.ptr, i32) -> ()
+  %2 = llvm.getelementptr %1[0, 1] : (!llvm.ptr) -> !llvm.ptr, !llvm.array<10 x i32>
+  %3 = llvm.load %2 : !llvm.ptr -> i32
+  llvm.return %3 : i32
+}
+
+// -----
+
+// CHECK-LABEL: llvm.func @memmove_dest
+// CHECK-SAME: (%[[OTHER_ARRAY:.*]]: !llvm.ptr)
+llvm.func @memmove_dest(%other_array: !llvm.ptr) -> i32 {
+  // CHECK-DAG: %[[ALLOCA_LEN:.*]] = llvm.mlir.constant(1 : i32) : i32
+  // CHECK-DAG: %[[ALLOCA:.*]] = llvm.alloca %[[ALLOCA_LEN]] x i32
+  // After SROA, only one i32 will be actually used, so only 4 bytes will be set.
+  // CHECK-DAG: %[[MEMMOVE_LEN:.*]] = llvm.mlir.constant(4 : i32) : i32
+  %0 = llvm.mlir.constant(1 : i32) : i32
+  %1 = llvm.alloca %0 x !llvm.array<10 x i32> : (i32) -> !llvm.ptr
+  %memmove_len = llvm.mlir.constant(40 : i32) : i32
+  // CHECK: %[[SLOT_IN_OTHER:.*]] = llvm.getelementptr %[[OTHER_ARRAY]][0, 1] : (!llvm.ptr) -> !llvm.ptr, !llvm.array<10 x i32>
+  // CHECK: "llvm.intr.memmove"(%[[ALLOCA]], %[[SLOT_IN_OTHER]], %[[MEMMOVE_LEN]]) <{isVolatile = false}>
+  "llvm.intr.memmove"(%1, %other_array, %memmove_len) <{isVolatile = false}> : (!llvm.ptr, !llvm.ptr, i32) -> ()
+  %2 = llvm.getelementptr %1[0, 1] : (!llvm.ptr) -> !llvm.ptr, !llvm.array<10 x i32>
+  %3 = llvm.load %2 : !llvm.ptr -> i32
+  llvm.return %3 : i32
+}
+
+// -----
+
+// CHECK-LABEL: llvm.func @memmove_src
+// CHECK-SAME: (%[[OTHER_ARRAY:.*]]: !llvm.ptr)
+llvm.func @memmove_src(%other_array: !llvm.ptr) -> i32 {
+  // CHECK-DAG: %[[ALLOCA_LEN:.*]] = llvm.mlir.constant(1 : i32) : i32
+  // After SROA, only one i32 will be actually used, so only 4 bytes will be set.
+  // CHECK-DAG: %[[MEMMOVE_LEN:.*]] = llvm.mlir.constant(4 : i32) : i32
+  // CHECK-COUNT-4: = llvm.alloca %[[ALLOCA_LEN]] x i32
+  %0 = llvm.mlir.constant(1 : i32) : i32
+  %1 = llvm.alloca %0 x !llvm.array<4 x i32> : (i32) -> !llvm.ptr
+  %memmove_len = llvm.mlir.constant(16 : i32) : i32
+  // Unfortunately because of FileCheck limitations it is not possible to check which slot gets read from.
+  // We can only check that the amount of operations and allocated slots is correct, which should be sufficient
+  // as unused slots are not generated.
+  // CHECK-DAG: %[[SLOT_IN_OTHER:.*]] = llvm.getelementptr %[[OTHER_ARRAY]][0, 0] : (!llvm.ptr) -> !llvm.ptr, !llvm.array<4 x i32>
+  // CHECK-DAG: "llvm.intr.memmove"(%[[SLOT_IN_OTHER]], %{{.*}}, %[[MEMMOVE_LEN]]) <{isVolatile = false}>
+  // CHECK-DAG: %[[SLOT_IN_OTHER:.*]] = llvm.getelementptr %[[OTHER_ARRAY]][0, 1] : (!llvm.ptr) -> !llvm.ptr, !llvm.array<4 x i32>
+  // CHECK-DAG: "llvm.intr.memmove"(%[[SLOT_IN_OTHER]], %{{.*}}, %[[MEMMOVE_LEN]]) <{isVolatile = false}>
+  // CHECK-DAG: %[[SLOT_IN_OTHER:.*]] = llvm.getelementptr %[[OTHER_ARRAY]][0, 2] : (!llvm.ptr) -> !llvm.ptr, !llvm.array<4 x i32>
+  // CHECK-DAG: "llvm.intr.memmove"(%[[SLOT_IN_OTHER]], %{{.*}}, %[[MEMMOVE_LEN]]) <{isVolatile = false}>
+  // CHECK-DAG: %[[SLOT_IN_OTHER:.*]] = llvm.getelementptr %[[OTHER_ARRAY]][0, 3] : (!llvm.ptr) -> !llvm.ptr, !llvm.array<4 x i32>
+  // CHECK-DAG: "llvm.intr.memmove"(%[[SLOT_IN_OTHER]], %{{.*}}, %[[MEMMOVE_LEN]]) <{isVolatile = false}>
+  "llvm.intr.memmove"(%other_array, %1, %memmove_len) <{isVolatile = false}> : (!llvm.ptr, !llvm.ptr, i32) -> ()
+  %2 = llvm.getelementptr %1[0, 1] : (!llvm.ptr) -> !llvm.ptr, !llvm.array<4 x i32>
+  %3 = llvm.load %2 : !llvm.ptr -> i32
+  llvm.return %3 : i32
+}
+
+// -----
+
+// CHECK-LABEL: llvm.func @memcpy_inline_dest
+// CHECK-SAME: (%[[OTHER_ARRAY:.*]]: !llvm.ptr)
+llvm.func @memcpy_inline_dest(%other_array: !llvm.ptr) -> i32 {
+  // CHECK-DAG: %[[ALLOCA_LEN:.*]] = llvm.mlir.constant(1 : i32) : i32
+  // CHECK-DAG: %[[ALLOCA:.*]] = llvm.alloca %[[ALLOCA_LEN]] x i32
+  // After SROA, only one i32 will be actually used, so only 4 bytes will be set.
