It is recommended to set the soft limit always below the hard limit,
otherwise the hard limit will take precedence.
- 8. Move charges at task migration
- =================================
+.. _cgroup-v1-memory-move-charges:
+
+ 8. Move charges at task migration (DEPRECATED!)
+ ===============================================
+
+ THIS IS DEPRECATED!
+
+ It's expensive and unreliable! It's better practice to launch workload
+ tasks directly from inside their target cgroup. Use dedicated workload
+ cgroups to allow fine-grained policy adjustments without having to
+ move physical pages between control domains.
Users can move charges associated with a task along with task migration, that
is, uncharge task's pages from the old cgroup and charge them to the new cgroup.
- =============
-.. _numaperf:
-
+ =======================
+ NUMA Memory Performance
+ =======================
+
NUMA Locality
=============
--- /dev/null
- vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP | VM_DONTCOPY | VM_NORESERVE;
+// SPDX-License-Identifier: GPL-2.0
+
+/*
+ * Copyright 2016-2022 HabanaLabs, Ltd.
+ * All Rights Reserved.
+ */
+
+#include <uapi/drm/habanalabs_accel.h>
+#include "habanalabs.h"
+#include "../include/hw_ip/mmu/mmu_general.h"
+
+#include <linux/uaccess.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+#include <linux/pci-p2pdma.h>
+
+MODULE_IMPORT_NS(DMA_BUF);
+
+#define HL_MMU_DEBUG 0
+
+/* use small pages for supporting non-pow2 (32M/40M/48M) DRAM phys page sizes */
+#define DRAM_POOL_PAGE_SIZE SZ_8M
+
+#define MEM_HANDLE_INVALID ULONG_MAX
+
+static int allocate_timestamps_buffers(struct hl_fpriv *hpriv,
+ struct hl_mem_in *args, u64 *handle);
+
+static int set_alloc_page_size(struct hl_device *hdev, struct hl_mem_in *args, u32 *page_size)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 psize;
+
+ /*
+ * for ASIC that supports setting the allocation page size by user we will address
+ * user's choice only if it is not 0 (as 0 means taking the default page size)
+ */
+ if (prop->supports_user_set_page_size && args->alloc.page_size) {
+ psize = args->alloc.page_size;
+
+ if (!is_power_of_2(psize)) {
+ dev_err(hdev->dev, "user page size (%#llx) is not power of 2\n", psize);
+ return -EINVAL;
+ }
+ } else {
+ psize = prop->device_mem_alloc_default_page_size;
+ }
+
+ *page_size = psize;
+
+ return 0;
+}
+
+/*
+ * The va ranges in context object contain a list with the available chunks of
+ * device virtual memory.
+ * There is one range for host allocations and one for DRAM allocations.
+ *
+ * On initialization each range contains one chunk of all of its available
+ * virtual range which is a half of the total device virtual range.
+ *
+ * On each mapping of physical pages, a suitable virtual range chunk (with a
+ * minimum size) is selected from the list. If the chunk size equals the
+ * requested size, the chunk is returned. Otherwise, the chunk is split into
+ * two chunks - one to return as result and a remainder to stay in the list.
+ *
+ * On each Unmapping of a virtual address, the relevant virtual chunk is
+ * returned to the list. The chunk is added to the list and if its edges match
+ * the edges of the adjacent chunks (means a contiguous chunk can be created),
+ * the chunks are merged.
+ *
+ * On finish, the list is checked to have only one chunk of all the relevant
+ * virtual range (which is a half of the device total virtual range).
+ * If not (means not all mappings were unmapped), a warning is printed.
+ */
+
+/*
+ * alloc_device_memory() - allocate device memory.
+ * @ctx: pointer to the context structure.
+ * @args: host parameters containing the requested size.
+ * @ret_handle: result handle.
+ *
+ * This function does the following:
+ * - Allocate the requested size rounded up to 'dram_page_size' pages.
+ * - Return unique handle for later map/unmap/free.
+ */
+static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
+ u32 *ret_handle)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct hl_vm *vm = &hdev->vm;
+ struct hl_vm_phys_pg_pack *phys_pg_pack;
+ u64 paddr = 0, total_size, num_pgs, i;
+ u32 num_curr_pgs, page_size;
+ bool contiguous;
+ int handle, rc;
+
+ num_curr_pgs = 0;
+
+ rc = set_alloc_page_size(hdev, args, &page_size);
+ if (rc)
+ return rc;
+
+ num_pgs = DIV_ROUND_UP_ULL(args->alloc.mem_size, page_size);
+ total_size = num_pgs * page_size;
+
+ if (!total_size) {
+ dev_err(hdev->dev, "Cannot allocate 0 bytes\n");
+ return -EINVAL;
+ }
+
+ contiguous = args->flags & HL_MEM_CONTIGUOUS;
+
+ if (contiguous) {
+ if (is_power_of_2(page_size))
+ paddr = (uintptr_t) gen_pool_dma_alloc_align(vm->dram_pg_pool,
+ total_size, NULL, page_size);
+ else
+ paddr = gen_pool_alloc(vm->dram_pg_pool, total_size);
+ if (!paddr) {
+ dev_err(hdev->dev,
+ "Cannot allocate %llu contiguous pages with total size of %llu\n",
+ num_pgs, total_size);
+ return -ENOMEM;
+ }
+ }
+
+ phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
+ if (!phys_pg_pack) {
+ rc = -ENOMEM;
+ goto pages_pack_err;
+ }
+
+ phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
+ phys_pg_pack->asid = ctx->asid;
+ phys_pg_pack->npages = num_pgs;
+ phys_pg_pack->page_size = page_size;
+ phys_pg_pack->total_size = total_size;
+ phys_pg_pack->flags = args->flags;
+ phys_pg_pack->contiguous = contiguous;
+
+ phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL);
+ if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
+ rc = -ENOMEM;
+ goto pages_arr_err;
+ }
+
+ if (phys_pg_pack->contiguous) {
+ for (i = 0 ; i < num_pgs ; i++)
+ phys_pg_pack->pages[i] = paddr + i * page_size;
+ } else {
+ for (i = 0 ; i < num_pgs ; i++) {
+ if (is_power_of_2(page_size))
+ phys_pg_pack->pages[i] =
+ (uintptr_t)gen_pool_dma_alloc_align(vm->dram_pg_pool,
+ page_size, NULL,
+ page_size);
+ else
+ phys_pg_pack->pages[i] = gen_pool_alloc(vm->dram_pg_pool,
+ page_size);
+
+ if (!phys_pg_pack->pages[i]) {
+ dev_err(hdev->dev,
+ "Cannot allocate device memory (out of memory)\n");
+ rc = -ENOMEM;
+ goto page_err;
+ }
+
+ num_curr_pgs++;
+ }
+ }
+
+ spin_lock(&vm->idr_lock);
+ handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
+ GFP_ATOMIC);
+ spin_unlock(&vm->idr_lock);
+
+ if (handle < 0) {
+ dev_err(hdev->dev, "Failed to get handle for page\n");
+ rc = -EFAULT;
+ goto idr_err;
+ }
+
+ for (i = 0 ; i < num_pgs ; i++)
+ kref_get(&vm->dram_pg_pool_refcount);
+
+ phys_pg_pack->handle = handle;
+
+ atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
+ atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);
+
+ *ret_handle = handle;
+
+ return 0;
+
+idr_err:
+page_err:
+ if (!phys_pg_pack->contiguous)
+ for (i = 0 ; i < num_curr_pgs ; i++)
+ gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
+ page_size);
+
+ kvfree(phys_pg_pack->pages);
+pages_arr_err:
+ kfree(phys_pg_pack);
+pages_pack_err:
+ if (contiguous)
+ gen_pool_free(vm->dram_pg_pool, paddr, total_size);
+
+ return rc;
+}
+
+/**
+ * dma_map_host_va() - DMA mapping of the given host virtual address.
+ * @hdev: habanalabs device structure.
+ * @addr: the host virtual address of the memory area.
+ * @size: the size of the memory area.
+ * @p_userptr: pointer to result userptr structure.
+ *
+ * This function does the following:
+ * - Allocate userptr structure.
+ * - Pin the given host memory using the userptr structure.
+ * - Perform DMA mapping to have the DMA addresses of the pages.
+ */
+static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size,
+ struct hl_userptr **p_userptr)
+{
+ struct hl_userptr *userptr;
+ int rc;
+
+ userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
+ if (!userptr) {
+ rc = -ENOMEM;
+ goto userptr_err;
+ }
+
+ rc = hl_pin_host_memory(hdev, addr, size, userptr);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to pin host memory\n");
+ goto pin_err;
+ }
+
+ userptr->dma_mapped = true;
+ userptr->dir = DMA_BIDIRECTIONAL;
+ userptr->vm_type = VM_TYPE_USERPTR;
+
+ *p_userptr = userptr;
+
+ rc = hdev->asic_funcs->asic_dma_map_sgtable(hdev, userptr->sgt, DMA_BIDIRECTIONAL);
+ if (rc) {
+ dev_err(hdev->dev, "failed to map sgt with DMA region\n");
+ goto dma_map_err;
+ }
+
+ return 0;
+
+dma_map_err:
+ hl_unpin_host_memory(hdev, userptr);
+pin_err:
+ kfree(userptr);
+userptr_err:
+
+ return rc;
+}
+
+/**
+ * dma_unmap_host_va() - DMA unmapping of the given host virtual address.
+ * @hdev: habanalabs device structure.
+ * @userptr: userptr to free.
+ *
+ * This function does the following:
+ * - Unpins the physical pages.
+ * - Frees the userptr structure.
+ */
+static void dma_unmap_host_va(struct hl_device *hdev,
+ struct hl_userptr *userptr)
+{
+ hl_unpin_host_memory(hdev, userptr);
+ kfree(userptr);
+}
+
+/**
+ * dram_pg_pool_do_release() - free DRAM pages pool
+ * @ref: pointer to reference object.
+ *
+ * This function does the following:
+ * - Frees the idr structure of physical pages handles.
+ * - Frees the generic pool of DRAM physical pages.
+ */
+static void dram_pg_pool_do_release(struct kref *ref)
+{
+ struct hl_vm *vm = container_of(ref, struct hl_vm,
+ dram_pg_pool_refcount);
+
+ /*
+ * free the idr here as only here we know for sure that there are no
+ * allocated physical pages and hence there are no handles in use
+ */
+ idr_destroy(&vm->phys_pg_pack_handles);
+ gen_pool_destroy(vm->dram_pg_pool);
+}
+
+/**
+ * free_phys_pg_pack() - free physical page pack.
+ * @hdev: habanalabs device structure.
+ * @phys_pg_pack: physical page pack to free.
+ *
+ * This function does the following:
+ * - For DRAM memory only
+ * - iterate over the pack, free each physical block structure by
+ * returning it to the general pool.
+ * - Free the hl_vm_phys_pg_pack structure.
+ */
+static void free_phys_pg_pack(struct hl_device *hdev,
+ struct hl_vm_phys_pg_pack *phys_pg_pack)
+{
+ struct hl_vm *vm = &hdev->vm;
+ u64 i;
+
+ if (phys_pg_pack->created_from_userptr)
+ goto end;
+
+ if (phys_pg_pack->contiguous) {
+ gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
+ phys_pg_pack->total_size);
+
+ for (i = 0; i < phys_pg_pack->npages ; i++)
+ kref_put(&vm->dram_pg_pool_refcount,
+ dram_pg_pool_do_release);
+ } else {
+ for (i = 0 ; i < phys_pg_pack->npages ; i++) {
+ gen_pool_free(vm->dram_pg_pool,
+ phys_pg_pack->pages[i],
+ phys_pg_pack->page_size);
+ kref_put(&vm->dram_pg_pool_refcount,
+ dram_pg_pool_do_release);
+ }
+ }
+
+end:
+ kvfree(phys_pg_pack->pages);
+ kfree(phys_pg_pack);
+
+ return;
+}
+
+/**
+ * free_device_memory() - free device memory.
+ * @ctx: pointer to the context structure.
+ * @args: host parameters containing the requested size.
+ *
+ * This function does the following:
+ * - Free the device memory related to the given handle.
+ */
+static int free_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct hl_vm *vm = &hdev->vm;
+ struct hl_vm_phys_pg_pack *phys_pg_pack;
+ u32 handle = args->free.handle;
+
+ spin_lock(&vm->idr_lock);
+ phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
+ if (!phys_pg_pack) {
+ spin_unlock(&vm->idr_lock);
+ dev_err(hdev->dev, "free device memory failed, no match for handle %u\n", handle);
+ return -EINVAL;
+ }
+
+ if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
+ spin_unlock(&vm->idr_lock);
+ dev_err(hdev->dev, "handle %u is mapped, cannot free\n", handle);
+ return -EINVAL;
+ }
+
+ /* must remove from idr before the freeing of the physical pages as the refcount of the pool
+ * is also the trigger of the idr destroy
+ */
+ idr_remove(&vm->phys_pg_pack_handles, handle);
+ spin_unlock(&vm->idr_lock);
+
+ atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
+ atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);
+
+ free_phys_pg_pack(hdev, phys_pg_pack);
+
+ return 0;
+}
+
+/**
+ * clear_va_list_locked() - free virtual addresses list.
+ * @hdev: habanalabs device structure.
+ * @va_list: list of virtual addresses to free.
+ *
+ * This function does the following:
+ * - Iterate over the list and free each virtual addresses block.
+ *
+ * This function should be called only when va_list lock is taken.
+ */
+static void clear_va_list_locked(struct hl_device *hdev,
+ struct list_head *va_list)
+{
+ struct hl_vm_va_block *va_block, *tmp;
+
+ list_for_each_entry_safe(va_block, tmp, va_list, node) {
+ list_del(&va_block->node);
+ kfree(va_block);
+ }
+}
+
+/**
+ * print_va_list_locked() - print virtual addresses list.
+ * @hdev: habanalabs device structure.
+ * @va_list: list of virtual addresses to print.
+ *
+ * This function does the following:
+ * - Iterate over the list and print each virtual addresses block.
+ *
+ * This function should be called only when va_list lock is taken.
+ */
+static void print_va_list_locked(struct hl_device *hdev,
+ struct list_head *va_list)
+{
+#if HL_MMU_DEBUG
+ struct hl_vm_va_block *va_block;
+
+ dev_dbg(hdev->dev, "print va list:\n");
+
+ list_for_each_entry(va_block, va_list, node)
+ dev_dbg(hdev->dev,
+ "va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
+ va_block->start, va_block->end, va_block->size);
+#endif
+}
+
+/**
+ * merge_va_blocks_locked() - merge a virtual block if possible.
+ * @hdev: pointer to the habanalabs device structure.
+ * @va_list: pointer to the virtual addresses block list.
+ * @va_block: virtual block to merge with adjacent blocks.
+ *
+ * This function does the following:
+ * - Merge the given blocks with the adjacent blocks if their virtual ranges
+ * create a contiguous virtual range.
+ *
+ * This Function should be called only when va_list lock is taken.
+ */
+static void merge_va_blocks_locked(struct hl_device *hdev,
+ struct list_head *va_list, struct hl_vm_va_block *va_block)
+{
+ struct hl_vm_va_block *prev, *next;
+
+ prev = list_prev_entry(va_block, node);
+ if (&prev->node != va_list && prev->end + 1 == va_block->start) {
+ prev->end = va_block->end;
+ prev->size = prev->end - prev->start + 1;
+ list_del(&va_block->node);
+ kfree(va_block);
+ va_block = prev;
+ }
+
+ next = list_next_entry(va_block, node);
+ if (&next->node != va_list && va_block->end + 1 == next->start) {
+ next->start = va_block->start;
+ next->size = next->end - next->start + 1;
+ list_del(&va_block->node);
+ kfree(va_block);
+ }
+}
+
+/**
+ * add_va_block_locked() - add a virtual block to the virtual addresses list.
+ * @hdev: pointer to the habanalabs device structure.
+ * @va_list: pointer to the virtual addresses block list.
+ * @start: start virtual address.
+ * @end: end virtual address.
+ *
+ * This function does the following:
+ * - Add the given block to the virtual blocks list and merge with other blocks
+ * if a contiguous virtual block can be created.
+ *
+ * This Function should be called only when va_list lock is taken.
+ */
+static int add_va_block_locked(struct hl_device *hdev,
+ struct list_head *va_list, u64 start, u64 end)
+{
+ struct hl_vm_va_block *va_block, *res = NULL;
+ u64 size = end - start + 1;
+
+ print_va_list_locked(hdev, va_list);
+
+ list_for_each_entry(va_block, va_list, node) {
+ /* TODO: remove upon matureness */
+ if (hl_mem_area_crosses_range(start, size, va_block->start,
+ va_block->end)) {
+ dev_err(hdev->dev,
+ "block crossing ranges at start 0x%llx, end 0x%llx\n",
+ va_block->start, va_block->end);
+ return -EINVAL;
+ }
+
+ if (va_block->end < start)
+ res = va_block;
+ }
+
+ va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
+ if (!va_block)
+ return -ENOMEM;
+
+ va_block->start = start;
+ va_block->end = end;
+ va_block->size = size;
+
+ if (!res)
+ list_add(&va_block->node, va_list);
+ else
+ list_add(&va_block->node, &res->node);
+
+ merge_va_blocks_locked(hdev, va_list, va_block);
+
+ print_va_list_locked(hdev, va_list);
+
+ return 0;
+}
+
+/**
+ * add_va_block() - wrapper for add_va_block_locked.
+ * @hdev: pointer to the habanalabs device structure.
+ * @va_range: pointer to the virtual addresses range object.
+ * @start: start virtual address.
+ * @end: end virtual address.
+ *
+ * This function does the following:
+ * - Takes the list lock and calls add_va_block_locked.
+ */
+static inline int add_va_block(struct hl_device *hdev,
+ struct hl_va_range *va_range, u64 start, u64 end)
+{
+ int rc;
+
+ mutex_lock(&va_range->lock);
+ rc = add_va_block_locked(hdev, &va_range->list, start, end);
+ mutex_unlock(&va_range->lock);
+
+ return rc;
+}
+
+/**
+ * is_hint_crossing_range() - check if hint address crossing specified reserved.
+ * @range_type: virtual space range type.
+ * @start_addr: start virtual address.
+ * @size: block size.
+ * @prop: asic properties structure to retrieve reserved ranges from.
+ */
+static inline bool is_hint_crossing_range(enum hl_va_range_type range_type,
+ u64 start_addr, u32 size, struct asic_fixed_properties *prop) {
+ bool range_cross;
+
+ if (range_type == HL_VA_RANGE_TYPE_DRAM)
+ range_cross =
+ hl_mem_area_crosses_range(start_addr, size,
+ prop->hints_dram_reserved_va_range.start_addr,
+ prop->hints_dram_reserved_va_range.end_addr);
+ else if (range_type == HL_VA_RANGE_TYPE_HOST)
+ range_cross =
+ hl_mem_area_crosses_range(start_addr, size,
+ prop->hints_host_reserved_va_range.start_addr,
+ prop->hints_host_reserved_va_range.end_addr);
+ else
+ range_cross =
+ hl_mem_area_crosses_range(start_addr, size,
+ prop->hints_host_hpage_reserved_va_range.start_addr,
+ prop->hints_host_hpage_reserved_va_range.end_addr);
+
+ return range_cross;
+}
+
+/**
+ * get_va_block() - get a virtual block for the given size and alignment.
+ *
+ * @hdev: pointer to the habanalabs device structure.
+ * @va_range: pointer to the virtual addresses range.
+ * @size: requested block size.
+ * @hint_addr: hint for requested address by the user.
+ * @va_block_align: required alignment of the virtual block start address.
+ * @range_type: va range type (host, dram)
+ * @flags: additional memory flags, currently only uses HL_MEM_FORCE_HINT
+ *
+ * This function does the following:
+ * - Iterate on the virtual block list to find a suitable virtual block for the
+ * given size, hint address and alignment.
+ * - Reserve the requested block and update the list.
+ * - Return the start address of the virtual block.
+ */
+static u64 get_va_block(struct hl_device *hdev,
+ struct hl_va_range *va_range,
+ u64 size, u64 hint_addr, u32 va_block_align,
+ enum hl_va_range_type range_type,
+ u32 flags)
+{
+ struct hl_vm_va_block *va_block, *new_va_block = NULL;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 tmp_hint_addr, valid_start, valid_size, prev_start, prev_end,
+ align_mask, reserved_valid_start = 0, reserved_valid_size = 0,
+ dram_hint_mask = prop->dram_hints_align_mask;
+ bool add_prev = false;
+ bool is_align_pow_2 = is_power_of_2(va_range->page_size);
+ bool is_hint_dram_addr = hl_is_dram_va(hdev, hint_addr);
+ bool force_hint = flags & HL_MEM_FORCE_HINT;
+
+ if (is_align_pow_2)
+ align_mask = ~((u64)va_block_align - 1);
+ else
+ /*
+ * with non-power-of-2 range we work only with page granularity
+ * and the start address is page aligned,
+ * so no need for alignment checking.
+ */
+ size = DIV_ROUND_UP_ULL(size, va_range->page_size) *
+ va_range->page_size;
+
+ tmp_hint_addr = hint_addr & ~dram_hint_mask;
+
+ /* Check if we need to ignore hint address */
+ if ((is_align_pow_2 && (hint_addr & (va_block_align - 1))) ||
+ (!is_align_pow_2 && is_hint_dram_addr &&
+ do_div(tmp_hint_addr, va_range->page_size))) {
+
+ if (force_hint) {
+ /* Hint must be respected, so here we just fail */
+ dev_err(hdev->dev,
+ "Hint address 0x%llx is not page aligned - cannot be respected\n",
+ hint_addr);
+ return 0;
+ }
+
+ dev_dbg(hdev->dev,
+ "Hint address 0x%llx will be ignored because it is not aligned\n",
+ hint_addr);
+ hint_addr = 0;
+ }
+
+ mutex_lock(&va_range->lock);
+
+ print_va_list_locked(hdev, &va_range->list);
+
+ list_for_each_entry(va_block, &va_range->list, node) {
+ /* Calc the first possible aligned addr */
+ valid_start = va_block->start;
+
+ if (is_align_pow_2 && (valid_start & (va_block_align - 1))) {
+ valid_start &= align_mask;
+ valid_start += va_block_align;
+ if (valid_start > va_block->end)
+ continue;
+ }
+
+ valid_size = va_block->end - valid_start + 1;
+ if (valid_size < size)
+ continue;
+
+ /*
+ * In case hint address is 0, and hints_range_reservation
+ * property enabled, then avoid allocating va blocks from the
+ * range reserved for hint addresses
+ */
+ if (prop->hints_range_reservation && !hint_addr)
+ if (is_hint_crossing_range(range_type, valid_start,
+ size, prop))
+ continue;
+
+ /* Pick the minimal length block which has the required size */
+ if (!new_va_block || (valid_size < reserved_valid_size)) {
+ new_va_block = va_block;
+ reserved_valid_start = valid_start;
+ reserved_valid_size = valid_size;
+ }
+
+ if (hint_addr && hint_addr >= valid_start &&
+ (hint_addr + size) <= va_block->end) {
+ new_va_block = va_block;
+ reserved_valid_start = hint_addr;
+ reserved_valid_size = valid_size;
+ break;
+ }
+ }
+
+ if (!new_va_block) {
+ dev_err(hdev->dev, "no available va block for size %llu\n",
+ size);
+ goto out;
+ }
+
+ if (force_hint && reserved_valid_start != hint_addr) {
+ /* Hint address must be respected. If we are here - this means
+ * we could not respect it.
+ */
+ dev_err(hdev->dev,
+ "Hint address 0x%llx could not be respected\n",
+ hint_addr);
+ reserved_valid_start = 0;
+ goto out;
+ }
+
+ /*
+ * Check if there is some leftover range due to reserving the new
+ * va block, then return it to the main virtual addresses list.
+ */
+ if (reserved_valid_start > new_va_block->start) {
+ prev_start = new_va_block->start;
+ prev_end = reserved_valid_start - 1;
+
+ new_va_block->start = reserved_valid_start;
+ new_va_block->size = reserved_valid_size;
+
+ add_prev = true;
+ }
+
+ if (new_va_block->size > size) {
+ new_va_block->start += size;
+ new_va_block->size = new_va_block->end - new_va_block->start + 1;
+ } else {
+ list_del(&new_va_block->node);
+ kfree(new_va_block);
+ }
+
+ if (add_prev)
+ add_va_block_locked(hdev, &va_range->list, prev_start,
+ prev_end);
+
+ print_va_list_locked(hdev, &va_range->list);
+out:
+ mutex_unlock(&va_range->lock);
+
+ return reserved_valid_start;
+}
+
+/*
+ * hl_reserve_va_block() - reserve a virtual block of a given size.
+ * @hdev: pointer to the habanalabs device structure.
+ * @ctx: current context
+ * @type: virtual addresses range type.
+ * @size: requested block size.
+ * @alignment: required alignment in bytes of the virtual block start address,
+ * 0 means no alignment.
+ *
+ * This function does the following:
+ * - Iterate on the virtual block list to find a suitable virtual block for the
+ * given size and alignment.
+ * - Reserve the requested block and update the list.
+ * - Return the start address of the virtual block.
+ */
+u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
+ enum hl_va_range_type type, u64 size, u32 alignment)
+{
+ return get_va_block(hdev, ctx->va_range[type], size, 0,
+ max(alignment, ctx->va_range[type]->page_size),
+ type, 0);
+}
+
+/**
+ * hl_get_va_range_type() - get va_range type for the given address and size.
+ * @ctx: context to fetch va_range from.
+ * @address: the start address of the area we want to validate.
+ * @size: the size in bytes of the area we want to validate.
+ * @type: returned va_range type.
+ *
+ * Return: true if the area is inside a valid range, false otherwise.
+ */
+static int hl_get_va_range_type(struct hl_ctx *ctx, u64 address, u64 size,
+ enum hl_va_range_type *type)
+{
+ int i;
+
+ for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX; i++) {
+ if (hl_mem_area_inside_range(address, size,
+ ctx->va_range[i]->start_addr,
+ ctx->va_range[i]->end_addr)) {
+ *type = i;
+ return 0;
+ }
+ }
+
+ return -EINVAL;
+}
+
+/**
+ * hl_unreserve_va_block() - wrapper for add_va_block to unreserve a va block.
+ * @hdev: pointer to the habanalabs device structure
+ * @ctx: pointer to the context structure.
+ * @start_addr: start virtual address.
+ * @size: number of bytes to unreserve.
+ *
+ * This function does the following:
+ * - Takes the list lock and calls add_va_block_locked.
+ */
+int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
+ u64 start_addr, u64 size)
+{
+ enum hl_va_range_type type;
+ int rc;
+
+ rc = hl_get_va_range_type(ctx, start_addr, size, &type);
+ if (rc) {
+ dev_err(hdev->dev,
+ "cannot find va_range for va %#llx size %llu",
+ start_addr, size);
+ return rc;
+ }
+
+ rc = add_va_block(hdev, ctx->va_range[type], start_addr,
+ start_addr + size - 1);
+ if (rc)
+ dev_warn(hdev->dev,
+ "add va block failed for vaddr: 0x%llx\n", start_addr);
+
+ return rc;
+}
+
+/**
+ * init_phys_pg_pack_from_userptr() - initialize physical page pack from host
+ * memory
+ * @ctx: pointer to the context structure.
+ * @userptr: userptr to initialize from.
+ * @pphys_pg_pack: result pointer.
+ * @force_regular_page: tell the function to ignore huge page optimization,
+ * even if possible. Needed for cases where the device VA
+ * is allocated before we know the composition of the
+ * physical pages
+ *
+ * This function does the following:
+ * - Pin the physical pages related to the given virtual block.
+ * - Create a physical page pack from the physical pages related to the given
+ * virtual block.
+ */
+static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
+ struct hl_userptr *userptr,
+ struct hl_vm_phys_pg_pack **pphys_pg_pack,
+ bool force_regular_page)
+{
+ u32 npages, page_size = PAGE_SIZE,
+ huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size;
+ u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size);
+ struct hl_vm_phys_pg_pack *phys_pg_pack;
+ bool first = true, is_huge_page_opt;
+ u64 page_mask, total_npages;
+ struct scatterlist *sg;
+ dma_addr_t dma_addr;
+ int rc, i, j;
+
+ phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
+ if (!phys_pg_pack)
+ return -ENOMEM;
+
+ phys_pg_pack->vm_type = userptr->vm_type;
+ phys_pg_pack->created_from_userptr = true;
+ phys_pg_pack->asid = ctx->asid;
+ atomic_set(&phys_pg_pack->mapping_cnt, 1);
+
+ is_huge_page_opt = (force_regular_page ? false : true);
+
+ /* Only if all dma_addrs are aligned to 2MB and their
+ * sizes is at least 2MB, we can use huge page mapping.
+ * We limit the 2MB optimization to this condition,
+ * since later on we acquire the related VA range as one
+ * consecutive block.
+ */
+ total_npages = 0;
+ for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
+ npages = hl_get_sg_info(sg, &dma_addr);
+
+ total_npages += npages;
+
+ if ((npages % pgs_in_huge_page) ||
+ (dma_addr & (huge_page_size - 1)))
+ is_huge_page_opt = false;
+ }
+
+ if (is_huge_page_opt) {
+ page_size = huge_page_size;
+ do_div(total_npages, pgs_in_huge_page);
+ }
+
+ page_mask = ~(((u64) page_size) - 1);
+
+ phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64),
+ GFP_KERNEL);
+ if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
+ rc = -ENOMEM;
+ goto page_pack_arr_mem_err;
+ }
+
+ phys_pg_pack->npages = total_npages;
+ phys_pg_pack->page_size = page_size;
+ phys_pg_pack->total_size = total_npages * page_size;
+
+ j = 0;
+ for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
+ npages = hl_get_sg_info(sg, &dma_addr);
+
+ /* align down to physical page size and save the offset */
+ if (first) {
+ first = false;
+ phys_pg_pack->offset = dma_addr & (page_size - 1);
+ dma_addr &= page_mask;
+ }
+
+ while (npages) {
+ phys_pg_pack->pages[j++] = dma_addr;
+ dma_addr += page_size;
+
+ if (is_huge_page_opt)
+ npages -= pgs_in_huge_page;
+ else
+ npages--;
+ }
+ }
+
+ *pphys_pg_pack = phys_pg_pack;
+
+ return 0;
+
+page_pack_arr_mem_err:
+ kfree(phys_pg_pack);
+
+ return rc;
+}
+
+/**
+ * map_phys_pg_pack() - maps the physical page pack..
+ * @ctx: pointer to the context structure.
+ * @vaddr: start address of the virtual area to map from.
+ * @phys_pg_pack: the pack of physical pages to map to.
+ *
+ * This function does the following:
+ * - Maps each chunk of virtual memory to matching physical chunk.
+ * - Stores number of successful mappings in the given argument.
+ * - Returns 0 on success, error code otherwise.
+ */
+static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
+ struct hl_vm_phys_pg_pack *phys_pg_pack)
+{
+ struct hl_device *hdev = ctx->hdev;
+ u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
+ u32 page_size = phys_pg_pack->page_size;
+ int rc = 0;
+ bool is_host_addr;
+
+ for (i = 0 ; i < phys_pg_pack->npages ; i++) {
+ paddr = phys_pg_pack->pages[i];
+
+ rc = hl_mmu_map_page(ctx, next_vaddr, paddr, page_size,
+ (i + 1) == phys_pg_pack->npages);
+ if (rc) {
+ dev_err(hdev->dev,
+ "map failed for handle %u, npages: %llu, mapped: %llu",
+ phys_pg_pack->handle, phys_pg_pack->npages,
+ mapped_pg_cnt);
+ goto err;
+ }
+
+ mapped_pg_cnt++;
+ next_vaddr += page_size;
+ }
+
+ return 0;
+
+err:
+ is_host_addr = !hl_is_dram_va(hdev, vaddr);
+
+ next_vaddr = vaddr;
+ for (i = 0 ; i < mapped_pg_cnt ; i++) {
+ if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
+ (i + 1) == mapped_pg_cnt))
+ dev_warn_ratelimited(hdev->dev,
+ "failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
+ phys_pg_pack->handle, next_vaddr,
+ phys_pg_pack->pages[i], page_size);
+
+ next_vaddr += page_size;
+
+ /*
+ * unmapping on Palladium can be really long, so avoid a CPU
+ * soft lockup bug by sleeping a little between unmapping pages
+ *
+ * In addition, on host num of pages could be huge,
+ * because page size could be 4KB, so when unmapping host
+ * pages sleep every 32K pages to avoid soft lockup
+ */
+ if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
+ usleep_range(50, 200);
+ }
+
+ return rc;
+}
+
+/**
+ * unmap_phys_pg_pack() - unmaps the physical page pack.
+ * @ctx: pointer to the context structure.
+ * @vaddr: start address of the virtual area to unmap.
+ * @phys_pg_pack: the pack of physical pages to unmap.
+ */
+static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
+ struct hl_vm_phys_pg_pack *phys_pg_pack)
+{
+ struct hl_device *hdev = ctx->hdev;
+ u64 next_vaddr, i;
+ bool is_host_addr;
+ u32 page_size;
+
+ is_host_addr = !hl_is_dram_va(hdev, vaddr);
+ page_size = phys_pg_pack->page_size;
+ next_vaddr = vaddr;
+
+ for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
+ if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
+ (i + 1) == phys_pg_pack->npages))
+ dev_warn_ratelimited(hdev->dev,
+ "unmap failed for vaddr: 0x%llx\n", next_vaddr);
+
+ /*
+ * unmapping on Palladium can be really long, so avoid a CPU
+ * soft lockup bug by sleeping a little between unmapping pages
+ *
+ * In addition, on host num of pages could be huge,
+ * because page size could be 4KB, so when unmapping host
+ * pages sleep every 32K pages to avoid soft lockup
+ */
+ if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
+ usleep_range(50, 200);
+ }
+}
+
+static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args,
+ u64 *paddr)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct hl_vm *vm = &hdev->vm;
+ struct hl_vm_phys_pg_pack *phys_pg_pack;
+ u32 handle;
+
+ handle = lower_32_bits(args->map_device.handle);
+ spin_lock(&vm->idr_lock);
+ phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
+ if (!phys_pg_pack) {
+ spin_unlock(&vm->idr_lock);
+ dev_err(hdev->dev, "no match for handle %u\n", handle);
+ return -EINVAL;
+ }
+
+ *paddr = phys_pg_pack->pages[0];
+
+ spin_unlock(&vm->idr_lock);
+
+ return 0;
+}
+
+/**
+ * map_device_va() - map the given memory.
+ * @ctx: pointer to the context structure.
+ * @args: host parameters with handle/host virtual address.
+ * @device_addr: pointer to result device virtual address.
+ *
+ * This function does the following:
+ * - If given a physical device memory handle, map to a device virtual block
+ * and return the start address of this block.
+ * - If given a host virtual address and size, find the related physical pages,
+ * map a device virtual block to this pages and return the start address of
+ * this block.
+ */
+static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, u64 *device_addr)
+{
+ struct hl_vm_phys_pg_pack *phys_pg_pack;
+ enum hl_va_range_type va_range_type = 0;
+ struct hl_device *hdev = ctx->hdev;
+ struct hl_userptr *userptr = NULL;
+ u32 handle = 0, va_block_align;
+ struct hl_vm_hash_node *hnode;
+ struct hl_vm *vm = &hdev->vm;
+ struct hl_va_range *va_range;
+ bool is_userptr, do_prefetch;
+ u64 ret_vaddr, hint_addr;
+ enum vm_type *vm_type;
+ int rc;
+
+ /* set map flags */
+ is_userptr = args->flags & HL_MEM_USERPTR;
+ do_prefetch = hdev->supports_mmu_prefetch && (args->flags & HL_MEM_PREFETCH);
+
+ /* Assume failure */
+ *device_addr = 0;
+
+ if (is_userptr) {
+ u64 addr = args->map_host.host_virt_addr,
+ size = args->map_host.mem_size;
+ u32 page_size = hdev->asic_prop.pmmu.page_size,
+ huge_page_size = hdev->asic_prop.pmmu_huge.page_size;
+
+ rc = dma_map_host_va(hdev, addr, size, &userptr);
+ if (rc) {
+ dev_err(hdev->dev, "failed to get userptr from va\n");
+ return rc;
+ }
+
+ rc = init_phys_pg_pack_from_userptr(ctx, userptr,
+ &phys_pg_pack, false);
+ if (rc) {
+ dev_err(hdev->dev,
+ "unable to init page pack for vaddr 0x%llx\n",
+ addr);
+ goto init_page_pack_err;
+ }
+
+ vm_type = (enum vm_type *) userptr;
+ hint_addr = args->map_host.hint_addr;
+ handle = phys_pg_pack->handle;
+
+ /* get required alignment */
+ if (phys_pg_pack->page_size == page_size) {
+ va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
+ va_range_type = HL_VA_RANGE_TYPE_HOST;
+ /*
+ * huge page alignment may be needed in case of regular
+ * page mapping, depending on the host VA alignment
+ */
+ if (addr & (huge_page_size - 1))
+ va_block_align = page_size;
+ else
+ va_block_align = huge_page_size;
+ } else {
+ /*
+ * huge page alignment is needed in case of huge page
+ * mapping
+ */
+ va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
+ va_range_type = HL_VA_RANGE_TYPE_HOST_HUGE;
+ va_block_align = huge_page_size;
+ }
+ } else {
+ handle = lower_32_bits(args->map_device.handle);
+
+ spin_lock(&vm->idr_lock);
+ phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
+ if (!phys_pg_pack) {
+ spin_unlock(&vm->idr_lock);
+ dev_err(hdev->dev,
+ "no match for handle %u\n", handle);
+ return -EINVAL;
+ }
+
+ /* increment now to avoid freeing device memory while mapping */
+ atomic_inc(&phys_pg_pack->mapping_cnt);
+
+ spin_unlock(&vm->idr_lock);
+
+ vm_type = (enum vm_type *) phys_pg_pack;
+
+ hint_addr = args->map_device.hint_addr;
+
+ /* DRAM VA alignment is the same as the MMU page size */
+ va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
+ va_range_type = HL_VA_RANGE_TYPE_DRAM;
+ va_block_align = hdev->asic_prop.dmmu.page_size;
+ }
+
+ /*
+ * relevant for mapping device physical memory only, as host memory is
+ * implicitly shared
+ */
+ if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
+ phys_pg_pack->asid != ctx->asid) {
+ dev_err(hdev->dev,
+ "Failed to map memory, handle %u is not shared\n",
+ handle);
+ rc = -EPERM;
+ goto shared_err;
+ }
+
+ hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
+ if (!hnode) {
+ rc = -ENOMEM;
+ goto hnode_err;
+ }
+
+ if (hint_addr && phys_pg_pack->offset) {
+ if (args->flags & HL_MEM_FORCE_HINT) {
+ /* Fail if hint must be respected but it can't be */
+ dev_err(hdev->dev,
+ "Hint address 0x%llx cannot be respected because source memory is not aligned 0x%x\n",
+ hint_addr, phys_pg_pack->offset);
+ rc = -EINVAL;
+ goto va_block_err;
+ }
+ dev_dbg(hdev->dev,
+ "Hint address 0x%llx will be ignored because source memory is not aligned 0x%x\n",
+ hint_addr, phys_pg_pack->offset);
+ }
+
+ ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size,
+ hint_addr, va_block_align,
+ va_range_type, args->flags);
+ if (!ret_vaddr) {
+ dev_err(hdev->dev, "no available va block for handle %u\n",
+ handle);
+ rc = -ENOMEM;
+ goto va_block_err;
+ }
+
+ mutex_lock(&hdev->mmu_lock);
+
+ rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack);
+ if (rc) {
+ dev_err(hdev->dev, "mapping page pack failed for handle %u\n", handle);
+ mutex_unlock(&hdev->mmu_lock);
+ goto map_err;
+ }
+
+ rc = hl_mmu_invalidate_cache_range(hdev, false, *vm_type | MMU_OP_SKIP_LOW_CACHE_INV,
+ ctx->asid, ret_vaddr, phys_pg_pack->total_size);
+ mutex_unlock(&hdev->mmu_lock);
+ if (rc)
+ goto map_err;
+
+ /*
+ * prefetch is done upon user's request. it is performed in WQ as and so can
+ * be outside the MMU lock. the operation itself is already protected by the mmu lock
+ */
+ if (do_prefetch) {
+ rc = hl_mmu_prefetch_cache_range(ctx, *vm_type, ctx->asid, ret_vaddr,
+ phys_pg_pack->total_size);
+ if (rc)
+ goto map_err;
+ }
+
+ ret_vaddr += phys_pg_pack->offset;
+
+ hnode->ptr = vm_type;
+ hnode->vaddr = ret_vaddr;
+ hnode->handle = is_userptr ? MEM_HANDLE_INVALID : handle;
+
+ mutex_lock(&ctx->mem_hash_lock);
+ hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
+ mutex_unlock(&ctx->mem_hash_lock);
+
+ *device_addr = ret_vaddr;
+
+ if (is_userptr)
+ free_phys_pg_pack(hdev, phys_pg_pack);
+
+ return rc;
+
+map_err:
+ if (add_va_block(hdev, va_range, ret_vaddr,
+ ret_vaddr + phys_pg_pack->total_size - 1))
+ dev_warn(hdev->dev,
+ "release va block failed for handle 0x%x, vaddr: 0x%llx\n",
+ handle, ret_vaddr);
+
+va_block_err:
+ kfree(hnode);
+hnode_err:
+shared_err:
+ atomic_dec(&phys_pg_pack->mapping_cnt);
+ if (is_userptr)
+ free_phys_pg_pack(hdev, phys_pg_pack);
+init_page_pack_err:
+ if (is_userptr)
+ dma_unmap_host_va(hdev, userptr);
+
+ return rc;
+}
+
+/**
+ * unmap_device_va() - unmap the given device virtual address.
