void RelocInfo::set_target_address(Address target, WriteBarrierMode mode) {
ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
- Assembler::set_target_address_at(pc_, target);
+ Assembler::set_target_address_at(pc_, host_, target);
if (mode == UPDATE_WRITE_BARRIER && host() != NULL && IsCodeTarget(rmode_)) {
Object* target_code = Code::GetCodeFromTargetAddress(target);
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
// Read/Modify the code target address in the branch/call instruction at pc.
-Address Assembler::target_address_at(Address pc) {
+Address Assembler::target_address_at(Address pc,
+ ConstantPoolArray* constant_pool) {
return Memory::Address_at(target_pointer_address_at(pc));
}
+Address Assembler::target_address_at(Address pc, Code* code) {
+ ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
+ return target_address_at(pc, constant_pool);
+}
+
+
Address Assembler::target_address_from_return_address(Address pc) {
// Returns the address of the call target from the return address that will
// be returned to after a call.
void Assembler::deserialization_set_special_target_at(
- Address constant_pool_entry, Address target) {
+ Address constant_pool_entry, Code* code, Address target) {
Memory::Address_at(constant_pool_entry) = target;
}
-void Assembler::set_target_address_at(Address pc, Address target) {
+void Assembler::set_target_address_at(Address pc,
+ ConstantPoolArray* constant_pool,
+ Address target) {
Memory::Address_at(target_pointer_address_at(pc)) = target;
// Intuitively, we would think it is necessary to always flush the
// instruction cache after patching a target address in the code as follows:
}
+void Assembler::set_target_address_at(Address pc,
+ Code* code,
+ Address target) {
+ ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
+ set_target_address_at(pc, constant_pool, target);
+}
+
+
int RelocInfo::target_address_size() {
return kPointerSize;
}
Address RelocInfo::target_address() {
ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
- return Assembler::target_address_at(pc_);
+ return Assembler::target_address_at(pc_, host_);
}
Object* RelocInfo::target_object() {
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
- return reinterpret_cast<Object*>(Assembler::target_address_at(pc_));
+ return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
}
Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
return Handle<Object>(reinterpret_cast<Object**>(
- Assembler::target_address_at(pc_)));
+ Assembler::target_address_at(pc_, host_)));
}
void RelocInfo::set_target_object(Object* target, WriteBarrierMode mode) {
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
ASSERT(!target->IsConsString());
- Assembler::set_target_address_at(pc_, reinterpret_cast<Address>(target));
+ Assembler::set_target_address_at(pc_, host_,
+ reinterpret_cast<Address>(target));
if (mode == UPDATE_WRITE_BARRIER &&
host() != NULL &&
target->IsHeapObject()) {
Address RelocInfo::target_reference() {
ASSERT(rmode_ == EXTERNAL_REFERENCE);
- return Assembler::target_address_at(pc_);
+ return Assembler::target_address_at(pc_, host_);
}
(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
// For the above sequences the Relocinfo points to the load literal loading
// the call address.
- return Assembler::target_address_at(pc_);
+ return Assembler::target_address_at(pc_, host_);
}
void RelocInfo::set_call_address(Address target) {
ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
- Assembler::set_target_address_at(pc_, target);
+ Assembler::set_target_address_at(pc_, host_, target);
if (host() != NULL) {
Object* target_code = Code::GetCodeFromTargetAddress(target);
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
IsCodeTarget(rmode_) ||
IsRuntimeEntry(rmode_) ||
IsExternalReference(rmode_));
- Assembler::set_target_address_at(pc_, NULL);
+ Assembler::set_target_address_at(pc_, host_, NULL);
}
inline static Address target_pointer_address_at(Address pc);
// Read/Modify the code target address in the branch/call instruction at pc.
- inline static Address target_address_at(Address pc);
- inline static void set_target_address_at(Address pc, Address target);
+ inline static Address target_address_at(Address pc,
+ ConstantPoolArray* constant_pool);
+ inline static void set_target_address_at(Address pc,
+ ConstantPoolArray* constant_pool,
+ Address target);
+ static inline Address target_address_at(Address pc, Code* code);
+ static inline void set_target_address_at(Address pc,
+ Code* code,
+ Address target);
// Return the code target address at a call site from the return address of
// that call in the instruction stream.
// This sets the branch destination (which is in the constant pool on ARM).