+  %0 = llvm.mlir.constant(1 : i32) : i32
+  %1 = llvm.alloca %0 x !llvm.array<10 x i32> : (i32) -> !llvm.ptr
+  // CHECK: %[[SLOT_IN_OTHER:.*]] = llvm.getelementptr %[[OTHER_ARRAY]][0, 1] : (!llvm.ptr) -> !llvm.ptr, !llvm.array<10 x i32>
+  // CHECK: "llvm.intr.memcpy.inline"(%[[ALLOCA]], %[[SLOT_IN_OTHER]]) <{isVolatile = false, len = 4 : i32}>
+  "llvm.intr.memcpy.inline"(%1, %other_array) <{isVolatile = false, len = 40 : i32}> : (!llvm.ptr, !llvm.ptr) -> ()
+  %2 = llvm.getelementptr %1[0, 1] : (!llvm.ptr) -> !llvm.ptr, !llvm.array<10 x i32>
+  %3 = llvm.load %2 : !llvm.ptr -> i32
+  llvm.return %3 : i32
+}
+
+// -----
+
+// CHECK-LABEL: llvm.func @memcpy_inline_src
+// CHECK-SAME: (%[[OTHER_ARRAY:.*]]: !llvm.ptr)
+llvm.func @memcpy_inline_src(%other_array: !llvm.ptr) -> i32 {
+  // CHECK-DAG: %[[ALLOCA_LEN:.*]] = llvm.mlir.constant(1 : i32) : i32
+  // After SROA, only one i32 will be actually used, so only 4 bytes will be set.
+  // CHECK-COUNT-4: = llvm.alloca %[[ALLOCA_LEN]] x i32
+  %0 = llvm.mlir.constant(1 : i32) : i32
+  %1 = llvm.alloca %0 x !llvm.array<4 x i32> : (i32) -> !llvm.ptr
+  // Unfortunately because of FileCheck limitations it is not possible to check which slot gets read from.
+  // We can only check that the amount of operations and allocated slots is correct, which should be sufficient
+  // as unused slots are not generated.
+  // CHECK-DAG: %[[SLOT_IN_OTHER:.*]] = llvm.getelementptr %[[OTHER_ARRAY]][0, 0] : (!llvm.ptr) -> !llvm.ptr, !llvm.array<4 x i32>
+  // CHECK-DAG: "llvm.intr.memcpy.inline"(%[[SLOT_IN_OTHER]], %{{.*}}) <{isVolatile = false, len = 4 : i32}>
+  // CHECK-DAG: %[[SLOT_IN_OTHER:.*]] = llvm.getelementptr %[[OTHER_ARRAY]][0, 1] : (!llvm.ptr) -> !llvm.ptr, !llvm.array<4 x i32>
+  // CHECK-DAG: "llvm.intr.memcpy.inline"(%[[SLOT_IN_OTHER]], %{{.*}}) <{isVolatile = false, len = 4 : i32}>
+  // CHECK-DAG: %[[SLOT_IN_OTHER:.*]] = llvm.getelementptr %[[OTHER_ARRAY]][0, 2] : (!llvm.ptr) -> !llvm.ptr, !llvm.array<4 x i32>
+  // CHECK-DAG: "llvm.intr.memcpy.inline"(%[[SLOT_IN_OTHER]], %{{.*}}) <{isVolatile = false, len = 4 : i32}>
+  // CHECK-DAG: %[[SLOT_IN_OTHER:.*]] = llvm.getelementptr %[[OTHER_ARRAY]][0, 3] : (!llvm.ptr) -> !llvm.ptr, !llvm.array<4 x i32>
+  // CHECK-DAG: "llvm.intr.memcpy.inline"(%[[SLOT_IN_OTHER]], %{{.*}}) <{isVolatile = false, len = 4 : i32}>
+  "llvm.intr.memcpy.inline"(%other_array, %1) <{isVolatile = false, len = 16 : i32}> : (!llvm.ptr, !llvm.ptr) -> ()
+  %2 = llvm.getelementptr %1[0, 1] : (!llvm.ptr) -> !llvm.ptr, !llvm.array<4 x i32>
+  %3 = llvm.load %2 : !llvm.ptr -> i32
+  llvm.return %3 : i32
+}