+ * @ctx: pointer to the context structure.
+ * @args: host parameters with device virtual address to unmap.
+ * @ctx_free: true if in context free flow, false otherwise.
+ *
+ * This function does the following:
+ * - unmap the physical pages related to the given virtual address.
+ * - return the device virtual block to the virtual block list.
+ */
+static int unmap_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
+ bool ctx_free)
+{
+ struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
+ u64 vaddr = args->unmap.device_virt_addr;
+ struct hl_vm_hash_node *hnode = NULL;
+ struct asic_fixed_properties *prop;
+ struct hl_device *hdev = ctx->hdev;
+ struct hl_userptr *userptr = NULL;
+ struct hl_va_range *va_range;
+ enum vm_type *vm_type;
+ bool is_userptr;
+ int rc = 0;
+
+ prop = &hdev->asic_prop;
+
+ /* protect from double entrance */
+ mutex_lock(&ctx->mem_hash_lock);
+ hash_for_each_possible(ctx->mem_hash, hnode, node, (unsigned long)vaddr)
+ if (vaddr == hnode->vaddr)
+ break;
+
+ if (!hnode) {
+ mutex_unlock(&ctx->mem_hash_lock);
+ dev_err(hdev->dev,
+ "unmap failed, no mem hnode for vaddr 0x%llx\n",
+ vaddr);
+ return -EINVAL;
+ }
+
+ if (hnode->export_cnt) {
+ mutex_unlock(&ctx->mem_hash_lock);
+ dev_err(hdev->dev, "failed to unmap %#llx, memory is exported\n", vaddr);
+ return -EINVAL;
+ }
+
+ hash_del(&hnode->node);
+ mutex_unlock(&ctx->mem_hash_lock);
+
+ vm_type = hnode->ptr;
+
+ if (*vm_type == VM_TYPE_USERPTR) {
+ is_userptr = true;
+ userptr = hnode->ptr;
+
+ rc = init_phys_pg_pack_from_userptr(ctx, userptr, &phys_pg_pack,
+ false);
+ if (rc) {
+ dev_err(hdev->dev,
+ "unable to init page pack for vaddr 0x%llx\n",
+ vaddr);
+ goto vm_type_err;
+ }
+
+ if (phys_pg_pack->page_size ==
+ hdev->asic_prop.pmmu.page_size)
+ va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
+ else
+ va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
+ } else if (*vm_type == VM_TYPE_PHYS_PACK) {
+ is_userptr = false;
+ va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
+ phys_pg_pack = hnode->ptr;
+ } else {
+ dev_warn(hdev->dev,
+ "unmap failed, unknown vm desc for vaddr 0x%llx\n",
+ vaddr);
+ rc = -EFAULT;
+ goto vm_type_err;
+ }
+
+ if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
+ dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
+ rc = -EINVAL;
+ goto mapping_cnt_err;
+ }
+
+ if (!is_userptr && !is_power_of_2(phys_pg_pack->page_size))
+ vaddr = prop->dram_base_address +
+ DIV_ROUND_DOWN_ULL(vaddr - prop->dram_base_address,
+ phys_pg_pack->page_size) *
+ phys_pg_pack->page_size;
+ else
+ vaddr &= ~(((u64) phys_pg_pack->page_size) - 1);
+
+ mutex_lock(&hdev->mmu_lock);
+
+ unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack);
+
+ /*
+ * During context free this function is called in a loop to clean all
+ * the context mappings. Hence the cache invalidation can be called once
+ * at the loop end rather than for each iteration
+ */
+ if (!ctx_free)
+ rc = hl_mmu_invalidate_cache_range(hdev, true, *vm_type, ctx->asid, vaddr,
+ phys_pg_pack->total_size);
+
+ mutex_unlock(&hdev->mmu_lock);
+
+ /*
+ * If the context is closing we don't need to check for the MMU cache
+ * invalidation return code and update the VA free list as in this flow
+ * we invalidate the MMU cache outside of this unmap function and the VA
+ * free list will be freed anyway.
+ */
+ if (!ctx_free) {
+ int tmp_rc;
+
+ tmp_rc = add_va_block(hdev, va_range, vaddr,
+ vaddr + phys_pg_pack->total_size - 1);
+ if (tmp_rc) {
+ dev_warn(hdev->dev,
+ "add va block failed for vaddr: 0x%llx\n",
+ vaddr);
+ if (!rc)
+ rc = tmp_rc;
+ }
+ }
+
+ atomic_dec(&phys_pg_pack->mapping_cnt);
+ kfree(hnode);
+
+ if (is_userptr) {
+ free_phys_pg_pack(hdev, phys_pg_pack);
+ dma_unmap_host_va(hdev, userptr);
+ }
+
+ return rc;
+
+mapping_cnt_err:
+ if (is_userptr)
+ free_phys_pg_pack(hdev, phys_pg_pack);
+vm_type_err:
+ mutex_lock(&ctx->mem_hash_lock);
+ hash_add(ctx->mem_hash, &hnode->node, vaddr);
+ mutex_unlock(&ctx->mem_hash_lock);
+
+ return rc;
+}
+
+static int map_block(struct hl_device *hdev, u64 address, u64 *handle, u32 *size)
+{
+ u32 block_id;
+ int rc;
+
+ *handle = 0;
+ if (size)
+ *size = 0;
+
+ rc = hdev->asic_funcs->get_hw_block_id(hdev, address, size, &block_id);
+ if (rc)
+ return rc;
+
+ *handle = block_id | HL_MMAP_TYPE_BLOCK;
+ *handle <<= PAGE_SHIFT;
+
+ return 0;
+}
+
+static void hw_block_vm_close(struct vm_area_struct *vma)
+{
+ struct hl_vm_hw_block_list_node *lnode =
+ (struct hl_vm_hw_block_list_node *) vma->vm_private_data;
+ struct hl_ctx *ctx = lnode->ctx;
+ long new_mmap_size;
+
+ new_mmap_size = lnode->mapped_size - (vma->vm_end - vma->vm_start);
+ if (new_mmap_size > 0) {
+ lnode->mapped_size = new_mmap_size;
+ return;
+ }
+
+ mutex_lock(&ctx->hw_block_list_lock);
+ list_del(&lnode->node);
+ mutex_unlock(&ctx->hw_block_list_lock);
+ hl_ctx_put(ctx);
+ kfree(lnode);
+ vma->vm_private_data = NULL;
+}
+
+static const struct vm_operations_struct hw_block_vm_ops = {
+ .close = hw_block_vm_close
+};
+
+/**
+ * hl_hw_block_mmap() - mmap a hw block to user.
+ * @hpriv: pointer to the private data of the fd
+ * @vma: pointer to vm_area_struct of the process
+ *
+ * Driver increments context reference for every HW block mapped in order
+ * to prevent user from closing FD without unmapping first
+ */
+int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
+{
+ struct hl_vm_hw_block_list_node *lnode;
+ struct hl_device *hdev = hpriv->hdev;
+ struct hl_ctx *ctx = hpriv->ctx;
+ u32 block_id, block_size;
+ int rc;
+
+ /* We use the page offset to hold the block id and thus we need to clear
+ * it before doing the mmap itself
+ */
+ block_id = vma->vm_pgoff;
+ vma->vm_pgoff = 0;
+
+ /* Driver only allows mapping of a complete HW block */
+ block_size = vma->vm_end - vma->vm_start;
+
+ if (!access_ok((void __user *) (uintptr_t) vma->vm_start, block_size)) {
+ dev_err(hdev->dev,
+ "user pointer is invalid - 0x%lx\n",
+ vma->vm_start);
+
+ return -EINVAL;
+ }
+
+ lnode = kzalloc(sizeof(*lnode), GFP_KERNEL);
+ if (!lnode)
+ return -ENOMEM;
+
+ rc = hdev->asic_funcs->hw_block_mmap(hdev, vma, block_id, block_size);
+ if (rc) {
+ kfree(lnode);
+ return rc;
+ }
+
+ hl_ctx_get(ctx);
+
+ lnode->ctx = ctx;
+ lnode->vaddr = vma->vm_start;
+ lnode->block_size = block_size;
+ lnode->mapped_size = lnode->block_size;
+ lnode->id = block_id;
+
+ vma->vm_private_data = lnode;
+ vma->vm_ops = &hw_block_vm_ops;
+
+ mutex_lock(&ctx->hw_block_list_lock);
+ list_add_tail(&lnode->node, &ctx->hw_block_mem_list);
+ mutex_unlock(&ctx->hw_block_list_lock);
+
+ vma->vm_pgoff = block_id;
+
+ return 0;
+}
+
+static int set_dma_sg(struct scatterlist *sg, u64 bar_address, u64 chunk_size,
+ struct device *dev, enum dma_data_direction dir)
+{
+ dma_addr_t addr;
+ int rc;
+
+ addr = dma_map_resource(dev, bar_address, chunk_size, dir,
+ DMA_ATTR_SKIP_CPU_SYNC);
+ rc = dma_mapping_error(dev, addr);
+ if (rc)
+ return rc;
+
+ sg_set_page(sg, NULL, chunk_size, 0);
+ sg_dma_address(sg) = addr;
+ sg_dma_len(sg) = chunk_size;
+
+ return 0;
+}
+
+static struct sg_table *alloc_sgt_from_device_pages(struct hl_device *hdev, u64 *pages, u64 npages,
+ u64 page_size, u64 exported_size,
+ struct device *dev, enum dma_data_direction dir)
+{
+ u64 chunk_size, bar_address, dma_max_seg_size, cur_size_to_export, cur_npages;
+ struct asic_fixed_properties *prop;
+ int rc, i, j, nents, cur_page;
+ struct scatterlist *sg;
+ struct sg_table *sgt;
+
+ prop = &hdev->asic_prop;
+
+ dma_max_seg_size = dma_get_max_seg_size(dev);
+
+ /* We would like to align the max segment size to PAGE_SIZE, so the
+ * SGL will contain aligned addresses that can be easily mapped to
+ * an MMU
+ */
+ dma_max_seg_size = ALIGN_DOWN(dma_max_seg_size, PAGE_SIZE);
+ if (dma_max_seg_size < PAGE_SIZE) {
+ dev_err_ratelimited(hdev->dev,
+ "dma_max_seg_size %llu can't be smaller than PAGE_SIZE\n",
+ dma_max_seg_size);
+ return ERR_PTR(-EINVAL);
+ }
+
+ sgt = kzalloc(sizeof(*sgt), GFP_KERNEL);
+ if (!sgt)
+ return ERR_PTR(-ENOMEM);
+
+ /* remove export size restrictions in case not explicitly defined */
+ cur_size_to_export = exported_size ? exported_size : (npages * page_size);
+
+ /* If the size of each page is larger than the dma max segment size,
+ * then we can't combine pages and the number of entries in the SGL
+ * will just be the
+ * <number of pages> * <chunks of max segment size in each page>
+ */
+ if (page_size > dma_max_seg_size) {
+ /* we should limit number of pages according to the exported size */
+ cur_npages = DIV_ROUND_UP_SECTOR_T(cur_size_to_export, page_size);
+ nents = cur_npages * DIV_ROUND_UP_SECTOR_T(page_size, dma_max_seg_size);
+ } else {
+ cur_npages = npages;
+
+ /* Get number of non-contiguous chunks */
+ for (i = 1, nents = 1, chunk_size = page_size ; i < cur_npages ; i++) {
+ if (pages[i - 1] + page_size != pages[i] ||
+ chunk_size + page_size > dma_max_seg_size) {
+ nents++;
+ chunk_size = page_size;
+ continue;
+ }
+
+ chunk_size += page_size;
+ }
+ }
+
+ rc = sg_alloc_table(sgt, nents, GFP_KERNEL | __GFP_ZERO);
+ if (rc)
+ goto error_free;
+
+ cur_page = 0;
+
+ if (page_size > dma_max_seg_size) {
+ u64 size_left, cur_device_address = 0;
+
+ size_left = page_size;
+
+ /* Need to split each page into the number of chunks of
+ * dma_max_seg_size
+ */
+ for_each_sgtable_dma_sg(sgt, sg, i) {
+ if (size_left == page_size)
+ cur_device_address =
+ pages[cur_page] - prop->dram_base_address;
+ else
+ cur_device_address += dma_max_seg_size;
+
+ /* make sure not to export over exported size */
+ chunk_size = min3(size_left, dma_max_seg_size, cur_size_to_export);
+
+ bar_address = hdev->dram_pci_bar_start + cur_device_address;
+
+ rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir);
+ if (rc)
+ goto error_unmap;
+
+ cur_size_to_export -= chunk_size;
+
+ if (size_left > dma_max_seg_size) {
+ size_left -= dma_max_seg_size;
+ } else {
+ cur_page++;
+ size_left = page_size;
+ }
+ }
+ } else {
+ /* Merge pages and put them into the scatterlist */
+ for_each_sgtable_dma_sg(sgt, sg, i) {
+ chunk_size = page_size;
+ for (j = cur_page + 1 ; j < cur_npages ; j++) {
+ if (pages[j - 1] + page_size != pages[j] ||
+ chunk_size + page_size > dma_max_seg_size)
+ break;
+
+ chunk_size += page_size;
+ }
+
+ bar_address = hdev->dram_pci_bar_start +
+ (pages[cur_page] - prop->dram_base_address);
+
+ /* make sure not to export over exported size */
+ chunk_size = min(chunk_size, cur_size_to_export);
+ rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir);
+ if (rc)
+ goto error_unmap;
+
+ cur_size_to_export -= chunk_size;
+ cur_page = j;
+ }
+ }
+
+ /* Because we are not going to include a CPU list we want to have some
+ * chance that other users will detect this by setting the orig_nents
+ * to 0 and using only nents (length of DMA list) when going over the
+ * sgl
+ */
+ sgt->orig_nents = 0;
+
+ return sgt;
+
+error_unmap:
+ for_each_sgtable_dma_sg(sgt, sg, i) {
+ if (!sg_dma_len(sg))
+ continue;
+
+ dma_unmap_resource(dev, sg_dma_address(sg),
+ sg_dma_len(sg), dir,
+ DMA_ATTR_SKIP_CPU_SYNC);
+ }
+
+ sg_free_table(sgt);
+
+error_free:
+ kfree(sgt);
+ return ERR_PTR(rc);
+}
+
+static int hl_dmabuf_attach(struct dma_buf *dmabuf,
+ struct dma_buf_attachment *attachment)
+{
+ struct hl_dmabuf_priv *hl_dmabuf;
+ struct hl_device *hdev;
+ int rc;
+
+ hl_dmabuf = dmabuf->priv;
+ hdev = hl_dmabuf->ctx->hdev;
+
+ rc = pci_p2pdma_distance(hdev->pdev, attachment->dev, true);
+
+ if (rc < 0)
+ attachment->peer2peer = false;
+ return 0;
+}
+
+static struct sg_table *hl_map_dmabuf(struct dma_buf_attachment *attachment,
+ enum dma_data_direction dir)
+{
+ struct dma_buf *dma_buf = attachment->dmabuf;
+ struct hl_vm_phys_pg_pack *phys_pg_pack;
+ struct hl_dmabuf_priv *hl_dmabuf;
+ struct hl_device *hdev;
+ struct sg_table *sgt;
+
+ hl_dmabuf = dma_buf->priv;
+ hdev = hl_dmabuf->ctx->hdev;
+ phys_pg_pack = hl_dmabuf->phys_pg_pack;
+
+ if (!attachment->peer2peer) {
+ dev_dbg(hdev->dev, "Failed to map dmabuf because p2p is disabled\n");
+ return ERR_PTR(-EPERM);
+ }
+
+ if (phys_pg_pack)
+ sgt = alloc_sgt_from_device_pages(hdev,
+ phys_pg_pack->pages,
+ phys_pg_pack->npages,
+ phys_pg_pack->page_size,
+ phys_pg_pack->exported_size,
+ attachment->dev,
+ dir);
+ else
+ sgt = alloc_sgt_from_device_pages(hdev,
+ &hl_dmabuf->device_address,
+ 1,
+ hl_dmabuf->dmabuf->size,
+ 0,
+ attachment->dev,
+ dir);
+
+ if (IS_ERR(sgt))
+ dev_err(hdev->dev, "failed (%ld) to initialize sgt for dmabuf\n", PTR_ERR(sgt));
+
+ return sgt;
+}
+
+static void hl_unmap_dmabuf(struct dma_buf_attachment *attachment,
+ struct sg_table *sgt,
+ enum dma_data_direction dir)
+{
+ struct scatterlist *sg;
+ int i;
+
+ /* The memory behind the dma-buf has *always* resided on the device itself, i.e. it lives
+ * only in the 'device' domain (after all, it maps a PCI bar address which points to the
+ * device memory).
+ *
+ * Therefore, it was never in the 'CPU' domain and hence, there is no need to perform
+ * a sync of the memory to the CPU's cache, as it never resided inside that cache.
+ */
+ for_each_sgtable_dma_sg(sgt, sg, i)
+ dma_unmap_resource(attachment->dev, sg_dma_address(sg),
+ sg_dma_len(sg), dir,
+ DMA_ATTR_SKIP_CPU_SYNC);
+
+ /* Need to restore orig_nents because sg_free_table use that field */
+ sgt->orig_nents = sgt->nents;
+ sg_free_table(sgt);
+ kfree(sgt);
+}
+
+static void hl_release_dmabuf(struct dma_buf *dmabuf)
+{
+ struct hl_dmabuf_priv *hl_dmabuf = dmabuf->priv;
+ struct hl_ctx *ctx;
+
+ if (!hl_dmabuf)
+ return;
+
+ ctx = hl_dmabuf->ctx;
+
+ if (hl_dmabuf->memhash_hnode) {
+ mutex_lock(&ctx->mem_hash_lock);
+ hl_dmabuf->memhash_hnode->export_cnt--;
+ mutex_unlock(&ctx->mem_hash_lock);
+ }
+
+ hl_ctx_put(ctx);
+ kfree(hl_dmabuf);
+}
+
+static const struct dma_buf_ops habanalabs_dmabuf_ops = {
+ .attach = hl_dmabuf_attach,
+ .map_dma_buf = hl_map_dmabuf,
+ .unmap_dma_buf = hl_unmap_dmabuf,
+ .release = hl_release_dmabuf,
+};
+
+static int export_dmabuf(struct hl_ctx *ctx,
+ struct hl_dmabuf_priv *hl_dmabuf,
+ u64 total_size, int flags, int *dmabuf_fd)
+{
+ DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
+ struct hl_device *hdev = ctx->hdev;
+ int rc, fd;
+
+ exp_info.ops = &habanalabs_dmabuf_ops;
+ exp_info.size = total_size;
+ exp_info.flags = flags;
+ exp_info.priv = hl_dmabuf;
+
+ hl_dmabuf->dmabuf = dma_buf_export(&exp_info);
+ if (IS_ERR(hl_dmabuf->dmabuf)) {
+ dev_err(hdev->dev, "failed to export dma-buf\n");
+ return PTR_ERR(hl_dmabuf->dmabuf);
+ }
+
+ fd = dma_buf_fd(hl_dmabuf->dmabuf, flags);
+ if (fd < 0) {
+ dev_err(hdev->dev, "failed to get a file descriptor for a dma-buf, %d\n", fd);
+ rc = fd;
+ goto err_dma_buf_put;
+ }
+
+ hl_dmabuf->ctx = ctx;
+ hl_ctx_get(hl_dmabuf->ctx);
+
+ *dmabuf_fd = fd;
+
+ return 0;
+
+err_dma_buf_put:
+ hl_dmabuf->dmabuf->priv = NULL;
+ dma_buf_put(hl_dmabuf->dmabuf);
+ return rc;
+}
+
+static int validate_export_params_common(struct hl_device *hdev, u64 device_addr, u64 size)
+{
+ if (!IS_ALIGNED(device_addr, PAGE_SIZE)) {
+ dev_dbg(hdev->dev,
+ "exported device memory address 0x%llx should be aligned to 0x%lx\n",
+ device_addr, PAGE_SIZE);
+ return -EINVAL;
+ }
+
+ if (size < PAGE_SIZE) {
+ dev_dbg(hdev->dev,
+ "exported device memory size %llu should be equal to or greater than %lu\n",
+ size, PAGE_SIZE);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int validate_export_params_no_mmu(struct hl_device *hdev, u64 device_addr, u64 size)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 bar_address;
+ int rc;
+
+ rc = validate_export_params_common(hdev, device_addr, size);
+ if (rc)
+ return rc;
+
+ if (device_addr < prop->dram_user_base_address ||
+ (device_addr + size) > prop->dram_end_address ||
+ (device_addr + size) < device_addr) {
+ dev_dbg(hdev->dev,
+ "DRAM memory range 0x%llx (+0x%llx) is outside of DRAM boundaries\n",
+ device_addr, size);
+ return -EINVAL;
+ }
+
+ bar_address = hdev->dram_pci_bar_start + (device_addr - prop->dram_base_address);
+
+ if ((bar_address + size) > (hdev->dram_pci_bar_start + prop->dram_pci_bar_size) ||
+ (bar_address + size) < bar_address) {
+ dev_dbg(hdev->dev,
+ "DRAM memory range 0x%llx (+0x%llx) is outside of PCI BAR boundaries\n",
+ device_addr, size);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int validate_export_params(struct hl_device *hdev, u64 device_addr, u64 size, u64 offset,
+ struct hl_vm_phys_pg_pack *phys_pg_pack)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 bar_address;
+ int i, rc;
+
+ rc = validate_export_params_common(hdev, device_addr, size);
+ if (rc)
+ return rc;
+
+ if ((offset + size) > phys_pg_pack->total_size) {
+ dev_dbg(hdev->dev, "offset %#llx and size %#llx exceed total map size %#llx\n",
+ offset, size, phys_pg_pack->total_size);
+ return -EINVAL;
+ }
+
+ for (i = 0 ; i < phys_pg_pack->npages ; i++) {
+
+ bar_address = hdev->dram_pci_bar_start +
+ (phys_pg_pack->pages[i] - prop->dram_base_address);
+
+ if ((bar_address + phys_pg_pack->page_size) >
+ (hdev->dram_pci_bar_start + prop->dram_pci_bar_size) ||
+ (bar_address + phys_pg_pack->page_size) < bar_address) {
+ dev_dbg(hdev->dev,
+ "DRAM memory range 0x%llx (+0x%x) is outside of PCI BAR boundaries\n",
+ phys_pg_pack->pages[i],
+ phys_pg_pack->page_size);
+
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+
+static struct hl_vm_hash_node *memhash_node_export_get(struct hl_ctx *ctx, u64 addr)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct hl_vm_hash_node *hnode;
+
+ /* get the memory handle */
+ mutex_lock(&ctx->mem_hash_lock);
+ hash_for_each_possible(ctx->mem_hash, hnode, node, (unsigned long)addr)
+ if (addr == hnode->vaddr)
+ break;
+
+ if (!hnode) {
+ mutex_unlock(&ctx->mem_hash_lock);
+ dev_dbg(hdev->dev, "map address %#llx not found\n", addr);
+ return ERR_PTR(-EINVAL);
+ }
+
+ if (upper_32_bits(hnode->handle)) {
+ mutex_unlock(&ctx->mem_hash_lock);
+ dev_dbg(hdev->dev, "invalid handle %#llx for map address %#llx\n",
+ hnode->handle, addr);
+ return ERR_PTR(-EINVAL);
+ }
+
+ /*
+ * node found, increase export count so this memory cannot be unmapped
+ * and the hash node cannot be deleted.
+ */
+ hnode->export_cnt++;
+ mutex_unlock(&ctx->mem_hash_lock);
+
+ return hnode;
+}
+
+static void memhash_node_export_put(struct hl_ctx *ctx, struct hl_vm_hash_node *hnode)
+{
+ mutex_lock(&ctx->mem_hash_lock);
+ hnode->export_cnt--;
+ mutex_unlock(&ctx->mem_hash_lock);
+}
+
+static struct hl_vm_phys_pg_pack *get_phys_pg_pack_from_hash_node(struct hl_device *hdev,
+ struct hl_vm_hash_node *hnode)
+{
+ struct hl_vm_phys_pg_pack *phys_pg_pack;
+ struct hl_vm *vm = &hdev->vm;
+
+ spin_lock(&vm->idr_lock);
+ phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, (u32) hnode->handle);
+ if (!phys_pg_pack) {
+ spin_unlock(&vm->idr_lock);
+ dev_dbg(hdev->dev, "no match for handle 0x%x\n", (u32) hnode->handle);
+ return ERR_PTR(-EINVAL);
+ }
+
+ spin_unlock(&vm->idr_lock);
+
+ if (phys_pg_pack->vm_type != VM_TYPE_PHYS_PACK) {
+ dev_dbg(hdev->dev, "handle 0x%llx does not represent DRAM memory\n", hnode->handle);
+ return ERR_PTR(-EINVAL);
+ }
+
+ return phys_pg_pack;
+}
+
+/**
+ * export_dmabuf_from_addr() - export a dma-buf object for the given memory
+ * address and size.
+ * @ctx: pointer to the context structure.
+ * @addr: device address.
+ * @size: size of device memory to export.
+ * @offset: the offset into the buffer from which to start exporting
+ * @flags: DMA-BUF file/FD flags.
+ * @dmabuf_fd: pointer to result FD that represents the dma-buf object.
+ *
+ * Create and export a dma-buf object for an existing memory allocation inside
+ * the device memory, and return a FD which is associated with the dma-buf
+ * object.
+ *
+ * Return: 0 on success, non-zero for failure.
+ */
+static int export_dmabuf_from_addr(struct hl_ctx *ctx, u64 addr, u64 size, u64 offset,
+ int flags, int *dmabuf_fd)
+{
+ struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
+ struct hl_vm_hash_node *hnode = NULL;
+ struct asic_fixed_properties *prop;
+ struct hl_dmabuf_priv *hl_dmabuf;
+ struct hl_device *hdev;
+ u64 export_addr;
+ int rc;
+
+ hdev = ctx->hdev;
+ prop = &hdev->asic_prop;
+
+ /* offset must be 0 in devices without virtual memory support */
+ if (!prop->dram_supports_virtual_memory && offset) {
+ dev_dbg(hdev->dev, "offset is not allowed in device without virtual memory\n");
+ return -EINVAL;
+ }
+
+ export_addr = addr + offset;
+
+ hl_dmabuf = kzalloc(sizeof(*hl_dmabuf), GFP_KERNEL);
+ if (!hl_dmabuf)
+ return -ENOMEM;
+
+ if (prop->dram_supports_virtual_memory) {
+ hnode = memhash_node_export_get(ctx, addr);
+ if (IS_ERR(hnode)) {
+ rc = PTR_ERR(hnode);
+ goto err_free_dmabuf_wrapper;
+ }
+ phys_pg_pack = get_phys_pg_pack_from_hash_node(hdev, hnode);
+ if (IS_ERR(phys_pg_pack)) {
+ rc = PTR_ERR(phys_pg_pack);
+ goto dec_memhash_export_cnt;
+ }
+ rc = validate_export_params(hdev, export_addr, size, offset, phys_pg_pack);
+ if (rc)
+ goto dec_memhash_export_cnt;
+
+ phys_pg_pack->exported_size = size;
+ hl_dmabuf->phys_pg_pack = phys_pg_pack;
+ hl_dmabuf->memhash_hnode = hnode;
+ } else {
+ rc = validate_export_params_no_mmu(hdev, export_addr, size);
+ if (rc)
+ goto err_free_dmabuf_wrapper;
+ }
+
+ hl_dmabuf->device_address = export_addr;
+
+ rc = export_dmabuf(ctx, hl_dmabuf, size, flags, dmabuf_fd);
+ if (rc)
+ goto dec_memhash_export_cnt;
+
+ return 0;
+
+dec_memhash_export_cnt:
+ if (prop->dram_supports_virtual_memory)
+ memhash_node_export_put(ctx, hnode);
+err_free_dmabuf_wrapper:
+ kfree(hl_dmabuf);
+ return rc;
+}
+
+static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args)
+{
+ struct hl_device *hdev = hpriv->hdev;
+ u64 block_handle, device_addr = 0;
+ struct hl_ctx *ctx = hpriv->ctx;
+ u32 handle = 0, block_size;
+ int rc;
+
+ switch (args->in.op) {
+ case HL_MEM_OP_ALLOC:
+ if (args->in.alloc.mem_size == 0) {
+ dev_err(hdev->dev, "alloc size must be larger than 0\n");
+ rc = -EINVAL;
+ goto out;
+ }
+
+ /* Force contiguous as there are no real MMU
+ * translations to overcome physical memory gaps
+ */
+ args->in.flags |= HL_MEM_CONTIGUOUS;
+ rc = alloc_device_memory(ctx, &args->in, &handle);
+
+ memset(args, 0, sizeof(*args));
+ args->out.handle = (__u64) handle;
+ break;
+
+ case HL_MEM_OP_FREE:
+ rc = free_device_memory(ctx, &args->in);
+ break;
+
+ case HL_MEM_OP_MAP:
+ if (args->in.flags & HL_MEM_USERPTR) {
+ dev_err(hdev->dev, "Failed to map host memory when MMU is disabled\n");
+ rc = -EPERM;
+ } else {
+ rc = get_paddr_from_handle(ctx, &args->in, &device_addr);
+ memset(args, 0, sizeof(*args));
+ args->out.device_virt_addr = device_addr;
+ }
+
+ break;
+
+ case HL_MEM_OP_UNMAP:
+ rc = 0;
+ break;
+
+ case HL_MEM_OP_MAP_BLOCK:
+ rc = map_block(hdev, args->in.map_block.block_addr, &block_handle, &block_size);
+ args->out.block_handle = block_handle;
+ args->out.block_size = block_size;
+ break;
+
+ case HL_MEM_OP_EXPORT_DMABUF_FD:
+ dev_err(hdev->dev, "Failed to export dma-buf object when MMU is disabled\n");
+ rc = -EPERM;
+ break;
+
+ case HL_MEM_OP_TS_ALLOC:
+ rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle);
+ break;
+ default:
+ dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
+ rc = -EINVAL;
+ break;
+ }
+
+out:
+ return rc;
+}
+
+static void ts_buff_release(struct hl_mmap_mem_buf *buf)
+{
+ struct hl_ts_buff *ts_buff = buf->private;
+
+ vfree(ts_buff->kernel_buff_address);
+ vfree(ts_buff->user_buff_address);
+ kfree(ts_buff);
+}
+
+static int hl_ts_mmap(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args)
+{
+ struct hl_ts_buff *ts_buff = buf->private;
+
++ vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP | VM_DONTCOPY | VM_NORESERVE);
+ return remap_vmalloc_range(vma, ts_buff->user_buff_address, 0);
+}
+
+static int hl_ts_alloc_buf(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args)
+{
+ struct hl_ts_buff *ts_buff = NULL;
+ u32 num_elements;
+ size_t size;
+ void *p;
+
+ num_elements = *(u32 *)args;
+
+ ts_buff = kzalloc(sizeof(*ts_buff), gfp);
+ if (!ts_buff)
+ return -ENOMEM;
+
+ /* Allocate the user buffer */
+ size = num_elements * sizeof(u64);
+ p = vmalloc_user(size);
+ if (!p)
+ goto free_mem;
+
+ ts_buff->user_buff_address = p;
+ buf->mappable_size = size;
+
+ /* Allocate the internal kernel buffer */
+ size = num_elements * sizeof(struct hl_user_pending_interrupt);
+ p = vzalloc(size);
+ if (!p)
+ goto free_user_buff;
+
+ ts_buff->kernel_buff_address = p;
+ ts_buff->kernel_buff_size = size;
+
+ buf->private = ts_buff;
+
+ return 0;
+
+free_user_buff:
+ vfree(ts_buff->user_buff_address);
+free_mem:
+ kfree(ts_buff);
+ return -ENOMEM;
+}
+
+static struct hl_mmap_mem_buf_behavior hl_ts_behavior = {
+ .topic = "TS",
+ .mem_id = HL_MMAP_TYPE_TS_BUFF,
+ .mmap = hl_ts_mmap,
+ .alloc = hl_ts_alloc_buf,
+ .release = ts_buff_release,
+};
+
+/**
+ * allocate_timestamps_buffers() - allocate timestamps buffers
+ * This function will allocate ts buffer that will later on be mapped to the user
+ * in order to be able to read the timestamp.
+ * in additon it'll allocate an extra buffer for registration management.
+ * since we cannot fail during registration for out-of-memory situation, so
+ * we'll prepare a pool which will be used as user interrupt nodes and instead
+ * of dynamically allocating nodes while registration we'll pick the node from
+ * this pool. in addtion it'll add node to the mapping hash which will be used
+ * to map user ts buffer to the internal kernel ts buffer.
+ * @hpriv: pointer to the private data of the fd
+ * @args: ioctl input
+ * @handle: user timestamp buffer handle as an output
+ */
+static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, struct hl_mem_in *args, u64 *handle)
+{
+ struct hl_mem_mgr *mmg = &hpriv->mem_mgr;
+ struct hl_mmap_mem_buf *buf;
+
+ if (args->num_of_elements > TS_MAX_ELEMENTS_NUM) {
+ dev_err(mmg->dev, "Num of elements exceeds Max allowed number (0x%x > 0x%x)\n",
+ args->num_of_elements, TS_MAX_ELEMENTS_NUM);
+ return -EINVAL;
+ }
+
+ buf = hl_mmap_mem_buf_alloc(mmg, &hl_ts_behavior, GFP_KERNEL, &args->num_of_elements);
+ if (!buf)
+ return -ENOMEM;
+
+ *handle = buf->handle;
+
+ return 0;
+}
+
+int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data)
+{
+ enum hl_device_status status;
+ union hl_mem_args *args = data;
+ struct hl_device *hdev = hpriv->hdev;
+ struct hl_ctx *ctx = hpriv->ctx;
+ u64 block_handle, device_addr = 0;
+ u32 handle = 0, block_size;
+ int rc, dmabuf_fd = -EBADF;
+
+ if (!hl_device_operational(hdev, &status)) {
+ dev_dbg_ratelimited(hdev->dev,
+ "Device is %s. Can't execute MEMORY IOCTL\n",
+ hdev->status[status]);
+ return -EBUSY;
+ }
+
+ if (!hdev->mmu_enable)
+ return mem_ioctl_no_mmu(hpriv, args);
+
+ switch (args->in.op) {
+ case HL_MEM_OP_ALLOC:
+ if (args->in.alloc.mem_size == 0) {
+ dev_err(hdev->dev,
+ "alloc size must be larger than 0\n");
+ rc = -EINVAL;
+ goto out;
+ }
+
+ /* If DRAM does not support virtual memory the driver won't
+ * handle the allocation/freeing of that memory. However, for
+ * system administration/monitoring purposes, the driver will
+ * keep track of the amount of DRAM memory that is allocated
+ * and freed by the user. Because this code totally relies on
+ * the user's input, the driver can't ensure the validity
+ * of this accounting.
+ */
+ if (!hdev->asic_prop.dram_supports_virtual_memory) {
+ atomic64_add(args->in.alloc.mem_size,
+ &ctx->dram_phys_mem);
+ atomic64_add(args->in.alloc.mem_size,
+ &hdev->dram_used_mem);
+
+ dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
+ rc = 0;
+
+ memset(args, 0, sizeof(*args));
+ args->out.handle = 0;
+ goto out;
+ }
+
+ rc = alloc_device_memory(ctx, &args->in, &handle);
+
+ memset(args, 0, sizeof(*args));
+ args->out.handle = (__u64) handle;
+ break;
+
+ case HL_MEM_OP_FREE:
+ /* If DRAM does not support virtual memory the driver won't
+ * handle the allocation/freeing of that memory. However, for
+ * system administration/monitoring purposes, the driver will
+ * keep track of the amount of DRAM memory that is allocated
+ * and freed by the user. Because this code totally relies on
+ * the user's input, the driver can't ensure the validity
+ * of this accounting.
+ */
+ if (!hdev->asic_prop.dram_supports_virtual_memory) {
+ atomic64_sub(args->in.alloc.mem_size,
+ &ctx->dram_phys_mem);
+ atomic64_sub(args->in.alloc.mem_size,
+ &hdev->dram_used_mem);
+
+ dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
+ rc = 0;
+
+ goto out;
+ }
+
+ rc = free_device_memory(ctx, &args->in);
+ break;
+
+ case HL_MEM_OP_MAP:
+ rc = map_device_va(ctx, &args->in, &device_addr);
+
+ memset(args, 0, sizeof(*args));
+ args->out.device_virt_addr = device_addr;
+ break;
+
+ case HL_MEM_OP_UNMAP:
+ rc = unmap_device_va(ctx, &args->in, false);
+ break;
+
+ case HL_MEM_OP_MAP_BLOCK:
+ rc = map_block(hdev, args->in.map_block.block_addr,
+ &block_handle, &block_size);
+ args->out.block_handle = block_handle;
+ args->out.block_size = block_size;
+ break;
+
+ case HL_MEM_OP_EXPORT_DMABUF_FD:
+ rc = export_dmabuf_from_addr(ctx,
+ args->in.export_dmabuf_fd.addr,
+ args->in.export_dmabuf_fd.mem_size,
+ args->in.export_dmabuf_fd.offset,
+ args->in.flags,
+ &dmabuf_fd);
+ memset(args, 0, sizeof(*args));
+ args->out.fd = dmabuf_fd;
+ break;
+
+ case HL_MEM_OP_TS_ALLOC:
+ rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle);
+ break;
+ default:
+ dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
+ rc = -EINVAL;
+ break;
+ }
+
+out:
+ return rc;
+}
+
+static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size,
+ u32 npages, u64 start, u32 offset,
+ struct hl_userptr *userptr)
+{
+ int rc;
+
+ if (!access_ok((void __user *) (uintptr_t) addr, size)) {
+ dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
+ return -EFAULT;
+ }
+
+ userptr->pages = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
+ if (!userptr->pages)
+ return -ENOMEM;
+
+ rc = pin_user_pages_fast(start, npages, FOLL_WRITE | FOLL_LONGTERM,
+ userptr->pages);
+
+ if (rc != npages) {
+ dev_err(hdev->dev,
+ "Failed (%d) to pin host memory with user ptr 0x%llx, size 0x%llx, npages %d\n",
+ rc, addr, size, npages);
+ if (rc < 0)
+ goto destroy_pages;
+ npages = rc;
+ rc = -EFAULT;
+ goto put_pages;
+ }
+ userptr->npages = npages;
+
+ rc = sg_alloc_table_from_pages(userptr->sgt,
+ userptr->pages,
+ npages, offset, size, GFP_KERNEL);
+ if (rc < 0) {
+ dev_err(hdev->dev, "failed to create SG table from pages\n");
+ goto put_pages;
+ }
+
+ return 0;
+
+put_pages:
+ unpin_user_pages(userptr->pages, npages);
+destroy_pages:
+ kvfree(userptr->pages);
+ return rc;
+}
+
+/**
+ * hl_pin_host_memory() - pins a chunk of host memory.
+ * @hdev: pointer to the habanalabs device structure.
+ * @addr: the host virtual address of the memory area.
+ * @size: the size of the memory area.
+ * @userptr: pointer to hl_userptr structure.
+ *
+ * This function does the following:
+ * - Pins the physical pages.
+ * - Create an SG list from those pages.
+ */
+int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
+ struct hl_userptr *userptr)
+{
+ u64 start, end;
+ u32 npages, offset;
+ int rc;
+
+ if (!size) {
+ dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
+ return -EINVAL;
+ }
+
+ /*
+ * If the combination of the address and size requested for this memory
+ * region causes an integer overflow, return error.
+ */
+ if (((addr + size) < addr) ||
+ PAGE_ALIGN(addr + size) < (addr + size)) {
+ dev_err(hdev->dev,
+ "user pointer 0x%llx + %llu causes integer overflow\n",
+ addr, size);
+ return -EINVAL;
+ }
+
+ userptr->pid = current->pid;
+ userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_KERNEL);
+ if (!userptr->sgt)
+ return -ENOMEM;
+
+ start = addr & PAGE_MASK;
+ offset = addr & ~PAGE_MASK;
+ end = PAGE_ALIGN(addr + size);
+ npages = (end - start) >> PAGE_SHIFT;
+
+ userptr->size = size;
+ userptr->addr = addr;
+ userptr->dma_mapped = false;
+ INIT_LIST_HEAD(&userptr->job_node);
+
+ rc = get_user_memory(hdev, addr, size, npages, start, offset,
+ userptr);
+ if (rc) {
+ dev_err(hdev->dev,
+ "failed to get user memory for address 0x%llx\n",
+ addr);
+ goto free_sgt;
+ }
+
+ hl_debugfs_add_userptr(hdev, userptr);
+
+ return 0;
+
+free_sgt:
+ kfree(userptr->sgt);
+ return rc;
+}
+
+/*
+ * hl_unpin_host_memory - unpins a chunk of host memory.
+ * @hdev: pointer to the habanalabs device structure
+ * @userptr: pointer to hl_userptr structure
+ *
+ * This function does the following:
+ * - Unpins the physical pages related to the host memory
+ * - Free the SG list
+ */
+void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
+{
+ hl_debugfs_remove_userptr(hdev, userptr);
+
+ if (userptr->dma_mapped)
+ hdev->asic_funcs->hl_dma_unmap_sgtable(hdev, userptr->sgt, userptr->dir);
+
+ unpin_user_pages_dirty_lock(userptr->pages, userptr->npages, true);
+ kvfree(userptr->pages);
+
+ list_del(&userptr->job_node);
+
+ sg_free_table(userptr->sgt);
+ kfree(userptr->sgt);
+}
+
+/**
+ * hl_userptr_delete_list() - clear userptr list.
+ * @hdev: pointer to the habanalabs device structure.
+ * @userptr_list: pointer to the list to clear.
+ *
+ * This function does the following:
+ * - Iterates over the list and unpins the host memory and frees the userptr
+ * structure.