// This is for calls and branches within generated code.
inline static void deserialization_set_special_target_at(
- Address constant_pool_entry, Address target);
+ Address constant_pool_entry, Code* code, Address target);
// All addresses in the constant pool are the same size as pointers.
static const int kSpecialTargetSize = kPointerSize;
static const int kSPOffset = -1 * kPointerSize;
static const int kCodeOffset = -2 * kPointerSize;
static const int kLastExitFrameField = kCodeOffset;
+
+ static const int kConstantPoolOffset = 0; // Not used
};
Address RelocInfo::target_address() {
ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
- return Assembler::target_address_at(pc_);
+ return Assembler::target_address_at(pc_, host_);
}
void RelocInfo::set_target_address(Address target, WriteBarrierMode mode) {
ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
- Assembler::set_target_address_at(pc_, target);
+ Assembler::set_target_address_at(pc_, host_, target);
if (mode == UPDATE_WRITE_BARRIER && host() != NULL && IsCodeTarget(rmode_)) {
Object* target_code = Code::GetCodeFromTargetAddress(target);
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
Object* RelocInfo::target_object() {
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
- return reinterpret_cast<Object*>(Assembler::target_address_at(pc_));
+ return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
}
Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
return Handle<Object>(reinterpret_cast<Object**>(
- Assembler::target_address_at(pc_)));
+ Assembler::target_address_at(pc_, host_)));
}
void RelocInfo::set_target_object(Object* target, WriteBarrierMode mode) {
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
ASSERT(!target->IsConsString());
- Assembler::set_target_address_at(pc_, reinterpret_cast<Address>(target));
+ Assembler::set_target_address_at(pc_, host_,
+ reinterpret_cast<Address>(target));
if (mode == UPDATE_WRITE_BARRIER &&
host() != NULL &&
target->IsHeapObject()) {
Address RelocInfo::target_reference() {
ASSERT(rmode_ == EXTERNAL_REFERENCE);
- return Assembler::target_address_at(pc_);
+ return Assembler::target_address_at(pc_, host_);
}
IsCodeTarget(rmode_) ||
IsRuntimeEntry(rmode_) ||
IsExternalReference(rmode_));
- Assembler::set_target_address_at(pc_, NULL);
+ Assembler::set_target_address_at(pc_, host_, NULL);
}
}
-Address Assembler::target_address_at(Address pc) {
+Address Assembler::target_address_at(Address pc,
+ ConstantPoolArray* constant_pool) {
if (IsMovW(Memory::int32_at(pc))) {
ASSERT(IsMovT(Memory::int32_at(pc + kInstrSize)));
Instruction* instr = Instruction::At(pc);
void Assembler::deserialization_set_special_target_at(
- Address constant_pool_entry, Address target) {
+ Address constant_pool_entry, Code* code, Address target) {
Memory::Address_at(constant_pool_entry) = target;
}
}
-void Assembler::set_target_address_at(Address pc, Address target) {
+void Assembler::set_target_address_at(Address pc,
+ ConstantPoolArray* constant_pool,
+ Address target) {
if (IsMovW(Memory::int32_at(pc))) {
ASSERT(IsMovT(Memory::int32_at(pc + kInstrSize)));
uint32_t* instr_ptr = reinterpret_cast<uint32_t*>(pc);
// the branch/call instruction at pc, or the object in a mov.
INLINE(static Address target_pointer_address_at(Address pc));
+ // Return the address in the constant pool of the code target address used by
+ // the branch/call instruction at pc, or the object in a mov.
+ INLINE(static Address target_constant_pool_address_at(
+ Address pc, ConstantPoolArray* constant_pool));
+
// Read/Modify the code target address in the branch/call instruction at pc.
- INLINE(static Address target_address_at(Address pc));
- INLINE(static void set_target_address_at(Address pc, Address target));
+ INLINE(static Address target_address_at(Address pc,
+ ConstantPoolArray* constant_pool));
+ INLINE(static void set_target_address_at(Address pc,
+ ConstantPoolArray* constant_pool,
+ Address target));
+ INLINE(static Address target_address_at(Address pc, Code* code)) {
+ ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
+ return target_address_at(pc, constant_pool);
+ }
+ INLINE(static void set_target_address_at(Address pc,
+ Code* code,
+ Address target)) {
+ ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
+ set_target_address_at(pc, constant_pool, target);
+ }
// Return the code target address at a call site from the return address
// of that call in the instruction stream.
// This sets the branch destination (which is in the constant pool on ARM).
