EDAC has a foundation to perform software memory scrubbing, but it requires a
per architecture (atomic_scrub) function for performing an atomic update
operation. Under X86, this is done with a
lock: add [addr],0
in the file asm-x86/edac.h
This patch provides the MIPS arch with that atomic function, atomic_scrub() in
asm-mips/edac.h
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Doug Thompson <dougthompson@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
--- /dev/null
+#ifndef ASM_EDAC_H
+#define ASM_EDAC_H
+
+/* ECC atomic, DMA, SMP and interrupt safe scrub function */
+
+static inline void atomic_scrub(void *va, u32 size)
+{
+ unsigned long *virt_addr = va;
+ unsigned long temp;
+ u32 i;
+
+ for (i = 0; i < size / sizeof(unsigned long); i++, virt_addr++) {
+
+ /*
+ * Very carefully read and write to memory atomically
+ * so we are interrupt, DMA and SMP safe.
+ *
+ * Intel: asm("lock; addl $0, %0"::"m"(*virt_addr));
+ */
+
+ __asm__ __volatile__ (
+ " .set mips3 \n"
+ "1: ll %0, %1 # atomic_add \n"
+ " ll %0, %1 # atomic_add \n"
+ " addu %0, $0 \n"
+ " sc %0, %1 \n"
+ " beqz %0, 1b \n"
+ " .set mips0 \n"
+ : "=&r" (temp), "=m" (*virt_addr)
+ : "m" (*virt_addr));
+
+ }
+}
+
+#endif