+ */
+void hl_userptr_delete_list(struct hl_device *hdev,
+ struct list_head *userptr_list)
+{
+ struct hl_userptr *userptr, *tmp;
+
+ list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
+ hl_unpin_host_memory(hdev, userptr);
+ kfree(userptr);
+ }
+
+ INIT_LIST_HEAD(userptr_list);
+}
+
+/**
+ * hl_userptr_is_pinned() - returns whether the given userptr is pinned.
+ * @hdev: pointer to the habanalabs device structure.
+ * @addr: user address to check.
+ * @size: user block size to check.
+ * @userptr_list: pointer to the list to clear.
+ * @userptr: pointer to userptr to check.
+ *
+ * This function does the following:
+ * - Iterates over the list and checks if the given userptr is in it, means is
+ * pinned. If so, returns true, otherwise returns false.
+ */
+bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
+ u32 size, struct list_head *userptr_list,
+ struct hl_userptr **userptr)
+{
+ list_for_each_entry((*userptr), userptr_list, job_node) {
+ if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
+ return true;
+ }
+
+ return false;
+}
+
+/**
+ * va_range_init() - initialize virtual addresses range.
+ * @hdev: pointer to the habanalabs device structure.
+ * @va_ranges: pointer to va_ranges array.
+ * @range_type: virtual address range type.
+ * @start: range start address, inclusive.
+ * @end: range end address, inclusive.
+ * @page_size: page size for this va_range.
+ *
+ * This function does the following:
+ * - Initializes the virtual addresses list of the given range with the given
+ * addresses.
+ */
+static int va_range_init(struct hl_device *hdev, struct hl_va_range **va_ranges,
+ enum hl_va_range_type range_type, u64 start,
+ u64 end, u32 page_size)
+{
+ struct hl_va_range *va_range = va_ranges[range_type];
+ int rc;
+
+ INIT_LIST_HEAD(&va_range->list);
+
+ /*
+ * PAGE_SIZE alignment
+ * it is the caller's responsibility to align the addresses if the
+ * page size is not a power of 2
+ */
+
+ if (is_power_of_2(page_size)) {
+ start = round_up(start, page_size);
+
+ /*
+ * The end of the range is inclusive, hence we need to align it
+ * to the end of the last full page in the range. For example if
+ * end = 0x3ff5 with page size 0x1000, we need to align it to
+ * 0x2fff. The remaining 0xff5 bytes do not form a full page.
+ */
+ end = round_down(end + 1, page_size) - 1;
+ }
+
+ if (start >= end) {
+ dev_err(hdev->dev, "too small vm range for va list\n");
+ return -EFAULT;
+ }
+
+ rc = add_va_block(hdev, va_range, start, end);
+
+ if (rc) {
+ dev_err(hdev->dev, "Failed to init host va list\n");
+ return rc;
+ }
+
+ va_range->start_addr = start;
+ va_range->end_addr = end;
+ va_range->page_size = page_size;
+
+ return 0;
+}
+
+/**
+ * va_range_fini() - clear a virtual addresses range.
+ * @hdev: pointer to the habanalabs structure.
+ * @va_range: pointer to virtual addresses range.
+ *
+ * This function does the following:
+ * - Frees the virtual addresses block list and its lock.
+ */
+static void va_range_fini(struct hl_device *hdev, struct hl_va_range *va_range)
+{
+ mutex_lock(&va_range->lock);
+ clear_va_list_locked(hdev, &va_range->list);
+ mutex_unlock(&va_range->lock);
+
+ mutex_destroy(&va_range->lock);
+ kfree(va_range);
+}
+
+/**
+ * vm_ctx_init_with_ranges() - initialize virtual memory for context.
+ * @ctx: pointer to the habanalabs context structure.
+ * @host_range_start: host virtual addresses range start.
+ * @host_range_end: host virtual addresses range end.
+ * @host_page_size: host page size.
+ * @host_huge_range_start: host virtual addresses range start for memory
+ * allocated with huge pages.
+ * @host_huge_range_end: host virtual addresses range end for memory allocated
+ * with huge pages.
+ * @host_huge_page_size: host huge page size.
+ * @dram_range_start: dram virtual addresses range start.
+ * @dram_range_end: dram virtual addresses range end.
+ * @dram_page_size: dram page size.
+ *
+ * This function initializes the following:
+ * - MMU for context.
+ * - Virtual address to area descriptor hashtable.
+ * - Virtual block list of available virtual memory.
+ */
+static int vm_ctx_init_with_ranges(struct hl_ctx *ctx,
+ u64 host_range_start,
+ u64 host_range_end,
+ u32 host_page_size,
+ u64 host_huge_range_start,
+ u64 host_huge_range_end,
+ u32 host_huge_page_size,
+ u64 dram_range_start,
+ u64 dram_range_end,
+ u32 dram_page_size)
+{
+ struct hl_device *hdev = ctx->hdev;
+ int i, rc;
+
+ for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) {
+ ctx->va_range[i] =
+ kzalloc(sizeof(struct hl_va_range), GFP_KERNEL);
+ if (!ctx->va_range[i]) {
+ rc = -ENOMEM;
+ goto free_va_range;
+ }
+ }
+
+ rc = hl_mmu_ctx_init(ctx);
+ if (rc) {
+ dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
+ goto free_va_range;
+ }
+
+ mutex_init(&ctx->mem_hash_lock);
+ hash_init(ctx->mem_hash);
+
+ mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
+
+ rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_HOST,
+ host_range_start, host_range_end, host_page_size);
+ if (rc) {
+ dev_err(hdev->dev, "failed to init host vm range\n");
+ goto mmu_ctx_fini;
+ }
+
+ if (hdev->pmmu_huge_range) {
+ mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
+
+ rc = va_range_init(hdev,
+ ctx->va_range, HL_VA_RANGE_TYPE_HOST_HUGE,
+ host_huge_range_start, host_huge_range_end,
+ host_huge_page_size);
+ if (rc) {
+ dev_err(hdev->dev,
+ "failed to init host huge vm range\n");
+ goto clear_host_va_range;
+ }
+ } else {
+ kfree(ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
+ ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE] =
+ ctx->va_range[HL_VA_RANGE_TYPE_HOST];
+ }
+
+ mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
+
+ rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_DRAM,
+ dram_range_start, dram_range_end, dram_page_size);
+ if (rc) {
+ dev_err(hdev->dev, "failed to init dram vm range\n");
+ goto clear_host_huge_va_range;
+ }
+
+ hl_debugfs_add_ctx_mem_hash(hdev, ctx);
+
+ return 0;
+
+clear_host_huge_va_range:
+ mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
+
+ if (hdev->pmmu_huge_range) {
+ mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
+ clear_va_list_locked(hdev,
+ &ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->list);
+ mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
+ }
+clear_host_va_range:
+ if (hdev->pmmu_huge_range)
+ mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
+ mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
+ clear_va_list_locked(hdev, &ctx->va_range[HL_VA_RANGE_TYPE_HOST]->list);
+ mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
+mmu_ctx_fini:
+ mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
+ mutex_destroy(&ctx->mem_hash_lock);
+ hl_mmu_ctx_fini(ctx);
+free_va_range:
+ for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++)
+ kfree(ctx->va_range[i]);
+
+ return rc;
+}
+
+int hl_vm_ctx_init(struct hl_ctx *ctx)
+{
+ struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
+ u64 host_range_start, host_range_end, host_huge_range_start,
+ host_huge_range_end, dram_range_start, dram_range_end;
+ u32 host_page_size, host_huge_page_size, dram_page_size;
+
+ atomic64_set(&ctx->dram_phys_mem, 0);
+
+ /*
+ * - If MMU is enabled, init the ranges as usual.
+ * - If MMU is disabled, in case of host mapping, the returned address
+ * is the given one.
+ * In case of DRAM mapping, the returned address is the physical
+ * address of the memory related to the given handle.
+ */
+ if (!ctx->hdev->mmu_enable)
+ return 0;
+
+ dram_range_start = prop->dmmu.start_addr;
+ dram_range_end = prop->dmmu.end_addr - 1;
+ dram_page_size = prop->dram_page_size ?
+ prop->dram_page_size : prop->dmmu.page_size;
+ host_range_start = prop->pmmu.start_addr;
+ host_range_end = prop->pmmu.end_addr - 1;
+ host_page_size = prop->pmmu.page_size;
+ host_huge_range_start = prop->pmmu_huge.start_addr;
+ host_huge_range_end = prop->pmmu_huge.end_addr - 1;
+ host_huge_page_size = prop->pmmu_huge.page_size;
+
+ return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
+ host_page_size, host_huge_range_start,
+ host_huge_range_end, host_huge_page_size,
+ dram_range_start, dram_range_end, dram_page_size);
+}
+
+/**
+ * hl_vm_ctx_fini() - virtual memory teardown of context.
+ * @ctx: pointer to the habanalabs context structure.
+ *
+ * This function perform teardown the following:
+ * - Virtual block list of available virtual memory.
+ * - Virtual address to area descriptor hashtable.
+ * - MMU for context.
+ *
+ * In addition this function does the following:
+ * - Unmaps the existing hashtable nodes if the hashtable is not empty. The
+ * hashtable should be empty as no valid mappings should exist at this
+ * point.
+ * - Frees any existing physical page list from the idr which relates to the
+ * current context asid.
+ * - This function checks the virtual block list for correctness. At this point
+ * the list should contain one element which describes the whole virtual
+ * memory range of the context. Otherwise, a warning is printed.
+ */
+void hl_vm_ctx_fini(struct hl_ctx *ctx)
+{
+ struct hl_vm_phys_pg_pack *phys_pg_list, *tmp_phys_node;
+ struct hl_device *hdev = ctx->hdev;
+ struct hl_vm_hash_node *hnode;
+ struct hl_vm *vm = &hdev->vm;
+ struct hlist_node *tmp_node;
+ struct list_head free_list;
+ struct hl_mem_in args;
+ int i;
+
+ if (!hdev->mmu_enable)
+ return;
+
+ hl_debugfs_remove_ctx_mem_hash(hdev, ctx);
+
+ /*
+ * Clearly something went wrong on hard reset so no point in printing
+ * another side effect error
+ */
+ if (!hdev->reset_info.hard_reset_pending && !hash_empty(ctx->mem_hash))
+ dev_dbg(hdev->dev,
+ "user released device without removing its memory mappings\n");
+
+ hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
+ dev_dbg(hdev->dev,
+ "hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
+ hnode->vaddr, ctx->asid);
+ args.unmap.device_virt_addr = hnode->vaddr;
+ unmap_device_va(ctx, &args, true);
+ }
+
+ mutex_lock(&hdev->mmu_lock);
+
+ /* invalidate the cache once after the unmapping loop */
+ hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR);
+ hl_mmu_invalidate_cache(hdev, true, MMU_OP_PHYS_PACK);
+
+ mutex_unlock(&hdev->mmu_lock);
+
+ INIT_LIST_HEAD(&free_list);
+
+ spin_lock(&vm->idr_lock);
+ idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
+ if (phys_pg_list->asid == ctx->asid) {
+ dev_dbg(hdev->dev,
+ "page list 0x%px of asid %d is still alive\n",
+ phys_pg_list, ctx->asid);
+
+ atomic64_sub(phys_pg_list->total_size, &hdev->dram_used_mem);
+ idr_remove(&vm->phys_pg_pack_handles, i);
+ list_add(&phys_pg_list->node, &free_list);
+ }
+ spin_unlock(&vm->idr_lock);
+
+ list_for_each_entry_safe(phys_pg_list, tmp_phys_node, &free_list, node)
+ free_phys_pg_pack(hdev, phys_pg_list);
+
+ va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_DRAM]);
+ va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST]);
+
+ if (hdev->pmmu_huge_range)
+ va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
+
+ mutex_destroy(&ctx->mem_hash_lock);
+ hl_mmu_ctx_fini(ctx);
+
+ /* In this case we need to clear the global accounting of DRAM usage
+ * because the user notifies us on allocations. If the user is no more,
+ * all DRAM is available
+ */
+ if (ctx->asid != HL_KERNEL_ASID_ID &&
+ !hdev->asic_prop.dram_supports_virtual_memory)
+ atomic64_set(&hdev->dram_used_mem, 0);
+}
+
+/**
+ * hl_vm_init() - initialize virtual memory module.
+ * @hdev: pointer to the habanalabs device structure.
+ *
+ * This function initializes the following:
+ * - MMU module.
+ * - DRAM physical pages pool of 2MB.
+ * - Idr for device memory allocation handles.
+ */
+int hl_vm_init(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct hl_vm *vm = &hdev->vm;
+ int rc;
+
+ if (is_power_of_2(prop->dram_page_size))
+ vm->dram_pg_pool =
+ gen_pool_create(__ffs(prop->dram_page_size), -1);
+ else
+ vm->dram_pg_pool =
+ gen_pool_create(__ffs(DRAM_POOL_PAGE_SIZE), -1);
+
+ if (!vm->dram_pg_pool) {
+ dev_err(hdev->dev, "Failed to create dram page pool\n");
+ return -ENOMEM;
+ }
+
+ kref_init(&vm->dram_pg_pool_refcount);
+
+ rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
+ prop->dram_end_address - prop->dram_user_base_address,
+ -1);
+
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to add memory to dram page pool %d\n", rc);
+ goto pool_add_err;
+ }
+
+ spin_lock_init(&vm->idr_lock);
+ idr_init(&vm->phys_pg_pack_handles);
+
+ atomic64_set(&hdev->dram_used_mem, 0);
+
+ vm->init_done = true;
+
+ return 0;
+
+pool_add_err:
+ gen_pool_destroy(vm->dram_pg_pool);
+
+ return rc;
+}
+
+/**
+ * hl_vm_fini() - virtual memory module teardown.
+ * @hdev: pointer to the habanalabs device structure.
+ *
+ * This function perform teardown to the following:
+ * - Idr for device memory allocation handles.
+ * - DRAM physical pages pool of 2MB.
+ * - MMU module.
+ */
+void hl_vm_fini(struct hl_device *hdev)
+{
+ struct hl_vm *vm = &hdev->vm;
+
+ if (!vm->init_done)
+ return;
+
+ /*
+ * At this point all the contexts should be freed and hence no DRAM
+ * memory should be in use. Hence the DRAM pool should be freed here.
+ */
+ if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
+ dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
+ __func__);
+
+ vm->init_done = false;
+}
+
+/**
+ * hl_hw_block_mem_init() - HW block memory initialization.
+ * @ctx: pointer to the habanalabs context structure.
+ *
+ * This function initializes the HW block virtual mapped addresses list and
+ * it's lock.
+ */
+void hl_hw_block_mem_init(struct hl_ctx *ctx)
+{
+ mutex_init(&ctx->hw_block_list_lock);
+ INIT_LIST_HEAD(&ctx->hw_block_mem_list);
+}
+
+/**
+ * hl_hw_block_mem_fini() - HW block memory teardown.
+ * @ctx: pointer to the habanalabs context structure.
+ *
+ * This function clears the HW block virtual mapped addresses list and destroys
+ * it's lock.
+ */
+void hl_hw_block_mem_fini(struct hl_ctx *ctx)
+{
+ struct hl_vm_hw_block_list_node *lnode, *tmp;
+
+ if (!list_empty(&ctx->hw_block_mem_list))
+ dev_crit(ctx->hdev->dev, "HW block mem list isn't empty\n");
+
+ list_for_each_entry_safe(lnode, tmp, &ctx->hw_block_mem_list, node) {
+ list_del(&lnode->node);
+ kfree(lnode);
+ }
+
+ mutex_destroy(&ctx->hw_block_list_lock);
+}
--- /dev/null
- vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP |
- VM_DONTCOPY | VM_NORESERVE;
+// SPDX-License-Identifier: GPL-2.0
+
+/*
+ * Copyright 2016-2022 HabanaLabs, Ltd.
+ * All Rights Reserved.
+ */
+
+#include "gaudiP.h"
+#include "../include/hw_ip/mmu/mmu_general.h"
+#include "../include/hw_ip/mmu/mmu_v1_1.h"
+#include "../include/gaudi/gaudi_masks.h"
+#include "../include/gaudi/gaudi_fw_if.h"
+#include "../include/gaudi/gaudi_reg_map.h"
+#include "../include/gaudi/gaudi_async_ids_map_extended.h"
+
+#include <linux/module.h>
+#include <linux/pci.h>
+#include <linux/firmware.h>
+#include <linux/hwmon.h>
+#include <linux/iommu.h>
+#include <linux/seq_file.h>
+
+/*
+ * Gaudi security scheme:
+ *
+ * 1. Host is protected by:
+ * - Range registers
+ * - MMU
+ *
+ * 2. DDR is protected by:
+ * - Range registers (protect the first 512MB)
+ *
+ * 3. Configuration is protected by:
+ * - Range registers
+ * - Protection bits
+ *
+ * MMU is always enabled.
+ *
+ * QMAN DMA channels 0,1 (PCI DMAN):
+ * - DMA is not secured.
+ * - PQ and CQ are secured.
+ * - CP is secured: The driver needs to parse CB but WREG should be allowed
+ * because of TDMA (tensor DMA). Hence, WREG is always not
+ * secured.
+ *
+ * When the driver needs to use DMA it will check that Gaudi is idle, set DMA
+ * channel 0 to be secured, execute the DMA and change it back to not secured.
+ * Currently, the driver doesn't use the DMA while there are compute jobs
+ * running.
+ *
+ * The current use cases for the driver to use the DMA are:
+ * - Clear SRAM on context switch (happens on context switch when device is
+ * idle)
+ * - MMU page tables area clear (happens on init)
+ *
+ * QMAN DMA 2-7, TPC, MME, NIC:
+ * PQ is secured and is located on the Host (HBM CON TPC3 bug)
+ * CQ, CP and the engine are not secured
+ *
+ */
+
+#define GAUDI_BOOT_FIT_FILE "habanalabs/gaudi/gaudi-boot-fit.itb"
+#define GAUDI_LINUX_FW_FILE "habanalabs/gaudi/gaudi-fit.itb"
+#define GAUDI_TPC_FW_FILE "habanalabs/gaudi/gaudi_tpc.bin"
+
+#define GAUDI_DMA_POOL_BLK_SIZE 0x100 /* 256 bytes */
+
+#define GAUDI_RESET_TIMEOUT_MSEC 2000 /* 2000ms */
+#define GAUDI_RESET_WAIT_MSEC 1 /* 1ms */
+#define GAUDI_CPU_RESET_WAIT_MSEC 200 /* 200ms */
+#define GAUDI_TEST_QUEUE_WAIT_USEC 100000 /* 100ms */
+
+#define GAUDI_PLDM_RESET_WAIT_MSEC 1000 /* 1s */
+#define GAUDI_PLDM_HRESET_TIMEOUT_MSEC 20000 /* 20s */
+#define GAUDI_PLDM_TEST_QUEUE_WAIT_USEC 1000000 /* 1s */
+#define GAUDI_PLDM_MMU_TIMEOUT_USEC (MMU_CONFIG_TIMEOUT_USEC * 100)
+#define GAUDI_PLDM_QMAN0_TIMEOUT_USEC (HL_DEVICE_TIMEOUT_USEC * 30)
+#define GAUDI_PLDM_TPC_KERNEL_WAIT_USEC (HL_DEVICE_TIMEOUT_USEC * 30)
+#define GAUDI_BOOT_FIT_REQ_TIMEOUT_USEC 4000000 /* 4s */
+#define GAUDI_MSG_TO_CPU_TIMEOUT_USEC 4000000 /* 4s */
+#define GAUDI_WAIT_FOR_BL_TIMEOUT_USEC 15000000 /* 15s */
+
+#define GAUDI_QMAN0_FENCE_VAL 0x72E91AB9
+
+#define GAUDI_MAX_STRING_LEN 20
+
+#define GAUDI_CB_POOL_CB_CNT 512
+#define GAUDI_CB_POOL_CB_SIZE 0x20000 /* 128KB */
+
+#define GAUDI_ALLOC_CPU_MEM_RETRY_CNT 3
+
+#define GAUDI_NUM_OF_TPC_INTR_CAUSE 20
+
+#define GAUDI_NUM_OF_QM_ERR_CAUSE 16
+
+#define GAUDI_NUM_OF_QM_ARB_ERR_CAUSE 3
+
+#define GAUDI_ARB_WDT_TIMEOUT 0xEE6b27FF /* 8 seconds */
+
+#define HBM_SCRUBBING_TIMEOUT_US 1000000 /* 1s */
+
+#define BIN_REG_STRING_SIZE sizeof("0b10101010101010101010101010101010")
+
+#define MONITOR_SOB_STRING_SIZE 256
+
+static u32 gaudi_stream_master[GAUDI_STREAM_MASTER_ARR_SIZE] = {
+ GAUDI_QUEUE_ID_DMA_0_0,
+ GAUDI_QUEUE_ID_DMA_0_1,
+ GAUDI_QUEUE_ID_DMA_0_2,
+ GAUDI_QUEUE_ID_DMA_0_3,
+ GAUDI_QUEUE_ID_DMA_1_0,
+ GAUDI_QUEUE_ID_DMA_1_1,
+ GAUDI_QUEUE_ID_DMA_1_2,
+ GAUDI_QUEUE_ID_DMA_1_3
+};
+
+static const char gaudi_irq_name[GAUDI_MSI_ENTRIES][GAUDI_MAX_STRING_LEN] = {
+ "gaudi cq 0_0", "gaudi cq 0_1", "gaudi cq 0_2", "gaudi cq 0_3",
+ "gaudi cq 1_0", "gaudi cq 1_1", "gaudi cq 1_2", "gaudi cq 1_3",
+ "gaudi cq 5_0", "gaudi cq 5_1", "gaudi cq 5_2", "gaudi cq 5_3",
+ "gaudi cpu eq"
+};
+
+static const u8 gaudi_dma_assignment[GAUDI_DMA_MAX] = {
+ [GAUDI_PCI_DMA_1] = GAUDI_ENGINE_ID_DMA_0,
+ [GAUDI_PCI_DMA_2] = GAUDI_ENGINE_ID_DMA_1,
+ [GAUDI_HBM_DMA_1] = GAUDI_ENGINE_ID_DMA_2,
+ [GAUDI_HBM_DMA_2] = GAUDI_ENGINE_ID_DMA_3,
+ [GAUDI_HBM_DMA_3] = GAUDI_ENGINE_ID_DMA_4,
+ [GAUDI_HBM_DMA_4] = GAUDI_ENGINE_ID_DMA_5,
+ [GAUDI_HBM_DMA_5] = GAUDI_ENGINE_ID_DMA_6,
+ [GAUDI_HBM_DMA_6] = GAUDI_ENGINE_ID_DMA_7
+};
+
+static const u8 gaudi_cq_assignment[NUMBER_OF_CMPLT_QUEUES] = {
+ [0] = GAUDI_QUEUE_ID_DMA_0_0,
+ [1] = GAUDI_QUEUE_ID_DMA_0_1,
+ [2] = GAUDI_QUEUE_ID_DMA_0_2,
+ [3] = GAUDI_QUEUE_ID_DMA_0_3,
+ [4] = GAUDI_QUEUE_ID_DMA_1_0,
+ [5] = GAUDI_QUEUE_ID_DMA_1_1,
+ [6] = GAUDI_QUEUE_ID_DMA_1_2,
+ [7] = GAUDI_QUEUE_ID_DMA_1_3,
+};
+
+static const u16 gaudi_packet_sizes[MAX_PACKET_ID] = {
+ [PACKET_WREG_32] = sizeof(struct packet_wreg32),
+ [PACKET_WREG_BULK] = sizeof(struct packet_wreg_bulk),
+ [PACKET_MSG_LONG] = sizeof(struct packet_msg_long),
+ [PACKET_MSG_SHORT] = sizeof(struct packet_msg_short),
+ [PACKET_CP_DMA] = sizeof(struct packet_cp_dma),
+ [PACKET_REPEAT] = sizeof(struct packet_repeat),
+ [PACKET_MSG_PROT] = sizeof(struct packet_msg_prot),
+ [PACKET_FENCE] = sizeof(struct packet_fence),
+ [PACKET_LIN_DMA] = sizeof(struct packet_lin_dma),
+ [PACKET_NOP] = sizeof(struct packet_nop),
+ [PACKET_STOP] = sizeof(struct packet_stop),
+ [PACKET_ARB_POINT] = sizeof(struct packet_arb_point),
+ [PACKET_WAIT] = sizeof(struct packet_wait),
+ [PACKET_LOAD_AND_EXE] = sizeof(struct packet_load_and_exe)
+};
+
+static inline bool validate_packet_id(enum packet_id id)
+{
+ switch (id) {
+ case PACKET_WREG_32:
+ case PACKET_WREG_BULK:
+ case PACKET_MSG_LONG:
+ case PACKET_MSG_SHORT:
+ case PACKET_CP_DMA:
+ case PACKET_REPEAT:
+ case PACKET_MSG_PROT:
+ case PACKET_FENCE:
+ case PACKET_LIN_DMA:
+ case PACKET_NOP:
+ case PACKET_STOP:
+ case PACKET_ARB_POINT:
+ case PACKET_WAIT:
+ case PACKET_LOAD_AND_EXE:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static const char * const
+gaudi_tpc_interrupts_cause[GAUDI_NUM_OF_TPC_INTR_CAUSE] = {
+ "tpc_address_exceed_slm",
+ "tpc_div_by_0",
+ "tpc_spu_mac_overflow",
+ "tpc_spu_addsub_overflow",
+ "tpc_spu_abs_overflow",
+ "tpc_spu_fp_dst_nan_inf",
+ "tpc_spu_fp_dst_denorm",
+ "tpc_vpu_mac_overflow",
+ "tpc_vpu_addsub_overflow",
+ "tpc_vpu_abs_overflow",
+ "tpc_vpu_fp_dst_nan_inf",
+ "tpc_vpu_fp_dst_denorm",
+ "tpc_assertions",
+ "tpc_illegal_instruction",
+ "tpc_pc_wrap_around",
+ "tpc_qm_sw_err",
+ "tpc_hbw_rresp_err",
+ "tpc_hbw_bresp_err",
+ "tpc_lbw_rresp_err",
+ "tpc_lbw_bresp_err"
+};
+
+static const char * const
+gaudi_qman_error_cause[GAUDI_NUM_OF_QM_ERR_CAUSE] = {
+ "PQ AXI HBW error",
+ "CQ AXI HBW error",
+ "CP AXI HBW error",
+ "CP error due to undefined OPCODE",
+ "CP encountered STOP OPCODE",
+ "CP AXI LBW error",
+ "CP WRREG32 or WRBULK returned error",
+ "N/A",
+ "FENCE 0 inc over max value and clipped",
+ "FENCE 1 inc over max value and clipped",
+ "FENCE 2 inc over max value and clipped",
+ "FENCE 3 inc over max value and clipped",
+ "FENCE 0 dec under min value and clipped",
+ "FENCE 1 dec under min value and clipped",
+ "FENCE 2 dec under min value and clipped",
+ "FENCE 3 dec under min value and clipped"
+};
+
+static const char * const
+gaudi_qman_arb_error_cause[GAUDI_NUM_OF_QM_ARB_ERR_CAUSE] = {
+ "Choice push while full error",
+ "Choice Q watchdog error",
+ "MSG AXI LBW returned with error"
+};
+
+static enum hl_queue_type gaudi_queue_type[GAUDI_QUEUE_ID_SIZE] = {
+ QUEUE_TYPE_EXT, /* GAUDI_QUEUE_ID_DMA_0_0 */
+ QUEUE_TYPE_EXT, /* GAUDI_QUEUE_ID_DMA_0_1 */
+ QUEUE_TYPE_EXT, /* GAUDI_QUEUE_ID_DMA_0_2 */
+ QUEUE_TYPE_EXT, /* GAUDI_QUEUE_ID_DMA_0_3 */
+ QUEUE_TYPE_EXT, /* GAUDI_QUEUE_ID_DMA_1_0 */
+ QUEUE_TYPE_EXT, /* GAUDI_QUEUE_ID_DMA_1_1 */
+ QUEUE_TYPE_EXT, /* GAUDI_QUEUE_ID_DMA_1_2 */
+ QUEUE_TYPE_EXT, /* GAUDI_QUEUE_ID_DMA_1_3 */
+ QUEUE_TYPE_CPU, /* GAUDI_QUEUE_ID_CPU_PQ */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_2_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_2_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_2_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_2_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_3_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_3_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_3_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_3_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_4_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_4_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_4_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_4_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_5_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_5_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_5_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_5_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_6_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_6_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_6_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_6_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_7_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_7_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_7_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_7_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_MME_0_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_MME_0_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_MME_0_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_MME_0_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_MME_1_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_MME_1_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_MME_1_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_MME_1_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_0_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_0_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_0_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_0_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_1_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_1_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_1_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_1_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_2_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_2_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_2_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_2_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_3_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_3_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_3_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_3_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_4_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_4_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_4_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_4_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_5_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_5_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_5_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_5_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_6_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_6_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_6_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_6_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_7_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_7_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_7_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_7_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_0_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_0_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_0_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_0_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_1_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_1_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_1_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_1_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_2_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_2_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_2_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_2_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_3_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_3_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_3_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_3_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_4_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_4_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_4_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_4_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_5_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_5_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_5_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_5_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_6_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_6_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_6_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_6_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_7_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_7_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_7_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_7_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_8_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_8_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_8_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_8_3 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_9_0 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_9_1 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_9_2 */
+ QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_9_3 */
+};
+
+static struct hl_hw_obj_name_entry gaudi_so_id_to_str[] = {
+ { .id = 0, .name = "SYNC_OBJ_DMA_DOWN_FEEDBACK" },
+ { .id = 1, .name = "SYNC_OBJ_DMA_UP_FEEDBACK" },
+ { .id = 2, .name = "SYNC_OBJ_DMA_STATIC_DRAM_SRAM_FEEDBACK" },
+ { .id = 3, .name = "SYNC_OBJ_DMA_SRAM_DRAM_FEEDBACK" },
+ { .id = 4, .name = "SYNC_OBJ_FIRST_COMPUTE_FINISH" },
+ { .id = 5, .name = "SYNC_OBJ_HOST_DRAM_DONE" },
+ { .id = 6, .name = "SYNC_OBJ_DBG_CTR_DEPRECATED" },
+ { .id = 7, .name = "SYNC_OBJ_DMA_ACTIVATIONS_DRAM_SRAM_FEEDBACK" },
+ { .id = 8, .name = "SYNC_OBJ_ENGINE_SEM_MME_0" },
+ { .id = 9, .name = "SYNC_OBJ_ENGINE_SEM_MME_1" },
+ { .id = 10, .name = "SYNC_OBJ_ENGINE_SEM_TPC_0" },
+ { .id = 11, .name = "SYNC_OBJ_ENGINE_SEM_TPC_1" },
+ { .id = 12, .name = "SYNC_OBJ_ENGINE_SEM_TPC_2" },
+ { .id = 13, .name = "SYNC_OBJ_ENGINE_SEM_TPC_3" },
+ { .id = 14, .name = "SYNC_OBJ_ENGINE_SEM_TPC_4" },
+ { .id = 15, .name = "SYNC_OBJ_ENGINE_SEM_TPC_5" },
+ { .id = 16, .name = "SYNC_OBJ_ENGINE_SEM_TPC_6" },
+ { .id = 17, .name = "SYNC_OBJ_ENGINE_SEM_TPC_7" },
+ { .id = 18, .name = "SYNC_OBJ_ENGINE_SEM_DMA_1" },
+ { .id = 19, .name = "SYNC_OBJ_ENGINE_SEM_DMA_2" },
+ { .id = 20, .name = "SYNC_OBJ_ENGINE_SEM_DMA_3" },
+ { .id = 21, .name = "SYNC_OBJ_ENGINE_SEM_DMA_4" },
+ { .id = 22, .name = "SYNC_OBJ_ENGINE_SEM_DMA_5" },
+ { .id = 23, .name = "SYNC_OBJ_ENGINE_SEM_DMA_6" },
+ { .id = 24, .name = "SYNC_OBJ_ENGINE_SEM_DMA_7" },
+ { .id = 25, .name = "SYNC_OBJ_DBG_CTR_0" },
+ { .id = 26, .name = "SYNC_OBJ_DBG_CTR_1" },
+};
+
+static struct hl_hw_obj_name_entry gaudi_monitor_id_to_str[] = {
+ { .id = 200, .name = "MON_OBJ_DMA_DOWN_FEEDBACK_RESET" },
+ { .id = 201, .name = "MON_OBJ_DMA_UP_FEEDBACK_RESET" },
+ { .id = 203, .name = "MON_OBJ_DRAM_TO_SRAM_QUEUE_FENCE" },
+ { .id = 204, .name = "MON_OBJ_TPC_0_CLK_GATE" },
+ { .id = 205, .name = "MON_OBJ_TPC_1_CLK_GATE" },
+ { .id = 206, .name = "MON_OBJ_TPC_2_CLK_GATE" },
+ { .id = 207, .name = "MON_OBJ_TPC_3_CLK_GATE" },
+ { .id = 208, .name = "MON_OBJ_TPC_4_CLK_GATE" },
+ { .id = 209, .name = "MON_OBJ_TPC_5_CLK_GATE" },
+ { .id = 210, .name = "MON_OBJ_TPC_6_CLK_GATE" },
+ { .id = 211, .name = "MON_OBJ_TPC_7_CLK_GATE" },
+};
+
+static s64 gaudi_state_dump_specs_props[] = {
+ [SP_SYNC_OBJ_BASE_ADDR] = mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0,
+ [SP_NEXT_SYNC_OBJ_ADDR] = NEXT_SYNC_OBJ_ADDR_INTERVAL,
+ [SP_SYNC_OBJ_AMOUNT] = NUM_OF_SOB_IN_BLOCK,
+ [SP_MON_OBJ_WR_ADDR_LOW] =
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0,
+ [SP_MON_OBJ_WR_ADDR_HIGH] =
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0,
+ [SP_MON_OBJ_WR_DATA] = mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_DATA_0,
+ [SP_MON_OBJ_ARM_DATA] = mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_ARM_0,
+ [SP_MON_OBJ_STATUS] = mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_STATUS_0,
+ [SP_MONITORS_AMOUNT] = NUM_OF_MONITORS_IN_BLOCK,
+ [SP_TPC0_CMDQ] = mmTPC0_QM_GLBL_CFG0,
+ [SP_TPC0_CFG_SO] = mmTPC0_CFG_QM_SYNC_OBJECT_ADDR,
+ [SP_NEXT_TPC] = mmTPC1_QM_GLBL_CFG0 - mmTPC0_QM_GLBL_CFG0,
+ [SP_MME_CMDQ] = mmMME0_QM_GLBL_CFG0,
+ [SP_MME_CFG_SO] = mmMME0_CTRL_ARCH_DESC_SYNC_OBJECT_ADDR_LOW_LOCAL,
+ [SP_NEXT_MME] = mmMME2_QM_GLBL_CFG0 - mmMME0_QM_GLBL_CFG0,
+ [SP_DMA_CMDQ] = mmDMA0_QM_GLBL_CFG0,
+ [SP_DMA_CFG_SO] = mmDMA0_CORE_WR_COMP_ADDR_LO,
+ [SP_DMA_QUEUES_OFFSET] = mmDMA1_QM_GLBL_CFG0 - mmDMA0_QM_GLBL_CFG0,
+ [SP_NUM_OF_MME_ENGINES] = NUM_OF_MME_ENGINES,
+ [SP_SUB_MME_ENG_NUM] = NUM_OF_MME_SUB_ENGINES,
+ [SP_NUM_OF_DMA_ENGINES] = NUM_OF_DMA_ENGINES,
+ [SP_NUM_OF_TPC_ENGINES] = NUM_OF_TPC_ENGINES,
+ [SP_ENGINE_NUM_OF_QUEUES] = NUM_OF_QUEUES,
+ [SP_ENGINE_NUM_OF_STREAMS] = NUM_OF_STREAMS,
+ [SP_ENGINE_NUM_OF_FENCES] = NUM_OF_FENCES,
+ [SP_FENCE0_CNT_OFFSET] =
+ mmDMA0_QM_CP_FENCE0_CNT_0 - mmDMA0_QM_GLBL_CFG0,
+ [SP_FENCE0_RDATA_OFFSET] =
+ mmDMA0_QM_CP_FENCE0_RDATA_0 - mmDMA0_QM_GLBL_CFG0,
+ [SP_CP_STS_OFFSET] = mmDMA0_QM_CP_STS_0 - mmDMA0_QM_GLBL_CFG0,
+ [SP_NUM_CORES] = 1,
+};
+
+static const int gaudi_queue_id_to_engine_id[] = {
+ [GAUDI_QUEUE_ID_DMA_0_0...GAUDI_QUEUE_ID_DMA_0_3] = GAUDI_ENGINE_ID_DMA_0,
+ [GAUDI_QUEUE_ID_DMA_1_0...GAUDI_QUEUE_ID_DMA_1_3] = GAUDI_ENGINE_ID_DMA_1,
+ [GAUDI_QUEUE_ID_CPU_PQ] = GAUDI_ENGINE_ID_SIZE,
+ [GAUDI_QUEUE_ID_DMA_2_0...GAUDI_QUEUE_ID_DMA_2_3] = GAUDI_ENGINE_ID_DMA_2,
+ [GAUDI_QUEUE_ID_DMA_3_0...GAUDI_QUEUE_ID_DMA_3_3] = GAUDI_ENGINE_ID_DMA_3,
+ [GAUDI_QUEUE_ID_DMA_4_0...GAUDI_QUEUE_ID_DMA_4_3] = GAUDI_ENGINE_ID_DMA_4,
+ [GAUDI_QUEUE_ID_DMA_5_0...GAUDI_QUEUE_ID_DMA_5_3] = GAUDI_ENGINE_ID_DMA_5,
+ [GAUDI_QUEUE_ID_DMA_6_0...GAUDI_QUEUE_ID_DMA_6_3] = GAUDI_ENGINE_ID_DMA_6,
+ [GAUDI_QUEUE_ID_DMA_7_0...GAUDI_QUEUE_ID_DMA_7_3] = GAUDI_ENGINE_ID_DMA_7,
+ [GAUDI_QUEUE_ID_MME_0_0...GAUDI_QUEUE_ID_MME_0_3] = GAUDI_ENGINE_ID_MME_0,
+ [GAUDI_QUEUE_ID_MME_1_0...GAUDI_QUEUE_ID_MME_1_3] = GAUDI_ENGINE_ID_MME_2,
+ [GAUDI_QUEUE_ID_TPC_0_0...GAUDI_QUEUE_ID_TPC_0_3] = GAUDI_ENGINE_ID_TPC_0,
+ [GAUDI_QUEUE_ID_TPC_1_0...GAUDI_QUEUE_ID_TPC_1_3] = GAUDI_ENGINE_ID_TPC_1,
+ [GAUDI_QUEUE_ID_TPC_2_0...GAUDI_QUEUE_ID_TPC_2_3] = GAUDI_ENGINE_ID_TPC_2,
+ [GAUDI_QUEUE_ID_TPC_3_0...GAUDI_QUEUE_ID_TPC_3_3] = GAUDI_ENGINE_ID_TPC_3,
+ [GAUDI_QUEUE_ID_TPC_4_0...GAUDI_QUEUE_ID_TPC_4_3] = GAUDI_ENGINE_ID_TPC_4,
+ [GAUDI_QUEUE_ID_TPC_5_0...GAUDI_QUEUE_ID_TPC_5_3] = GAUDI_ENGINE_ID_TPC_5,
+ [GAUDI_QUEUE_ID_TPC_6_0...GAUDI_QUEUE_ID_TPC_6_3] = GAUDI_ENGINE_ID_TPC_6,
+ [GAUDI_QUEUE_ID_TPC_7_0...GAUDI_QUEUE_ID_TPC_7_3] = GAUDI_ENGINE_ID_TPC_7,
+ [GAUDI_QUEUE_ID_NIC_0_0...GAUDI_QUEUE_ID_NIC_0_3] = GAUDI_ENGINE_ID_NIC_0,
+ [GAUDI_QUEUE_ID_NIC_1_0...GAUDI_QUEUE_ID_NIC_1_3] = GAUDI_ENGINE_ID_NIC_1,
+ [GAUDI_QUEUE_ID_NIC_2_0...GAUDI_QUEUE_ID_NIC_2_3] = GAUDI_ENGINE_ID_NIC_2,
+ [GAUDI_QUEUE_ID_NIC_3_0...GAUDI_QUEUE_ID_NIC_3_3] = GAUDI_ENGINE_ID_NIC_3,
+ [GAUDI_QUEUE_ID_NIC_4_0...GAUDI_QUEUE_ID_NIC_4_3] = GAUDI_ENGINE_ID_NIC_4,
+ [GAUDI_QUEUE_ID_NIC_5_0...GAUDI_QUEUE_ID_NIC_5_3] = GAUDI_ENGINE_ID_NIC_5,
+ [GAUDI_QUEUE_ID_NIC_6_0...GAUDI_QUEUE_ID_NIC_6_3] = GAUDI_ENGINE_ID_NIC_6,
+ [GAUDI_QUEUE_ID_NIC_7_0...GAUDI_QUEUE_ID_NIC_7_3] = GAUDI_ENGINE_ID_NIC_7,
+ [GAUDI_QUEUE_ID_NIC_8_0...GAUDI_QUEUE_ID_NIC_8_3] = GAUDI_ENGINE_ID_NIC_8,
+ [GAUDI_QUEUE_ID_NIC_9_0...GAUDI_QUEUE_ID_NIC_9_3] = GAUDI_ENGINE_ID_NIC_9,
+};
+
+/* The order here is opposite to the order of the indexing in the h/w.
+ * i.e. SYNC_MGR_W_S is actually 0, SYNC_MGR_E_S is 1, etc.