// This is for calls and branches within generated code.
inline static void deserialization_set_special_target_at(
- Address constant_pool_entry, Address target);
+ Address constant_pool_entry, Code* code, Address target);
// Here we are patching the address in the constant pool, not the actual call
// instruction. The address in the constant pool is the same size as a
// Continue just after the slot.
thread_local_.after_break_target_ = addr + Assembler::kDebugBreakSlotLength;
- } else if (IsDebugBreak(Assembler::target_address_at(addr))) {
+ } else if (IsDebugBreak(Assembler::target_address_at(addr, *code))) {
// We now know that there is still a debug break call at the target address,
// so the break point is still there and the original code will hold the
// address to jump to in order to complete the call which is replaced by a
// Install jump to the call address in the original code. This will be the
// call which was overwritten by the call to DebugBreakXXX.
- thread_local_.after_break_target_ = Assembler::target_address_at(addr);
+ thread_local_.after_break_target_ =
+ Assembler::target_address_at(addr, *original_code);
} else {
// There is no longer a break point present. Don't try to look in the
// original code as the running code will have the right address. This takes
// care of the case where the last break point is removed from the function
// and therefore no "original code" is available.
- thread_local_.after_break_target_ = Assembler::target_address_at(addr);
+ thread_local_.after_break_target_ =
+ Assembler::target_address_at(addr, *code);
}
}
Address RelocInfo::target_address() {
ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
- return Assembler::target_address_at(pc_);
+ return Assembler::target_address_at(pc_, host_);
}
void RelocInfo::set_target_address(Address target, WriteBarrierMode mode) {
- Assembler::set_target_address_at(pc_, target);
+ Assembler::set_target_address_at(pc_, host_, target);
ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
if (mode == UPDATE_WRITE_BARRIER && host() != NULL && IsCodeTarget(rmode_)) {
Object* target_code = Code::GetCodeFromTargetAddress(target);
ASSERT(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
ASSERT(*pc_ == kCallOpcode);
return Code::GetCodeFromTargetAddress(
- Assembler::target_address_at(pc_ + 1));
+ Assembler::target_address_at(pc_ + 1, host_));
}
void RelocInfo::set_code_age_stub(Code* stub) {
ASSERT(*pc_ == kCallOpcode);
ASSERT(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
- Assembler::set_target_address_at(pc_ + 1, stub->instruction_start());
+ Assembler::set_target_address_at(pc_ + 1, host_, stub->instruction_start());
}
Address RelocInfo::call_address() {
ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
- return Assembler::target_address_at(pc_ + 1);
+ return Assembler::target_address_at(pc_ + 1, host_);
}
void RelocInfo::set_call_address(Address target) {
ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
- Assembler::set_target_address_at(pc_ + 1, target);
+ Assembler::set_target_address_at(pc_ + 1, host_, target);
if (host() != NULL) {
Object* target_code = Code::GetCodeFromTargetAddress(target);
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
Memory::Address_at(pc_) = NULL;
} else if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) {
// Effectively write zero into the relocation.
- Assembler::set_target_address_at(pc_, pc_ + sizeof(int32_t));
+ Assembler::set_target_address_at(pc_, host_, pc_ + sizeof(int32_t));
} else {
UNREACHABLE();
}
}
-Address Assembler::target_address_at(Address pc) {
+Address Assembler::target_address_at(Address pc,
+ ConstantPoolArray* constant_pool) {
return pc + sizeof(int32_t) + *reinterpret_cast<int32_t*>(pc);
}
-void Assembler::set_target_address_at(Address pc, Address target) {
+void Assembler::set_target_address_at(Address pc,
+ ConstantPoolArray* constant_pool,
+ Address target) {
int32_t* p = reinterpret_cast<int32_t*>(pc);
*p = target - (pc + sizeof(int32_t));
CPU::FlushICache(p, sizeof(int32_t));
void GetCode(CodeDesc* desc);
// Read/Modify the code target in the branch/call instruction at pc.
- inline static Address target_address_at(Address pc);
- inline static void set_target_address_at(Address pc, Address target);
+ inline static Address target_address_at(Address pc,
+ ConstantPoolArray* constant_pool);
+ inline static void set_target_address_at(Address pc,
+ ConstantPoolArray* constant_pool,
+ Address target);
+ static inline Address target_address_at(Address pc, Code* code) {
+ return target_address_at(pc, code->constant_pool());
+ }
+ static inline void set_target_address_at(Address pc,
+ Code* code,
+ Address target) {
+ set_target_address_at(pc, code->constant_pool(), target);
+ }
// Return the code target address at a call site from the return address
// of that call in the instruction stream.
// This sets the branch destination (which is in the instruction on x86).
