further processing of the notification queue.
NOTIFY_STOP stops further processing of the notification queue.
+
+Locking Internals
+=================
+
+When adding/removing memory that uses memory block devices (i.e. ordinary RAM),
+the device_hotplug_lock should be held to:
+
+- synchronize against online/offline requests (e.g. via sysfs). This way, memory
+ block devices can only be accessed (.online/.state attributes) by user
+ space once memory has been fully added. And when removing memory, we
+ know nobody is in critical sections.
+- synchronize against CPU hotplug and similar (e.g. relevant for ACPI and PPC)
+
+Especially, there is a possible lock inversion that is avoided using
+device_hotplug_lock when adding memory and user space tries to online that
+memory faster than expected:
+
+- device_online() will first take the device_lock(), followed by
+ mem_hotplug_lock
+- add_memory_resource() will first take the mem_hotplug_lock, followed by
+ the device_lock() (while creating the devices, during bus_add_device()).
+
+As the device is visible to user space before taking the device_lock(), this
+can result in a lock inversion.
+
+onlining/offlining of memory should be done via device_online()/
+device_offline() - to make sure it is properly synchronized to actions
+via sysfs. Holding device_hotplug_lock is advised (to e.g. protect online_type)
+
+When adding/removing/onlining/offlining memory or adding/removing
+heterogeneous/device memory, we should always hold the mem_hotplug_lock in
+write mode to serialise memory hotplug (e.g. access to global/zone
+variables).
+
+In addition, mem_hotplug_lock (in contrast to device_hotplug_lock) in read
+mode allows for a quite efficient get_online_mems/put_online_mems
+implementation, so code accessing memory can protect from that memory
+vanishing.