+ */
+static const char * const gaudi_sync_manager_names[] = {
+ "SYNC_MGR_E_N",
+ "SYNC_MGR_W_N",
+ "SYNC_MGR_E_S",
+ "SYNC_MGR_W_S",
+ NULL
+};
+
+struct ecc_info_extract_params {
+ u64 block_address;
+ u32 num_memories;
+ bool derr;
+};
+
+static int gaudi_mmu_update_asid_hop0_addr(struct hl_device *hdev, u32 asid,
+ u64 phys_addr);
+static int gaudi_send_job_on_qman0(struct hl_device *hdev,
+ struct hl_cs_job *job);
+static int gaudi_memset_device_memory(struct hl_device *hdev, u64 addr,
+ u32 size, u64 val);
+static int gaudi_memset_registers(struct hl_device *hdev, u64 reg_base,
+ u32 num_regs, u32 val);
+static int gaudi_run_tpc_kernel(struct hl_device *hdev, u64 tpc_kernel,
+ u32 tpc_id);
+static int gaudi_mmu_clear_pgt_range(struct hl_device *hdev);
+static int gaudi_cpucp_info_get(struct hl_device *hdev);
+static void gaudi_disable_clock_gating(struct hl_device *hdev);
+static void gaudi_mmu_prepare(struct hl_device *hdev, u32 asid);
+static u32 gaudi_gen_signal_cb(struct hl_device *hdev, void *data, u16 sob_id,
+ u32 size, bool eb);
+static u32 gaudi_gen_wait_cb(struct hl_device *hdev,
+ struct hl_gen_wait_properties *prop);
+static inline enum hl_collective_mode
+get_collective_mode(struct hl_device *hdev, u32 queue_id)
+{
+ if (gaudi_queue_type[queue_id] == QUEUE_TYPE_EXT)
+ return HL_COLLECTIVE_MASTER;
+
+ if (queue_id >= GAUDI_QUEUE_ID_DMA_5_0 &&
+ queue_id <= GAUDI_QUEUE_ID_DMA_5_3)
+ return HL_COLLECTIVE_SLAVE;
+
+ if (queue_id >= GAUDI_QUEUE_ID_TPC_7_0 &&
+ queue_id <= GAUDI_QUEUE_ID_TPC_7_3)
+ return HL_COLLECTIVE_SLAVE;
+
+ if (queue_id >= GAUDI_QUEUE_ID_NIC_0_0 &&
+ queue_id <= GAUDI_QUEUE_ID_NIC_9_3)
+ return HL_COLLECTIVE_SLAVE;
+
+ return HL_COLLECTIVE_NOT_SUPPORTED;
+}
+
+static inline void set_default_power_values(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+
+ if (hdev->card_type == cpucp_card_type_pmc) {
+ prop->max_power_default = MAX_POWER_DEFAULT_PMC;
+
+ if (prop->fw_security_enabled)
+ prop->dc_power_default = DC_POWER_DEFAULT_PMC_SEC;
+ else
+ prop->dc_power_default = DC_POWER_DEFAULT_PMC;
+ } else {
+ prop->max_power_default = MAX_POWER_DEFAULT_PCI;
+ prop->dc_power_default = DC_POWER_DEFAULT_PCI;
+ }
+}
+
+static int gaudi_set_fixed_properties(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u32 num_sync_stream_queues = 0;
+ int i;
+
+ prop->max_queues = GAUDI_QUEUE_ID_SIZE;
+ prop->hw_queues_props = kcalloc(prop->max_queues,
+ sizeof(struct hw_queue_properties),
+ GFP_KERNEL);
+
+ if (!prop->hw_queues_props)
+ return -ENOMEM;
+
+ for (i = 0 ; i < prop->max_queues ; i++) {
+ if (gaudi_queue_type[i] == QUEUE_TYPE_EXT) {
+ prop->hw_queues_props[i].type = QUEUE_TYPE_EXT;
+ prop->hw_queues_props[i].driver_only = 0;
+ prop->hw_queues_props[i].supports_sync_stream = 1;
+ prop->hw_queues_props[i].cb_alloc_flags =
+ CB_ALLOC_KERNEL;
+ num_sync_stream_queues++;
+ } else if (gaudi_queue_type[i] == QUEUE_TYPE_CPU) {
+ prop->hw_queues_props[i].type = QUEUE_TYPE_CPU;
+ prop->hw_queues_props[i].driver_only = 1;
+ prop->hw_queues_props[i].supports_sync_stream = 0;
+ prop->hw_queues_props[i].cb_alloc_flags =
+ CB_ALLOC_KERNEL;
+ } else if (gaudi_queue_type[i] == QUEUE_TYPE_INT) {
+ prop->hw_queues_props[i].type = QUEUE_TYPE_INT;
+ prop->hw_queues_props[i].driver_only = 0;
+ prop->hw_queues_props[i].supports_sync_stream = 0;
+ prop->hw_queues_props[i].cb_alloc_flags =
+ CB_ALLOC_USER;
+
+ }
+ prop->hw_queues_props[i].collective_mode =
+ get_collective_mode(hdev, i);
+ }
+
+ prop->cache_line_size = DEVICE_CACHE_LINE_SIZE;
+ prop->cfg_base_address = CFG_BASE;
+ prop->device_dma_offset_for_host_access = HOST_PHYS_BASE;
+ prop->host_base_address = HOST_PHYS_BASE;
+ prop->host_end_address = prop->host_base_address + HOST_PHYS_SIZE;
+ prop->completion_queues_count = NUMBER_OF_CMPLT_QUEUES;
+ prop->completion_mode = HL_COMPLETION_MODE_JOB;
+ prop->collective_first_sob = 0;
+ prop->collective_first_mon = 0;
+
+ /* 2 SOBs per internal queue stream are reserved for collective */
+ prop->sync_stream_first_sob =
+ ALIGN(NUMBER_OF_SOBS_IN_GRP, HL_MAX_SOBS_PER_MONITOR)
+ * QMAN_STREAMS * HL_RSVD_SOBS;
+
+ /* 1 monitor per internal queue stream are reserved for collective
+ * 2 monitors per external queue stream are reserved for collective
+ */
+ prop->sync_stream_first_mon =
+ (NUMBER_OF_COLLECTIVE_QUEUES * QMAN_STREAMS) +
+ (NUMBER_OF_EXT_HW_QUEUES * 2);
+
+ prop->dram_base_address = DRAM_PHYS_BASE;
+ prop->dram_size = GAUDI_HBM_SIZE_32GB;
+ prop->dram_end_address = prop->dram_base_address + prop->dram_size;
+ prop->dram_user_base_address = DRAM_BASE_ADDR_USER;
+
+ prop->sram_base_address = SRAM_BASE_ADDR;
+ prop->sram_size = SRAM_SIZE;
+ prop->sram_end_address = prop->sram_base_address + prop->sram_size;
+ prop->sram_user_base_address =
+ prop->sram_base_address + SRAM_USER_BASE_OFFSET;
+
+ prop->mmu_cache_mng_addr = MMU_CACHE_MNG_ADDR;
+ prop->mmu_cache_mng_size = MMU_CACHE_MNG_SIZE;
+
+ prop->mmu_pgt_addr = MMU_PAGE_TABLES_ADDR;
+ if (hdev->pldm)
+ prop->mmu_pgt_size = 0x800000; /* 8MB */
+ else
+ prop->mmu_pgt_size = MMU_PAGE_TABLES_SIZE;
+ prop->mmu_pte_size = HL_PTE_SIZE;
+ prop->mmu_hop_table_size = HOP_TABLE_SIZE_512_PTE;
+ prop->mmu_hop0_tables_total_size = HOP0_512_PTE_TABLES_TOTAL_SIZE;
+ prop->dram_page_size = PAGE_SIZE_2MB;
+ prop->device_mem_alloc_default_page_size = prop->dram_page_size;
+ prop->dram_supports_virtual_memory = false;
+
+ prop->pmmu.hop_shifts[MMU_HOP0] = MMU_V1_1_HOP0_SHIFT;
+ prop->pmmu.hop_shifts[MMU_HOP1] = MMU_V1_1_HOP1_SHIFT;
+ prop->pmmu.hop_shifts[MMU_HOP2] = MMU_V1_1_HOP2_SHIFT;
+ prop->pmmu.hop_shifts[MMU_HOP3] = MMU_V1_1_HOP3_SHIFT;
+ prop->pmmu.hop_shifts[MMU_HOP4] = MMU_V1_1_HOP4_SHIFT;
+ prop->pmmu.hop_masks[MMU_HOP0] = MMU_V1_1_HOP0_MASK;
+ prop->pmmu.hop_masks[MMU_HOP1] = MMU_V1_1_HOP1_MASK;
+ prop->pmmu.hop_masks[MMU_HOP2] = MMU_V1_1_HOP2_MASK;
+ prop->pmmu.hop_masks[MMU_HOP3] = MMU_V1_1_HOP3_MASK;
+ prop->pmmu.hop_masks[MMU_HOP4] = MMU_V1_1_HOP4_MASK;
+ prop->pmmu.start_addr = VA_HOST_SPACE_START;
+ prop->pmmu.end_addr =
+ (VA_HOST_SPACE_START + VA_HOST_SPACE_SIZE / 2) - 1;
+ prop->pmmu.page_size = PAGE_SIZE_4KB;
+ prop->pmmu.num_hops = MMU_ARCH_5_HOPS;
+ prop->pmmu.last_mask = LAST_MASK;
+ /* TODO: will be duplicated until implementing per-MMU props */
+ prop->pmmu.hop_table_size = prop->mmu_hop_table_size;
+ prop->pmmu.hop0_tables_total_size = prop->mmu_hop0_tables_total_size;
+
+ /* PMMU and HPMMU are the same except of page size */
+ memcpy(&prop->pmmu_huge, &prop->pmmu, sizeof(prop->pmmu));
+ prop->pmmu_huge.page_size = PAGE_SIZE_2MB;
+
+ /* shifts and masks are the same in PMMU and DMMU */
+ memcpy(&prop->dmmu, &prop->pmmu, sizeof(prop->pmmu));
+ prop->dmmu.start_addr = (VA_HOST_SPACE_START + VA_HOST_SPACE_SIZE / 2);
+ prop->dmmu.end_addr = VA_HOST_SPACE_END;
+ prop->dmmu.page_size = PAGE_SIZE_2MB;
+
+ prop->cfg_size = CFG_SIZE;
+ prop->max_asid = MAX_ASID;
+ prop->num_of_events = GAUDI_EVENT_SIZE;
+ prop->tpc_enabled_mask = TPC_ENABLED_MASK;
+
+ set_default_power_values(hdev);
+
+ prop->cb_pool_cb_cnt = GAUDI_CB_POOL_CB_CNT;
+ prop->cb_pool_cb_size = GAUDI_CB_POOL_CB_SIZE;
+
+ prop->pcie_dbi_base_address = mmPCIE_DBI_BASE;
+ prop->pcie_aux_dbi_reg_addr = CFG_BASE + mmPCIE_AUX_DBI;
+
+ strncpy(prop->cpucp_info.card_name, GAUDI_DEFAULT_CARD_NAME,
+ CARD_NAME_MAX_LEN);
+
+ prop->max_pending_cs = GAUDI_MAX_PENDING_CS;
+
+ prop->first_available_user_sob[HL_GAUDI_WS_DCORE] =
+ prop->sync_stream_first_sob +
+ (num_sync_stream_queues * HL_RSVD_SOBS);
+ prop->first_available_user_mon[HL_GAUDI_WS_DCORE] =
+ prop->sync_stream_first_mon +
+ (num_sync_stream_queues * HL_RSVD_MONS);
+
+ prop->first_available_user_interrupt = USHRT_MAX;
+
+ for (i = 0 ; i < HL_MAX_DCORES ; i++)
+ prop->first_available_cq[i] = USHRT_MAX;
+
+ prop->fw_cpu_boot_dev_sts0_valid = false;
+ prop->fw_cpu_boot_dev_sts1_valid = false;
+ prop->hard_reset_done_by_fw = false;
+ prop->gic_interrupts_enable = true;
+
+ prop->server_type = HL_SERVER_TYPE_UNKNOWN;
+
+ prop->clk_pll_index = HL_GAUDI_MME_PLL;
+ prop->max_freq_value = GAUDI_MAX_CLK_FREQ;
+
+ prop->use_get_power_for_reset_history = true;
+
+ prop->configurable_stop_on_err = true;
+
+ prop->set_max_power_on_device_init = true;
+
+ prop->dma_mask = 48;
+
+ prop->hbw_flush_reg = mmPCIE_WRAP_RR_ELBI_RD_SEC_REG_CTRL;
+
+ return 0;
+}
+
+static int gaudi_pci_bars_map(struct hl_device *hdev)
+{
+ static const char * const name[] = {"SRAM", "CFG", "HBM"};
+ bool is_wc[3] = {false, false, true};
+ int rc;
+
+ rc = hl_pci_bars_map(hdev, name, is_wc);
+ if (rc)
+ return rc;
+
+ hdev->rmmio = hdev->pcie_bar[CFG_BAR_ID] +
+ (CFG_BASE - SPI_FLASH_BASE_ADDR);
+
+ return 0;
+}
+
+static u64 gaudi_set_hbm_bar_base(struct hl_device *hdev, u64 addr)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ struct hl_inbound_pci_region pci_region;
+ u64 old_addr = addr;
+ int rc;
+
+ if ((gaudi) && (gaudi->hbm_bar_cur_addr == addr))
+ return old_addr;
+
+ if (hdev->asic_prop.iatu_done_by_fw)
+ return U64_MAX;
+
+ /* Inbound Region 2 - Bar 4 - Point to HBM */
+ pci_region.mode = PCI_BAR_MATCH_MODE;
+ pci_region.bar = HBM_BAR_ID;
+ pci_region.addr = addr;
+ rc = hl_pci_set_inbound_region(hdev, 2, &pci_region);
+ if (rc)
+ return U64_MAX;
+
+ if (gaudi) {
+ old_addr = gaudi->hbm_bar_cur_addr;
+ gaudi->hbm_bar_cur_addr = addr;
+ }
+
+ return old_addr;
+}
+
+static int gaudi_init_iatu(struct hl_device *hdev)
+{
+ struct hl_inbound_pci_region inbound_region;
+ struct hl_outbound_pci_region outbound_region;
+ int rc;
+
+ if (hdev->asic_prop.iatu_done_by_fw)
+ return 0;
+
+ /* Inbound Region 0 - Bar 0 - Point to SRAM + CFG */
+ inbound_region.mode = PCI_BAR_MATCH_MODE;
+ inbound_region.bar = SRAM_BAR_ID;
+ inbound_region.addr = SRAM_BASE_ADDR;
+ rc = hl_pci_set_inbound_region(hdev, 0, &inbound_region);
+ if (rc)
+ goto done;
+
+ /* Inbound Region 1 - Bar 2 - Point to SPI FLASH */
+ inbound_region.mode = PCI_BAR_MATCH_MODE;
+ inbound_region.bar = CFG_BAR_ID;
+ inbound_region.addr = SPI_FLASH_BASE_ADDR;
+ rc = hl_pci_set_inbound_region(hdev, 1, &inbound_region);
+ if (rc)
+ goto done;
+
+ /* Inbound Region 2 - Bar 4 - Point to HBM */
+ inbound_region.mode = PCI_BAR_MATCH_MODE;
+ inbound_region.bar = HBM_BAR_ID;
+ inbound_region.addr = DRAM_PHYS_BASE;
+ rc = hl_pci_set_inbound_region(hdev, 2, &inbound_region);
+ if (rc)
+ goto done;
+
+ /* Outbound Region 0 - Point to Host */
+ outbound_region.addr = HOST_PHYS_BASE;
+ outbound_region.size = HOST_PHYS_SIZE;
+ rc = hl_pci_set_outbound_region(hdev, &outbound_region);
+
+done:
+ return rc;
+}
+
+static enum hl_device_hw_state gaudi_get_hw_state(struct hl_device *hdev)
+{
+ return RREG32(mmHW_STATE);
+}
+
+static int gaudi_early_init(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct pci_dev *pdev = hdev->pdev;
+ resource_size_t pci_bar_size;
+ u32 fw_boot_status;
+ int rc;
+
+ rc = gaudi_set_fixed_properties(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "Failed setting fixed properties\n");
+ return rc;
+ }
+
+ /* Check BAR sizes */
+ pci_bar_size = pci_resource_len(pdev, SRAM_BAR_ID);
+
+ if (pci_bar_size != SRAM_BAR_SIZE) {
+ dev_err(hdev->dev, "Not " HL_NAME "? BAR %d size %pa, expecting %llu\n",
+ SRAM_BAR_ID, &pci_bar_size, SRAM_BAR_SIZE);
+ rc = -ENODEV;
+ goto free_queue_props;
+ }
+
+ pci_bar_size = pci_resource_len(pdev, CFG_BAR_ID);
+
+ if (pci_bar_size != CFG_BAR_SIZE) {
+ dev_err(hdev->dev, "Not " HL_NAME "? BAR %d size %pa, expecting %llu\n",
+ CFG_BAR_ID, &pci_bar_size, CFG_BAR_SIZE);
+ rc = -ENODEV;
+ goto free_queue_props;
+ }
+
+ prop->dram_pci_bar_size = pci_resource_len(pdev, HBM_BAR_ID);
+ hdev->dram_pci_bar_start = pci_resource_start(pdev, HBM_BAR_ID);
+
+ /* If FW security is enabled at this point it means no access to ELBI */
+ if (hdev->asic_prop.fw_security_enabled) {
+ hdev->asic_prop.iatu_done_by_fw = true;
+
+ /*
+ * GIC-security-bit can ONLY be set by CPUCP, so in this stage
+ * decision can only be taken based on PCI ID security.
+ */
+ hdev->asic_prop.gic_interrupts_enable = false;
+ goto pci_init;
+ }
+
+ rc = hl_pci_elbi_read(hdev, CFG_BASE + mmCPU_BOOT_DEV_STS0,
+ &fw_boot_status);
+ if (rc)
+ goto free_queue_props;
+
+ /* Check whether FW is configuring iATU */
+ if ((fw_boot_status & CPU_BOOT_DEV_STS0_ENABLED) &&
+ (fw_boot_status & CPU_BOOT_DEV_STS0_FW_IATU_CONF_EN))
+ hdev->asic_prop.iatu_done_by_fw = true;
+
+pci_init:
+ rc = hl_pci_init(hdev);
+ if (rc)
+ goto free_queue_props;
+
+ /* Before continuing in the initialization, we need to read the preboot
+ * version to determine whether we run with a security-enabled firmware
+ */
+ rc = hl_fw_read_preboot_status(hdev);
+ if (rc) {
+ if (hdev->reset_on_preboot_fail)
+ hdev->asic_funcs->hw_fini(hdev, true, false);
+ goto pci_fini;
+ }
+
+ if (gaudi_get_hw_state(hdev) == HL_DEVICE_HW_STATE_DIRTY) {
+ dev_dbg(hdev->dev, "H/W state is dirty, must reset before initializing\n");
+ hdev->asic_funcs->hw_fini(hdev, true, false);
+ }
+
+ return 0;
+
+pci_fini:
+ hl_pci_fini(hdev);
+free_queue_props:
+ kfree(hdev->asic_prop.hw_queues_props);
+ return rc;
+}
+
+static int gaudi_early_fini(struct hl_device *hdev)
+{
+ kfree(hdev->asic_prop.hw_queues_props);
+ hl_pci_fini(hdev);
+
+ return 0;
+}
+
+/**
+ * gaudi_fetch_psoc_frequency - Fetch PSOC frequency values
+ *
+ * @hdev: pointer to hl_device structure
+ *
+ */
+static int gaudi_fetch_psoc_frequency(struct hl_device *hdev)
+{
+ u32 nr = 0, nf = 0, od = 0, div_fctr = 0, pll_clk, div_sel;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u16 pll_freq_arr[HL_PLL_NUM_OUTPUTS], freq;
+ int rc;
+
+ if ((hdev->fw_components & FW_TYPE_LINUX) &&
+ (prop->fw_app_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_PLL_INFO_EN)) {
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_CPU_Q))
+ return 0;
+
+ rc = hl_fw_cpucp_pll_info_get(hdev, HL_GAUDI_CPU_PLL, pll_freq_arr);
+
+ if (rc)
+ return rc;
+
+ freq = pll_freq_arr[2];
+ } else {
+ /* Backward compatibility */
+ div_fctr = RREG32(mmPSOC_CPU_PLL_DIV_FACTOR_2);
+ div_sel = RREG32(mmPSOC_CPU_PLL_DIV_SEL_2);
+ nr = RREG32(mmPSOC_CPU_PLL_NR);
+ nf = RREG32(mmPSOC_CPU_PLL_NF);
+ od = RREG32(mmPSOC_CPU_PLL_OD);
+
+ if (div_sel == DIV_SEL_REF_CLK ||
+ div_sel == DIV_SEL_DIVIDED_REF) {
+ if (div_sel == DIV_SEL_REF_CLK)
+ freq = PLL_REF_CLK;
+ else
+ freq = PLL_REF_CLK / (div_fctr + 1);
+ } else if (div_sel == DIV_SEL_PLL_CLK ||
+ div_sel == DIV_SEL_DIVIDED_PLL) {
+ pll_clk = PLL_REF_CLK * (nf + 1) /
+ ((nr + 1) * (od + 1));
+ if (div_sel == DIV_SEL_PLL_CLK)
+ freq = pll_clk;
+ else
+ freq = pll_clk / (div_fctr + 1);
+ } else {
+ dev_warn(hdev->dev, "Received invalid div select value: %#x", div_sel);
+ freq = 0;
+ }
+ }
+
+ prop->psoc_timestamp_frequency = freq;
+ prop->psoc_pci_pll_nr = nr;
+ prop->psoc_pci_pll_nf = nf;
+ prop->psoc_pci_pll_od = od;
+ prop->psoc_pci_pll_div_factor = div_fctr;
+
+ return 0;
+}
+
+static int _gaudi_init_tpc_mem(struct hl_device *hdev,
+ dma_addr_t tpc_kernel_src_addr, u32 tpc_kernel_size)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct packet_lin_dma *init_tpc_mem_pkt;
+ struct hl_cs_job *job;
+ struct hl_cb *cb;
+ u64 dst_addr;
+ u32 cb_size, ctl;
+ u8 tpc_id;
+ int rc;
+
+ cb = hl_cb_kernel_create(hdev, PAGE_SIZE, false);
+ if (!cb)
+ return -EFAULT;
+
+ init_tpc_mem_pkt = cb->kernel_address;
+ cb_size = sizeof(*init_tpc_mem_pkt);
+ memset(init_tpc_mem_pkt, 0, cb_size);
+
+ init_tpc_mem_pkt->tsize = cpu_to_le32(tpc_kernel_size);
+
+ ctl = FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_LIN_DMA);
+ ctl |= FIELD_PREP(GAUDI_PKT_LIN_DMA_CTL_LIN_MASK, 1);
+ ctl |= FIELD_PREP(GAUDI_PKT_CTL_RB_MASK, 1);
+ ctl |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1);
+
+ init_tpc_mem_pkt->ctl = cpu_to_le32(ctl);
+
+ init_tpc_mem_pkt->src_addr = cpu_to_le64(tpc_kernel_src_addr);
+
+ /* TPC_CMD is configured with I$ prefetch enabled, so address should be aligned to 8KB */
+ dst_addr = FIELD_PREP(GAUDI_PKT_LIN_DMA_DST_ADDR_MASK,
+ round_up(prop->sram_user_base_address, SZ_8K));
+ init_tpc_mem_pkt->dst_addr |= cpu_to_le64(dst_addr);
+
+ job = hl_cs_allocate_job(hdev, QUEUE_TYPE_EXT, true);
+ if (!job) {
+ dev_err(hdev->dev, "Failed to allocate a new job\n");
+ rc = -ENOMEM;
+ goto release_cb;
+ }
+
+ job->id = 0;
+ job->user_cb = cb;
+ atomic_inc(&job->user_cb->cs_cnt);
+ job->user_cb_size = cb_size;
+ job->hw_queue_id = GAUDI_QUEUE_ID_DMA_0_0;
+ job->patched_cb = job->user_cb;
+ job->job_cb_size = job->user_cb_size + sizeof(struct packet_msg_prot);
+
+ hl_debugfs_add_job(hdev, job);
+
+ rc = gaudi_send_job_on_qman0(hdev, job);
+
+ if (rc)
+ goto free_job;
+
+ for (tpc_id = 0 ; tpc_id < TPC_NUMBER_OF_ENGINES ; tpc_id++) {
+ rc = gaudi_run_tpc_kernel(hdev, dst_addr, tpc_id);
+ if (rc)
+ break;
+ }
+
+free_job:
+ hl_userptr_delete_list(hdev, &job->userptr_list);
+ hl_debugfs_remove_job(hdev, job);
+ kfree(job);
+ atomic_dec(&cb->cs_cnt);
+
+release_cb:
+ hl_cb_put(cb);
+ hl_cb_destroy(&hdev->kernel_mem_mgr, cb->buf->handle);
+
+ return rc;
+}
+
+/*
+ * gaudi_init_tpc_mem() - Initialize TPC memories.
+ * @hdev: Pointer to hl_device structure.
+ *
+ * Copy TPC kernel fw from firmware file and run it to initialize TPC memories.
+ *
+ * Return: 0 for success, negative value for error.
+ */
+static int gaudi_init_tpc_mem(struct hl_device *hdev)
+{
+ const struct firmware *fw;
+ size_t fw_size;
+ void *cpu_addr;
+ dma_addr_t dma_handle;
+ int rc, count = 5;
+
+again:
+ rc = request_firmware(&fw, GAUDI_TPC_FW_FILE, hdev->dev);
+ if (rc == -EINTR && count-- > 0) {
+ msleep(50);
+ goto again;
+ }
+
+ if (rc) {
+ dev_err(hdev->dev, "Failed to load firmware file %s\n",
+ GAUDI_TPC_FW_FILE);
+ goto out;
+ }
+
+ fw_size = fw->size;
+ cpu_addr = hl_asic_dma_alloc_coherent(hdev, fw_size, &dma_handle, GFP_KERNEL | __GFP_ZERO);
+ if (!cpu_addr) {
+ dev_err(hdev->dev,
+ "Failed to allocate %zu of dma memory for TPC kernel\n",
+ fw_size);
+ rc = -ENOMEM;
+ goto out;
+ }
+
+ memcpy(cpu_addr, fw->data, fw_size);
+
+ rc = _gaudi_init_tpc_mem(hdev, dma_handle, fw_size);
+
+ hl_asic_dma_free_coherent(hdev, fw->size, cpu_addr, dma_handle);
+
+out:
+ release_firmware(fw);
+ return rc;
+}
+
+static void gaudi_collective_map_sobs(struct hl_device *hdev, u32 stream)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ struct gaudi_collective_properties *prop = &gaudi->collective_props;
+ struct hl_hw_queue *q;
+ u32 i, sob_id, sob_group_id, queue_id;
+
+ /* Iterate through SOB groups and assign a SOB for each slave queue */
+ sob_group_id =
+ stream * HL_RSVD_SOBS + prop->curr_sob_group_idx[stream];
+ sob_id = prop->hw_sob_group[sob_group_id].base_sob_id;
+
+ queue_id = GAUDI_QUEUE_ID_NIC_0_0 + stream;
+ for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++) {
+ q = &hdev->kernel_queues[queue_id + (4 * i)];
+ q->sync_stream_prop.collective_sob_id = sob_id + i;
+ }
+
+ /* Both DMA5 and TPC7 use the same resources since only a single
+ * engine need to participate in the reduction process
+ */
+ queue_id = GAUDI_QUEUE_ID_DMA_5_0 + stream;
+ q = &hdev->kernel_queues[queue_id];
+ q->sync_stream_prop.collective_sob_id =
+ sob_id + NIC_NUMBER_OF_ENGINES;
+
+ queue_id = GAUDI_QUEUE_ID_TPC_7_0 + stream;
+ q = &hdev->kernel_queues[queue_id];
+ q->sync_stream_prop.collective_sob_id =
+ sob_id + NIC_NUMBER_OF_ENGINES;
+}
+
+static void gaudi_sob_group_hw_reset(struct kref *ref)
+{
+ struct gaudi_hw_sob_group *hw_sob_group =
+ container_of(ref, struct gaudi_hw_sob_group, kref);
+ struct hl_device *hdev = hw_sob_group->hdev;
+ int i;
+
+ for (i = 0 ; i < NUMBER_OF_SOBS_IN_GRP ; i++)
+ WREG32((mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0 +
+ (hw_sob_group->base_sob_id * 4) + (i * 4)), 0);
+
+ kref_init(&hw_sob_group->kref);
+}
+
+static void gaudi_sob_group_reset_error(struct kref *ref)
+{
+ struct gaudi_hw_sob_group *hw_sob_group =
+ container_of(ref, struct gaudi_hw_sob_group, kref);
+ struct hl_device *hdev = hw_sob_group->hdev;
+
+ dev_crit(hdev->dev,
+ "SOB release shouldn't be called here, base_sob_id: %d\n",
+ hw_sob_group->base_sob_id);
+}
+
+static void gaudi_collective_mstr_sob_mask_set(struct gaudi_device *gaudi)
+{
+ struct gaudi_collective_properties *prop;
+ int i;
+
+ prop = &gaudi->collective_props;
+
+ memset(prop->mstr_sob_mask, 0, sizeof(prop->mstr_sob_mask));
+
+ for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++)
+ if (gaudi->hw_cap_initialized & BIT(HW_CAP_NIC_SHIFT + i))
+ prop->mstr_sob_mask[i / HL_MAX_SOBS_PER_MONITOR] |=
+ BIT(i % HL_MAX_SOBS_PER_MONITOR);
+ /* Set collective engine bit */
+ prop->mstr_sob_mask[i / HL_MAX_SOBS_PER_MONITOR] |=
+ BIT(i % HL_MAX_SOBS_PER_MONITOR);
+}
+
+static int gaudi_collective_init(struct hl_device *hdev)
+{
+ u32 i, sob_id, reserved_sobs_per_group;
+ struct gaudi_collective_properties *prop;
+ struct gaudi_device *gaudi;
+
+ gaudi = hdev->asic_specific;
+ prop = &gaudi->collective_props;
+ sob_id = hdev->asic_prop.collective_first_sob;
+
+ /* First sob in group must be aligned to HL_MAX_SOBS_PER_MONITOR */
+ reserved_sobs_per_group =
+ ALIGN(NUMBER_OF_SOBS_IN_GRP, HL_MAX_SOBS_PER_MONITOR);
+
+ /* Init SOB groups */
+ for (i = 0 ; i < NUM_SOB_GROUPS; i++) {
+ prop->hw_sob_group[i].hdev = hdev;
+ prop->hw_sob_group[i].base_sob_id = sob_id;
+ sob_id += reserved_sobs_per_group;
+ gaudi_sob_group_hw_reset(&prop->hw_sob_group[i].kref);
+ }
+
+ for (i = 0 ; i < QMAN_STREAMS; i++) {
+ prop->next_sob_group_val[i] = 1;
+ prop->curr_sob_group_idx[i] = 0;
+ gaudi_collective_map_sobs(hdev, i);
+ }
+
+ gaudi_collective_mstr_sob_mask_set(gaudi);
+
+ return 0;
+}
+
+static void gaudi_reset_sob_group(struct hl_device *hdev, u16 sob_group)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ struct gaudi_collective_properties *cprop = &gaudi->collective_props;
+
+ kref_put(&cprop->hw_sob_group[sob_group].kref,
+ gaudi_sob_group_hw_reset);
+}
+
+static void gaudi_collective_master_init_job(struct hl_device *hdev,
+ struct hl_cs_job *job, u32 stream, u32 sob_group_offset)
+{
+ u32 master_sob_base, master_monitor, queue_id, cb_size = 0;
+ struct gaudi_collective_properties *cprop;
+ struct hl_gen_wait_properties wait_prop;
+ struct hl_sync_stream_properties *prop;
+ struct gaudi_device *gaudi;
+
+ gaudi = hdev->asic_specific;
+ cprop = &gaudi->collective_props;
+ queue_id = job->hw_queue_id;
+ prop = &hdev->kernel_queues[queue_id].sync_stream_prop;
+
+ master_sob_base =
+ cprop->hw_sob_group[sob_group_offset].base_sob_id;
+ master_monitor = prop->collective_mstr_mon_id[0];
+
+ cprop->hw_sob_group[sob_group_offset].queue_id = queue_id;
+
+ dev_dbg(hdev->dev,
+ "Generate master wait CBs, sob %d (mask %#x), val:0x%x, mon %u, q %d\n",
+ master_sob_base, cprop->mstr_sob_mask[0],
+ cprop->next_sob_group_val[stream],
+ master_monitor, queue_id);
+
+ wait_prop.data = (void *) job->patched_cb;
+ wait_prop.sob_base = master_sob_base;
+ wait_prop.sob_mask = cprop->mstr_sob_mask[0];
+ wait_prop.sob_val = cprop->next_sob_group_val[stream];
+ wait_prop.mon_id = master_monitor;
+ wait_prop.q_idx = queue_id;
+ wait_prop.size = cb_size;
+ cb_size += gaudi_gen_wait_cb(hdev, &wait_prop);
+
+ master_sob_base += HL_MAX_SOBS_PER_MONITOR;
+ master_monitor = prop->collective_mstr_mon_id[1];
+
+ dev_dbg(hdev->dev,
+ "Generate master wait CBs, sob %d (mask %#x), val:0x%x, mon %u, q %d\n",
+ master_sob_base, cprop->mstr_sob_mask[1],
+ cprop->next_sob_group_val[stream],
+ master_monitor, queue_id);
+
+ wait_prop.sob_base = master_sob_base;
+ wait_prop.sob_mask = cprop->mstr_sob_mask[1];
+ wait_prop.mon_id = master_monitor;
+ wait_prop.size = cb_size;
+ cb_size += gaudi_gen_wait_cb(hdev, &wait_prop);
+}
+
+static void gaudi_collective_slave_init_job(struct hl_device *hdev,
+ struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
+{
+ struct hl_gen_wait_properties wait_prop;
+ struct hl_sync_stream_properties *prop;
+ u32 queue_id, cb_size = 0;
+
+ queue_id = job->hw_queue_id;
+ prop = &hdev->kernel_queues[queue_id].sync_stream_prop;
+
+ if (job->cs->encaps_signals) {
+ /* use the encaps signal handle store earlier in the flow
+ * and set the SOB information from the encaps
+ * signals handle
+ */
+ hl_hw_queue_encaps_sig_set_sob_info(hdev, job->cs, job,
+ cs_cmpl);
+
+ dev_dbg(hdev->dev, "collective wait: Sequence %llu found, sob_id: %u, wait for sob_val: %u\n",
+ job->cs->sequence,
+ cs_cmpl->hw_sob->sob_id,
+ cs_cmpl->sob_val);
+ }
+
+ /* Add to wait CBs using slave monitor */
+ wait_prop.data = (void *) job->user_cb;
+ wait_prop.sob_base = cs_cmpl->hw_sob->sob_id;
+ wait_prop.sob_mask = 0x1;
+ wait_prop.sob_val = cs_cmpl->sob_val;
+ wait_prop.mon_id = prop->collective_slave_mon_id;
+ wait_prop.q_idx = queue_id;
+ wait_prop.size = cb_size;
+
+ dev_dbg(hdev->dev,
+ "Generate slave wait CB, sob %d, val:%x, mon %d, q %d\n",
+ cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val,
+ prop->collective_slave_mon_id, queue_id);
+
+ cb_size += gaudi_gen_wait_cb(hdev, &wait_prop);
+
+ dev_dbg(hdev->dev,
+ "generate signal CB, sob_id: %d, sob val: 1, q_idx: %d\n",
+ prop->collective_sob_id, queue_id);
+
+ cb_size += gaudi_gen_signal_cb(hdev, job->user_cb,
+ prop->collective_sob_id, cb_size, false);
+}
+
+static int gaudi_collective_wait_init_cs(struct hl_cs *cs)
+{
+ struct hl_cs_compl *signal_cs_cmpl =
+ container_of(cs->signal_fence, struct hl_cs_compl, base_fence);
+ struct hl_cs_compl *cs_cmpl =
+ container_of(cs->fence, struct hl_cs_compl, base_fence);
+ struct hl_cs_encaps_sig_handle *handle = cs->encaps_sig_hdl;
+ struct gaudi_collective_properties *cprop;
+ u32 stream, queue_id, sob_group_offset;
+ struct gaudi_device *gaudi;
+ struct hl_device *hdev;
+ struct hl_cs_job *job;
+ struct hl_ctx *ctx;
+
+ ctx = cs->ctx;
+ hdev = ctx->hdev;
+ gaudi = hdev->asic_specific;
+ cprop = &gaudi->collective_props;
+
+ if (cs->encaps_signals) {
+ cs_cmpl->hw_sob = handle->hw_sob;
+ /* at this checkpoint we only need the hw_sob pointer
+ * for the completion check before start going over the jobs
+ * of the master/slaves, the sob_value will be taken later on
+ * in gaudi_collective_slave_init_job depends on each
+ * job wait offset value.
+ */
+ cs_cmpl->sob_val = 0;
+ } else {
+ /* copy the SOB id and value of the signal CS */
+ cs_cmpl->hw_sob = signal_cs_cmpl->hw_sob;
+ cs_cmpl->sob_val = signal_cs_cmpl->sob_val;
+ }
+
+ /* check again if the signal cs already completed.
+ * if yes then don't send any wait cs since the hw_sob
+ * could be in reset already. if signal is not completed
+ * then get refcount to hw_sob to prevent resetting the sob
+ * while wait cs is not submitted.
+ * note that this check is protected by two locks,
+ * hw queue lock and completion object lock,
+ * and the same completion object lock also protects
+ * the hw_sob reset handler function.
+ * The hw_queue lock prevent out of sync of hw_sob
+ * refcount value, changed by signal/wait flows.
+ */
+ spin_lock(&signal_cs_cmpl->lock);
+
+ if (completion_done(&cs->signal_fence->completion)) {
+ spin_unlock(&signal_cs_cmpl->lock);
+ return -EINVAL;
+ }
+ /* Increment kref since all slave queues are now waiting on it */
+ kref_get(&cs_cmpl->hw_sob->kref);
+
+ spin_unlock(&signal_cs_cmpl->lock);
+
+ /* Calculate the stream from collective master queue (1st job) */
+ job = list_first_entry(&cs->job_list, struct hl_cs_job, cs_node);
+ stream = job->hw_queue_id % 4;
+ sob_group_offset =
+ stream * HL_RSVD_SOBS + cprop->curr_sob_group_idx[stream];
+
+ list_for_each_entry(job, &cs->job_list, cs_node) {
+ queue_id = job->hw_queue_id;
+
+ if (hdev->kernel_queues[queue_id].collective_mode ==
+ HL_COLLECTIVE_MASTER)
+ gaudi_collective_master_init_job(hdev, job, stream,
+ sob_group_offset);
+ else
+ gaudi_collective_slave_init_job(hdev, job, cs_cmpl);
+ }
+
+ cs_cmpl->sob_group = sob_group_offset;
+
+ /* Handle sob group kref and wraparound */
+ kref_get(&cprop->hw_sob_group[sob_group_offset].kref);
+ cprop->next_sob_group_val[stream]++;
+
+ if (cprop->next_sob_group_val[stream] == HL_MAX_SOB_VAL) {
+ /*
+ * Decrement as we reached the max value.
+ * The release function won't be called here as we've
+ * just incremented the refcount.
+ */
+ kref_put(&cprop->hw_sob_group[sob_group_offset].kref,
+ gaudi_sob_group_reset_error);
+ cprop->next_sob_group_val[stream] = 1;
+ /* only two SOBs are currently in use */
+ cprop->curr_sob_group_idx[stream] =
+ (cprop->curr_sob_group_idx[stream] + 1) &
+ (HL_RSVD_SOBS - 1);
+
+ gaudi_collective_map_sobs(hdev, stream);
+
+ dev_dbg(hdev->dev, "switched to SOB group %d, stream: %d\n",
+ cprop->curr_sob_group_idx[stream], stream);
+ }
+
+ mb();
+ hl_fence_put(cs->signal_fence);
+ cs->signal_fence = NULL;
+
+ return 0;
+}
+
+static u32 gaudi_get_patched_cb_extra_size(u32 user_cb_size)
+{
+ u32 cacheline_end, additional_commands;
+
+ cacheline_end = round_up(user_cb_size, DEVICE_CACHE_LINE_SIZE);
+ additional_commands = sizeof(struct packet_msg_prot) * 2;
+
+ if (user_cb_size + additional_commands > cacheline_end)
+ return cacheline_end - user_cb_size + additional_commands;
+ else
+ return additional_commands;
+}
+
+static int gaudi_collective_wait_create_job(struct hl_device *hdev,
+ struct hl_ctx *ctx, struct hl_cs *cs,
+ enum hl_collective_mode mode, u32 queue_id, u32 wait_queue_id,
+ u32 encaps_signal_offset)
+{
+ struct hw_queue_properties *hw_queue_prop;
+ struct hl_cs_counters_atomic *cntr;
+ struct hl_cs_job *job;
+ struct hl_cb *cb;
+ u32 cb_size;
+ bool patched_cb;
+
+ cntr = &hdev->aggregated_cs_counters;
+
+ if (mode == HL_COLLECTIVE_MASTER) {
+ /* CB size of collective master queue contains
+ * 4 msg short packets for monitor 1 configuration
+ * 1 fence packet
+ * 4 msg short packets for monitor 2 configuration
+ * 1 fence packet
+ * 2 msg prot packets for completion and MSI
+ */
+ cb_size = sizeof(struct packet_msg_short) * 8 +
+ sizeof(struct packet_fence) * 2 +
+ sizeof(struct packet_msg_prot) * 2;
+ patched_cb = true;
+ } else {
+ /* CB size of collective slave queues contains
+ * 4 msg short packets for monitor configuration
+ * 1 fence packet
+ * 1 additional msg short packet for sob signal
+ */
+ cb_size = sizeof(struct packet_msg_short) * 5 +
+ sizeof(struct packet_fence);
+ patched_cb = false;
+ }
+
+ hw_queue_prop = &hdev->asic_prop.hw_queues_props[queue_id];
+ job = hl_cs_allocate_job(hdev, hw_queue_prop->type, true);
+ if (!job) {
+ atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
+ atomic64_inc(&cntr->out_of_mem_drop_cnt);
+ dev_err(hdev->dev, "Failed to allocate a new job\n");
+ return -ENOMEM;
+ }
+
+ /* Allocate internal mapped CB for non patched CBs */
+ cb = hl_cb_kernel_create(hdev, cb_size,
+ hdev->mmu_enable && !patched_cb);
+ if (!cb) {
+ atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
+ atomic64_inc(&cntr->out_of_mem_drop_cnt);
+ kfree(job);
+ return -EFAULT;
+ }
+
+ job->id = 0;
+ job->cs = cs;
+ job->user_cb = cb;
+ atomic_inc(&job->user_cb->cs_cnt);
+ job->user_cb_size = cb_size;
+ job->hw_queue_id = queue_id;
+
+ /* since its guaranteed to have only one chunk in the collective wait
+ * cs, we can use this chunk to set the encapsulated signal offset
+ * in the jobs.