// This is for calls and branches within generated code.
inline static void deserialization_set_special_target_at(
- Address instruction_payload, Address target) {
- set_target_address_at(instruction_payload, target);
+ Address instruction_payload, Code* code, Address target) {
+ set_target_address_at(instruction_payload, code, target);
}
static const int kSpecialTargetSize = kPointerSize;
// FP-relative displacement of the caller's SP. It points just
// below the saved PC.
static const int kCallerSPDisplacement = +2 * kPointerSize;
+
+ static const int kConstantPoolOffset = 0; // Not used
};
}
Assembler::set_target_address_at(call_target_address,
+ unoptimized_code,
replacement_code->entry());
unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
unoptimized_code, call_target_address, replacement_code);
if (*jns_instr_address == kJnsInstruction) {
ASSERT_EQ(kJnsOffset, *(call_target_address - 2));
ASSERT_EQ(isolate->builtins()->InterruptCheck()->entry(),
- Assembler::target_address_at(call_target_address));
+ Assembler::target_address_at(call_target_address,
+ unoptimized_code));
return INTERRUPT;
}
ASSERT_EQ(kNopByteOne, *jns_instr_address);
ASSERT_EQ(kNopByteTwo, *(call_target_address - 2));
- if (Assembler::target_address_at(call_target_address) ==
+ if (Assembler::target_address_at(call_target_address, unoptimized_code) ==
isolate->builtins()->OnStackReplacement()->entry()) {
return ON_STACK_REPLACEMENT;
}
ASSERT_EQ(isolate->builtins()->OsrAfterStackCheck()->entry(),
- Assembler::target_address_at(call_target_address));
+ Assembler::target_address_at(call_target_address,
+ unoptimized_code));
return OSR_AFTER_STACK_CHECK;
}
// At least one break point is active perform additional test to ensure that
// break point locations are updated correctly.
- if (debug->IsDebugBreak(Assembler::target_address_at(result))) {
+ if (debug->IsDebugBreak(Assembler::target_address_at(result,
+ raw_constant_pool()))) {
// If the call site is a call to debug break then return the address in
// the original code instead of the address in the running code. This will
// cause the original code to be updated and keeps the breakpoint active in
// the running code.
- return OriginalCodeAddress();
+ Code* code = GetCode();
+ Code* original_code = GetOriginalCode();
+ intptr_t delta =
+ original_code->instruction_start() - code->instruction_start();
+ // Return the address in the original code. This is the place where
+ // the call which has been overwritten by the DebugBreakXXX resides
+ // and the place where the inline cache system should look.
+ return result + delta;
} else {
// No break point here just return the address of the call.
return result;
}
-Code* IC::GetTargetAtAddress(Address address) {
+ConstantPoolArray* IC::constant_pool() const {
+ if (!FLAG_enable_ool_constant_pool) {
+ return NULL;
+ } else {
+ Handle<ConstantPoolArray> result = raw_constant_pool_;
+#ifdef ENABLE_DEBUGGER_SUPPORT
+ Debug* debug = isolate()->debug();
+ // First check if any break points are active if not just return the
+ // original constant pool.
+ if (!debug->has_break_points()) return *result;
+
+ // At least one break point is active perform additional test to ensure that
+ // break point locations are updated correctly.
+ Address target = Assembler::target_address_from_return_address(pc());
+ if (debug->IsDebugBreak(
+ Assembler::target_address_at(target, raw_constant_pool()))) {
+ // If the call site is a call to debug break then we want to return the
+ // constant pool for the original code instead of the breakpointed code.
+ return GetOriginalCode()->constant_pool();
+ }
+#endif
+ return *result;
+ }
+}
+
+
+ConstantPoolArray* IC::raw_constant_pool() const {
+ if (FLAG_enable_ool_constant_pool) {
+ return *raw_constant_pool_;
+ } else {
+ return NULL;
+ }
+}
+
+
+Code* IC::GetTargetAtAddress(Address address,
+ ConstantPoolArray* constant_pool) {
// Get the target address of the IC.
- Address target = Assembler::target_address_at(address);
+ Address target = Assembler::target_address_at(address, constant_pool);
// Convert target address to the code object. Code::GetCodeFromTargetAddress
// is safe for use during GC where the map might be marked.
Code* result = Code::GetCodeFromTargetAddress(target);
}
-void IC::SetTargetAtAddress(Address address, Code* target) {
+void IC::SetTargetAtAddress(Address address,
+ Code* target,
+ ConstantPoolArray* constant_pool) {
ASSERT(target->is_inline_cache_stub() || target->is_compare_ic_stub());
Heap* heap = target->GetHeap();
- Code* old_target = GetTargetAtAddress(address);
+ Code* old_target = GetTargetAtAddress(address, constant_pool);
#ifdef DEBUG
// STORE_IC and KEYED_STORE_IC use Code::extra_ic_state() to mark
// ICs as strict mode. The strict-ness of the IC must be preserved.
