spinlock_t piar_lock;
} pci_io_addr_cache_root;
-static inline struct eeh_dev *__pci_addr_cache_get_device(unsigned long addr)
+static inline struct eeh_dev *__eeh_addr_cache_get_device(unsigned long addr)
{
struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
}
/**
- * pci_addr_cache_get_device - Get device, given only address
+ * eeh_addr_cache_get_dev - Get device, given only address
* @addr: mmio (PIO) phys address or i/o port number
*
* Given an mmio phys address, or a port number, find a pci device
* from zero (that is, they do *not* have pci_io_addr added in).
* It is safe to call this function within an interrupt.
*/
-struct eeh_dev *pci_addr_cache_get_device(unsigned long addr)
+struct eeh_dev *eeh_addr_cache_get_dev(unsigned long addr)
{
struct eeh_dev *edev;
unsigned long flags;
spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
- edev = __pci_addr_cache_get_device(addr);
+ edev = __eeh_addr_cache_get_device(addr);
spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
return edev;
}
* Handy-dandy debug print routine, does nothing more
* than print out the contents of our addr cache.
*/
-static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
+static void eeh_addr_cache_print(struct pci_io_addr_cache *cache)
{
struct rb_node *n;
int cnt = 0;
while (n) {
struct pci_io_addr_range *piar;
piar = rb_entry(n, struct pci_io_addr_range, rb_node);
- printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n",
+ pr_debug("PCI: %s addr range %d [%lx-%lx]: %s\n",
(piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
cnt++;
/* Insert address range into the rb tree. */
static struct pci_io_addr_range *
-pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
+eeh_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
unsigned long ahi, unsigned int flags)
{
struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
} else {
if (dev != piar->pcidev ||
alo != piar->addr_lo || ahi != piar->addr_hi) {
- printk(KERN_WARNING "PIAR: overlapping address range\n");
+ pr_warning("PIAR: overlapping address range\n");
}
return piar;
}
piar->flags = flags;
#ifdef DEBUG
- printk(KERN_DEBUG "PIAR: insert range=[%lx:%lx] dev=%s\n",
+ pr_debug("PIAR: insert range=[%lx:%lx] dev=%s\n",
alo, ahi, pci_name(dev));
#endif
return piar;
}
-static void __pci_addr_cache_insert_device(struct pci_dev *dev)
+static void __eeh_addr_cache_insert_dev(struct pci_dev *dev)
{
struct device_node *dn;
struct eeh_dev *edev;
dn = pci_device_to_OF_node(dev);
if (!dn) {
- printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n", pci_name(dev));
+ pr_warning("PCI: no pci dn found for dev=%s\n", pci_name(dev));
return;
}
continue;
if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
continue;
- pci_addr_cache_insert(dev, start, end, flags);
+ eeh_addr_cache_insert(dev, start, end, flags);
}
}
/**
- * pci_addr_cache_insert_device - Add a device to the address cache
+ * eeh_addr_cache_insert_dev - Add a device to the address cache
* @dev: PCI device whose I/O addresses we are interested in.
*
* In order to support the fast lookup of devices based on addresses,
* we maintain a cache of devices that can be quickly searched.
* This routine adds a device to that cache.
*/
-void pci_addr_cache_insert_device(struct pci_dev *dev)
+void eeh_addr_cache_insert_dev(struct pci_dev *dev)
{
unsigned long flags;
return;
spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
- __pci_addr_cache_insert_device(dev);
+ __eeh_addr_cache_insert_dev(dev);
spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
}
-static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
+static inline void __eeh_addr_cache_rmv_dev(struct pci_dev *dev)
{
struct rb_node *n;
}
/**
- * pci_addr_cache_remove_device - remove pci device from addr cache
+ * eeh_addr_cache_rmv_dev - remove pci device from addr cache
* @dev: device to remove
*
* Remove a device from the addr-cache tree.
* the tree multiple times (once per resource).
* But so what; device removal doesn't need to be that fast.
*/
-void pci_addr_cache_remove_device(struct pci_dev *dev)
+void eeh_addr_cache_rmv_dev(struct pci_dev *dev)
{
unsigned long flags;
spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
- __pci_addr_cache_remove_device(dev);
+ __eeh_addr_cache_rmv_dev(dev);
spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
}
/**
- * pci_addr_cache_build - Build a cache of I/O addresses
+ * eeh_addr_cache_build - Build a cache of I/O addresses
*
* Build a cache of pci i/o addresses. This cache will be used to
* find the pci device that corresponds to a given address.
* Must be run late in boot process, after the pci controllers
* have been scanned for devices (after all device resources are known).
*/
-void __init pci_addr_cache_build(void)
+void __init eeh_addr_cache_build(void)
{
struct device_node *dn;
struct eeh_dev *edev;
spin_lock_init(&pci_io_addr_cache_root.piar_lock);
for_each_pci_dev(dev) {
- pci_addr_cache_insert_device(dev);
+ eeh_addr_cache_insert_dev(dev);
dn = pci_device_to_OF_node(dev);
if (!dn)
#ifdef DEBUG
/* Verify tree built up above, echo back the list of addrs. */
- pci_addr_cache_print(&pci_io_addr_cache_root);
+ eeh_addr_cache_print(&pci_io_addr_cache_root);
#endif
}