+ */
+ if (cs->encaps_signals)
+ job->encaps_sig_wait_offset = encaps_signal_offset;
+
+ /*
+ * No need in parsing, user CB is the patched CB.
+ * We call hl_cb_destroy() out of two reasons - we don't need
+ * the CB in the CB idr anymore and to decrement its refcount as
+ * it was incremented inside hl_cb_kernel_create().
+ */
+ if (patched_cb)
+ job->patched_cb = job->user_cb;
+ else
+ job->patched_cb = NULL;
+
+ job->job_cb_size = job->user_cb_size;
+ hl_cb_destroy(&hdev->kernel_mem_mgr, cb->buf->handle);
+
+ /* increment refcount as for external queues we get completion */
+ if (hw_queue_prop->type == QUEUE_TYPE_EXT)
+ cs_get(cs);
+
+ cs->jobs_in_queue_cnt[job->hw_queue_id]++;
+
+ list_add_tail(&job->cs_node, &cs->job_list);
+
+ hl_debugfs_add_job(hdev, job);
+
+ return 0;
+}
+
+static int gaudi_collective_wait_create_jobs(struct hl_device *hdev,
+ struct hl_ctx *ctx, struct hl_cs *cs,
+ u32 wait_queue_id, u32 collective_engine_id,
+ u32 encaps_signal_offset)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ struct hw_queue_properties *hw_queue_prop;
+ u32 queue_id, collective_queue, num_jobs;
+ u32 stream, nic_queue, nic_idx = 0;
+ bool skip;
+ int i, rc = 0;
+
+ /* Verify wait queue id is configured as master */
+ hw_queue_prop = &hdev->asic_prop.hw_queues_props[wait_queue_id];
+ if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) {
+ dev_err(hdev->dev,
+ "Queue %d is not configured as collective master\n",
+ wait_queue_id);
+ return -EINVAL;
+ }
+
+ /* Verify engine id is supported */
+ if (collective_engine_id != GAUDI_ENGINE_ID_DMA_5 &&
+ collective_engine_id != GAUDI_ENGINE_ID_TPC_7) {
+ dev_err(hdev->dev,
+ "Collective wait does not support engine %u\n",
+ collective_engine_id);
+ return -EINVAL;
+ }
+
+ stream = wait_queue_id % 4;
+
+ if (collective_engine_id == GAUDI_ENGINE_ID_DMA_5)
+ collective_queue = GAUDI_QUEUE_ID_DMA_5_0 + stream;
+ else
+ collective_queue = GAUDI_QUEUE_ID_TPC_7_0 + stream;
+
+ num_jobs = NUMBER_OF_SOBS_IN_GRP + 1;
+ nic_queue = GAUDI_QUEUE_ID_NIC_0_0 + stream;
+
+ /* First job goes to the collective master queue, it will wait for
+ * the collective slave queues to finish execution.
+ * The synchronization is done using two monitors:
+ * First monitor for NICs 0-7, second monitor for NICs 8-9 and the
+ * reduction engine (DMA5/TPC7).
+ *
+ * Rest of the jobs goes to the collective slave queues which will
+ * all wait for the user to signal sob 'cs_cmpl->sob_val'.
+ */
+ for (i = 0 ; i < num_jobs ; i++) {
+ if (i == 0) {
+ queue_id = wait_queue_id;
+ rc = gaudi_collective_wait_create_job(hdev, ctx, cs,
+ HL_COLLECTIVE_MASTER, queue_id,
+ wait_queue_id, encaps_signal_offset);
+ } else {
+ if (nic_idx < NIC_NUMBER_OF_ENGINES) {
+ if (gaudi->hw_cap_initialized &
+ BIT(HW_CAP_NIC_SHIFT + nic_idx))
+ skip = false;
+ else
+ skip = true;
+
+ queue_id = nic_queue;
+ nic_queue += 4;
+ nic_idx++;
+
+ if (skip)
+ continue;
+ } else {
+ queue_id = collective_queue;
+ }
+
+ rc = gaudi_collective_wait_create_job(hdev, ctx, cs,
+ HL_COLLECTIVE_SLAVE, queue_id,
+ wait_queue_id, encaps_signal_offset);
+ }
+
+ if (rc)
+ return rc;
+ }
+
+ return rc;
+}
+
+static int gaudi_late_init(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ int rc;
+
+ rc = gaudi->cpucp_info_get(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to get cpucp info\n");
+ return rc;
+ }
+
+ if ((hdev->card_type == cpucp_card_type_pci) &&
+ (hdev->nic_ports_mask & 0x3)) {
+ dev_info(hdev->dev,
+ "PCI card detected, only 8 ports are enabled\n");
+ hdev->nic_ports_mask &= ~0x3;
+
+ /* Stop and disable unused NIC QMANs */
+ WREG32(mmNIC0_QM0_GLBL_CFG1, NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK |
+ NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK |
+ NIC0_QM0_GLBL_CFG1_CP_STOP_MASK);
+
+ WREG32(mmNIC0_QM1_GLBL_CFG1, NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK |
+ NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK |
+ NIC0_QM0_GLBL_CFG1_CP_STOP_MASK);
+
+ WREG32(mmNIC0_QM0_GLBL_CFG0, 0);
+ WREG32(mmNIC0_QM1_GLBL_CFG0, 0);
+
+ gaudi->hw_cap_initialized &= ~(HW_CAP_NIC0 | HW_CAP_NIC1);
+ }
+
+ rc = hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_ENABLE_PCI_ACCESS, 0x0);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to enable PCI access from CPU\n");
+ return rc;
+ }
+
+ /* Scrub both SRAM and DRAM */
+ rc = hdev->asic_funcs->scrub_device_mem(hdev);
+ if (rc)
+ goto disable_pci_access;
+
+ rc = gaudi_fetch_psoc_frequency(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to fetch psoc frequency\n");
+ goto disable_pci_access;
+ }
+
+ rc = gaudi_mmu_clear_pgt_range(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to clear MMU page tables range\n");
+ goto disable_pci_access;
+ }
+
+ rc = gaudi_init_tpc_mem(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to initialize TPC memories\n");
+ goto disable_pci_access;
+ }
+
+ rc = gaudi_collective_init(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to init collective\n");
+ goto disable_pci_access;
+ }
+
+ /* We only support a single ASID for the user, so for the sake of optimization, just
+ * initialize the ASID one time during device initialization with the fixed value of 1
+ */
+ gaudi_mmu_prepare(hdev, 1);
+
+ hl_fw_set_pll_profile(hdev);
+
+ return 0;
+
+disable_pci_access:
+ hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0);
+
+ return rc;
+}
+
+static void gaudi_late_fini(struct hl_device *hdev)
+{
+ hl_hwmon_release_resources(hdev);
+}
+
+static int gaudi_alloc_cpu_accessible_dma_mem(struct hl_device *hdev)
+{
+ dma_addr_t dma_addr_arr[GAUDI_ALLOC_CPU_MEM_RETRY_CNT] = {}, end_addr;
+ void *virt_addr_arr[GAUDI_ALLOC_CPU_MEM_RETRY_CNT] = {};
+ int i, j, rc = 0;
+
+ /*
+ * The device CPU works with 40-bits addresses, while bit 39 must be set
+ * to '1' when accessing the host.
+ * Bits 49:39 of the full host address are saved for a later
+ * configuration of the HW to perform extension to 50 bits.
+ * Because there is a single HW register that holds the extension bits,
+ * these bits must be identical in all allocated range.
+ */
+
+ for (i = 0 ; i < GAUDI_ALLOC_CPU_MEM_RETRY_CNT ; i++) {
+ virt_addr_arr[i] = hl_asic_dma_alloc_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE,
+ &dma_addr_arr[i],
+ GFP_KERNEL | __GFP_ZERO);
+ if (!virt_addr_arr[i]) {
+ rc = -ENOMEM;
+ goto free_dma_mem_arr;
+ }
+
+ end_addr = dma_addr_arr[i] + HL_CPU_ACCESSIBLE_MEM_SIZE - 1;
+ if (GAUDI_CPU_PCI_MSB_ADDR(dma_addr_arr[i]) ==
+ GAUDI_CPU_PCI_MSB_ADDR(end_addr))
+ break;
+ }
+
+ if (i == GAUDI_ALLOC_CPU_MEM_RETRY_CNT) {
+ dev_err(hdev->dev,
+ "MSB of CPU accessible DMA memory are not identical in all range\n");
+ rc = -EFAULT;
+ goto free_dma_mem_arr;
+ }
+
+ hdev->cpu_accessible_dma_mem = virt_addr_arr[i];
+ hdev->cpu_accessible_dma_address = dma_addr_arr[i];
+ hdev->cpu_pci_msb_addr =
+ GAUDI_CPU_PCI_MSB_ADDR(hdev->cpu_accessible_dma_address);
+
+ if (!hdev->asic_prop.fw_security_enabled)
+ GAUDI_PCI_TO_CPU_ADDR(hdev->cpu_accessible_dma_address);
+
+free_dma_mem_arr:
+ for (j = 0 ; j < i ; j++)
+ hl_asic_dma_free_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, virt_addr_arr[j],
+ dma_addr_arr[j]);
+
+ return rc;
+}
+
+static void gaudi_free_internal_qmans_pq_mem(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ struct gaudi_internal_qman_info *q;
+ u32 i;
+
+ for (i = 0 ; i < GAUDI_QUEUE_ID_SIZE ; i++) {
+ q = &gaudi->internal_qmans[i];
+ if (!q->pq_kernel_addr)
+ continue;
+ hl_asic_dma_free_coherent(hdev, q->pq_size, q->pq_kernel_addr, q->pq_dma_addr);
+ }
+}
+
+static int gaudi_alloc_internal_qmans_pq_mem(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ struct gaudi_internal_qman_info *q;
+ int rc, i;
+
+ for (i = 0 ; i < GAUDI_QUEUE_ID_SIZE ; i++) {
+ if (gaudi_queue_type[i] != QUEUE_TYPE_INT)
+ continue;
+
+ q = &gaudi->internal_qmans[i];
+
+ switch (i) {
+ case GAUDI_QUEUE_ID_DMA_2_0 ... GAUDI_QUEUE_ID_DMA_7_3:
+ q->pq_size = HBM_DMA_QMAN_SIZE_IN_BYTES;
+ break;
+ case GAUDI_QUEUE_ID_MME_0_0 ... GAUDI_QUEUE_ID_MME_1_3:
+ q->pq_size = MME_QMAN_SIZE_IN_BYTES;
+ break;
+ case GAUDI_QUEUE_ID_TPC_0_0 ... GAUDI_QUEUE_ID_TPC_7_3:
+ q->pq_size = TPC_QMAN_SIZE_IN_BYTES;
+ break;
+ case GAUDI_QUEUE_ID_NIC_0_0 ... GAUDI_QUEUE_ID_NIC_9_3:
+ q->pq_size = NIC_QMAN_SIZE_IN_BYTES;
+ break;
+ default:
+ dev_err(hdev->dev, "Bad internal queue index %d", i);
+ rc = -EINVAL;
+ goto free_internal_qmans_pq_mem;
+ }
+
+ q->pq_kernel_addr = hl_asic_dma_alloc_coherent(hdev, q->pq_size, &q->pq_dma_addr,
+ GFP_KERNEL | __GFP_ZERO);
+ if (!q->pq_kernel_addr) {
+ rc = -ENOMEM;
+ goto free_internal_qmans_pq_mem;
+ }
+ }
+
+ return 0;
+
+free_internal_qmans_pq_mem:
+ gaudi_free_internal_qmans_pq_mem(hdev);
+ return rc;
+}
+
+static void gaudi_set_pci_memory_regions(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct pci_mem_region *region;
+
+ /* CFG */
+ region = &hdev->pci_mem_region[PCI_REGION_CFG];
+ region->region_base = CFG_BASE;
+ region->region_size = CFG_SIZE;
+ region->offset_in_bar = CFG_BASE - SPI_FLASH_BASE_ADDR;
+ region->bar_size = CFG_BAR_SIZE;
+ region->bar_id = CFG_BAR_ID;
+ region->used = 1;
+
+ /* SRAM */
+ region = &hdev->pci_mem_region[PCI_REGION_SRAM];
+ region->region_base = SRAM_BASE_ADDR;
+ region->region_size = SRAM_SIZE;
+ region->offset_in_bar = 0;
+ region->bar_size = SRAM_BAR_SIZE;
+ region->bar_id = SRAM_BAR_ID;
+ region->used = 1;
+
+ /* DRAM */
+ region = &hdev->pci_mem_region[PCI_REGION_DRAM];
+ region->region_base = DRAM_PHYS_BASE;
+ region->region_size = hdev->asic_prop.dram_size;
+ region->offset_in_bar = 0;
+ region->bar_size = prop->dram_pci_bar_size;
+ region->bar_id = HBM_BAR_ID;
+ region->used = 1;
+
+ /* SP SRAM */
+ region = &hdev->pci_mem_region[PCI_REGION_SP_SRAM];
+ region->region_base = PSOC_SCRATCHPAD_ADDR;
+ region->region_size = PSOC_SCRATCHPAD_SIZE;
+ region->offset_in_bar = PSOC_SCRATCHPAD_ADDR - SPI_FLASH_BASE_ADDR;
+ region->bar_size = CFG_BAR_SIZE;
+ region->bar_id = CFG_BAR_ID;
+ region->used = 1;
+}
+
+static int gaudi_sw_init(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi;
+ u32 i, event_id = 0;
+ int rc;
+
+ /* Allocate device structure */
+ gaudi = kzalloc(sizeof(*gaudi), GFP_KERNEL);
+ if (!gaudi)
+ return -ENOMEM;
+
+ for (i = 0 ; i < ARRAY_SIZE(gaudi_irq_map_table) ; i++) {
+ if (gaudi_irq_map_table[i].valid) {
+ if (event_id == GAUDI_EVENT_SIZE) {
+ dev_err(hdev->dev,
+ "Event array exceeds the limit of %u events\n",
+ GAUDI_EVENT_SIZE);
+ rc = -EINVAL;
+ goto free_gaudi_device;
+ }
+
+ gaudi->events[event_id++] =
+ gaudi_irq_map_table[i].fc_id;
+ }
+ }
+
+ gaudi->cpucp_info_get = gaudi_cpucp_info_get;
+
+ hdev->asic_specific = gaudi;
+
+ /* Create DMA pool for small allocations */
+ hdev->dma_pool = dma_pool_create(dev_name(hdev->dev),
+ &hdev->pdev->dev, GAUDI_DMA_POOL_BLK_SIZE, 8, 0);
+ if (!hdev->dma_pool) {
+ dev_err(hdev->dev, "failed to create DMA pool\n");
+ rc = -ENOMEM;
+ goto free_gaudi_device;
+ }
+
+ rc = gaudi_alloc_cpu_accessible_dma_mem(hdev);
+ if (rc)
+ goto free_dma_pool;
+
+ hdev->cpu_accessible_dma_pool = gen_pool_create(ilog2(32), -1);
+ if (!hdev->cpu_accessible_dma_pool) {
+ dev_err(hdev->dev,
+ "Failed to create CPU accessible DMA pool\n");
+ rc = -ENOMEM;
+ goto free_cpu_dma_mem;
+ }
+
+ rc = gen_pool_add(hdev->cpu_accessible_dma_pool,
+ (uintptr_t) hdev->cpu_accessible_dma_mem,
+ HL_CPU_ACCESSIBLE_MEM_SIZE, -1);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to add memory to CPU accessible DMA pool\n");
+ rc = -EFAULT;
+ goto free_cpu_accessible_dma_pool;
+ }
+
+ rc = gaudi_alloc_internal_qmans_pq_mem(hdev);
+ if (rc)
+ goto free_cpu_accessible_dma_pool;
+
+ spin_lock_init(&gaudi->hw_queues_lock);
+
+ hdev->supports_sync_stream = true;
+ hdev->supports_coresight = true;
+ hdev->supports_staged_submission = true;
+ hdev->supports_wait_for_multi_cs = true;
+
+ hdev->asic_funcs->set_pci_memory_regions(hdev);
+ hdev->stream_master_qid_arr =
+ hdev->asic_funcs->get_stream_master_qid_arr();
+ hdev->stream_master_qid_arr_size = GAUDI_STREAM_MASTER_ARR_SIZE;
+
+ return 0;
+
+free_cpu_accessible_dma_pool:
+ gen_pool_destroy(hdev->cpu_accessible_dma_pool);
+free_cpu_dma_mem:
+ if (!hdev->asic_prop.fw_security_enabled)
+ GAUDI_CPU_TO_PCI_ADDR(hdev->cpu_accessible_dma_address,
+ hdev->cpu_pci_msb_addr);
+ hl_asic_dma_free_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, hdev->cpu_accessible_dma_mem,
+ hdev->cpu_accessible_dma_address);
+free_dma_pool:
+ dma_pool_destroy(hdev->dma_pool);
+free_gaudi_device:
+ kfree(gaudi);
+ return rc;
+}
+
+static int gaudi_sw_fini(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ gaudi_free_internal_qmans_pq_mem(hdev);
+
+ gen_pool_destroy(hdev->cpu_accessible_dma_pool);
+
+ if (!hdev->asic_prop.fw_security_enabled)
+ GAUDI_CPU_TO_PCI_ADDR(hdev->cpu_accessible_dma_address,
+ hdev->cpu_pci_msb_addr);
+
+ hl_asic_dma_free_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, hdev->cpu_accessible_dma_mem,
+ hdev->cpu_accessible_dma_address);
+
+ dma_pool_destroy(hdev->dma_pool);
+
+ kfree(gaudi);
+
+ return 0;
+}
+
+static irqreturn_t gaudi_irq_handler_single(int irq, void *arg)
+{
+ struct hl_device *hdev = arg;
+ int i;
+
+ if (hdev->disabled)
+ return IRQ_HANDLED;
+
+ for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
+ hl_irq_handler_cq(irq, &hdev->completion_queue[i]);
+
+ hl_irq_handler_eq(irq, &hdev->event_queue);
+
+ return IRQ_HANDLED;
+}
+
+/*
+ * For backward compatibility, new MSI interrupts should be set after the
+ * existing CPU and NIC interrupts.
+ */
+static int gaudi_pci_irq_vector(struct hl_device *hdev, unsigned int nr,
+ bool cpu_eq)
+{
+ int msi_vec;
+
+ if ((nr != GAUDI_EVENT_QUEUE_MSI_IDX) && (cpu_eq))
+ dev_crit(hdev->dev, "CPU EQ must use IRQ %d\n",
+ GAUDI_EVENT_QUEUE_MSI_IDX);
+
+ msi_vec = ((nr < GAUDI_EVENT_QUEUE_MSI_IDX) || (cpu_eq)) ? nr :
+ (nr + NIC_NUMBER_OF_ENGINES + 1);
+
+ return pci_irq_vector(hdev->pdev, msi_vec);
+}
+
+static int gaudi_enable_msi_single(struct hl_device *hdev)
+{
+ int rc, irq;
+
+ dev_dbg(hdev->dev, "Working in single MSI IRQ mode\n");
+
+ irq = gaudi_pci_irq_vector(hdev, 0, false);
+ rc = request_irq(irq, gaudi_irq_handler_single, 0,
+ "gaudi single msi", hdev);
+ if (rc)
+ dev_err(hdev->dev,
+ "Failed to request single MSI IRQ\n");
+
+ return rc;
+}
+
+static int gaudi_enable_msi_multi(struct hl_device *hdev)
+{
+ int cq_cnt = hdev->asic_prop.completion_queues_count;
+ int rc, i, irq_cnt_init, irq;
+
+ for (i = 0, irq_cnt_init = 0 ; i < cq_cnt ; i++, irq_cnt_init++) {
+ irq = gaudi_pci_irq_vector(hdev, i, false);
+ rc = request_irq(irq, hl_irq_handler_cq, 0, gaudi_irq_name[i],
+ &hdev->completion_queue[i]);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to request IRQ %d", irq);
+ goto free_irqs;
+ }
+ }
+
+ irq = gaudi_pci_irq_vector(hdev, GAUDI_EVENT_QUEUE_MSI_IDX, true);
+ rc = request_irq(irq, hl_irq_handler_eq, 0, gaudi_irq_name[cq_cnt],
+ &hdev->event_queue);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to request IRQ %d", irq);
+ goto free_irqs;
+ }
+
+ return 0;
+
+free_irqs:
+ for (i = 0 ; i < irq_cnt_init ; i++)
+ free_irq(gaudi_pci_irq_vector(hdev, i, false),
+ &hdev->completion_queue[i]);
+ return rc;
+}
+
+static int gaudi_enable_msi(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ int rc;
+
+ if (gaudi->hw_cap_initialized & HW_CAP_MSI)
+ return 0;
+
+ rc = pci_alloc_irq_vectors(hdev->pdev, 1, 1, PCI_IRQ_MSI);
+ if (rc < 0) {
+ dev_err(hdev->dev, "MSI: Failed to enable support %d\n", rc);
+ return rc;
+ }
+
+ if (rc < NUMBER_OF_INTERRUPTS) {
+ gaudi->multi_msi_mode = false;
+ rc = gaudi_enable_msi_single(hdev);
+ } else {
+ gaudi->multi_msi_mode = true;
+ rc = gaudi_enable_msi_multi(hdev);
+ }
+
+ if (rc)
+ goto free_pci_irq_vectors;
+
+ gaudi->hw_cap_initialized |= HW_CAP_MSI;
+
+ return 0;
+
+free_pci_irq_vectors:
+ pci_free_irq_vectors(hdev->pdev);
+ return rc;
+}
+
+static void gaudi_sync_irqs(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ int i, cq_cnt = hdev->asic_prop.completion_queues_count;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_MSI))
+ return;
+
+ /* Wait for all pending IRQs to be finished */
+ if (gaudi->multi_msi_mode) {
+ for (i = 0 ; i < cq_cnt ; i++)
+ synchronize_irq(gaudi_pci_irq_vector(hdev, i, false));
+
+ synchronize_irq(gaudi_pci_irq_vector(hdev,
+ GAUDI_EVENT_QUEUE_MSI_IDX,
+ true));
+ } else {
+ synchronize_irq(gaudi_pci_irq_vector(hdev, 0, false));
+ }
+}
+
+static void gaudi_disable_msi(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ int i, irq, cq_cnt = hdev->asic_prop.completion_queues_count;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_MSI))
+ return;
+
+ gaudi_sync_irqs(hdev);
+
+ if (gaudi->multi_msi_mode) {
+ irq = gaudi_pci_irq_vector(hdev, GAUDI_EVENT_QUEUE_MSI_IDX,
+ true);
+ free_irq(irq, &hdev->event_queue);
+
+ for (i = 0 ; i < cq_cnt ; i++) {
+ irq = gaudi_pci_irq_vector(hdev, i, false);
+ free_irq(irq, &hdev->completion_queue[i]);
+ }
+ } else {
+ free_irq(gaudi_pci_irq_vector(hdev, 0, false), hdev);
+ }
+
+ pci_free_irq_vectors(hdev->pdev);
+
+ gaudi->hw_cap_initialized &= ~HW_CAP_MSI;
+}
+
+static void gaudi_init_scrambler_sram(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ if (hdev->asic_prop.fw_security_enabled)
+ return;
+
+ if (hdev->asic_prop.fw_app_cpu_boot_dev_sts0 &
+ CPU_BOOT_DEV_STS0_SRAM_SCR_EN)
+ return;
+
+ if (gaudi->hw_cap_initialized & HW_CAP_SRAM_SCRAMBLER)
+ return;
+
+ WREG32(mmNIF_RTR_CTRL_0_SCRAM_SRAM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
+ WREG32(mmNIF_RTR_CTRL_1_SCRAM_SRAM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
+ WREG32(mmNIF_RTR_CTRL_2_SCRAM_SRAM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
+ WREG32(mmNIF_RTR_CTRL_3_SCRAM_SRAM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
+ WREG32(mmNIF_RTR_CTRL_4_SCRAM_SRAM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
+ WREG32(mmNIF_RTR_CTRL_5_SCRAM_SRAM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
+ WREG32(mmNIF_RTR_CTRL_6_SCRAM_SRAM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
+ WREG32(mmNIF_RTR_CTRL_7_SCRAM_SRAM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
+
+ WREG32(mmSIF_RTR_CTRL_0_SCRAM_SRAM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
+ WREG32(mmSIF_RTR_CTRL_1_SCRAM_SRAM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
+ WREG32(mmSIF_RTR_CTRL_2_SCRAM_SRAM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
+ WREG32(mmSIF_RTR_CTRL_3_SCRAM_SRAM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
+ WREG32(mmSIF_RTR_CTRL_4_SCRAM_SRAM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
+ WREG32(mmSIF_RTR_CTRL_5_SCRAM_SRAM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
+ WREG32(mmSIF_RTR_CTRL_6_SCRAM_SRAM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
+ WREG32(mmSIF_RTR_CTRL_7_SCRAM_SRAM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
+
+ WREG32(mmDMA_IF_E_N_DOWN_CH0_SCRAM_SRAM_EN,
+ 1 << DMA_IF_DOWN_CHX_SCRAM_SRAM_EN_VAL_SHIFT);
+ WREG32(mmDMA_IF_E_N_DOWN_CH1_SCRAM_SRAM_EN,
+ 1 << DMA_IF_DOWN_CHX_SCRAM_SRAM_EN_VAL_SHIFT);
+ WREG32(mmDMA_IF_E_S_DOWN_CH0_SCRAM_SRAM_EN,
+ 1 << DMA_IF_DOWN_CHX_SCRAM_SRAM_EN_VAL_SHIFT);
+ WREG32(mmDMA_IF_E_S_DOWN_CH1_SCRAM_SRAM_EN,
+ 1 << DMA_IF_DOWN_CHX_SCRAM_SRAM_EN_VAL_SHIFT);
+ WREG32(mmDMA_IF_W_N_DOWN_CH0_SCRAM_SRAM_EN,
+ 1 << DMA_IF_DOWN_CHX_SCRAM_SRAM_EN_VAL_SHIFT);
+ WREG32(mmDMA_IF_W_N_DOWN_CH1_SCRAM_SRAM_EN,
+ 1 << DMA_IF_DOWN_CHX_SCRAM_SRAM_EN_VAL_SHIFT);
+ WREG32(mmDMA_IF_W_S_DOWN_CH0_SCRAM_SRAM_EN,
+ 1 << DMA_IF_DOWN_CHX_SCRAM_SRAM_EN_VAL_SHIFT);
+ WREG32(mmDMA_IF_W_S_DOWN_CH1_SCRAM_SRAM_EN,
+ 1 << DMA_IF_DOWN_CHX_SCRAM_SRAM_EN_VAL_SHIFT);
+
+ gaudi->hw_cap_initialized |= HW_CAP_SRAM_SCRAMBLER;
+}
+
+static void gaudi_init_scrambler_hbm(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ if (hdev->asic_prop.fw_security_enabled)
+ return;
+
+ if (hdev->asic_prop.fw_bootfit_cpu_boot_dev_sts0 &
+ CPU_BOOT_DEV_STS0_DRAM_SCR_EN)
+ return;
+
+ if (gaudi->hw_cap_initialized & HW_CAP_HBM_SCRAMBLER)
+ return;
+
+ WREG32(mmNIF_RTR_CTRL_0_SCRAM_HBM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
+ WREG32(mmNIF_RTR_CTRL_1_SCRAM_HBM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
+ WREG32(mmNIF_RTR_CTRL_2_SCRAM_HBM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
+ WREG32(mmNIF_RTR_CTRL_3_SCRAM_HBM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
+ WREG32(mmNIF_RTR_CTRL_4_SCRAM_HBM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
+ WREG32(mmNIF_RTR_CTRL_5_SCRAM_HBM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
+ WREG32(mmNIF_RTR_CTRL_6_SCRAM_HBM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
+ WREG32(mmNIF_RTR_CTRL_7_SCRAM_HBM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
+
+ WREG32(mmSIF_RTR_CTRL_0_SCRAM_HBM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
+ WREG32(mmSIF_RTR_CTRL_1_SCRAM_HBM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
+ WREG32(mmSIF_RTR_CTRL_2_SCRAM_HBM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
+ WREG32(mmSIF_RTR_CTRL_3_SCRAM_HBM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
+ WREG32(mmSIF_RTR_CTRL_4_SCRAM_HBM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
+ WREG32(mmSIF_RTR_CTRL_5_SCRAM_HBM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
+ WREG32(mmSIF_RTR_CTRL_6_SCRAM_HBM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
+ WREG32(mmSIF_RTR_CTRL_7_SCRAM_HBM_EN,
+ 1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
+
+ WREG32(mmDMA_IF_E_N_DOWN_CH0_SCRAM_HBM_EN,
+ 1 << DMA_IF_DOWN_CHX_SCRAM_HBM_EN_VAL_SHIFT);
+ WREG32(mmDMA_IF_E_N_DOWN_CH1_SCRAM_HBM_EN,
+ 1 << DMA_IF_DOWN_CHX_SCRAM_HBM_EN_VAL_SHIFT);
+ WREG32(mmDMA_IF_E_S_DOWN_CH0_SCRAM_HBM_EN,
+ 1 << DMA_IF_DOWN_CHX_SCRAM_HBM_EN_VAL_SHIFT);
+ WREG32(mmDMA_IF_E_S_DOWN_CH1_SCRAM_HBM_EN,
+ 1 << DMA_IF_DOWN_CHX_SCRAM_HBM_EN_VAL_SHIFT);
+ WREG32(mmDMA_IF_W_N_DOWN_CH0_SCRAM_HBM_EN,
+ 1 << DMA_IF_DOWN_CHX_SCRAM_HBM_EN_VAL_SHIFT);
+ WREG32(mmDMA_IF_W_N_DOWN_CH1_SCRAM_HBM_EN,
+ 1 << DMA_IF_DOWN_CHX_SCRAM_HBM_EN_VAL_SHIFT);
+ WREG32(mmDMA_IF_W_S_DOWN_CH0_SCRAM_HBM_EN,
+ 1 << DMA_IF_DOWN_CHX_SCRAM_HBM_EN_VAL_SHIFT);
+ WREG32(mmDMA_IF_W_S_DOWN_CH1_SCRAM_HBM_EN,
+ 1 << DMA_IF_DOWN_CHX_SCRAM_HBM_EN_VAL_SHIFT);
+
+ gaudi->hw_cap_initialized |= HW_CAP_HBM_SCRAMBLER;
+}
+
+static void gaudi_init_e2e(struct hl_device *hdev)
+{
+ if (hdev->asic_prop.fw_security_enabled)
+ return;
+
+ if (hdev->asic_prop.fw_bootfit_cpu_boot_dev_sts0 &
+ CPU_BOOT_DEV_STS0_E2E_CRED_EN)
+ return;
+
+ WREG32(mmSIF_RTR_CTRL_0_E2E_HBM_WR_SIZE, 247 >> 3);
+ WREG32(mmSIF_RTR_CTRL_0_E2E_HBM_RD_SIZE, 785 >> 3);
+ WREG32(mmSIF_RTR_CTRL_0_E2E_PCI_WR_SIZE, 49);
+ WREG32(mmSIF_RTR_CTRL_0_E2E_PCI_RD_SIZE, 101);
+
+ WREG32(mmSIF_RTR_CTRL_1_E2E_HBM_WR_SIZE, 275 >> 3);
+ WREG32(mmSIF_RTR_CTRL_1_E2E_HBM_RD_SIZE, 614 >> 3);
+ WREG32(mmSIF_RTR_CTRL_1_E2E_PCI_WR_SIZE, 1);
+ WREG32(mmSIF_RTR_CTRL_1_E2E_PCI_RD_SIZE, 39);
+
+ WREG32(mmSIF_RTR_CTRL_2_E2E_HBM_WR_SIZE, 1);
+ WREG32(mmSIF_RTR_CTRL_2_E2E_HBM_RD_SIZE, 1);
+ WREG32(mmSIF_RTR_CTRL_2_E2E_PCI_WR_SIZE, 1);
+ WREG32(mmSIF_RTR_CTRL_2_E2E_PCI_RD_SIZE, 32);
+
+ WREG32(mmSIF_RTR_CTRL_3_E2E_HBM_WR_SIZE, 176 >> 3);
+ WREG32(mmSIF_RTR_CTRL_3_E2E_HBM_RD_SIZE, 32 >> 3);
+ WREG32(mmSIF_RTR_CTRL_3_E2E_PCI_WR_SIZE, 19);
+ WREG32(mmSIF_RTR_CTRL_3_E2E_PCI_RD_SIZE, 32);
+
+ WREG32(mmSIF_RTR_CTRL_4_E2E_HBM_WR_SIZE, 176 >> 3);
+ WREG32(mmSIF_RTR_CTRL_4_E2E_HBM_RD_SIZE, 32 >> 3);
+ WREG32(mmSIF_RTR_CTRL_4_E2E_PCI_WR_SIZE, 19);
+ WREG32(mmSIF_RTR_CTRL_4_E2E_PCI_RD_SIZE, 32);
+
+ WREG32(mmSIF_RTR_CTRL_5_E2E_HBM_WR_SIZE, 1);
+ WREG32(mmSIF_RTR_CTRL_5_E2E_HBM_RD_SIZE, 1);
+ WREG32(mmSIF_RTR_CTRL_5_E2E_PCI_WR_SIZE, 1);
+ WREG32(mmSIF_RTR_CTRL_5_E2E_PCI_RD_SIZE, 32);
+
+ WREG32(mmSIF_RTR_CTRL_6_E2E_HBM_WR_SIZE, 275 >> 3);
+ WREG32(mmSIF_RTR_CTRL_6_E2E_HBM_RD_SIZE, 614 >> 3);
+ WREG32(mmSIF_RTR_CTRL_6_E2E_PCI_WR_SIZE, 1);
+ WREG32(mmSIF_RTR_CTRL_6_E2E_PCI_RD_SIZE, 39);
+
+ WREG32(mmSIF_RTR_CTRL_7_E2E_HBM_WR_SIZE, 297 >> 3);
+ WREG32(mmSIF_RTR_CTRL_7_E2E_HBM_RD_SIZE, 908 >> 3);
+ WREG32(mmSIF_RTR_CTRL_7_E2E_PCI_WR_SIZE, 19);
+ WREG32(mmSIF_RTR_CTRL_7_E2E_PCI_RD_SIZE, 19);
+
+ WREG32(mmNIF_RTR_CTRL_0_E2E_HBM_WR_SIZE, 318 >> 3);
+ WREG32(mmNIF_RTR_CTRL_0_E2E_HBM_RD_SIZE, 956 >> 3);
+ WREG32(mmNIF_RTR_CTRL_0_E2E_PCI_WR_SIZE, 79);
+ WREG32(mmNIF_RTR_CTRL_0_E2E_PCI_RD_SIZE, 163);
+
+ WREG32(mmNIF_RTR_CTRL_1_E2E_HBM_WR_SIZE, 275 >> 3);
+ WREG32(mmNIF_RTR_CTRL_1_E2E_HBM_RD_SIZE, 614 >> 3);
+ WREG32(mmNIF_RTR_CTRL_1_E2E_PCI_WR_SIZE, 1);
+ WREG32(mmNIF_RTR_CTRL_1_E2E_PCI_RD_SIZE, 39);
+
+ WREG32(mmNIF_RTR_CTRL_2_E2E_HBM_WR_SIZE, 1);
+ WREG32(mmNIF_RTR_CTRL_2_E2E_HBM_RD_SIZE, 1);
+ WREG32(mmNIF_RTR_CTRL_2_E2E_PCI_WR_SIZE, 1);
+ WREG32(mmNIF_RTR_CTRL_2_E2E_PCI_RD_SIZE, 32);
+
+ WREG32(mmNIF_RTR_CTRL_3_E2E_HBM_WR_SIZE, 176 >> 3);
+ WREG32(mmNIF_RTR_CTRL_3_E2E_HBM_RD_SIZE, 32 >> 3);
+ WREG32(mmNIF_RTR_CTRL_3_E2E_PCI_WR_SIZE, 19);
+ WREG32(mmNIF_RTR_CTRL_3_E2E_PCI_RD_SIZE, 32);
+
+ WREG32(mmNIF_RTR_CTRL_4_E2E_HBM_WR_SIZE, 176 >> 3);
+ WREG32(mmNIF_RTR_CTRL_4_E2E_HBM_RD_SIZE, 32 >> 3);
+ WREG32(mmNIF_RTR_CTRL_4_E2E_PCI_WR_SIZE, 19);
+ WREG32(mmNIF_RTR_CTRL_4_E2E_PCI_RD_SIZE, 32);
+
+ WREG32(mmNIF_RTR_CTRL_5_E2E_HBM_WR_SIZE, 1);
+ WREG32(mmNIF_RTR_CTRL_5_E2E_HBM_RD_SIZE, 1);
+ WREG32(mmNIF_RTR_CTRL_5_E2E_PCI_WR_SIZE, 1);
+ WREG32(mmNIF_RTR_CTRL_5_E2E_PCI_RD_SIZE, 32);
+
+ WREG32(mmNIF_RTR_CTRL_6_E2E_HBM_WR_SIZE, 275 >> 3);
+ WREG32(mmNIF_RTR_CTRL_6_E2E_HBM_RD_SIZE, 614 >> 3);
+ WREG32(mmNIF_RTR_CTRL_6_E2E_PCI_WR_SIZE, 1);
+ WREG32(mmNIF_RTR_CTRL_6_E2E_PCI_RD_SIZE, 39);
+
+ WREG32(mmNIF_RTR_CTRL_7_E2E_HBM_WR_SIZE, 318 >> 3);
+ WREG32(mmNIF_RTR_CTRL_7_E2E_HBM_RD_SIZE, 956 >> 3);
+ WREG32(mmNIF_RTR_CTRL_7_E2E_PCI_WR_SIZE, 79);
+ WREG32(mmNIF_RTR_CTRL_7_E2E_PCI_RD_SIZE, 79);
+
+ WREG32(mmDMA_IF_E_N_DOWN_CH0_E2E_HBM_WR_SIZE, 344 >> 3);
+ WREG32(mmDMA_IF_E_N_DOWN_CH0_E2E_HBM_RD_SIZE, 1000 >> 3);
+ WREG32(mmDMA_IF_E_N_DOWN_CH0_E2E_PCI_WR_SIZE, 162);
+ WREG32(mmDMA_IF_E_N_DOWN_CH0_E2E_PCI_RD_SIZE, 338);
+
+ WREG32(mmDMA_IF_E_N_DOWN_CH1_E2E_HBM_WR_SIZE, 344 >> 3);
+ WREG32(mmDMA_IF_E_N_DOWN_CH1_E2E_HBM_RD_SIZE, 1000 >> 3);
+ WREG32(mmDMA_IF_E_N_DOWN_CH1_E2E_PCI_WR_SIZE, 162);
+ WREG32(mmDMA_IF_E_N_DOWN_CH1_E2E_PCI_RD_SIZE, 338);
+
+ WREG32(mmDMA_IF_E_S_DOWN_CH0_E2E_HBM_WR_SIZE, 344 >> 3);
+ WREG32(mmDMA_IF_E_S_DOWN_CH0_E2E_HBM_RD_SIZE, 1000 >> 3);
+ WREG32(mmDMA_IF_E_S_DOWN_CH0_E2E_PCI_WR_SIZE, 162);
+ WREG32(mmDMA_IF_E_S_DOWN_CH0_E2E_PCI_RD_SIZE, 338);