StoreIC::GetStrictMode(target->extra_ic_state()));
}
#endif
- Assembler::set_target_address_at(address, target->instruction_start());
+ Assembler::set_target_address_at(
+ address, constant_pool, target->instruction_start());
if (heap->gc_state() == Heap::MARK_COMPACT) {
heap->mark_compact_collector()->RecordCodeTargetPatch(address, target);
} else {
// running DeltaBlue and a ~25% speedup of gbemu with the '--nouse-ic' flag.
const Address entry =
Isolate::c_entry_fp(isolate->thread_local_top());
+ Address constant_pool = NULL;
+ if (FLAG_enable_ool_constant_pool) {
+ constant_pool = Memory::Address_at(
+ entry + ExitFrameConstants::kConstantPoolOffset);
+ }
Address* pc_address =
reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset);
Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
// StubFailureTrampoline, we need to look one frame further down the stack to
// find the frame pointer and the return address stack slot.
if (depth == EXTRA_CALL_FRAME) {
+ if (FLAG_enable_ool_constant_pool) {
+ constant_pool = Memory::Address_at(
+ fp + StandardFrameConstants::kConstantPoolOffset);
+ }
const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset;
pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset);
fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
ASSERT(fp == frame->fp() && pc_address == frame->pc_address());
#endif
fp_ = fp;
+ if (FLAG_enable_ool_constant_pool) {
+ raw_constant_pool_ = handle(
+ ConstantPoolArray::cast(reinterpret_cast<Object*>(constant_pool)),
+ isolate);
+ }
pc_address_ = StackFrame::ResolveReturnAddressLocation(pc_address);
target_ = handle(raw_target(), isolate);
state_ = target_->ic_state();
#ifdef ENABLE_DEBUGGER_SUPPORT
-Address IC::OriginalCodeAddress() const {
- HandleScope scope(isolate());
+SharedFunctionInfo* IC::GetSharedFunctionInfo() const {
// Compute the JavaScript frame for the frame pointer of this IC
// structure. We need this to be able to find the function
// corresponding to the frame.
// Find the function on the stack and both the active code for the
// function and the original code.
JSFunction* function = frame->function();
- Handle<SharedFunctionInfo> shared(function->shared(), isolate());
+ return function->shared();
+}
+
+
+Code* IC::GetCode() const {
+ HandleScope scope(isolate());
+ Handle<SharedFunctionInfo> shared(GetSharedFunctionInfo(), isolate());
Code* code = shared->code();
+ return code;
+}
+
+
+Code* IC::GetOriginalCode() const {
+ HandleScope scope(isolate());
+ Handle<SharedFunctionInfo> shared(GetSharedFunctionInfo(), isolate());
ASSERT(Debug::HasDebugInfo(shared));
Code* original_code = Debug::GetDebugInfo(shared)->original_code();
ASSERT(original_code->IsCode());
- // Get the address of the call site in the active code. This is the
- // place where the call to DebugBreakXXX is and where the IC
- // normally would be.
- Address addr = Assembler::target_address_from_return_address(pc());
- // Return the address in the original code. This is the place where
- // the call which has been overwritten by the DebugBreakXXX resides
- // and the place where the inline cache system should look.
- intptr_t delta =
- original_code->instruction_start() - code->instruction_start();
- return addr + delta;
+ return original_code;
}
#endif
}
-void IC::Clear(Isolate* isolate, Address address) {
- Code* target = GetTargetAtAddress(address);
+void IC::Clear(Isolate* isolate, Address address,
+ ConstantPoolArray* constant_pool) {
+ Code* target = GetTargetAtAddress(address, constant_pool);
// Don't clear debug break inline cache as it will remove the break point.
if (target->is_debug_stub()) return;
switch (target->kind()) {
- case Code::LOAD_IC: return LoadIC::Clear(isolate, address, target);
+ case Code::LOAD_IC:
+ return LoadIC::Clear(isolate, address, target, constant_pool);
case Code::KEYED_LOAD_IC:
- return KeyedLoadIC::Clear(isolate, address, target);
- case Code::STORE_IC: return StoreIC::Clear(isolate, address, target);
+ return KeyedLoadIC::Clear(isolate, address, target, constant_pool);
+ case Code::STORE_IC:
+ return StoreIC::Clear(isolate, address, target, constant_pool);
case Code::KEYED_STORE_IC:
- return KeyedStoreIC::Clear(isolate, address, target);
- case Code::COMPARE_IC: return CompareIC::Clear(isolate, address, target);
- case Code::COMPARE_NIL_IC: return CompareNilIC::Clear(address, target);
+ return KeyedStoreIC::Clear(isolate, address, target, constant_pool);
+ case Code::COMPARE_IC:
+ return CompareIC::Clear(isolate, address, target, constant_pool);
+ case Code::COMPARE_NIL_IC:
+ return CompareNilIC::Clear(address, target, constant_pool);
case Code::BINARY_OP_IC:
case Code::TO_BOOLEAN_IC:
// Clearing these is tricky and does not
}
-void KeyedLoadIC::Clear(Isolate* isolate, Address address, Code* target) {
+void KeyedLoadIC::Clear(Isolate* isolate,
+ Address address,
+ Code* target,
+ ConstantPoolArray* constant_pool) {
if (IsCleared(target)) return;
// Make sure to also clear the map used in inline fast cases. If we
// do not clear these maps, cached code can keep objects alive
// through the embedded maps.
- SetTargetAtAddress(address, *pre_monomorphic_stub(isolate));
+ SetTargetAtAddress(address, *pre_monomorphic_stub(isolate), constant_pool);
}
-void LoadIC::Clear(Isolate* isolate, Address address, Code* target) {
+void LoadIC::Clear(Isolate* isolate,
+ Address address,
+ Code* target,
+ ConstantPoolArray* constant_pool) {
if (IsCleared(target)) return;
Code* code = target->GetIsolate()->stub_cache()->FindPreMonomorphicIC(
Code::LOAD_IC, target->extra_ic_state());
- SetTargetAtAddress(address, code);
+ SetTargetAtAddress(address, code, constant_pool);
}
-void StoreIC::Clear(Isolate* isolate, Address address, Code* target) {
+void StoreIC::Clear(Isolate* isolate,
+ Address address,
+ Code* target,
+ ConstantPoolArray* constant_pool) {
if (IsCleared(target)) return;
Code* code = target->GetIsolate()->stub_cache()->FindPreMonomorphicIC(
Code::STORE_IC, target->extra_ic_state());
- SetTargetAtAddress(address, code);
+ SetTargetAtAddress(address, code, constant_pool);
}
-void KeyedStoreIC::Clear(Isolate* isolate, Address address, Code* target) {
+void KeyedStoreIC::Clear(Isolate* isolate,
+ Address address,
+ Code* target,
+ ConstantPoolArray* constant_pool) {
if (IsCleared(target)) return;
SetTargetAtAddress(address,
*pre_monomorphic_stub(
- isolate, StoreIC::GetStrictMode(target->extra_ic_state())));
+ isolate, StoreIC::GetStrictMode(target->extra_ic_state())),
+ constant_pool);
}
-void CompareIC::Clear(Isolate* isolate, Address address, Code* target) {
+void CompareIC::Clear(Isolate* isolate,
+ Address address,
+ Code* target,
+ ConstantPoolArray* constant_pool) {
ASSERT(target->major_key() == CodeStub::CompareIC);
CompareIC::State handler_state;
Token::Value op;
&handler_state, &op);
// Only clear CompareICs that can retain objects.
if (handler_state != KNOWN_OBJECT) return;
- SetTargetAtAddress(address, GetRawUninitialized(isolate, op));
+ SetTargetAtAddress(address, GetRawUninitialized(isolate, op), constant_pool);
PatchInlinedSmiCode(address, DISABLE_INLINED_SMI_CHECK);
}
}
-void CompareNilIC::Clear(Address address, Code* target) {
+void CompareNilIC::Clear(Address address,
+ Code* target,
+ ConstantPoolArray* constant_pool) {
if (IsCleared(target)) return;
ExtraICState state = target->extra_ic_state();
Code* code = NULL;
CHECK(stub.FindCodeInCache(&code, target->GetIsolate()));
- SetTargetAtAddress(address, code);
+ SetTargetAtAddress(address, code, constant_pool);
}
}
// Clear the inline cache to initial state.
- static void Clear(Isolate* isolate, Address address);
+ static void Clear(Isolate* isolate,
+ Address address,
+ ConstantPoolArray* constant_pool);
#ifdef DEBUG
bool IsLoadStub() const {
Isolate* isolate() const { return isolate_; }
#ifdef ENABLE_DEBUGGER_SUPPORT
- // Computes the address in the original code when the code running is
- // containing break points (calls to DebugBreakXXX builtins).
- Address OriginalCodeAddress() const;
+ // Get the shared function info of the caller.
+ SharedFunctionInfo* GetSharedFunctionInfo() const;
+ // Get the code object of the caller.
+ Code* GetCode() const;
+ // Get the original (non-breakpointed) code object of the caller.
+ Code* GetOriginalCode() const;
#endif
// Set the call-site target.
void set_target(Code* code) {
- SetTargetAtAddress(address(), code);
+ SetTargetAtAddress(address(), code, constant_pool());
target_set_ = true;
}
Failure* ReferenceError(const char* type, Handle<String> name);
// Access the target code for the given IC address.
- static inline Code* GetTargetAtAddress(Address address);
- static inline void SetTargetAtAddress(Address address, Code* target);
+ static inline Code* GetTargetAtAddress(Address address,
+ ConstantPoolArray* constant_pool);
+ static inline void SetTargetAtAddress(Address address,
+ Code* target,
+ ConstantPoolArray* constant_pool);
static void PostPatching(Address address, Code* target, Code* old_target);
// Compute the handler either by compiling or by retrieving a cached version.
}
private:
- Code* raw_target() const { return GetTargetAtAddress(address()); }
+ Code* raw_target() const {
+ return GetTargetAtAddress(address(), constant_pool());
+ }
+ inline ConstantPoolArray* constant_pool() const;
+ inline ConstantPoolArray* raw_constant_pool() const;
// Frame pointer for the frame that uses (calls) the IC.
Address fp_;
Isolate* isolate_;
+ // The constant pool of the code which originally called the IC (which might
+ // be for the breakpointed copy of the original code).
+ Handle<ConstantPoolArray> raw_constant_pool_;
+
// The original code target that missed.
Handle<Code> target_;
State state_;
Representation representation =
Representation::Tagged());
- static void Clear(Isolate* isolate, Address address, Code* target);
+ static void Clear(Isolate* isolate,
+ Address address,
+ Code* target,
+ ConstantPoolArray* constant_pool);
friend class IC;
};
return isolate()->builtins()->KeyedLoadIC_String();
}
- static void Clear(Isolate* isolate, Address address, Code* target);
+ static void Clear(Isolate* isolate,
+ Address address,
+ Code* target,
+ ConstantPoolArray* constant_pool);
friend class IC;
};
IC::set_target(code);
}
- static void Clear(Isolate* isolate, Address address, Code* target);
+ static void Clear(Isolate* isolate,
+ Address address,
+ Code* target,
+ ConstantPoolArray* constant_pool);
friend class IC;
};
return isolate()->builtins()->KeyedStoreIC_SloppyArguments();
}
- static void Clear(Isolate* isolate, Address address, Code* target);
+ static void Clear(Isolate* isolate,
+ Address address,
+ Code* target,
+ ConstantPoolArray* constant_pool);
KeyedAccessStoreMode GetStoreMode(Handle<JSObject> receiver,
Handle<Object> key,
static Code* GetRawUninitialized(Isolate* isolate, Token::Value op);
- static void Clear(Isolate* isolate, Address address, Code* target);
+ static void Clear(Isolate* isolate,
+ Address address,
+ Code* target,
+ ConstantPoolArray* constant_pool);
Token::Value op_;
static Handle<Code> GetUninitialized();
- static void Clear(Address address, Code* target);
+ static void Clear(Address address,
+ Code* target,
+ ConstantPoolArray* constant_pool);
static MUST_USE_RESULT MaybeObject* DoCompareNilSlow(NilValue nil,
Handle<Object> object);
&& (target->ic_state() == MEGAMORPHIC || target->ic_state() == GENERIC ||
target->ic_state() == POLYMORPHIC || heap->flush_monomorphic_ics() ||
Serializer::enabled() || target->ic_age() != heap->global_ic_age())) {
- IC::Clear(target->GetIsolate(), rinfo->pc());
+ IC::Clear(target->GetIsolate(), rinfo->pc(),
+ rinfo->host()->constant_pool());
target = Code::GetCodeFromTargetAddress(rinfo->target_address());
}
heap->mark_compact_collector()->RecordRelocSlot(rinfo, target);
Code* target(Code::GetCodeFromTargetAddress(info->target_address()));
if (target->is_inline_cache_stub()) {
if (kind == NULL || *kind == target->kind()) {
- IC::Clear(this->GetIsolate(), info->pc());
+ IC::Clear(this->GetIsolate(), info->pc(),
+ info->host()->constant_pool());
}
}
}
reinterpret_cast<Address>(current); \
Assembler::deserialization_set_special_target_at( \
location_of_branch_data, \
+ Code::cast(HeapObject::FromAddress(current_object_address)), \
reinterpret_cast<Address>(new_object)); \
location_of_branch_data += Assembler::kSpecialTargetSize; \
current = reinterpret_cast<Object**>(location_of_branch_data); \
}
-Address Assembler::target_address_at(Address pc) {
+Address Assembler::target_address_at(Address pc,
+ ConstantPoolArray* constant_pool) {
return Memory::int32_at(pc) + pc + 4;
}
-void Assembler::set_target_address_at(Address pc, Address target) {
+void Assembler::set_target_address_at(Address pc,
+ ConstantPoolArray* constant_pool,
+ Address target) {
Memory::int32_at(pc) = static_cast<int32_t>(target - pc - 4);
CPU::FlushICache(pc, sizeof(int32_t));
}
Address RelocInfo::target_address() {
ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
- return Assembler::target_address_at(pc_);
+ return Assembler::target_address_at(pc_, host_);
}
void RelocInfo::set_target_address(Address target, WriteBarrierMode mode) {
ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
- Assembler::set_target_address_at(pc_, target);
+ Assembler::set_target_address_at(pc_, host_, target);
if (mode == UPDATE_WRITE_BARRIER && host() != NULL && IsCodeTarget(rmode_)) {
Object* target_code = Code::GetCodeFromTargetAddress(target);
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
Memory::Address_at(pc_) = NULL;
} else if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) {
// Effectively write zero into the relocation.
- Assembler::set_target_address_at(pc_, pc_ + sizeof(int32_t));
+ Assembler::set_target_address_at(pc_, host_, pc_ + sizeof(int32_t));
} else {
UNREACHABLE();
}
ASSERT(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
ASSERT(*pc_ == kCallOpcode);
return Code::GetCodeFromTargetAddress(
- Assembler::target_address_at(pc_ + 1));
+ Assembler::target_address_at(pc_ + 1, host_));
}
void RelocInfo::set_code_age_stub(Code* stub) {
ASSERT(*pc_ == kCallOpcode);
ASSERT(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
- Assembler::set_target_address_at(pc_ + 1, stub->instruction_start());
+ Assembler::set_target_address_at(pc_ + 1, host_, stub->instruction_start());
}
// the absolute address of the target.
// These functions convert between absolute Addresses of Code objects and
// the relative displacements stored in the code.
- static inline Address target_address_at(Address pc);
- static inline void set_target_address_at(Address pc, Address target);
+ static inline Address target_address_at(Address pc,
+ ConstantPoolArray* constant_pool);
+ static inline void set_target_address_at(Address pc,
+ ConstantPoolArray* constant_pool,
+ Address target);
+ static inline Address target_address_at(Address pc, Code* code) {
+ return target_address_at(pc, code->constant_pool());
+ }
+ static inline void set_target_address_at(Address pc,
+ Code* code,
+ Address target) {
+ set_target_address_at(pc, code->constant_pool(), target);
+ }
// Return the code target address at a call site from the return address
// of that call in the instruction stream.
// This sets the branch destination (which is in the instruction on x64).
// This is for calls and branches within generated code.
inline static void deserialization_set_special_target_at(
- Address instruction_payload, Address target) {
- set_target_address_at(instruction_payload, target);
+ Address instruction_payload, Code* code, Address target) {
+ set_target_address_at(instruction_payload, code, target);
}
static inline RelocInfo::Mode RelocInfoNone() {
// FP-relative displacement of the caller's SP. It points just
// below the saved PC.
static const int kCallerSPDisplacement = kCallerPCOffset + kPCOnStackSize;
+
+ static const int kConstantPoolOffset = 0; // Not used
};
}
Assembler::set_target_address_at(call_target_address,
+ unoptimized_code,
replacement_code->entry());
unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
unoptimized_code, call_target_address, replacement_code);
if (*jns_instr_address == kJnsInstruction) {
ASSERT_EQ(kJnsOffset, *(call_target_address - 2));
ASSERT_EQ(isolate->builtins()->InterruptCheck()->entry(),
- Assembler::target_address_at(call_target_address));
+ Assembler::target_address_at(call_target_address,
+ unoptimized_code));
return INTERRUPT;
}
ASSERT_EQ(kNopByteOne, *jns_instr_address);
ASSERT_EQ(kNopByteTwo, *(call_target_address - 2));
- if (Assembler::target_address_at(call_target_address) ==
+ if (Assembler::target_address_at(call_target_address,
+ unoptimized_code) ==
isolate->builtins()->OnStackReplacement()->entry()) {
return ON_STACK_REPLACEMENT;
}
ASSERT_EQ(isolate->builtins()->OsrAfterStackCheck()->entry(),
- Assembler::target_address_at(call_target_address));
+ Assembler::target_address_at(call_target_address,
+ unoptimized_code));
return OSR_AFTER_STACK_CHECK;
}