+
+ WREG32(mmDMA_IF_E_S_DOWN_CH1_E2E_HBM_WR_SIZE, 344 >> 3);
+ WREG32(mmDMA_IF_E_S_DOWN_CH1_E2E_HBM_RD_SIZE, 1000 >> 3);
+ WREG32(mmDMA_IF_E_S_DOWN_CH1_E2E_PCI_WR_SIZE, 162);
+ WREG32(mmDMA_IF_E_S_DOWN_CH1_E2E_PCI_RD_SIZE, 338);
+
+ WREG32(mmDMA_IF_W_N_DOWN_CH0_E2E_HBM_WR_SIZE, 344 >> 3);
+ WREG32(mmDMA_IF_W_N_DOWN_CH0_E2E_HBM_RD_SIZE, 1000 >> 3);
+ WREG32(mmDMA_IF_W_N_DOWN_CH0_E2E_PCI_WR_SIZE, 162);
+ WREG32(mmDMA_IF_W_N_DOWN_CH0_E2E_PCI_RD_SIZE, 338);
+
+ WREG32(mmDMA_IF_W_N_DOWN_CH1_E2E_HBM_WR_SIZE, 344 >> 3);
+ WREG32(mmDMA_IF_W_N_DOWN_CH1_E2E_HBM_RD_SIZE, 1000 >> 3);
+ WREG32(mmDMA_IF_W_N_DOWN_CH1_E2E_PCI_WR_SIZE, 162);
+ WREG32(mmDMA_IF_W_N_DOWN_CH1_E2E_PCI_RD_SIZE, 338);
+
+ WREG32(mmDMA_IF_W_S_DOWN_CH0_E2E_HBM_WR_SIZE, 344 >> 3);
+ WREG32(mmDMA_IF_W_S_DOWN_CH0_E2E_HBM_RD_SIZE, 1000 >> 3);
+ WREG32(mmDMA_IF_W_S_DOWN_CH0_E2E_PCI_WR_SIZE, 162);
+ WREG32(mmDMA_IF_W_S_DOWN_CH0_E2E_PCI_RD_SIZE, 338);
+
+ WREG32(mmDMA_IF_W_S_DOWN_CH1_E2E_HBM_WR_SIZE, 344 >> 3);
+ WREG32(mmDMA_IF_W_S_DOWN_CH1_E2E_HBM_RD_SIZE, 1000 >> 3);
+ WREG32(mmDMA_IF_W_S_DOWN_CH1_E2E_PCI_WR_SIZE, 162);
+ WREG32(mmDMA_IF_W_S_DOWN_CH1_E2E_PCI_RD_SIZE, 338);
+
+ WREG32(mmSIF_RTR_CTRL_0_E2E_HBM_EN,
+ 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
+ WREG32(mmSIF_RTR_CTRL_0_E2E_PCI_EN,
+ 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);
+
+ WREG32(mmSIF_RTR_CTRL_1_E2E_HBM_EN,
+ 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
+ WREG32(mmSIF_RTR_CTRL_1_E2E_PCI_EN,
+ 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);
+
+ WREG32(mmSIF_RTR_CTRL_2_E2E_HBM_EN,
+ 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
+ WREG32(mmSIF_RTR_CTRL_2_E2E_PCI_EN,
+ 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);
+
+ WREG32(mmSIF_RTR_CTRL_3_E2E_HBM_EN,
+ 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
+ WREG32(mmSIF_RTR_CTRL_3_E2E_PCI_EN,
+ 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);
+
+ WREG32(mmSIF_RTR_CTRL_4_E2E_HBM_EN,
+ 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
+ WREG32(mmSIF_RTR_CTRL_4_E2E_PCI_EN,
+ 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);
+
+ WREG32(mmSIF_RTR_CTRL_5_E2E_HBM_EN,
+ 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
+ WREG32(mmSIF_RTR_CTRL_5_E2E_PCI_EN,
+ 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);
+
+ WREG32(mmSIF_RTR_CTRL_6_E2E_HBM_EN,
+ 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
+ WREG32(mmSIF_RTR_CTRL_6_E2E_PCI_EN,
+ 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);
+
+ WREG32(mmSIF_RTR_CTRL_7_E2E_HBM_EN,
+ 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
+ WREG32(mmSIF_RTR_CTRL_7_E2E_PCI_EN,
+ 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);
+
+ WREG32(mmNIF_RTR_CTRL_0_E2E_HBM_EN,
+ 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
+ WREG32(mmNIF_RTR_CTRL_0_E2E_PCI_EN,
+ 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);
+
+ WREG32(mmNIF_RTR_CTRL_1_E2E_HBM_EN,
+ 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
+ WREG32(mmNIF_RTR_CTRL_1_E2E_PCI_EN,
+ 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);
+
+ WREG32(mmNIF_RTR_CTRL_2_E2E_HBM_EN,
+ 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
+ WREG32(mmNIF_RTR_CTRL_2_E2E_PCI_EN,
+ 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);
+
+ WREG32(mmNIF_RTR_CTRL_3_E2E_HBM_EN,
+ 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
+ WREG32(mmNIF_RTR_CTRL_3_E2E_PCI_EN,
+ 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);
+
+ WREG32(mmNIF_RTR_CTRL_4_E2E_HBM_EN,
+ 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
+ WREG32(mmNIF_RTR_CTRL_4_E2E_PCI_EN,
+ 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);
+
+ WREG32(mmNIF_RTR_CTRL_5_E2E_HBM_EN,
+ 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
+ WREG32(mmNIF_RTR_CTRL_5_E2E_PCI_EN,
+ 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);
+
+ WREG32(mmNIF_RTR_CTRL_6_E2E_HBM_EN,
+ 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
+ WREG32(mmNIF_RTR_CTRL_6_E2E_PCI_EN,
+ 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);
+
+ WREG32(mmNIF_RTR_CTRL_7_E2E_HBM_EN,
+ 1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
+ WREG32(mmNIF_RTR_CTRL_7_E2E_PCI_EN,
+ 1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);
+
+ WREG32(mmDMA_IF_E_N_DOWN_CH0_E2E_HBM_EN,
+ 1 << DMA_IF_DOWN_CHX_E2E_HBM_EN_VAL_SHIFT);
+ WREG32(mmDMA_IF_E_N_DOWN_CH0_E2E_PCI_EN,
+ 1 << DMA_IF_DOWN_CHX_E2E_PCI_EN_VAL_SHIFT);
+
+ WREG32(mmDMA_IF_E_N_DOWN_CH1_E2E_HBM_EN,
+ 1 << DMA_IF_DOWN_CHX_E2E_HBM_EN_VAL_SHIFT);
+ WREG32(mmDMA_IF_E_N_DOWN_CH1_E2E_PCI_EN,
+ 1 << DMA_IF_DOWN_CHX_E2E_PCI_EN_VAL_SHIFT);
+
+ WREG32(mmDMA_IF_E_S_DOWN_CH0_E2E_HBM_EN,
+ 1 << DMA_IF_DOWN_CHX_E2E_HBM_EN_VAL_SHIFT);
+ WREG32(mmDMA_IF_E_S_DOWN_CH0_E2E_PCI_EN,
+ 1 << DMA_IF_DOWN_CHX_E2E_PCI_EN_VAL_SHIFT);
+
+ WREG32(mmDMA_IF_E_S_DOWN_CH1_E2E_HBM_EN,
+ 1 << DMA_IF_DOWN_CHX_E2E_HBM_EN_VAL_SHIFT);
+ WREG32(mmDMA_IF_E_S_DOWN_CH1_E2E_PCI_EN,
+ 1 << DMA_IF_DOWN_CHX_E2E_PCI_EN_VAL_SHIFT);
+
+ WREG32(mmDMA_IF_W_N_DOWN_CH0_E2E_HBM_EN,
+ 1 << DMA_IF_DOWN_CHX_E2E_HBM_EN_VAL_SHIFT);
+ WREG32(mmDMA_IF_W_N_DOWN_CH0_E2E_PCI_EN,
+ 1 << DMA_IF_DOWN_CHX_E2E_PCI_EN_VAL_SHIFT);
+
+ WREG32(mmDMA_IF_W_N_DOWN_CH1_E2E_HBM_EN,
+ 1 << DMA_IF_DOWN_CHX_E2E_HBM_EN_VAL_SHIFT);
+ WREG32(mmDMA_IF_W_N_DOWN_CH1_E2E_PCI_EN,
+ 1 << DMA_IF_DOWN_CHX_E2E_PCI_EN_VAL_SHIFT);
+
+ WREG32(mmDMA_IF_W_S_DOWN_CH0_E2E_HBM_EN,
+ 1 << DMA_IF_DOWN_CHX_E2E_HBM_EN_VAL_SHIFT);
+ WREG32(mmDMA_IF_W_S_DOWN_CH0_E2E_PCI_EN,
+ 1 << DMA_IF_DOWN_CHX_E2E_PCI_EN_VAL_SHIFT);
+
+ WREG32(mmDMA_IF_W_S_DOWN_CH1_E2E_HBM_EN,
+ 1 << DMA_IF_DOWN_CHX_E2E_HBM_EN_VAL_SHIFT);
+ WREG32(mmDMA_IF_W_S_DOWN_CH1_E2E_PCI_EN,
+ 1 << DMA_IF_DOWN_CHX_E2E_PCI_EN_VAL_SHIFT);
+}
+
+static void gaudi_init_hbm_cred(struct hl_device *hdev)
+{
+ u32 hbm0_wr, hbm1_wr, hbm0_rd, hbm1_rd;
+
+ if (hdev->asic_prop.fw_security_enabled)
+ return;
+
+ if (hdev->asic_prop.fw_bootfit_cpu_boot_dev_sts0 &
+ CPU_BOOT_DEV_STS0_HBM_CRED_EN)
+ return;
+
+ hbm0_wr = 0x33333333;
+ hbm0_rd = 0x77777777;
+ hbm1_wr = 0x55555555;
+ hbm1_rd = 0xDDDDDDDD;
+
+ WREG32(mmDMA_IF_E_N_HBM0_WR_CRED_CNT, hbm0_wr);
+ WREG32(mmDMA_IF_E_N_HBM1_WR_CRED_CNT, hbm1_wr);
+ WREG32(mmDMA_IF_E_N_HBM0_RD_CRED_CNT, hbm0_rd);
+ WREG32(mmDMA_IF_E_N_HBM1_RD_CRED_CNT, hbm1_rd);
+
+ WREG32(mmDMA_IF_E_S_HBM0_WR_CRED_CNT, hbm0_wr);
+ WREG32(mmDMA_IF_E_S_HBM1_WR_CRED_CNT, hbm1_wr);
+ WREG32(mmDMA_IF_E_S_HBM0_RD_CRED_CNT, hbm0_rd);
+ WREG32(mmDMA_IF_E_S_HBM1_RD_CRED_CNT, hbm1_rd);
+
+ WREG32(mmDMA_IF_W_N_HBM0_WR_CRED_CNT, hbm0_wr);
+ WREG32(mmDMA_IF_W_N_HBM1_WR_CRED_CNT, hbm1_wr);
+ WREG32(mmDMA_IF_W_N_HBM0_RD_CRED_CNT, hbm0_rd);
+ WREG32(mmDMA_IF_W_N_HBM1_RD_CRED_CNT, hbm1_rd);
+
+ WREG32(mmDMA_IF_W_S_HBM0_WR_CRED_CNT, hbm0_wr);
+ WREG32(mmDMA_IF_W_S_HBM1_WR_CRED_CNT, hbm1_wr);
+ WREG32(mmDMA_IF_W_S_HBM0_RD_CRED_CNT, hbm0_rd);
+ WREG32(mmDMA_IF_W_S_HBM1_RD_CRED_CNT, hbm1_rd);
+
+ WREG32(mmDMA_IF_E_N_HBM_CRED_EN_0,
+ (1 << DMA_IF_HBM_CRED_EN_READ_CREDIT_EN_SHIFT) |
+ (1 << DMA_IF_HBM_CRED_EN_WRITE_CREDIT_EN_SHIFT));
+ WREG32(mmDMA_IF_E_S_HBM_CRED_EN_0,
+ (1 << DMA_IF_HBM_CRED_EN_READ_CREDIT_EN_SHIFT) |
+ (1 << DMA_IF_HBM_CRED_EN_WRITE_CREDIT_EN_SHIFT));
+ WREG32(mmDMA_IF_W_N_HBM_CRED_EN_0,
+ (1 << DMA_IF_HBM_CRED_EN_READ_CREDIT_EN_SHIFT) |
+ (1 << DMA_IF_HBM_CRED_EN_WRITE_CREDIT_EN_SHIFT));
+ WREG32(mmDMA_IF_W_S_HBM_CRED_EN_0,
+ (1 << DMA_IF_HBM_CRED_EN_READ_CREDIT_EN_SHIFT) |
+ (1 << DMA_IF_HBM_CRED_EN_WRITE_CREDIT_EN_SHIFT));
+
+ WREG32(mmDMA_IF_E_N_HBM_CRED_EN_1,
+ (1 << DMA_IF_HBM_CRED_EN_READ_CREDIT_EN_SHIFT) |
+ (1 << DMA_IF_HBM_CRED_EN_WRITE_CREDIT_EN_SHIFT));
+ WREG32(mmDMA_IF_E_S_HBM_CRED_EN_1,
+ (1 << DMA_IF_HBM_CRED_EN_READ_CREDIT_EN_SHIFT) |
+ (1 << DMA_IF_HBM_CRED_EN_WRITE_CREDIT_EN_SHIFT));
+ WREG32(mmDMA_IF_W_N_HBM_CRED_EN_1,
+ (1 << DMA_IF_HBM_CRED_EN_READ_CREDIT_EN_SHIFT) |
+ (1 << DMA_IF_HBM_CRED_EN_WRITE_CREDIT_EN_SHIFT));
+ WREG32(mmDMA_IF_W_S_HBM_CRED_EN_1,
+ (1 << DMA_IF_HBM_CRED_EN_READ_CREDIT_EN_SHIFT) |
+ (1 << DMA_IF_HBM_CRED_EN_WRITE_CREDIT_EN_SHIFT));
+}
+
+static void gaudi_init_golden_registers(struct hl_device *hdev)
+{
+ u32 tpc_offset;
+ int tpc_id, i;
+
+ gaudi_init_e2e(hdev);
+ gaudi_init_hbm_cred(hdev);
+
+ for (tpc_id = 0, tpc_offset = 0;
+ tpc_id < TPC_NUMBER_OF_ENGINES;
+ tpc_id++, tpc_offset += TPC_CFG_OFFSET) {
+ /* Mask all arithmetic interrupts from TPC */
+ WREG32(mmTPC0_CFG_TPC_INTR_MASK + tpc_offset, 0x8FFE);
+ /* Set 16 cache lines */
+ WREG32_FIELD(TPC0_CFG_MSS_CONFIG, tpc_offset,
+ ICACHE_FETCH_LINE_NUM, 2);
+ }
+
+ /* Make sure 1st 128 bytes in SRAM are 0 for Tensor DMA */
+ for (i = 0 ; i < 128 ; i += 8)
+ writeq(0, hdev->pcie_bar[SRAM_BAR_ID] + i);
+
+ WREG32(mmMME0_CTRL_EUS_ROLLUP_CNT_ADD, 3);
+ WREG32(mmMME1_CTRL_EUS_ROLLUP_CNT_ADD, 3);
+ WREG32(mmMME2_CTRL_EUS_ROLLUP_CNT_ADD, 3);
+ WREG32(mmMME3_CTRL_EUS_ROLLUP_CNT_ADD, 3);
+}
+
+static void gaudi_init_pci_dma_qman(struct hl_device *hdev, int dma_id,
+ int qman_id, dma_addr_t qman_pq_addr)
+{
+ struct cpu_dyn_regs *dyn_regs =
+ &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
+ u32 mtr_base_en_lo, mtr_base_en_hi, mtr_base_ws_lo, mtr_base_ws_hi;
+ u32 so_base_en_lo, so_base_en_hi, so_base_ws_lo, so_base_ws_hi;
+ u32 q_off, dma_qm_offset;
+ u32 dma_qm_err_cfg, irq_handler_offset;
+
+ dma_qm_offset = dma_id * DMA_QMAN_OFFSET;
+
+ mtr_base_en_lo = lower_32_bits(CFG_BASE +
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
+ mtr_base_en_hi = upper_32_bits(CFG_BASE +
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
+ so_base_en_lo = lower_32_bits(CFG_BASE +
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
+ so_base_en_hi = upper_32_bits(CFG_BASE +
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
+ mtr_base_ws_lo = lower_32_bits(CFG_BASE +
+ mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
+ mtr_base_ws_hi = upper_32_bits(CFG_BASE +
+ mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
+ so_base_ws_lo = lower_32_bits(CFG_BASE +
+ mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0);
+ so_base_ws_hi = upper_32_bits(CFG_BASE +
+ mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0);
+
+ q_off = dma_qm_offset + qman_id * 4;
+
+ WREG32(mmDMA0_QM_PQ_BASE_LO_0 + q_off, lower_32_bits(qman_pq_addr));
+ WREG32(mmDMA0_QM_PQ_BASE_HI_0 + q_off, upper_32_bits(qman_pq_addr));
+
+ WREG32(mmDMA0_QM_PQ_SIZE_0 + q_off, ilog2(HL_QUEUE_LENGTH));
+ WREG32(mmDMA0_QM_PQ_PI_0 + q_off, 0);
+ WREG32(mmDMA0_QM_PQ_CI_0 + q_off, 0);
+
+ WREG32(mmDMA0_QM_CP_LDMA_TSIZE_OFFSET_0 + q_off, QMAN_LDMA_SIZE_OFFSET);
+ WREG32(mmDMA0_QM_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off,
+ QMAN_LDMA_SRC_OFFSET);
+ WREG32(mmDMA0_QM_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off,
+ QMAN_LDMA_DST_OFFSET);
+
+ WREG32(mmDMA0_QM_CP_MSG_BASE0_ADDR_LO_0 + q_off, mtr_base_en_lo);
+ WREG32(mmDMA0_QM_CP_MSG_BASE0_ADDR_HI_0 + q_off, mtr_base_en_hi);
+ WREG32(mmDMA0_QM_CP_MSG_BASE1_ADDR_LO_0 + q_off, so_base_en_lo);
+ WREG32(mmDMA0_QM_CP_MSG_BASE1_ADDR_HI_0 + q_off, so_base_en_hi);
+ WREG32(mmDMA0_QM_CP_MSG_BASE2_ADDR_LO_0 + q_off, mtr_base_ws_lo);
+ WREG32(mmDMA0_QM_CP_MSG_BASE2_ADDR_HI_0 + q_off, mtr_base_ws_hi);
+ WREG32(mmDMA0_QM_CP_MSG_BASE3_ADDR_LO_0 + q_off, so_base_ws_lo);
+ WREG32(mmDMA0_QM_CP_MSG_BASE3_ADDR_HI_0 + q_off, so_base_ws_hi);
+
+ WREG32(mmDMA0_QM_CP_BARRIER_CFG_0 + q_off, 0x100);
+
+ /* The following configuration is needed only once per QMAN */
+ if (qman_id == 0) {
+ irq_handler_offset = hdev->asic_prop.gic_interrupts_enable ?
+ mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR :
+ le32_to_cpu(dyn_regs->gic_dma_qm_irq_ctrl);
+
+ /* Configure RAZWI IRQ */
+ dma_qm_err_cfg = PCI_DMA_QMAN_GLBL_ERR_CFG_MSG_EN_MASK;
+ if (hdev->stop_on_err)
+ dma_qm_err_cfg |=
+ PCI_DMA_QMAN_GLBL_ERR_CFG_STOP_ON_ERR_EN_MASK;
+
+ WREG32(mmDMA0_QM_GLBL_ERR_CFG + dma_qm_offset, dma_qm_err_cfg);
+
+ WREG32(mmDMA0_QM_GLBL_ERR_ADDR_LO + dma_qm_offset,
+ lower_32_bits(CFG_BASE + irq_handler_offset));
+ WREG32(mmDMA0_QM_GLBL_ERR_ADDR_HI + dma_qm_offset,
+ upper_32_bits(CFG_BASE + irq_handler_offset));
+
+ WREG32(mmDMA0_QM_GLBL_ERR_WDATA + dma_qm_offset,
+ gaudi_irq_map_table[GAUDI_EVENT_DMA0_QM].cpu_id +
+ dma_id);
+
+ WREG32(mmDMA0_QM_ARB_ERR_MSG_EN + dma_qm_offset,
+ QM_ARB_ERR_MSG_EN_MASK);
+
+ /* Set timeout to maximum */
+ WREG32(mmDMA0_QM_ARB_SLV_CHOISE_WDT + dma_qm_offset, GAUDI_ARB_WDT_TIMEOUT);
+
+ WREG32(mmDMA0_QM_GLBL_PROT + dma_qm_offset,
+ QMAN_EXTERNAL_MAKE_TRUSTED);
+
+ WREG32(mmDMA0_QM_GLBL_CFG1 + dma_qm_offset, 0);
+ }
+}
+
+static void gaudi_init_dma_core(struct hl_device *hdev, int dma_id)
+{
+ struct cpu_dyn_regs *dyn_regs =
+ &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
+ u32 dma_err_cfg = 1 << DMA0_CORE_ERR_CFG_ERR_MSG_EN_SHIFT;
+ u32 dma_offset = dma_id * DMA_CORE_OFFSET;
+ u32 irq_handler_offset;
+
+ /* Set to maximum possible according to physical size */
+ WREG32(mmDMA0_CORE_RD_MAX_OUTSTAND + dma_offset, 0);
+ WREG32(mmDMA0_CORE_RD_MAX_SIZE + dma_offset, 0);
+
+ /* WA for H/W bug H3-2116 */
+ WREG32(mmDMA0_CORE_LBW_MAX_OUTSTAND + dma_offset, 15);
+
+ /* STOP_ON bit implies no completion to operation in case of RAZWI */
+ if (hdev->stop_on_err)
+ dma_err_cfg |= 1 << DMA0_CORE_ERR_CFG_STOP_ON_ERR_SHIFT;
+
+ WREG32(mmDMA0_CORE_ERR_CFG + dma_offset, dma_err_cfg);
+
+ irq_handler_offset = hdev->asic_prop.gic_interrupts_enable ?
+ mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR :
+ le32_to_cpu(dyn_regs->gic_dma_core_irq_ctrl);
+
+ WREG32(mmDMA0_CORE_ERRMSG_ADDR_LO + dma_offset,
+ lower_32_bits(CFG_BASE + irq_handler_offset));
+ WREG32(mmDMA0_CORE_ERRMSG_ADDR_HI + dma_offset,
+ upper_32_bits(CFG_BASE + irq_handler_offset));
+
+ WREG32(mmDMA0_CORE_ERRMSG_WDATA + dma_offset,
+ gaudi_irq_map_table[GAUDI_EVENT_DMA0_CORE].cpu_id + dma_id);
+ WREG32(mmDMA0_CORE_PROT + dma_offset,
+ 1 << DMA0_CORE_PROT_ERR_VAL_SHIFT);
+ /* If the channel is secured, it should be in MMU bypass mode */
+ WREG32(mmDMA0_CORE_SECURE_PROPS + dma_offset,
+ 1 << DMA0_CORE_SECURE_PROPS_MMBP_SHIFT);
+ WREG32(mmDMA0_CORE_CFG_0 + dma_offset, 1 << DMA0_CORE_CFG_0_EN_SHIFT);
+}
+
+static void gaudi_enable_qman(struct hl_device *hdev, int dma_id,
+ u32 enable_mask)
+{
+ u32 dma_qm_offset = dma_id * DMA_QMAN_OFFSET;
+
+ WREG32(mmDMA0_QM_GLBL_CFG0 + dma_qm_offset, enable_mask);
+}
+
+static void gaudi_init_pci_dma_qmans(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ struct hl_hw_queue *q;
+ int i, j, dma_id, cpu_skip, nic_skip, cq_id = 0, q_idx, msi_vec = 0;
+
+ if (gaudi->hw_cap_initialized & HW_CAP_PCI_DMA)
+ return;
+
+ for (i = 0 ; i < PCI_DMA_NUMBER_OF_CHNLS ; i++) {
+ dma_id = gaudi_dma_assignment[i];
+ /*
+ * For queues after the CPU Q need to add 1 to get the correct
+ * queue. In addition, need to add the CPU EQ and NIC IRQs in
+ * order to get the correct MSI register.
+ */
+ if (dma_id > 1) {
+ cpu_skip = 1;
+ nic_skip = NIC_NUMBER_OF_ENGINES;
+ } else {
+ cpu_skip = 0;
+ nic_skip = 0;
+ }
+
+ for (j = 0 ; j < QMAN_STREAMS ; j++) {
+ q_idx = 4 * dma_id + j + cpu_skip;
+ q = &hdev->kernel_queues[q_idx];
+ q->cq_id = cq_id++;
+ q->msi_vec = nic_skip + cpu_skip + msi_vec++;
+ gaudi_init_pci_dma_qman(hdev, dma_id, j,
+ q->bus_address);
+ }
+
+ gaudi_init_dma_core(hdev, dma_id);
+
+ gaudi_enable_qman(hdev, dma_id, PCI_DMA_QMAN_ENABLE);
+ }
+
+ gaudi->hw_cap_initialized |= HW_CAP_PCI_DMA;
+}
+
+static void gaudi_init_hbm_dma_qman(struct hl_device *hdev, int dma_id,
+ int qman_id, u64 qman_base_addr)
+{
+ struct cpu_dyn_regs *dyn_regs =
+ &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
+ u32 mtr_base_en_lo, mtr_base_en_hi, mtr_base_ws_lo, mtr_base_ws_hi;
+ u32 so_base_en_lo, so_base_en_hi, so_base_ws_lo, so_base_ws_hi;
+ u32 dma_qm_err_cfg, irq_handler_offset;
+ u32 q_off, dma_qm_offset;
+
+ dma_qm_offset = dma_id * DMA_QMAN_OFFSET;
+
+ mtr_base_en_lo = lower_32_bits(CFG_BASE +
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
+ mtr_base_en_hi = upper_32_bits(CFG_BASE +
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
+ so_base_en_lo = lower_32_bits(CFG_BASE +
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
+ so_base_en_hi = upper_32_bits(CFG_BASE +
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
+ mtr_base_ws_lo = lower_32_bits(CFG_BASE +
+ mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
+ mtr_base_ws_hi = upper_32_bits(CFG_BASE +
+ mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
+ so_base_ws_lo = lower_32_bits(CFG_BASE +
+ mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0);
+ so_base_ws_hi = upper_32_bits(CFG_BASE +
+ mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0);
+
+ q_off = dma_qm_offset + qman_id * 4;
+
+ if (qman_id < 4) {
+ WREG32(mmDMA0_QM_PQ_BASE_LO_0 + q_off,
+ lower_32_bits(qman_base_addr));
+ WREG32(mmDMA0_QM_PQ_BASE_HI_0 + q_off,
+ upper_32_bits(qman_base_addr));
+
+ WREG32(mmDMA0_QM_PQ_SIZE_0 + q_off, ilog2(HBM_DMA_QMAN_LENGTH));
+ WREG32(mmDMA0_QM_PQ_PI_0 + q_off, 0);
+ WREG32(mmDMA0_QM_PQ_CI_0 + q_off, 0);
+
+ WREG32(mmDMA0_QM_CP_LDMA_TSIZE_OFFSET_0 + q_off,
+ QMAN_CPDMA_SIZE_OFFSET);
+ WREG32(mmDMA0_QM_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off,
+ QMAN_CPDMA_SRC_OFFSET);
+ WREG32(mmDMA0_QM_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off,
+ QMAN_CPDMA_DST_OFFSET);
+ } else {
+ irq_handler_offset = hdev->asic_prop.gic_interrupts_enable ?
+ mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR :
+ le32_to_cpu(dyn_regs->gic_dma_qm_irq_ctrl);
+
+ WREG32(mmDMA0_QM_CP_LDMA_TSIZE_OFFSET_0 + q_off,
+ QMAN_LDMA_SIZE_OFFSET);
+ WREG32(mmDMA0_QM_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off,
+ QMAN_LDMA_SRC_OFFSET);
+ WREG32(mmDMA0_QM_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off,
+ QMAN_LDMA_DST_OFFSET);
+
+ /* Configure RAZWI IRQ */
+ dma_qm_err_cfg = HBM_DMA_QMAN_GLBL_ERR_CFG_MSG_EN_MASK;
+ if (hdev->stop_on_err)
+ dma_qm_err_cfg |=
+ HBM_DMA_QMAN_GLBL_ERR_CFG_STOP_ON_ERR_EN_MASK;
+
+ WREG32(mmDMA0_QM_GLBL_ERR_CFG + dma_qm_offset, dma_qm_err_cfg);
+
+ WREG32(mmDMA0_QM_GLBL_ERR_ADDR_LO + dma_qm_offset,
+ lower_32_bits(CFG_BASE + irq_handler_offset));
+ WREG32(mmDMA0_QM_GLBL_ERR_ADDR_HI + dma_qm_offset,
+ upper_32_bits(CFG_BASE + irq_handler_offset));
+
+ WREG32(mmDMA0_QM_GLBL_ERR_WDATA + dma_qm_offset,
+ gaudi_irq_map_table[GAUDI_EVENT_DMA0_QM].cpu_id +
+ dma_id);
+
+ WREG32(mmDMA0_QM_ARB_ERR_MSG_EN + dma_qm_offset,
+ QM_ARB_ERR_MSG_EN_MASK);
+
+ /* Set timeout to maximum */
+ WREG32(mmDMA0_QM_ARB_SLV_CHOISE_WDT + dma_qm_offset, GAUDI_ARB_WDT_TIMEOUT);
+
+ WREG32(mmDMA0_QM_GLBL_CFG1 + dma_qm_offset, 0);
+ WREG32(mmDMA0_QM_GLBL_PROT + dma_qm_offset,
+ QMAN_INTERNAL_MAKE_TRUSTED);
+ }
+
+ WREG32(mmDMA0_QM_CP_MSG_BASE0_ADDR_LO_0 + q_off, mtr_base_en_lo);
+ WREG32(mmDMA0_QM_CP_MSG_BASE0_ADDR_HI_0 + q_off, mtr_base_en_hi);
+ WREG32(mmDMA0_QM_CP_MSG_BASE1_ADDR_LO_0 + q_off, so_base_en_lo);
+ WREG32(mmDMA0_QM_CP_MSG_BASE1_ADDR_HI_0 + q_off, so_base_en_hi);
+
+ /* Configure DMA5 CP_MSG_BASE 2/3 for sync stream collective */
+ if (gaudi_dma_assignment[dma_id] == GAUDI_ENGINE_ID_DMA_5) {
+ WREG32(mmDMA0_QM_CP_MSG_BASE2_ADDR_LO_0 + q_off,
+ mtr_base_ws_lo);
+ WREG32(mmDMA0_QM_CP_MSG_BASE2_ADDR_HI_0 + q_off,
+ mtr_base_ws_hi);
+ WREG32(mmDMA0_QM_CP_MSG_BASE3_ADDR_LO_0 + q_off,
+ so_base_ws_lo);
+ WREG32(mmDMA0_QM_CP_MSG_BASE3_ADDR_HI_0 + q_off,
+ so_base_ws_hi);
+ }
+}
+
+static void gaudi_init_hbm_dma_qmans(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ struct gaudi_internal_qman_info *q;
+ u64 qman_base_addr;
+ int i, j, dma_id, internal_q_index;
+
+ if (gaudi->hw_cap_initialized & HW_CAP_HBM_DMA)
+ return;
+
+ for (i = 0 ; i < HBM_DMA_NUMBER_OF_CHNLS ; i++) {
+ dma_id = gaudi_dma_assignment[GAUDI_HBM_DMA_1 + i];
+
+ for (j = 0 ; j < QMAN_STREAMS ; j++) {
+ /*
+ * Add the CPU queue in order to get the correct queue
+ * number as all internal queue are placed after it
+ */
+ internal_q_index = dma_id * QMAN_STREAMS + j + 1;
+
+ q = &gaudi->internal_qmans[internal_q_index];
+ qman_base_addr = (u64) q->pq_dma_addr;
+ gaudi_init_hbm_dma_qman(hdev, dma_id, j,
+ qman_base_addr);
+ }
+
+ /* Initializing lower CP for HBM DMA QMAN */
+ gaudi_init_hbm_dma_qman(hdev, dma_id, 4, 0);
+
+ gaudi_init_dma_core(hdev, dma_id);
+
+ gaudi_enable_qman(hdev, dma_id, HBM_DMA_QMAN_ENABLE);
+ }
+
+ gaudi->hw_cap_initialized |= HW_CAP_HBM_DMA;
+}
+
+static void gaudi_init_mme_qman(struct hl_device *hdev, u32 mme_offset,
+ int qman_id, u64 qman_base_addr)
+{
+ struct cpu_dyn_regs *dyn_regs =
+ &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
+ u32 mtr_base_lo, mtr_base_hi;
+ u32 so_base_lo, so_base_hi;
+ u32 irq_handler_offset;
+ u32 q_off, mme_id;
+ u32 mme_qm_err_cfg;
+
+ mtr_base_lo = lower_32_bits(CFG_BASE +
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
+ mtr_base_hi = upper_32_bits(CFG_BASE +
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
+ so_base_lo = lower_32_bits(CFG_BASE +
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
+ so_base_hi = upper_32_bits(CFG_BASE +
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
+
+ q_off = mme_offset + qman_id * 4;
+
+ if (qman_id < 4) {
+ WREG32(mmMME0_QM_PQ_BASE_LO_0 + q_off,
+ lower_32_bits(qman_base_addr));
+ WREG32(mmMME0_QM_PQ_BASE_HI_0 + q_off,
+ upper_32_bits(qman_base_addr));
+
+ WREG32(mmMME0_QM_PQ_SIZE_0 + q_off, ilog2(MME_QMAN_LENGTH));
+ WREG32(mmMME0_QM_PQ_PI_0 + q_off, 0);
+ WREG32(mmMME0_QM_PQ_CI_0 + q_off, 0);
+
+ WREG32(mmMME0_QM_CP_LDMA_TSIZE_OFFSET_0 + q_off,
+ QMAN_CPDMA_SIZE_OFFSET);
+ WREG32(mmMME0_QM_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off,
+ QMAN_CPDMA_SRC_OFFSET);
+ WREG32(mmMME0_QM_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off,
+ QMAN_CPDMA_DST_OFFSET);
+ } else {
+ irq_handler_offset = hdev->asic_prop.gic_interrupts_enable ?
+ mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR :
+ le32_to_cpu(dyn_regs->gic_mme_qm_irq_ctrl);
+
+ WREG32(mmMME0_QM_CP_LDMA_TSIZE_OFFSET_0 + q_off,
+ QMAN_LDMA_SIZE_OFFSET);
+ WREG32(mmMME0_QM_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off,
+ QMAN_LDMA_SRC_OFFSET);
+ WREG32(mmMME0_QM_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off,
+ QMAN_LDMA_DST_OFFSET);
+
+ /* Configure RAZWI IRQ */
+ mme_id = mme_offset /
+ (mmMME1_QM_GLBL_CFG0 - mmMME0_QM_GLBL_CFG0) / 2;
+
+ mme_qm_err_cfg = MME_QMAN_GLBL_ERR_CFG_MSG_EN_MASK;
+ if (hdev->stop_on_err)
+ mme_qm_err_cfg |=
+ MME_QMAN_GLBL_ERR_CFG_STOP_ON_ERR_EN_MASK;
+
+ WREG32(mmMME0_QM_GLBL_ERR_CFG + mme_offset, mme_qm_err_cfg);
+
+ WREG32(mmMME0_QM_GLBL_ERR_ADDR_LO + mme_offset,
+ lower_32_bits(CFG_BASE + irq_handler_offset));
+ WREG32(mmMME0_QM_GLBL_ERR_ADDR_HI + mme_offset,
+ upper_32_bits(CFG_BASE + irq_handler_offset));
+
+ WREG32(mmMME0_QM_GLBL_ERR_WDATA + mme_offset,
+ gaudi_irq_map_table[GAUDI_EVENT_MME0_QM].cpu_id +
+ mme_id);
+
+ WREG32(mmMME0_QM_ARB_ERR_MSG_EN + mme_offset,
+ QM_ARB_ERR_MSG_EN_MASK);
+
+ /* Set timeout to maximum */
+ WREG32(mmMME0_QM_ARB_SLV_CHOISE_WDT + mme_offset, GAUDI_ARB_WDT_TIMEOUT);
+
+ WREG32(mmMME0_QM_GLBL_CFG1 + mme_offset, 0);
+ WREG32(mmMME0_QM_GLBL_PROT + mme_offset,
+ QMAN_INTERNAL_MAKE_TRUSTED);
+ }
+
+ WREG32(mmMME0_QM_CP_MSG_BASE0_ADDR_LO_0 + q_off, mtr_base_lo);
+ WREG32(mmMME0_QM_CP_MSG_BASE0_ADDR_HI_0 + q_off, mtr_base_hi);
+ WREG32(mmMME0_QM_CP_MSG_BASE1_ADDR_LO_0 + q_off, so_base_lo);
+ WREG32(mmMME0_QM_CP_MSG_BASE1_ADDR_HI_0 + q_off, so_base_hi);
+}
+
+static void gaudi_init_mme_qmans(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ struct gaudi_internal_qman_info *q;
+ u64 qman_base_addr;
+ u32 mme_offset;
+ int i, internal_q_index;
+
+ if (gaudi->hw_cap_initialized & HW_CAP_MME)
+ return;
+
+ /*
+ * map GAUDI_QUEUE_ID_MME_0_X to the N_W_MME (mmMME2_QM_BASE)
+ * and GAUDI_QUEUE_ID_MME_1_X to the S_W_MME (mmMME0_QM_BASE)
+ */
+
+ mme_offset = mmMME2_QM_GLBL_CFG0 - mmMME0_QM_GLBL_CFG0;
+
+ for (i = 0 ; i < MME_NUMBER_OF_QMANS ; i++) {
+ internal_q_index = GAUDI_QUEUE_ID_MME_0_0 + i;
+ q = &gaudi->internal_qmans[internal_q_index];
+ qman_base_addr = (u64) q->pq_dma_addr;
+ gaudi_init_mme_qman(hdev, mme_offset, (i & 0x3),
+ qman_base_addr);
+ if (i == 3)
+ mme_offset = 0;
+ }
+
+ /* Initializing lower CP for MME QMANs */
+ mme_offset = mmMME2_QM_GLBL_CFG0 - mmMME0_QM_GLBL_CFG0;
+ gaudi_init_mme_qman(hdev, mme_offset, 4, 0);
+ gaudi_init_mme_qman(hdev, 0, 4, 0);
+
+ WREG32(mmMME2_QM_GLBL_CFG0, QMAN_MME_ENABLE);
+ WREG32(mmMME0_QM_GLBL_CFG0, QMAN_MME_ENABLE);
+
+ gaudi->hw_cap_initialized |= HW_CAP_MME;
+}
+
+static void gaudi_init_tpc_qman(struct hl_device *hdev, u32 tpc_offset,
+ int qman_id, u64 qman_base_addr)
+{
+ struct cpu_dyn_regs *dyn_regs =
+ &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
+ u32 mtr_base_en_lo, mtr_base_en_hi, mtr_base_ws_lo, mtr_base_ws_hi;
+ u32 so_base_en_lo, so_base_en_hi, so_base_ws_lo, so_base_ws_hi;
+ u32 tpc_qm_err_cfg, irq_handler_offset;
+ u32 q_off, tpc_id;
+
+ mtr_base_en_lo = lower_32_bits(CFG_BASE +
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
+ mtr_base_en_hi = upper_32_bits(CFG_BASE +
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
+ so_base_en_lo = lower_32_bits(CFG_BASE +
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
+ so_base_en_hi = upper_32_bits(CFG_BASE +
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
+ mtr_base_ws_lo = lower_32_bits(CFG_BASE +
+ mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
+ mtr_base_ws_hi = upper_32_bits(CFG_BASE +
+ mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
+ so_base_ws_lo = lower_32_bits(CFG_BASE +
+ mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0);
+ so_base_ws_hi = upper_32_bits(CFG_BASE +
+ mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0);
+
+ q_off = tpc_offset + qman_id * 4;
+
+ tpc_id = tpc_offset /
+ (mmTPC1_QM_GLBL_CFG0 - mmTPC0_QM_GLBL_CFG0);
+
+ if (qman_id < 4) {
+ WREG32(mmTPC0_QM_PQ_BASE_LO_0 + q_off,
+ lower_32_bits(qman_base_addr));
+ WREG32(mmTPC0_QM_PQ_BASE_HI_0 + q_off,
+ upper_32_bits(qman_base_addr));
+
+ WREG32(mmTPC0_QM_PQ_SIZE_0 + q_off, ilog2(TPC_QMAN_LENGTH));
+ WREG32(mmTPC0_QM_PQ_PI_0 + q_off, 0);
+ WREG32(mmTPC0_QM_PQ_CI_0 + q_off, 0);
+
+ WREG32(mmTPC0_QM_CP_LDMA_TSIZE_OFFSET_0 + q_off,
+ QMAN_CPDMA_SIZE_OFFSET);
+ WREG32(mmTPC0_QM_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off,
+ QMAN_CPDMA_SRC_OFFSET);
+ WREG32(mmTPC0_QM_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off,
+ QMAN_CPDMA_DST_OFFSET);
+ } else {
+ irq_handler_offset = hdev->asic_prop.gic_interrupts_enable ?
+ mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR :
+ le32_to_cpu(dyn_regs->gic_tpc_qm_irq_ctrl);
+
+ WREG32(mmTPC0_QM_CP_LDMA_TSIZE_OFFSET_0 + q_off,
+ QMAN_LDMA_SIZE_OFFSET);
+ WREG32(mmTPC0_QM_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off,
+ QMAN_LDMA_SRC_OFFSET);
+ WREG32(mmTPC0_QM_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off,
+ QMAN_LDMA_DST_OFFSET);
+
+ /* Configure RAZWI IRQ */
+ tpc_qm_err_cfg = TPC_QMAN_GLBL_ERR_CFG_MSG_EN_MASK;
+ if (hdev->stop_on_err)
+ tpc_qm_err_cfg |=
+ TPC_QMAN_GLBL_ERR_CFG_STOP_ON_ERR_EN_MASK;
+
+ WREG32(mmTPC0_QM_GLBL_ERR_CFG + tpc_offset, tpc_qm_err_cfg);
+
+ WREG32(mmTPC0_QM_GLBL_ERR_ADDR_LO + tpc_offset,
+ lower_32_bits(CFG_BASE + irq_handler_offset));
+ WREG32(mmTPC0_QM_GLBL_ERR_ADDR_HI + tpc_offset,
+ upper_32_bits(CFG_BASE + irq_handler_offset));
+
+ WREG32(mmTPC0_QM_GLBL_ERR_WDATA + tpc_offset,
+ gaudi_irq_map_table[GAUDI_EVENT_TPC0_QM].cpu_id +
+ tpc_id);
+
+ WREG32(mmTPC0_QM_ARB_ERR_MSG_EN + tpc_offset,
+ QM_ARB_ERR_MSG_EN_MASK);
+
+ /* Set timeout to maximum */
+ WREG32(mmTPC0_QM_ARB_SLV_CHOISE_WDT + tpc_offset, GAUDI_ARB_WDT_TIMEOUT);
+
+ WREG32(mmTPC0_QM_GLBL_CFG1 + tpc_offset, 0);
+ WREG32(mmTPC0_QM_GLBL_PROT + tpc_offset,
+ QMAN_INTERNAL_MAKE_TRUSTED);
+ }
+
+ WREG32(mmTPC0_QM_CP_MSG_BASE0_ADDR_LO_0 + q_off, mtr_base_en_lo);
+ WREG32(mmTPC0_QM_CP_MSG_BASE0_ADDR_HI_0 + q_off, mtr_base_en_hi);
+ WREG32(mmTPC0_QM_CP_MSG_BASE1_ADDR_LO_0 + q_off, so_base_en_lo);
+ WREG32(mmTPC0_QM_CP_MSG_BASE1_ADDR_HI_0 + q_off, so_base_en_hi);
+
+ /* Configure TPC7 CP_MSG_BASE 2/3 for sync stream collective */
+ if (tpc_id == 6) {
+ WREG32(mmTPC0_QM_CP_MSG_BASE2_ADDR_LO_0 + q_off,
+ mtr_base_ws_lo);
+ WREG32(mmTPC0_QM_CP_MSG_BASE2_ADDR_HI_0 + q_off,
+ mtr_base_ws_hi);
+ WREG32(mmTPC0_QM_CP_MSG_BASE3_ADDR_LO_0 + q_off,
+ so_base_ws_lo);
+ WREG32(mmTPC0_QM_CP_MSG_BASE3_ADDR_HI_0 + q_off,
+ so_base_ws_hi);
+ }
+}
+
+static void gaudi_init_tpc_qmans(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ struct gaudi_internal_qman_info *q;
+ u64 qman_base_addr;
+ u32 so_base_hi, tpc_offset = 0;
+ u32 tpc_delta = mmTPC1_CFG_SM_BASE_ADDRESS_HIGH -
+ mmTPC0_CFG_SM_BASE_ADDRESS_HIGH;
+ int i, tpc_id, internal_q_index;
+
+ if (gaudi->hw_cap_initialized & HW_CAP_TPC_MASK)
+ return;
+
+ so_base_hi = upper_32_bits(CFG_BASE +
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
+
+ for (tpc_id = 0 ; tpc_id < TPC_NUMBER_OF_ENGINES ; tpc_id++) {
+ for (i = 0 ; i < QMAN_STREAMS ; i++) {
+ internal_q_index = GAUDI_QUEUE_ID_TPC_0_0 +
+ tpc_id * QMAN_STREAMS + i;
+ q = &gaudi->internal_qmans[internal_q_index];
+ qman_base_addr = (u64) q->pq_dma_addr;
+ gaudi_init_tpc_qman(hdev, tpc_offset, i,
+ qman_base_addr);
+
+ if (i == 3) {
+ /* Initializing lower CP for TPC QMAN */
+ gaudi_init_tpc_qman(hdev, tpc_offset, 4, 0);
+
+ /* Enable the QMAN and TPC channel */
+ WREG32(mmTPC0_QM_GLBL_CFG0 + tpc_offset,
+ QMAN_TPC_ENABLE);
+ }
+ }
+
+ WREG32(mmTPC0_CFG_SM_BASE_ADDRESS_HIGH + tpc_id * tpc_delta,
+ so_base_hi);
+
+ tpc_offset += mmTPC1_QM_GLBL_CFG0 - mmTPC0_QM_GLBL_CFG0;
+
+ gaudi->hw_cap_initialized |=
+ FIELD_PREP(HW_CAP_TPC_MASK, 1 << tpc_id);
+ }
+}
+
+static void gaudi_init_nic_qman(struct hl_device *hdev, u32 nic_offset,
+ int qman_id, u64 qman_base_addr, int nic_id)
+{
+ struct cpu_dyn_regs *dyn_regs =
+ &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
+ u32 mtr_base_en_lo, mtr_base_en_hi, mtr_base_ws_lo, mtr_base_ws_hi;
+ u32 so_base_en_lo, so_base_en_hi, so_base_ws_lo, so_base_ws_hi;
+ u32 nic_qm_err_cfg, irq_handler_offset;
+ u32 q_off;
+
+ mtr_base_en_lo = lower_32_bits((CFG_BASE & U32_MAX) +
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
+ mtr_base_en_hi = upper_32_bits(CFG_BASE +
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
+ so_base_en_lo = lower_32_bits((CFG_BASE & U32_MAX) +
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
+ so_base_en_hi = upper_32_bits(CFG_BASE +
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
+ mtr_base_ws_lo = lower_32_bits((CFG_BASE & U32_MAX) +
+ mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
+ mtr_base_ws_hi = upper_32_bits(CFG_BASE +
+ mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
+ so_base_ws_lo = lower_32_bits((CFG_BASE & U32_MAX) +
+ mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0);
+ so_base_ws_hi = upper_32_bits(CFG_BASE +
+ mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0);
+
+ q_off = nic_offset + qman_id * 4;
+
+ WREG32(mmNIC0_QM0_PQ_BASE_LO_0 + q_off, lower_32_bits(qman_base_addr));
+ WREG32(mmNIC0_QM0_PQ_BASE_HI_0 + q_off, upper_32_bits(qman_base_addr));
+
+ WREG32(mmNIC0_QM0_PQ_SIZE_0 + q_off, ilog2(NIC_QMAN_LENGTH));
+ WREG32(mmNIC0_QM0_PQ_PI_0 + q_off, 0);
+ WREG32(mmNIC0_QM0_PQ_CI_0 + q_off, 0);
+
+ WREG32(mmNIC0_QM0_CP_LDMA_TSIZE_OFFSET_0 + q_off,
+ QMAN_LDMA_SIZE_OFFSET);
+ WREG32(mmNIC0_QM0_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off,
+ QMAN_LDMA_SRC_OFFSET);
+ WREG32(mmNIC0_QM0_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off,
+ QMAN_LDMA_DST_OFFSET);
+
+ WREG32(mmNIC0_QM0_CP_MSG_BASE0_ADDR_LO_0 + q_off, mtr_base_en_lo);
+ WREG32(mmNIC0_QM0_CP_MSG_BASE0_ADDR_HI_0 + q_off, mtr_base_en_hi);
+ WREG32(mmNIC0_QM0_CP_MSG_BASE1_ADDR_LO_0 + q_off, so_base_en_lo);
+ WREG32(mmNIC0_QM0_CP_MSG_BASE1_ADDR_HI_0 + q_off, so_base_en_hi);
+
+ /* Configure NIC CP_MSG_BASE 2/3 for sync stream collective */
+ WREG32(mmNIC0_QM0_CP_MSG_BASE2_ADDR_LO_0 + q_off, mtr_base_ws_lo);
+ WREG32(mmNIC0_QM0_CP_MSG_BASE2_ADDR_HI_0 + q_off, mtr_base_ws_hi);
+ WREG32(mmNIC0_QM0_CP_MSG_BASE3_ADDR_LO_0 + q_off, so_base_ws_lo);
+ WREG32(mmNIC0_QM0_CP_MSG_BASE3_ADDR_HI_0 + q_off, so_base_ws_hi);
+
+ if (qman_id == 0) {
+ irq_handler_offset = hdev->asic_prop.gic_interrupts_enable ?
+ mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR :
+ le32_to_cpu(dyn_regs->gic_nic_qm_irq_ctrl);
+
+ /* Configure RAZWI IRQ */
+ nic_qm_err_cfg = NIC_QMAN_GLBL_ERR_CFG_MSG_EN_MASK;
+ if (hdev->stop_on_err)
+ nic_qm_err_cfg |=
+ NIC_QMAN_GLBL_ERR_CFG_STOP_ON_ERR_EN_MASK;
+
+ WREG32(mmNIC0_QM0_GLBL_ERR_CFG + nic_offset, nic_qm_err_cfg);
+
+ WREG32(mmNIC0_QM0_GLBL_ERR_ADDR_LO + nic_offset,
+ lower_32_bits(CFG_BASE + irq_handler_offset));
+ WREG32(mmNIC0_QM0_GLBL_ERR_ADDR_HI + nic_offset,
+ upper_32_bits(CFG_BASE + irq_handler_offset));
+
+ WREG32(mmNIC0_QM0_GLBL_ERR_WDATA + nic_offset,
+ gaudi_irq_map_table[GAUDI_EVENT_NIC0_QM0].cpu_id +
+ nic_id);
+
+ WREG32(mmNIC0_QM0_ARB_ERR_MSG_EN + nic_offset,
+ QM_ARB_ERR_MSG_EN_MASK);
+
+ /* Set timeout to maximum */
+ WREG32(mmNIC0_QM0_ARB_SLV_CHOISE_WDT + nic_offset, GAUDI_ARB_WDT_TIMEOUT);
+
+ WREG32(mmNIC0_QM0_GLBL_CFG1 + nic_offset, 0);
+ WREG32(mmNIC0_QM0_GLBL_PROT + nic_offset,
+ QMAN_INTERNAL_MAKE_TRUSTED);
+ }
+}
+
+static void gaudi_init_nic_qmans(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ struct gaudi_internal_qman_info *q;
+ u64 qman_base_addr;
+ u32 nic_offset = 0;
+ u32 nic_delta_between_qmans =
+ mmNIC0_QM1_GLBL_CFG0 - mmNIC0_QM0_GLBL_CFG0;
+ u32 nic_delta_between_nics =
+ mmNIC1_QM0_GLBL_CFG0 - mmNIC0_QM0_GLBL_CFG0;
+ int i, nic_id, internal_q_index;
+
+ if (!hdev->nic_ports_mask)
+ return;
+
+ if (gaudi->hw_cap_initialized & HW_CAP_NIC_MASK)
+ return;
+
+ dev_dbg(hdev->dev, "Initializing NIC QMANs\n");
+
+ for (nic_id = 0 ; nic_id < NIC_NUMBER_OF_ENGINES ; nic_id++) {
+ if (!(hdev->nic_ports_mask & (1 << nic_id))) {
+ nic_offset += nic_delta_between_qmans;
+ if (nic_id & 1) {
+ nic_offset -= (nic_delta_between_qmans * 2);
+ nic_offset += nic_delta_between_nics;
+ }
+ continue;
+ }
+
+ for (i = 0 ; i < QMAN_STREAMS ; i++) {
+ internal_q_index = GAUDI_QUEUE_ID_NIC_0_0 +
+ nic_id * QMAN_STREAMS + i;
+ q = &gaudi->internal_qmans[internal_q_index];
+ qman_base_addr = (u64) q->pq_dma_addr;
+ gaudi_init_nic_qman(hdev, nic_offset, (i & 0x3),
+ qman_base_addr, nic_id);
+ }
+
+ /* Enable the QMAN */
+ WREG32(mmNIC0_QM0_GLBL_CFG0 + nic_offset, NIC_QMAN_ENABLE);
+
+ nic_offset += nic_delta_between_qmans;
+ if (nic_id & 1) {
+ nic_offset -= (nic_delta_between_qmans * 2);
+ nic_offset += nic_delta_between_nics;
+ }
+
+ gaudi->hw_cap_initialized |= 1 << (HW_CAP_NIC_SHIFT + nic_id);
+ }
+}
+
+static void gaudi_disable_pci_dma_qmans(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_PCI_DMA))
+ return;
+
+ WREG32(mmDMA0_QM_GLBL_CFG0, 0);
+ WREG32(mmDMA1_QM_GLBL_CFG0, 0);
+ WREG32(mmDMA5_QM_GLBL_CFG0, 0);
+}
+
+static void gaudi_disable_hbm_dma_qmans(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_HBM_DMA))
+ return;
+
+ WREG32(mmDMA2_QM_GLBL_CFG0, 0);
+ WREG32(mmDMA3_QM_GLBL_CFG0, 0);
+ WREG32(mmDMA4_QM_GLBL_CFG0, 0);
+ WREG32(mmDMA6_QM_GLBL_CFG0, 0);
+ WREG32(mmDMA7_QM_GLBL_CFG0, 0);
+}
+
+static void gaudi_disable_mme_qmans(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_MME))
+ return;
+
+ WREG32(mmMME2_QM_GLBL_CFG0, 0);
+ WREG32(mmMME0_QM_GLBL_CFG0, 0);
+}
+
+static void gaudi_disable_tpc_qmans(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ u32 tpc_offset = 0;
+ int tpc_id;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_TPC_MASK))
+ return;
+
+ for (tpc_id = 0 ; tpc_id < TPC_NUMBER_OF_ENGINES ; tpc_id++) {
+ WREG32(mmTPC0_QM_GLBL_CFG0 + tpc_offset, 0);
+ tpc_offset += mmTPC1_QM_GLBL_CFG0 - mmTPC0_QM_GLBL_CFG0;
+ }
+}
+
+static void gaudi_disable_nic_qmans(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ u32 nic_mask, nic_offset = 0;
+ u32 nic_delta_between_qmans =
+ mmNIC0_QM1_GLBL_CFG0 - mmNIC0_QM0_GLBL_CFG0;
+ u32 nic_delta_between_nics =
+ mmNIC1_QM0_GLBL_CFG0 - mmNIC0_QM0_GLBL_CFG0;
+ int nic_id;
+
+ for (nic_id = 0 ; nic_id < NIC_NUMBER_OF_ENGINES ; nic_id++) {
+ nic_mask = 1 << (HW_CAP_NIC_SHIFT + nic_id);
+
+ if (gaudi->hw_cap_initialized & nic_mask)
+ WREG32(mmNIC0_QM0_GLBL_CFG0 + nic_offset, 0);
+
+ nic_offset += nic_delta_between_qmans;
+ if (nic_id & 1) {
+ nic_offset -= (nic_delta_between_qmans * 2);
+ nic_offset += nic_delta_between_nics;
+ }
+ }
+}
+
+static void gaudi_stop_pci_dma_qmans(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_PCI_DMA))
+ return;
+
+ /* Stop upper CPs of QMANs 0.0 to 1.3 and 5.0 to 5.3 */
+ WREG32(mmDMA0_QM_GLBL_CFG1, 0xF << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT);
+ WREG32(mmDMA1_QM_GLBL_CFG1, 0xF << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT);
+ WREG32(mmDMA5_QM_GLBL_CFG1, 0xF << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT);
+}
+
+static void gaudi_stop_hbm_dma_qmans(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_HBM_DMA))
+ return;
+
+ /* Stop CPs of HBM DMA QMANs */
+
+ WREG32(mmDMA2_QM_GLBL_CFG1, 0x1F << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT);
+ WREG32(mmDMA3_QM_GLBL_CFG1, 0x1F << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT);
+ WREG32(mmDMA4_QM_GLBL_CFG1, 0x1F << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT);
+ WREG32(mmDMA6_QM_GLBL_CFG1, 0x1F << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT);
+ WREG32(mmDMA7_QM_GLBL_CFG1, 0x1F << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT);
+}
+
+static void gaudi_stop_mme_qmans(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_MME))
+ return;
+
+ /* Stop CPs of MME QMANs */
+ WREG32(mmMME2_QM_GLBL_CFG1, 0x1F << MME0_QM_GLBL_CFG1_CP_STOP_SHIFT);
+ WREG32(mmMME0_QM_GLBL_CFG1, 0x1F << MME0_QM_GLBL_CFG1_CP_STOP_SHIFT);
+}
+
+static void gaudi_stop_tpc_qmans(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_TPC_MASK))
+ return;
+
+ WREG32(mmTPC0_QM_GLBL_CFG1, 0x1F << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT);
+ WREG32(mmTPC1_QM_GLBL_CFG1, 0x1F << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT);
+ WREG32(mmTPC2_QM_GLBL_CFG1, 0x1F << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT);
+ WREG32(mmTPC3_QM_GLBL_CFG1, 0x1F << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT);
+ WREG32(mmTPC4_QM_GLBL_CFG1, 0x1F << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT);
+ WREG32(mmTPC5_QM_GLBL_CFG1, 0x1F << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT);
+ WREG32(mmTPC6_QM_GLBL_CFG1, 0x1F << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT);
+ WREG32(mmTPC7_QM_GLBL_CFG1, 0x1F << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT);
+}
+
+static void gaudi_stop_nic_qmans(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ /* Stop upper CPs of QMANs */
+
+ if (gaudi->hw_cap_initialized & HW_CAP_NIC0)
+ WREG32(mmNIC0_QM0_GLBL_CFG1,
+ NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK |
+ NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK |
+ NIC0_QM0_GLBL_CFG1_CP_STOP_MASK);
+
+ if (gaudi->hw_cap_initialized & HW_CAP_NIC1)
+ WREG32(mmNIC0_QM1_GLBL_CFG1,
+ NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK |
+ NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK |
+ NIC0_QM0_GLBL_CFG1_CP_STOP_MASK);
+
+ if (gaudi->hw_cap_initialized & HW_CAP_NIC2)
+ WREG32(mmNIC1_QM0_GLBL_CFG1,
+ NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK |
+ NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK |
+ NIC0_QM0_GLBL_CFG1_CP_STOP_MASK);
+
+ if (gaudi->hw_cap_initialized & HW_CAP_NIC3)
+ WREG32(mmNIC1_QM1_GLBL_CFG1,
+ NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK |
+ NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK |
+ NIC0_QM0_GLBL_CFG1_CP_STOP_MASK);
+
+ if (gaudi->hw_cap_initialized & HW_CAP_NIC4)
+ WREG32(mmNIC2_QM0_GLBL_CFG1,
+ NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK |
+ NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK |
+ NIC0_QM0_GLBL_CFG1_CP_STOP_MASK);
+
+ if (gaudi->hw_cap_initialized & HW_CAP_NIC5)
+ WREG32(mmNIC2_QM1_GLBL_CFG1,
+ NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK |
+ NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK |
+ NIC0_QM0_GLBL_CFG1_CP_STOP_MASK);
+
+ if (gaudi->hw_cap_initialized & HW_CAP_NIC6)
+ WREG32(mmNIC3_QM0_GLBL_CFG1,
+ NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK |
+ NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK |
+ NIC0_QM0_GLBL_CFG1_CP_STOP_MASK);
+
+ if (gaudi->hw_cap_initialized & HW_CAP_NIC7)
+ WREG32(mmNIC3_QM1_GLBL_CFG1,
+ NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK |
+ NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK |
+ NIC0_QM0_GLBL_CFG1_CP_STOP_MASK);
+
+ if (gaudi->hw_cap_initialized & HW_CAP_NIC8)
+ WREG32(mmNIC4_QM0_GLBL_CFG1,
+ NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK |
+ NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK |
+ NIC0_QM0_GLBL_CFG1_CP_STOP_MASK);
+
+ if (gaudi->hw_cap_initialized & HW_CAP_NIC9)
+ WREG32(mmNIC4_QM1_GLBL_CFG1,
+ NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK |
+ NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK |
+ NIC0_QM0_GLBL_CFG1_CP_STOP_MASK);
+}
+
+static void gaudi_pci_dma_stall(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_PCI_DMA))
+ return;
+
+ WREG32(mmDMA0_CORE_CFG_1, 1 << DMA0_CORE_CFG_1_HALT_SHIFT);
+ WREG32(mmDMA1_CORE_CFG_1, 1 << DMA0_CORE_CFG_1_HALT_SHIFT);
+ WREG32(mmDMA5_CORE_CFG_1, 1 << DMA0_CORE_CFG_1_HALT_SHIFT);
+}
+
+static void gaudi_hbm_dma_stall(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_HBM_DMA))
+ return;
+
+ WREG32(mmDMA2_CORE_CFG_1, 1 << DMA0_CORE_CFG_1_HALT_SHIFT);
+ WREG32(mmDMA3_CORE_CFG_1, 1 << DMA0_CORE_CFG_1_HALT_SHIFT);
+ WREG32(mmDMA4_CORE_CFG_1, 1 << DMA0_CORE_CFG_1_HALT_SHIFT);
+ WREG32(mmDMA6_CORE_CFG_1, 1 << DMA0_CORE_CFG_1_HALT_SHIFT);
+ WREG32(mmDMA7_CORE_CFG_1, 1 << DMA0_CORE_CFG_1_HALT_SHIFT);
+}
+
+static void gaudi_mme_stall(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_MME))
+ return;
+
+ /* WA for H3-1800 bug: do ACC and SBAB writes twice */
+ WREG32(mmMME0_ACC_ACC_STALL, 1 << MME_ACC_ACC_STALL_R_SHIFT);
+ WREG32(mmMME0_ACC_ACC_STALL, 1 << MME_ACC_ACC_STALL_R_SHIFT);
+ WREG32(mmMME0_SBAB_SB_STALL, 1 << MME_SBAB_SB_STALL_R_SHIFT);
+ WREG32(mmMME0_SBAB_SB_STALL, 1 << MME_SBAB_SB_STALL_R_SHIFT);
+ WREG32(mmMME1_ACC_ACC_STALL, 1 << MME_ACC_ACC_STALL_R_SHIFT);
+ WREG32(mmMME1_ACC_ACC_STALL, 1 << MME_ACC_ACC_STALL_R_SHIFT);
+ WREG32(mmMME1_SBAB_SB_STALL, 1 << MME_SBAB_SB_STALL_R_SHIFT);
+ WREG32(mmMME1_SBAB_SB_STALL, 1 << MME_SBAB_SB_STALL_R_SHIFT);
+ WREG32(mmMME2_ACC_ACC_STALL, 1 << MME_ACC_ACC_STALL_R_SHIFT);
+ WREG32(mmMME2_ACC_ACC_STALL, 1 << MME_ACC_ACC_STALL_R_SHIFT);
+ WREG32(mmMME2_SBAB_SB_STALL, 1 << MME_SBAB_SB_STALL_R_SHIFT);
+ WREG32(mmMME2_SBAB_SB_STALL, 1 << MME_SBAB_SB_STALL_R_SHIFT);
+ WREG32(mmMME3_ACC_ACC_STALL, 1 << MME_ACC_ACC_STALL_R_SHIFT);
+ WREG32(mmMME3_ACC_ACC_STALL, 1 << MME_ACC_ACC_STALL_R_SHIFT);
+ WREG32(mmMME3_SBAB_SB_STALL, 1 << MME_SBAB_SB_STALL_R_SHIFT);
+ WREG32(mmMME3_SBAB_SB_STALL, 1 << MME_SBAB_SB_STALL_R_SHIFT);
+}
+
+static void gaudi_tpc_stall(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_TPC_MASK))
+ return;
+
+ WREG32(mmTPC0_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT);
+ WREG32(mmTPC1_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT);
+ WREG32(mmTPC2_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT);
+ WREG32(mmTPC3_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT);
+ WREG32(mmTPC4_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT);
+ WREG32(mmTPC5_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT);
+ WREG32(mmTPC6_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT);
+ WREG32(mmTPC7_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT);
+}
+
+static void gaudi_disable_clock_gating(struct hl_device *hdev)
+{
+ u32 qman_offset;
+ int i;
+
+ if (hdev->asic_prop.fw_security_enabled)
+ return;
+
+ for (i = 0, qman_offset = 0 ; i < DMA_NUMBER_OF_CHANNELS ; i++) {
+ WREG32(mmDMA0_QM_CGM_CFG + qman_offset, 0);
+ WREG32(mmDMA0_QM_CGM_CFG1 + qman_offset, 0);
+
+ qman_offset += (mmDMA1_QM_CGM_CFG - mmDMA0_QM_CGM_CFG);
+ }
+
+ WREG32(mmMME0_QM_CGM_CFG, 0);
+ WREG32(mmMME0_QM_CGM_CFG1, 0);
+ WREG32(mmMME2_QM_CGM_CFG, 0);
+ WREG32(mmMME2_QM_CGM_CFG1, 0);
+
+ for (i = 0, qman_offset = 0 ; i < TPC_NUMBER_OF_ENGINES ; i++) {
+ WREG32(mmTPC0_QM_CGM_CFG + qman_offset, 0);
+ WREG32(mmTPC0_QM_CGM_CFG1 + qman_offset, 0);
+
+ qman_offset += (mmTPC1_QM_CGM_CFG - mmTPC0_QM_CGM_CFG);
+ }
+}
+
+static void gaudi_enable_timestamp(struct hl_device *hdev)
+{
+ /* Disable the timestamp counter */
+ WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE, 0);
+
+ /* Zero the lower/upper parts of the 64-bit counter */
+ WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE + 0xC, 0);
+ WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE + 0x8, 0);
+
+ /* Enable the counter */
+ WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE, 1);
+}
+
+static void gaudi_disable_timestamp(struct hl_device *hdev)
+{
+ /* Disable the timestamp counter */
+ WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE, 0);
+}
+
+static void gaudi_halt_engines(struct hl_device *hdev, bool hard_reset, bool fw_reset)
+{
+ u32 wait_timeout_ms;
+
+ if (hdev->pldm)
+ wait_timeout_ms = GAUDI_PLDM_RESET_WAIT_MSEC;
+ else
+ wait_timeout_ms = GAUDI_RESET_WAIT_MSEC;
+
+ if (fw_reset)
+ goto skip_engines;
+
+ gaudi_stop_nic_qmans(hdev);
+ gaudi_stop_mme_qmans(hdev);
+ gaudi_stop_tpc_qmans(hdev);
+ gaudi_stop_hbm_dma_qmans(hdev);
+ gaudi_stop_pci_dma_qmans(hdev);
+
+ msleep(wait_timeout_ms);
+
+ gaudi_pci_dma_stall(hdev);
+ gaudi_hbm_dma_stall(hdev);
+ gaudi_tpc_stall(hdev);
+ gaudi_mme_stall(hdev);
+
+ msleep(wait_timeout_ms);
+
+ gaudi_disable_nic_qmans(hdev);
+ gaudi_disable_mme_qmans(hdev);
+ gaudi_disable_tpc_qmans(hdev);
+ gaudi_disable_hbm_dma_qmans(hdev);
+ gaudi_disable_pci_dma_qmans(hdev);
+
+ gaudi_disable_timestamp(hdev);
+
+skip_engines:
+ gaudi_disable_msi(hdev);
+}
+
+static int gaudi_mmu_init(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ u64 hop0_addr;
+ int rc, i;
+
+ if (!hdev->mmu_enable)
+ return 0;
+
+ if (gaudi->hw_cap_initialized & HW_CAP_MMU)
+ return 0;
+
+ for (i = 0 ; i < prop->max_asid ; i++) {
+ hop0_addr = prop->mmu_pgt_addr +
+ (i * prop->mmu_hop_table_size);
+
+ rc = gaudi_mmu_update_asid_hop0_addr(hdev, i, hop0_addr);
+ if (rc) {
+ dev_err(hdev->dev,
+ "failed to set hop0 addr for asid %d\n", i);
+ goto err;
+ }
+ }
+
+ /* init MMU cache manage page */
+ WREG32(mmSTLB_CACHE_INV_BASE_39_8, prop->mmu_cache_mng_addr >> 8);
+ WREG32(mmSTLB_CACHE_INV_BASE_49_40, prop->mmu_cache_mng_addr >> 40);
+
+ /* mem cache invalidation */
+ WREG32(mmSTLB_MEM_CACHE_INVALIDATION, 1);
+
+ hl_mmu_invalidate_cache(hdev, true, 0);
+
+ WREG32(mmMMU_UP_MMU_ENABLE, 1);
+ WREG32(mmMMU_UP_SPI_MASK, 0xF);
+
+ WREG32(mmSTLB_HOP_CONFIGURATION, 0x30440);
+
+ /*
+ * The H/W expects the first PI after init to be 1. After wraparound
+ * we'll write 0.
+ */
+ gaudi->mmu_cache_inv_pi = 1;
+
+ gaudi->hw_cap_initialized |= HW_CAP_MMU;
+
+ return 0;
+
+err:
+ return rc;
+}
+
+static int gaudi_load_firmware_to_device(struct hl_device *hdev)
+{
+ void __iomem *dst;
+
+ dst = hdev->pcie_bar[HBM_BAR_ID] + LINUX_FW_OFFSET;
+
+ return hl_fw_load_fw_to_device(hdev, GAUDI_LINUX_FW_FILE, dst, 0, 0);
+}
+
+static int gaudi_load_boot_fit_to_device(struct hl_device *hdev)
+{
+ void __iomem *dst;
+
+ dst = hdev->pcie_bar[SRAM_BAR_ID] + BOOT_FIT_SRAM_OFFSET;
+
+ return hl_fw_load_fw_to_device(hdev, GAUDI_BOOT_FIT_FILE, dst, 0, 0);
+}
+
+static void gaudi_init_dynamic_firmware_loader(struct hl_device *hdev)
+{
+ struct dynamic_fw_load_mgr *dynamic_loader;
+ struct cpu_dyn_regs *dyn_regs;
+
+ dynamic_loader = &hdev->fw_loader.dynamic_loader;
+
+ /*
+ * here we update initial values for few specific dynamic regs (as
+ * before reading the first descriptor from FW those value has to be
+ * hard-coded) in later stages of the protocol those values will be
+ * updated automatically by reading the FW descriptor so data there
+ * will always be up-to-date
+ */
+ dyn_regs = &dynamic_loader->comm_desc.cpu_dyn_regs;
+ dyn_regs->kmd_msg_to_cpu =
+ cpu_to_le32(mmPSOC_GLOBAL_CONF_KMD_MSG_TO_CPU);
+ dyn_regs->cpu_cmd_status_to_host =
+ cpu_to_le32(mmCPU_CMD_STATUS_TO_HOST);
+
+ dynamic_loader->wait_for_bl_timeout = GAUDI_WAIT_FOR_BL_TIMEOUT_USEC;
+}
+
+static void gaudi_init_static_firmware_loader(struct hl_device *hdev)
+{
+ struct static_fw_load_mgr *static_loader;
+
+ static_loader = &hdev->fw_loader.static_loader;
+
+ static_loader->preboot_version_max_off = SRAM_SIZE - VERSION_MAX_LEN;
+ static_loader->boot_fit_version_max_off = SRAM_SIZE - VERSION_MAX_LEN;
+ static_loader->kmd_msg_to_cpu_reg = mmPSOC_GLOBAL_CONF_KMD_MSG_TO_CPU;
+ static_loader->cpu_cmd_status_to_host_reg = mmCPU_CMD_STATUS_TO_HOST;
+ static_loader->cpu_boot_status_reg = mmPSOC_GLOBAL_CONF_CPU_BOOT_STATUS;
+ static_loader->cpu_boot_dev_status0_reg = mmCPU_BOOT_DEV_STS0;
+ static_loader->cpu_boot_dev_status1_reg = mmCPU_BOOT_DEV_STS1;
+ static_loader->boot_err0_reg = mmCPU_BOOT_ERR0;
+ static_loader->boot_err1_reg = mmCPU_BOOT_ERR1;
+ static_loader->preboot_version_offset_reg = mmPREBOOT_VER_OFFSET;
+ static_loader->boot_fit_version_offset_reg = mmUBOOT_VER_OFFSET;
+ static_loader->sram_offset_mask = ~(lower_32_bits(SRAM_BASE_ADDR));
+ static_loader->cpu_reset_wait_msec = hdev->pldm ?
+ GAUDI_PLDM_RESET_WAIT_MSEC :
+ GAUDI_CPU_RESET_WAIT_MSEC;
+}
+
+static void gaudi_init_firmware_preload_params(struct hl_device *hdev)
+{
+ struct pre_fw_load_props *pre_fw_load = &hdev->fw_loader.pre_fw_load;
+
+ pre_fw_load->cpu_boot_status_reg = mmPSOC_GLOBAL_CONF_CPU_BOOT_STATUS;
+ pre_fw_load->sts_boot_dev_sts0_reg = mmCPU_BOOT_DEV_STS0;
+ pre_fw_load->sts_boot_dev_sts1_reg = mmCPU_BOOT_DEV_STS1;
+ pre_fw_load->boot_err0_reg = mmCPU_BOOT_ERR0;
+ pre_fw_load->boot_err1_reg = mmCPU_BOOT_ERR1;
+ pre_fw_load->wait_for_preboot_timeout = GAUDI_BOOT_FIT_REQ_TIMEOUT_USEC;
+}
+
+static void gaudi_init_firmware_loader(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct fw_load_mgr *fw_loader = &hdev->fw_loader;
+
+ /* fill common fields */
+ fw_loader->fw_comp_loaded = FW_TYPE_NONE;
+ fw_loader->boot_fit_img.image_name = GAUDI_BOOT_FIT_FILE;
+ fw_loader->linux_img.image_name = GAUDI_LINUX_FW_FILE;
+ fw_loader->cpu_timeout = GAUDI_CPU_TIMEOUT_USEC;
+ fw_loader->boot_fit_timeout = GAUDI_BOOT_FIT_REQ_TIMEOUT_USEC;
+ fw_loader->skip_bmc = !hdev->bmc_enable;
+ fw_loader->sram_bar_id = SRAM_BAR_ID;
+ fw_loader->dram_bar_id = HBM_BAR_ID;
+
+ if (prop->dynamic_fw_load)
+ gaudi_init_dynamic_firmware_loader(hdev);
+ else
+ gaudi_init_static_firmware_loader(hdev);
+}
+
+static int gaudi_init_cpu(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ int rc;
+
+ if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU))
+ return 0;
+
+ if (gaudi->hw_cap_initialized & HW_CAP_CPU)
+ return 0;
+
+ /*
+ * The device CPU works with 40 bits addresses.
+ * This register sets the extension to 50 bits.
+ */
+ if (!hdev->asic_prop.fw_security_enabled)
+ WREG32(mmCPU_IF_CPU_MSB_ADDR, hdev->cpu_pci_msb_addr);
+
+ rc = hl_fw_init_cpu(hdev);
+
+ if (rc)
+ return rc;
+
+ gaudi->hw_cap_initialized |= HW_CAP_CPU;
+
+ return 0;
+}
+
+static int gaudi_init_cpu_queues(struct hl_device *hdev, u32 cpu_timeout)
+{
+ struct cpu_dyn_regs *dyn_regs =
+ &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ u32 status, irq_handler_offset;
+ struct hl_eq *eq;
+ struct hl_hw_queue *cpu_pq =
+ &hdev->kernel_queues[GAUDI_QUEUE_ID_CPU_PQ];
+ int err;
+
+ if (!hdev->cpu_queues_enable)
+ return 0;
+
+ if (gaudi->hw_cap_initialized & HW_CAP_CPU_Q)
+ return 0;
+
+ eq = &hdev->event_queue;
+
+ WREG32(mmCPU_IF_PQ_BASE_ADDR_LOW, lower_32_bits(cpu_pq->bus_address));
+ WREG32(mmCPU_IF_PQ_BASE_ADDR_HIGH, upper_32_bits(cpu_pq->bus_address));
+
+ WREG32(mmCPU_IF_EQ_BASE_ADDR_LOW, lower_32_bits(eq->bus_address));
+ WREG32(mmCPU_IF_EQ_BASE_ADDR_HIGH, upper_32_bits(eq->bus_address));
+
+ WREG32(mmCPU_IF_CQ_BASE_ADDR_LOW,
+ lower_32_bits(hdev->cpu_accessible_dma_address));
+ WREG32(mmCPU_IF_CQ_BASE_ADDR_HIGH,
+ upper_32_bits(hdev->cpu_accessible_dma_address));
+
+ WREG32(mmCPU_IF_PQ_LENGTH, HL_QUEUE_SIZE_IN_BYTES);
+ WREG32(mmCPU_IF_EQ_LENGTH, HL_EQ_SIZE_IN_BYTES);
+ WREG32(mmCPU_IF_CQ_LENGTH, HL_CPU_ACCESSIBLE_MEM_SIZE);
+
+ /* Used for EQ CI */
+ WREG32(mmCPU_IF_EQ_RD_OFFS, 0);
+
+ WREG32(mmCPU_IF_PF_PQ_PI, 0);
+
+ if (gaudi->multi_msi_mode)
+ WREG32(mmCPU_IF_QUEUE_INIT, PQ_INIT_STATUS_READY_FOR_CP);
+ else
+ WREG32(mmCPU_IF_QUEUE_INIT,
+ PQ_INIT_STATUS_READY_FOR_CP_SINGLE_MSI);
+
+ irq_handler_offset = prop->gic_interrupts_enable ?
+ mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR :
+ le32_to_cpu(dyn_regs->gic_host_pi_upd_irq);
+
+ WREG32(irq_handler_offset,
+ gaudi_irq_map_table[GAUDI_EVENT_PI_UPDATE].cpu_id);
+
+ err = hl_poll_timeout(
+ hdev,
+ mmCPU_IF_QUEUE_INIT,
+ status,
+ (status == PQ_INIT_STATUS_READY_FOR_HOST),
+ 1000,
+ cpu_timeout);
+
+ if (err) {
+ dev_err(hdev->dev,
+ "Failed to communicate with Device CPU (CPU-CP timeout)\n");
+ return -EIO;
+ }
+
+ /* update FW application security bits */
+ if (prop->fw_cpu_boot_dev_sts0_valid)
+ prop->fw_app_cpu_boot_dev_sts0 = RREG32(mmCPU_BOOT_DEV_STS0);
+ if (prop->fw_cpu_boot_dev_sts1_valid)
+ prop->fw_app_cpu_boot_dev_sts1 = RREG32(mmCPU_BOOT_DEV_STS1);
+
+ gaudi->hw_cap_initialized |= HW_CAP_CPU_Q;
+ return 0;
+}
+
+static void gaudi_pre_hw_init(struct hl_device *hdev)
+{
+ /* Perform read from the device to make sure device is up */
+ RREG32(mmHW_STATE);
+
+ if (!hdev->asic_prop.fw_security_enabled) {
+ /* Set the access through PCI bars (Linux driver only) as
+ * secured
+ */
+ WREG32(mmPCIE_WRAP_LBW_PROT_OVR,
+ (PCIE_WRAP_LBW_PROT_OVR_RD_EN_MASK |
+ PCIE_WRAP_LBW_PROT_OVR_WR_EN_MASK));
+
+ /* Perform read to flush the waiting writes to ensure
+ * configuration was set in the device
+ */
+ RREG32(mmPCIE_WRAP_LBW_PROT_OVR);
+ }
+
+ /*
+ * Let's mark in the H/W that we have reached this point. We check
+ * this value in the reset_before_init function to understand whether
+ * we need to reset the chip before doing H/W init. This register is
+ * cleared by the H/W upon H/W reset
+ */
+ WREG32(mmHW_STATE, HL_DEVICE_HW_STATE_DIRTY);
+}
+
+static int gaudi_hw_init(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ int rc;
+
+ gaudi_pre_hw_init(hdev);
+
+ /* If iATU is done by FW, the HBM bar ALWAYS points to DRAM_PHYS_BASE.
+ * So we set it here and if anyone tries to move it later to
+ * a different address, there will be an error
+ */
+ if (hdev->asic_prop.iatu_done_by_fw)
+ gaudi->hbm_bar_cur_addr = DRAM_PHYS_BASE;
+
+ /*
+ * Before pushing u-boot/linux to device, need to set the hbm bar to
+ * base address of dram
+ */
+ if (gaudi_set_hbm_bar_base(hdev, DRAM_PHYS_BASE) == U64_MAX) {
+ dev_err(hdev->dev,
+ "failed to map HBM bar to DRAM base address\n");
+ return -EIO;
+ }
+
+ rc = gaudi_init_cpu(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "failed to initialize CPU\n");
+ return rc;
+ }
+
+ /* In case the clock gating was enabled in preboot we need to disable
+ * it here before touching the MME/TPC registers.
+ */
+ gaudi_disable_clock_gating(hdev);
+
+ /* SRAM scrambler must be initialized after CPU is running from HBM */
+ gaudi_init_scrambler_sram(hdev);
+
+ /* This is here just in case we are working without CPU */
+ gaudi_init_scrambler_hbm(hdev);
+
+ gaudi_init_golden_registers(hdev);
+
+ rc = gaudi_mmu_init(hdev);
+ if (rc)
+ return rc;
+
+ gaudi_init_security(hdev);
+
+ gaudi_init_pci_dma_qmans(hdev);
+
+ gaudi_init_hbm_dma_qmans(hdev);
+
+ gaudi_init_mme_qmans(hdev);
+
+ gaudi_init_tpc_qmans(hdev);
+
+ gaudi_init_nic_qmans(hdev);
+
+ gaudi_enable_timestamp(hdev);
+
+ /* MSI must be enabled before CPU queues and NIC are initialized */
+ rc = gaudi_enable_msi(hdev);
+ if (rc)
+ goto disable_queues;
+
+ /* must be called after MSI was enabled */
+ rc = gaudi_init_cpu_queues(hdev, GAUDI_CPU_TIMEOUT_USEC);
+ if (rc) {
+ dev_err(hdev->dev, "failed to initialize CPU H/W queues %d\n",
+ rc);
+ goto disable_msi;
+ }
+
+ /* Perform read from the device to flush all configuration */
+ RREG32(mmHW_STATE);
+
+ return 0;
+
+disable_msi:
+ gaudi_disable_msi(hdev);
+disable_queues:
+ gaudi_disable_mme_qmans(hdev);
+ gaudi_disable_pci_dma_qmans(hdev);
+
+ return rc;
+}
+
+static void gaudi_hw_fini(struct hl_device *hdev, bool hard_reset, bool fw_reset)
+{
+ struct cpu_dyn_regs *dyn_regs =
+ &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
+ u32 status, reset_timeout_ms, cpu_timeout_ms, irq_handler_offset;
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ bool driver_performs_reset;
+
+ if (!hard_reset) {
+ dev_err(hdev->dev, "GAUDI doesn't support soft-reset\n");
+ return;
+ }
+
+ if (hdev->pldm) {
+ reset_timeout_ms = GAUDI_PLDM_HRESET_TIMEOUT_MSEC;
+ cpu_timeout_ms = GAUDI_PLDM_RESET_WAIT_MSEC;
+ } else {
+ reset_timeout_ms = GAUDI_RESET_TIMEOUT_MSEC;
+ cpu_timeout_ms = GAUDI_CPU_RESET_WAIT_MSEC;
+ }
+
+ if (fw_reset) {
+ dev_dbg(hdev->dev,
+ "Firmware performs HARD reset, going to wait %dms\n",
+ reset_timeout_ms);
+
+ goto skip_reset;
+ }
+
+ driver_performs_reset = !!(!hdev->asic_prop.fw_security_enabled &&
+ !hdev->asic_prop.hard_reset_done_by_fw);
+
+ /* Set device to handle FLR by H/W as we will put the device CPU to
+ * halt mode
+ */
+ if (driver_performs_reset)
+ WREG32(mmPCIE_AUX_FLR_CTRL, (PCIE_AUX_FLR_CTRL_HW_CTRL_MASK |
+ PCIE_AUX_FLR_CTRL_INT_MASK_MASK));
+
+ /* If linux is loaded in the device CPU we need to communicate with it
+ * via the GIC. Otherwise, we need to use COMMS or the MSG_TO_CPU
+ * registers in case of old F/Ws
+ */
+ if (hdev->fw_loader.fw_comp_loaded & FW_TYPE_LINUX) {
+ irq_handler_offset = hdev->asic_prop.gic_interrupts_enable ?
+ mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR :
+ le32_to_cpu(dyn_regs->gic_host_halt_irq);
+
+ WREG32(irq_handler_offset,
+ gaudi_irq_map_table[GAUDI_EVENT_HALT_MACHINE].cpu_id);
+
+ /* This is a hail-mary attempt to revive the card in the small chance that the
+ * f/w has experienced a watchdog event, which caused it to return back to preboot.
+ * In that case, triggering reset through GIC won't help. We need to trigger the
+ * reset as if Linux wasn't loaded.
+ *
+ * We do it only if the reset cause was HB, because that would be the indication
+ * of such an event.
+ *
+ * In case watchdog hasn't expired but we still got HB, then this won't do any
+ * damage.
+ */
+ if (hdev->reset_info.curr_reset_cause == HL_RESET_CAUSE_HEARTBEAT) {
+ if (hdev->asic_prop.hard_reset_done_by_fw)
+ hl_fw_ask_hard_reset_without_linux(hdev);
+ else
+ hl_fw_ask_halt_machine_without_linux(hdev);
+ }
+ } else {
+ if (hdev->asic_prop.hard_reset_done_by_fw)
+ hl_fw_ask_hard_reset_without_linux(hdev);
+ else
+ hl_fw_ask_halt_machine_without_linux(hdev);
+ }
+
+ if (driver_performs_reset) {
+
+ /* Configure the reset registers. Must be done as early as
+ * possible in case we fail during H/W initialization
+ */
+ WREG32(mmPSOC_GLOBAL_CONF_SOFT_RST_CFG_H,
+ (CFG_RST_H_DMA_MASK |
+ CFG_RST_H_MME_MASK |
+ CFG_RST_H_SM_MASK |
+ CFG_RST_H_TPC_7_MASK));
+
+ WREG32(mmPSOC_GLOBAL_CONF_SOFT_RST_CFG_L, CFG_RST_L_TPC_MASK);
+
+ WREG32(mmPSOC_GLOBAL_CONF_SW_ALL_RST_CFG_H,
+ (CFG_RST_H_HBM_MASK |
+ CFG_RST_H_TPC_7_MASK |
+ CFG_RST_H_NIC_MASK |
+ CFG_RST_H_SM_MASK |
+ CFG_RST_H_DMA_MASK |
+ CFG_RST_H_MME_MASK |
+ CFG_RST_H_CPU_MASK |
+ CFG_RST_H_MMU_MASK));
+
+ WREG32(mmPSOC_GLOBAL_CONF_SW_ALL_RST_CFG_L,
+ (CFG_RST_L_IF_MASK |
+ CFG_RST_L_PSOC_MASK |
+ CFG_RST_L_TPC_MASK));
+
+ msleep(cpu_timeout_ms);
+
+ /* Tell ASIC not to re-initialize PCIe */
+ WREG32(mmPREBOOT_PCIE_EN, LKD_HARD_RESET_MAGIC);
+
+ /* Restart BTL/BLR upon hard-reset */
+ WREG32(mmPSOC_GLOBAL_CONF_BOOT_SEQ_RE_START, 1);
+
+ WREG32(mmPSOC_GLOBAL_CONF_SW_ALL_RST,
+ 1 << PSOC_GLOBAL_CONF_SW_ALL_RST_IND_SHIFT);
+
+ dev_dbg(hdev->dev,
+ "Issued HARD reset command, going to wait %dms\n",
+ reset_timeout_ms);
+ } else {
+ dev_dbg(hdev->dev,
+ "Firmware performs HARD reset, going to wait %dms\n",
+ reset_timeout_ms);
+ }
+
+skip_reset:
+ /*
+ * After hard reset, we can't poll the BTM_FSM register because the PSOC
+ * itself is in reset. Need to wait until the reset is deasserted
+ */
+ msleep(reset_timeout_ms);
+
+ status = RREG32(mmPSOC_GLOBAL_CONF_BTM_FSM);
+ if (status & PSOC_GLOBAL_CONF_BTM_FSM_STATE_MASK)
+ dev_err(hdev->dev,
+ "Timeout while waiting for device to reset 0x%x\n",
+ status);
+
+ if (gaudi) {
+ gaudi->hw_cap_initialized &= ~(HW_CAP_CPU | HW_CAP_CPU_Q | HW_CAP_HBM |
+ HW_CAP_PCI_DMA | HW_CAP_MME | HW_CAP_TPC_MASK |
+ HW_CAP_HBM_DMA | HW_CAP_PLL | HW_CAP_NIC_MASK |
+ HW_CAP_MMU | HW_CAP_SRAM_SCRAMBLER |
+ HW_CAP_HBM_SCRAMBLER);
+
+ memset(gaudi->events_stat, 0, sizeof(gaudi->events_stat));
+
+ hdev->device_cpu_is_halted = false;
+ }
+}
+
+static int gaudi_suspend(struct hl_device *hdev)
+{
+ int rc;
+
+ rc = hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0);
+ if (rc)
+ dev_err(hdev->dev, "Failed to disable PCI access from CPU\n");
+
+ return rc;
+}
+
+static int gaudi_resume(struct hl_device *hdev)
+{
+ return gaudi_init_iatu(hdev);
+}
+
+static int gaudi_mmap(struct hl_device *hdev, struct vm_area_struct *vma,
+ void *cpu_addr, dma_addr_t dma_addr, size_t size)
+{
+ int rc;
+
++ vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP |
++ VM_DONTCOPY | VM_NORESERVE);
+
+ rc = dma_mmap_coherent(hdev->dev, vma, cpu_addr,
+ (dma_addr - HOST_PHYS_BASE), size);
+ if (rc)
+ dev_err(hdev->dev, "dma_mmap_coherent error %d", rc);
+
+ return rc;
+}
+
+static void gaudi_ring_doorbell(struct hl_device *hdev, u32 hw_queue_id, u32 pi)
+{
+ struct cpu_dyn_regs *dyn_regs =
+ &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
+ u32 db_reg_offset, db_value, dma_qm_offset, q_off, irq_handler_offset;
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ bool invalid_queue = false;
+ int dma_id;
+
+ switch (hw_queue_id) {
+ case GAUDI_QUEUE_ID_DMA_0_0...GAUDI_QUEUE_ID_DMA_0_3:
+ dma_id = gaudi_dma_assignment[GAUDI_PCI_DMA_1];
+ dma_qm_offset = dma_id * DMA_QMAN_OFFSET;
+ q_off = dma_qm_offset + (hw_queue_id & 0x3) * 4;
+ db_reg_offset = mmDMA0_QM_PQ_PI_0 + q_off;
+ break;
+
+ case GAUDI_QUEUE_ID_DMA_1_0...GAUDI_QUEUE_ID_DMA_1_3:
+ dma_id = gaudi_dma_assignment[GAUDI_PCI_DMA_2];
+ dma_qm_offset = dma_id * DMA_QMAN_OFFSET;
+ q_off = dma_qm_offset + (hw_queue_id & 0x3) * 4;
+ db_reg_offset = mmDMA0_QM_PQ_PI_0 + q_off;
+ break;
+
+ case GAUDI_QUEUE_ID_DMA_2_0...GAUDI_QUEUE_ID_DMA_2_3:
+ dma_id = gaudi_dma_assignment[GAUDI_HBM_DMA_1];
+ dma_qm_offset = dma_id * DMA_QMAN_OFFSET;
+ q_off = dma_qm_offset + ((hw_queue_id - 1) & 0x3) * 4;
+ db_reg_offset = mmDMA0_QM_PQ_PI_0 + q_off;
+ break;
+
+ case GAUDI_QUEUE_ID_DMA_3_0...GAUDI_QUEUE_ID_DMA_3_3:
+ dma_id = gaudi_dma_assignment[GAUDI_HBM_DMA_2];
+ dma_qm_offset = dma_id * DMA_QMAN_OFFSET;
+ q_off = dma_qm_offset + ((hw_queue_id - 1) & 0x3) * 4;
+ db_reg_offset = mmDMA0_QM_PQ_PI_0 + q_off;
+ break;
+
+ case GAUDI_QUEUE_ID_DMA_4_0...GAUDI_QUEUE_ID_DMA_4_3:
+ dma_id = gaudi_dma_assignment[GAUDI_HBM_DMA_3];
+ dma_qm_offset = dma_id * DMA_QMAN_OFFSET;
+ q_off = dma_qm_offset + ((hw_queue_id - 1) & 0x3) * 4;
+ db_reg_offset = mmDMA0_QM_PQ_PI_0 + q_off;
+ break;
+
+ case GAUDI_QUEUE_ID_DMA_5_0...GAUDI_QUEUE_ID_DMA_5_3:
+ dma_id = gaudi_dma_assignment[GAUDI_HBM_DMA_4];
+ dma_qm_offset = dma_id * DMA_QMAN_OFFSET;
+ q_off = dma_qm_offset + ((hw_queue_id - 1) & 0x3) * 4;
+ db_reg_offset = mmDMA0_QM_PQ_PI_0 + q_off;
+ break;
+
+ case GAUDI_QUEUE_ID_DMA_6_0...GAUDI_QUEUE_ID_DMA_6_3:
+ dma_id = gaudi_dma_assignment[GAUDI_HBM_DMA_5];
+ dma_qm_offset = dma_id * DMA_QMAN_OFFSET;
+ q_off = dma_qm_offset + ((hw_queue_id - 1) & 0x3) * 4;
+ db_reg_offset = mmDMA0_QM_PQ_PI_0 + q_off;
+ break;
+
+ case GAUDI_QUEUE_ID_DMA_7_0...GAUDI_QUEUE_ID_DMA_7_3:
+ dma_id = gaudi_dma_assignment[GAUDI_HBM_DMA_6];
+ dma_qm_offset = dma_id * DMA_QMAN_OFFSET;
+ q_off = dma_qm_offset + ((hw_queue_id - 1) & 0x3) * 4;
+ db_reg_offset = mmDMA0_QM_PQ_PI_0 + q_off;
+ break;
+
+ case GAUDI_QUEUE_ID_CPU_PQ:
+ if (gaudi->hw_cap_initialized & HW_CAP_CPU_Q)
+ db_reg_offset = mmCPU_IF_PF_PQ_PI;
+ else
+ invalid_queue = true;
+ break;
+
+ case GAUDI_QUEUE_ID_MME_0_0:
+ db_reg_offset = mmMME2_QM_PQ_PI_0;
+ break;
+
+ case GAUDI_QUEUE_ID_MME_0_1:
+ db_reg_offset = mmMME2_QM_PQ_PI_1;
+ break;
+
+ case GAUDI_QUEUE_ID_MME_0_2:
+ db_reg_offset = mmMME2_QM_PQ_PI_2;
+ break;
+
+ case GAUDI_QUEUE_ID_MME_0_3:
+ db_reg_offset = mmMME2_QM_PQ_PI_3;
+ break;
+
+ case GAUDI_QUEUE_ID_MME_1_0:
+ db_reg_offset = mmMME0_QM_PQ_PI_0;
+ break;
+
+ case GAUDI_QUEUE_ID_MME_1_1:
+ db_reg_offset = mmMME0_QM_PQ_PI_1;
+ break;
+
+ case GAUDI_QUEUE_ID_MME_1_2:
+ db_reg_offset = mmMME0_QM_PQ_PI_2;
+ break;
+
+ case GAUDI_QUEUE_ID_MME_1_3:
+ db_reg_offset = mmMME0_QM_PQ_PI_3;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_0_0:
+ db_reg_offset = mmTPC0_QM_PQ_PI_0;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_0_1:
+ db_reg_offset = mmTPC0_QM_PQ_PI_1;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_0_2:
+ db_reg_offset = mmTPC0_QM_PQ_PI_2;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_0_3:
+ db_reg_offset = mmTPC0_QM_PQ_PI_3;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_1_0:
+ db_reg_offset = mmTPC1_QM_PQ_PI_0;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_1_1:
+ db_reg_offset = mmTPC1_QM_PQ_PI_1;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_1_2:
+ db_reg_offset = mmTPC1_QM_PQ_PI_2;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_1_3:
+ db_reg_offset = mmTPC1_QM_PQ_PI_3;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_2_0:
+ db_reg_offset = mmTPC2_QM_PQ_PI_0;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_2_1:
+ db_reg_offset = mmTPC2_QM_PQ_PI_1;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_2_2:
+ db_reg_offset = mmTPC2_QM_PQ_PI_2;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_2_3:
+ db_reg_offset = mmTPC2_QM_PQ_PI_3;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_3_0:
+ db_reg_offset = mmTPC3_QM_PQ_PI_0;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_3_1:
+ db_reg_offset = mmTPC3_QM_PQ_PI_1;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_3_2:
+ db_reg_offset = mmTPC3_QM_PQ_PI_2;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_3_3:
+ db_reg_offset = mmTPC3_QM_PQ_PI_3;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_4_0:
+ db_reg_offset = mmTPC4_QM_PQ_PI_0;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_4_1:
+ db_reg_offset = mmTPC4_QM_PQ_PI_1;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_4_2:
+ db_reg_offset = mmTPC4_QM_PQ_PI_2;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_4_3:
+ db_reg_offset = mmTPC4_QM_PQ_PI_3;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_5_0:
+ db_reg_offset = mmTPC5_QM_PQ_PI_0;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_5_1:
+ db_reg_offset = mmTPC5_QM_PQ_PI_1;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_5_2:
+ db_reg_offset = mmTPC5_QM_PQ_PI_2;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_5_3:
+ db_reg_offset = mmTPC5_QM_PQ_PI_3;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_6_0:
+ db_reg_offset = mmTPC6_QM_PQ_PI_0;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_6_1:
+ db_reg_offset = mmTPC6_QM_PQ_PI_1;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_6_2:
+ db_reg_offset = mmTPC6_QM_PQ_PI_2;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_6_3:
+ db_reg_offset = mmTPC6_QM_PQ_PI_3;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_7_0:
+ db_reg_offset = mmTPC7_QM_PQ_PI_0;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_7_1:
+ db_reg_offset = mmTPC7_QM_PQ_PI_1;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_7_2:
+ db_reg_offset = mmTPC7_QM_PQ_PI_2;
+ break;
+
+ case GAUDI_QUEUE_ID_TPC_7_3:
+ db_reg_offset = mmTPC7_QM_PQ_PI_3;
+ break;
+
+ case GAUDI_QUEUE_ID_NIC_0_0...GAUDI_QUEUE_ID_NIC_0_3:
+ if (!(gaudi->hw_cap_initialized & HW_CAP_NIC0))
+ invalid_queue = true;
+
+ q_off = ((hw_queue_id - 1) & 0x3) * 4;
+ db_reg_offset = mmNIC0_QM0_PQ_PI_0 + q_off;
+ break;
+
+ case GAUDI_QUEUE_ID_NIC_1_0...GAUDI_QUEUE_ID_NIC_1_3:
+ if (!(gaudi->hw_cap_initialized & HW_CAP_NIC1))
+ invalid_queue = true;
+
+ q_off = ((hw_queue_id - 1) & 0x3) * 4;
+ db_reg_offset = mmNIC0_QM1_PQ_PI_0 + q_off;
+ break;
+
+ case GAUDI_QUEUE_ID_NIC_2_0...GAUDI_QUEUE_ID_NIC_2_3:
+ if (!(gaudi->hw_cap_initialized & HW_CAP_NIC2))
+ invalid_queue = true;
+
+ q_off = ((hw_queue_id - 1) & 0x3) * 4;
+ db_reg_offset = mmNIC1_QM0_PQ_PI_0 + q_off;
+ break;
+
+ case GAUDI_QUEUE_ID_NIC_3_0...GAUDI_QUEUE_ID_NIC_3_3:
+ if (!(gaudi->hw_cap_initialized & HW_CAP_NIC3))
+ invalid_queue = true;
+
+ q_off = ((hw_queue_id - 1) & 0x3) * 4;
+ db_reg_offset = mmNIC1_QM1_PQ_PI_0 + q_off;
+ break;
+
+ case GAUDI_QUEUE_ID_NIC_4_0...GAUDI_QUEUE_ID_NIC_4_3:
+ if (!(gaudi->hw_cap_initialized & HW_CAP_NIC4))
+ invalid_queue = true;
+
+ q_off = ((hw_queue_id - 1) & 0x3) * 4;
+ db_reg_offset = mmNIC2_QM0_PQ_PI_0 + q_off;
+ break;
+
+ case GAUDI_QUEUE_ID_NIC_5_0...GAUDI_QUEUE_ID_NIC_5_3:
+ if (!(gaudi->hw_cap_initialized & HW_CAP_NIC5))
+ invalid_queue = true;
+
+ q_off = ((hw_queue_id - 1) & 0x3) * 4;
+ db_reg_offset = mmNIC2_QM1_PQ_PI_0 + q_off;
+ break;
+
+ case GAUDI_QUEUE_ID_NIC_6_0...GAUDI_QUEUE_ID_NIC_6_3:
+ if (!(gaudi->hw_cap_initialized & HW_CAP_NIC6))
+ invalid_queue = true;
+
+ q_off = ((hw_queue_id - 1) & 0x3) * 4;
+ db_reg_offset = mmNIC3_QM0_PQ_PI_0 + q_off;
+ break;
+
+ case GAUDI_QUEUE_ID_NIC_7_0...GAUDI_QUEUE_ID_NIC_7_3:
+ if (!(gaudi->hw_cap_initialized & HW_CAP_NIC7))
+ invalid_queue = true;
+
+ q_off = ((hw_queue_id - 1) & 0x3) * 4;
+ db_reg_offset = mmNIC3_QM1_PQ_PI_0 + q_off;
+ break;
+
+ case GAUDI_QUEUE_ID_NIC_8_0...GAUDI_QUEUE_ID_NIC_8_3:
+ if (!(gaudi->hw_cap_initialized & HW_CAP_NIC8))
+ invalid_queue = true;
+
+ q_off = ((hw_queue_id - 1) & 0x3) * 4;
+ db_reg_offset = mmNIC4_QM0_PQ_PI_0 + q_off;
+ break;
+
+ case GAUDI_QUEUE_ID_NIC_9_0...GAUDI_QUEUE_ID_NIC_9_3:
+ if (!(gaudi->hw_cap_initialized & HW_CAP_NIC9))
+ invalid_queue = true;
+
+ q_off = ((hw_queue_id - 1) & 0x3) * 4;
+ db_reg_offset = mmNIC4_QM1_PQ_PI_0 + q_off;
+ break;
+
+ default:
+ invalid_queue = true;
+ }
+
+ if (invalid_queue) {
+ /* Should never get here */
+ dev_err(hdev->dev, "h/w queue %d is invalid. Can't set pi\n",
+ hw_queue_id);
+ return;
+ }
+
+ db_value = pi;
+
+ /* ring the doorbell */
+ WREG32(db_reg_offset, db_value);
+
+ if (hw_queue_id == GAUDI_QUEUE_ID_CPU_PQ) {
+ /* make sure device CPU will read latest data from host */
+ mb();
+
+ irq_handler_offset = hdev->asic_prop.gic_interrupts_enable ?
+ mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR :
+ le32_to_cpu(dyn_regs->gic_host_pi_upd_irq);
+
+ WREG32(irq_handler_offset,
+ gaudi_irq_map_table[GAUDI_EVENT_PI_UPDATE].cpu_id);
+ }
+}
+
+static void gaudi_pqe_write(struct hl_device *hdev, __le64 *pqe,
+ struct hl_bd *bd)
+{
+ __le64 *pbd = (__le64 *) bd;
+
+ /* The QMANs are on the host memory so a simple copy suffice */
+ pqe[0] = pbd[0];
+ pqe[1] = pbd[1];
+}
+
+static void *gaudi_dma_alloc_coherent(struct hl_device *hdev, size_t size,
+ dma_addr_t *dma_handle, gfp_t flags)
+{
+ void *kernel_addr = dma_alloc_coherent(&hdev->pdev->dev, size,
+ dma_handle, flags);
+
+ /* Shift to the device's base physical address of host memory */
+ if (kernel_addr)
+ *dma_handle += HOST_PHYS_BASE;
+
+ return kernel_addr;
+}
+
+static void gaudi_dma_free_coherent(struct hl_device *hdev, size_t size,
+ void *cpu_addr, dma_addr_t dma_handle)
+{
+ /* Cancel the device's base physical address of host memory */
+ dma_addr_t fixed_dma_handle = dma_handle - HOST_PHYS_BASE;
+
+ dma_free_coherent(&hdev->pdev->dev, size, cpu_addr, fixed_dma_handle);
+}
+
+static int gaudi_scrub_device_dram(struct hl_device *hdev, u64 val)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 cur_addr = prop->dram_user_base_address;
+ u32 chunk_size, busy;
+ int rc, dma_id;
+
+ while (cur_addr < prop->dram_end_address) {
+ for (dma_id = 0 ; dma_id < DMA_NUMBER_OF_CHANNELS ; dma_id++) {
+ u32 dma_offset = dma_id * DMA_CORE_OFFSET;
+
+ chunk_size =
+ min((u64)SZ_2G, prop->dram_end_address - cur_addr);
+
+ dev_dbg(hdev->dev,
+ "Doing HBM scrubbing for 0x%09llx - 0x%09llx\n",
+ cur_addr, cur_addr + chunk_size);
+
+ WREG32(mmDMA0_CORE_SRC_BASE_LO + dma_offset,
+ lower_32_bits(val));
+ WREG32(mmDMA0_CORE_SRC_BASE_HI + dma_offset,
+ upper_32_bits(val));
+ WREG32(mmDMA0_CORE_DST_BASE_LO + dma_offset,
+ lower_32_bits(cur_addr));
+ WREG32(mmDMA0_CORE_DST_BASE_HI + dma_offset,
+ upper_32_bits(cur_addr));
+ WREG32(mmDMA0_CORE_DST_TSIZE_0 + dma_offset,
+ chunk_size);
+ WREG32(mmDMA0_CORE_COMMIT + dma_offset,
+ ((1 << DMA0_CORE_COMMIT_LIN_SHIFT) |
+ (1 << DMA0_CORE_COMMIT_MEM_SET_SHIFT)));
+
+ cur_addr += chunk_size;
+
+ if (cur_addr == prop->dram_end_address)
+ break;
+ }
+
+ for (dma_id = 0 ; dma_id < DMA_NUMBER_OF_CHANNELS ; dma_id++) {
+ u32 dma_offset = dma_id * DMA_CORE_OFFSET;
+
+ rc = hl_poll_timeout(
+ hdev,
+ mmDMA0_CORE_STS0 + dma_offset,
+ busy,
+ ((busy & DMA0_CORE_STS0_BUSY_MASK) == 0),
+ 1000,
+ HBM_SCRUBBING_TIMEOUT_US);
+
+ if (rc) {
+ dev_err(hdev->dev,
+ "DMA Timeout during HBM scrubbing of DMA #%d\n",
+ dma_id);
+ return -EIO;
+ }
+ }
+ }
+
+ return 0;
+}
+
+static int gaudi_scrub_device_mem(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 wait_to_idle_time = hdev->pdev ? HBM_SCRUBBING_TIMEOUT_US :
+ min_t(u64, HBM_SCRUBBING_TIMEOUT_US * 10, HL_SIM_MAX_TIMEOUT_US);
+ u64 addr, size, val = hdev->memory_scrub_val;
+ ktime_t timeout;
+ int rc = 0;
+
+ if (!hdev->memory_scrub)
+ return 0;
+
+ timeout = ktime_add_us(ktime_get(), wait_to_idle_time);
+ while (!hdev->asic_funcs->is_device_idle(hdev, NULL, 0, NULL)) {
+ if (ktime_compare(ktime_get(), timeout) > 0) {
+ dev_err(hdev->dev, "waiting for idle timeout\n");
+ return -ETIMEDOUT;
+ }
+ usleep_range((1000 >> 2) + 1, 1000);
+ }
+
+ /* Scrub SRAM */
+ addr = prop->sram_user_base_address;
+ size = hdev->pldm ? 0x10000 : prop->sram_size - SRAM_USER_BASE_OFFSET;
+
+ dev_dbg(hdev->dev, "Scrubbing SRAM: 0x%09llx - 0x%09llx val: 0x%llx\n",
+ addr, addr + size, val);
+ rc = gaudi_memset_device_memory(hdev, addr, size, val);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to clear SRAM (%d)\n", rc);
+ return rc;
+ }
+
+ /* Scrub HBM using all DMA channels in parallel */
+ rc = gaudi_scrub_device_dram(hdev, val);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to clear HBM (%d)\n", rc);
+ return rc;
+ }
+
+ return 0;
+}
+
+static void *gaudi_get_int_queue_base(struct hl_device *hdev,
+ u32 queue_id, dma_addr_t *dma_handle,
+ u16 *queue_len)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ struct gaudi_internal_qman_info *q;
+
+ if (queue_id >= GAUDI_QUEUE_ID_SIZE ||
+ gaudi_queue_type[queue_id] != QUEUE_TYPE_INT) {
+ dev_err(hdev->dev, "Got invalid queue id %d\n", queue_id);
+ return NULL;
+ }
+
+ q = &gaudi->internal_qmans[queue_id];
+ *dma_handle = q->pq_dma_addr;
+ *queue_len = q->pq_size / QMAN_PQ_ENTRY_SIZE;
+
+ return q->pq_kernel_addr;
+}
+
+static int gaudi_send_cpu_message(struct hl_device *hdev, u32 *msg,
+ u16 len, u32 timeout, u64 *result)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_CPU_Q)) {
+ if (result)
+ *result = 0;
+ return 0;
+ }
+
+ if (!timeout)
+ timeout = GAUDI_MSG_TO_CPU_TIMEOUT_USEC;
+
+ return hl_fw_send_cpu_message(hdev, GAUDI_QUEUE_ID_CPU_PQ, msg, len,
+ timeout, result);
+}
+
+static int gaudi_test_queue(struct hl_device *hdev, u32 hw_queue_id)
+{
+ struct packet_msg_prot *fence_pkt;
+ dma_addr_t pkt_dma_addr;
+ u32 fence_val, tmp, timeout_usec;
+ dma_addr_t fence_dma_addr;
+ u32 *fence_ptr;
+ int rc;
+
+ if (hdev->pldm)
+ timeout_usec = GAUDI_PLDM_TEST_QUEUE_WAIT_USEC;
+ else
+ timeout_usec = GAUDI_TEST_QUEUE_WAIT_USEC;
+
+ fence_val = GAUDI_QMAN0_FENCE_VAL;
+
+ fence_ptr = hl_asic_dma_pool_zalloc(hdev, 4, GFP_KERNEL, &fence_dma_addr);
+ if (!fence_ptr) {
+ dev_err(hdev->dev,
+ "Failed to allocate memory for H/W queue %d testing\n",
+ hw_queue_id);
+ return -ENOMEM;
+ }
+
+ *fence_ptr = 0;
+
+ fence_pkt = hl_asic_dma_pool_zalloc(hdev, sizeof(struct packet_msg_prot), GFP_KERNEL,
+ &pkt_dma_addr);
+ if (!fence_pkt) {
+ dev_err(hdev->dev,
+ "Failed to allocate packet for H/W queue %d testing\n",
+ hw_queue_id);
+ rc = -ENOMEM;
+ goto free_fence_ptr;
+ }
+
+ tmp = FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_PROT);
+ tmp |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, 1);
+ tmp |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1);
+
+ fence_pkt->ctl = cpu_to_le32(tmp);
+ fence_pkt->value = cpu_to_le32(fence_val);
+ fence_pkt->addr = cpu_to_le64(fence_dma_addr);
+
+ rc = hl_hw_queue_send_cb_no_cmpl(hdev, hw_queue_id,
+ sizeof(struct packet_msg_prot),
+ pkt_dma_addr);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to send fence packet to H/W queue %d\n",
+ hw_queue_id);
+ goto free_pkt;
+ }
+
+ rc = hl_poll_timeout_memory(hdev, fence_ptr, tmp, (tmp == fence_val),
+ 1000, timeout_usec, true);
+
+ hl_hw_queue_inc_ci_kernel(hdev, hw_queue_id);
+
+ if (rc == -ETIMEDOUT) {
+ dev_err(hdev->dev,
+ "H/W queue %d test failed (scratch(0x%08llX) == 0x%08X)\n",
+ hw_queue_id, (unsigned long long) fence_dma_addr, tmp);
+ rc = -EIO;
+ }
+
+free_pkt:
+ hl_asic_dma_pool_free(hdev, (void *) fence_pkt, pkt_dma_addr);
+free_fence_ptr:
+ hl_asic_dma_pool_free(hdev, (void *) fence_ptr, fence_dma_addr);
+ return rc;
+}
+
+static int gaudi_test_cpu_queue(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ /*
+ * check capability here as send_cpu_message() won't update the result
+ * value if no capability
+ */
+ if (!(gaudi->hw_cap_initialized & HW_CAP_CPU_Q))
+ return 0;
+
+ return hl_fw_test_cpu_queue(hdev);
+}
+
+static int gaudi_test_queues(struct hl_device *hdev)
+{
+ int i, rc, ret_val = 0;
+
+ for (i = 0 ; i < hdev->asic_prop.max_queues ; i++) {
+ if (hdev->asic_prop.hw_queues_props[i].type == QUEUE_TYPE_EXT) {
+ rc = gaudi_test_queue(hdev, i);
+ if (rc)
+ ret_val = -EINVAL;
+ }
+ }
+
+ rc = gaudi_test_cpu_queue(hdev);
+ if (rc)
+ ret_val = -EINVAL;
+
+ return ret_val;
+}
+
+static void *gaudi_dma_pool_zalloc(struct hl_device *hdev, size_t size,
+ gfp_t mem_flags, dma_addr_t *dma_handle)
+{
+ void *kernel_addr;
+
+ if (size > GAUDI_DMA_POOL_BLK_SIZE)
+ return NULL;
+
+ kernel_addr = dma_pool_zalloc(hdev->dma_pool, mem_flags, dma_handle);
+
+ /* Shift to the device's base physical address of host memory */
+ if (kernel_addr)
+ *dma_handle += HOST_PHYS_BASE;
+
+ return kernel_addr;
+}
+
+static void gaudi_dma_pool_free(struct hl_device *hdev, void *vaddr,
+ dma_addr_t dma_addr)
+{
+ /* Cancel the device's base physical address of host memory */
+ dma_addr_t fixed_dma_addr = dma_addr - HOST_PHYS_BASE;
+
+ dma_pool_free(hdev->dma_pool, vaddr, fixed_dma_addr);
+}
+
+static void *gaudi_cpu_accessible_dma_pool_alloc(struct hl_device *hdev,
+ size_t size, dma_addr_t *dma_handle)
+{
+ return hl_fw_cpu_accessible_dma_pool_alloc(hdev, size, dma_handle);
+}
+
+static void gaudi_cpu_accessible_dma_pool_free(struct hl_device *hdev,
+ size_t size, void *vaddr)
+{
+ hl_fw_cpu_accessible_dma_pool_free(hdev, size, vaddr);
+}
+
+static u32 gaudi_get_dma_desc_list_size(struct hl_device *hdev, struct sg_table *sgt)
+{
+ struct scatterlist *sg, *sg_next_iter;
+ u32 count, dma_desc_cnt;
+ u64 len, len_next;
+ dma_addr_t addr, addr_next;
+
+ dma_desc_cnt = 0;
+
+ for_each_sgtable_dma_sg(sgt, sg, count) {
+ len = sg_dma_len(sg);
+ addr = sg_dma_address(sg);
+
+ if (len == 0)
+ break;
+
+ while ((count + 1) < sgt->nents) {
+ sg_next_iter = sg_next(sg);
+ len_next = sg_dma_len(sg_next_iter);
+ addr_next = sg_dma_address(sg_next_iter);
+
+ if (len_next == 0)
+ break;
+
+ if ((addr + len == addr_next) &&
+ (len + len_next <= DMA_MAX_TRANSFER_SIZE)) {
+ len += len_next;
+ count++;
+ sg = sg_next_iter;
+ } else {
+ break;
+ }
+ }
+
+ dma_desc_cnt++;
+ }
+
+ return dma_desc_cnt * sizeof(struct packet_lin_dma);
+}
+
+static int gaudi_pin_memory_before_cs(struct hl_device *hdev,
+ struct hl_cs_parser *parser,
+ struct packet_lin_dma *user_dma_pkt,
+ u64 addr, enum dma_data_direction dir)
+{
+ struct hl_userptr *userptr;
+ int rc;
+
+ if (hl_userptr_is_pinned(hdev, addr, le32_to_cpu(user_dma_pkt->tsize),
+ parser->job_userptr_list, &userptr))
+ goto already_pinned;
+
+ userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
+ if (!userptr)
+ return -ENOMEM;
+
+ rc = hl_pin_host_memory(hdev, addr, le32_to_cpu(user_dma_pkt->tsize),
+ userptr);
+ if (rc)
+ goto free_userptr;
+
+ list_add_tail(&userptr->job_node, parser->job_userptr_list);
+
+ rc = hdev->asic_funcs->asic_dma_map_sgtable(hdev, userptr->sgt, dir);
+ if (rc) {
+ dev_err(hdev->dev, "failed to map sgt with DMA region\n");
+ goto unpin_memory;
+ }
+
+ userptr->dma_mapped = true;
+ userptr->dir = dir;
+
+already_pinned:
+ parser->patched_cb_size +=
+ gaudi_get_dma_desc_list_size(hdev, userptr->sgt);
+
+ return 0;
+
+unpin_memory:
+ list_del(&userptr->job_node);
+ hl_unpin_host_memory(hdev, userptr);
+free_userptr:
+ kfree(userptr);
+ return rc;
+}
+
+static int gaudi_validate_dma_pkt_host(struct hl_device *hdev,
+ struct hl_cs_parser *parser,
+ struct packet_lin_dma *user_dma_pkt,
+ bool src_in_host)
+{
+ enum dma_data_direction dir;
+ bool skip_host_mem_pin = false, user_memset;
+ u64 addr;
+ int rc = 0;
+
+ user_memset = (le32_to_cpu(user_dma_pkt->ctl) &
+ GAUDI_PKT_LIN_DMA_CTL_MEMSET_MASK) >>
+ GAUDI_PKT_LIN_DMA_CTL_MEMSET_SHIFT;
+
+ if (src_in_host) {
+ if (user_memset)
+ skip_host_mem_pin = true;
+
+ dev_dbg(hdev->dev, "DMA direction is HOST --> DEVICE\n");
+ dir = DMA_TO_DEVICE;
+ addr = le64_to_cpu(user_dma_pkt->src_addr);
+ } else {
+ dev_dbg(hdev->dev, "DMA direction is DEVICE --> HOST\n");
+ dir = DMA_FROM_DEVICE;
+ addr = (le64_to_cpu(user_dma_pkt->dst_addr) &
+ GAUDI_PKT_LIN_DMA_DST_ADDR_MASK) >>
+ GAUDI_PKT_LIN_DMA_DST_ADDR_SHIFT;
+ }
+
+ if (skip_host_mem_pin)
+ parser->patched_cb_size += sizeof(*user_dma_pkt);
+ else
+ rc = gaudi_pin_memory_before_cs(hdev, parser, user_dma_pkt,
+ addr, dir);
+
+ return rc;
+}
+
+static int gaudi_validate_dma_pkt_no_mmu(struct hl_device *hdev,
+ struct hl_cs_parser *parser,
+ struct packet_lin_dma *user_dma_pkt)
+{
+ bool src_in_host = false;
+ u64 dst_addr = (le64_to_cpu(user_dma_pkt->dst_addr) &
+ GAUDI_PKT_LIN_DMA_DST_ADDR_MASK) >>
+ GAUDI_PKT_LIN_DMA_DST_ADDR_SHIFT;
+
+ dev_dbg(hdev->dev, "DMA packet details:\n");
+ dev_dbg(hdev->dev, "source == 0x%llx\n",
+ le64_to_cpu(user_dma_pkt->src_addr));
+ dev_dbg(hdev->dev, "destination == 0x%llx\n", dst_addr);
+ dev_dbg(hdev->dev, "size == %u\n", le32_to_cpu(user_dma_pkt->tsize));
+
+ /*
+ * Special handling for DMA with size 0. Bypass all validations
+ * because no transactions will be done except for WR_COMP, which
+ * is not a security issue
+ */
+ if (!le32_to_cpu(user_dma_pkt->tsize)) {
+ parser->patched_cb_size += sizeof(*user_dma_pkt);
+ return 0;
+ }
+
+ if (parser->hw_queue_id <= GAUDI_QUEUE_ID_DMA_0_3)
+ src_in_host = true;
+
+ return gaudi_validate_dma_pkt_host(hdev, parser, user_dma_pkt,
+ src_in_host);
+}
+
+static int gaudi_validate_load_and_exe_pkt(struct hl_device *hdev,
+ struct hl_cs_parser *parser,
+ struct packet_load_and_exe *user_pkt)
+{
+ u32 cfg;
+
+ cfg = le32_to_cpu(user_pkt->cfg);
+
+ if (cfg & GAUDI_PKT_LOAD_AND_EXE_CFG_DST_MASK) {
+ dev_err(hdev->dev,
+ "User not allowed to use Load and Execute\n");
+ return -EPERM;
+ }
+
+ parser->patched_cb_size += sizeof(struct packet_load_and_exe);
+
+ return 0;
+}
+
+static int gaudi_validate_cb(struct hl_device *hdev,
+ struct hl_cs_parser *parser, bool is_mmu)
+{
+ u32 cb_parsed_length = 0;
+ int rc = 0;
+
+ parser->patched_cb_size = 0;
+
+ /* cb_user_size is more than 0 so loop will always be executed */
+ while (cb_parsed_length < parser->user_cb_size) {
+ enum packet_id pkt_id;
+ u16 pkt_size;
+ struct gaudi_packet *user_pkt;
+
+ user_pkt = parser->user_cb->kernel_address + cb_parsed_length;
+
+ pkt_id = (enum packet_id) (
+ (le64_to_cpu(user_pkt->header) &
+ PACKET_HEADER_PACKET_ID_MASK) >>
+ PACKET_HEADER_PACKET_ID_SHIFT);
+
+ if (!validate_packet_id(pkt_id)) {
+ dev_err(hdev->dev, "Invalid packet id %u\n", pkt_id);
+ rc = -EINVAL;
+ break;
+ }
+
+ pkt_size = gaudi_packet_sizes[pkt_id];
+ cb_parsed_length += pkt_size;
+ if (cb_parsed_length > parser->user_cb_size) {
+ dev_err(hdev->dev,
+ "packet 0x%x is out of CB boundary\n", pkt_id);
+ rc = -EINVAL;
+ break;
+ }
+
+ switch (pkt_id) {
+ case PACKET_MSG_PROT:
+ dev_err(hdev->dev,
+ "User not allowed to use MSG_PROT\n");
+ rc = -EPERM;
+ break;
+
+ case PACKET_CP_DMA:
+ dev_err(hdev->dev, "User not allowed to use CP_DMA\n");
+ rc = -EPERM;
+ break;
+
+ case PACKET_STOP:
+ dev_err(hdev->dev, "User not allowed to use STOP\n");
+ rc = -EPERM;
+ break;
+
+ case PACKET_WREG_BULK:
+ dev_err(hdev->dev,
+ "User not allowed to use WREG_BULK\n");
+ rc = -EPERM;
+ break;
+
+ case PACKET_LOAD_AND_EXE:
+ rc = gaudi_validate_load_and_exe_pkt(hdev, parser,
+ (struct packet_load_and_exe *) user_pkt);
+ break;
+
+ case PACKET_LIN_DMA:
+ parser->contains_dma_pkt = true;
+ if (is_mmu)
+ parser->patched_cb_size += pkt_size;
+ else
+ rc = gaudi_validate_dma_pkt_no_mmu(hdev, parser,
+ (struct packet_lin_dma *) user_pkt);
+ break;
+
+ case PACKET_WREG_32:
+ case PACKET_MSG_LONG:
+ case PACKET_MSG_SHORT:
+ case PACKET_REPEAT:
+ case PACKET_FENCE:
+ case PACKET_NOP:
+ case PACKET_ARB_POINT:
+ parser->patched_cb_size += pkt_size;
+ break;
+
+ default:
+ dev_err(hdev->dev, "Invalid packet header 0x%x\n",
+ pkt_id);
+ rc = -EINVAL;
+ break;
+ }
+
+ if (rc)
+ break;
+ }
+
+ /*
+ * The new CB should have space at the end for two MSG_PROT packets:
+ * 1. Optional NOP padding for cacheline alignment
+ * 2. A packet that will act as a completion packet
+ * 3. A packet that will generate MSI interrupt
+ */
+ if (parser->completion)
+ parser->patched_cb_size += gaudi_get_patched_cb_extra_size(
+ parser->patched_cb_size);
+
+ return rc;
+}
+
+static int gaudi_patch_dma_packet(struct hl_device *hdev,
+ struct hl_cs_parser *parser,
+ struct packet_lin_dma *user_dma_pkt,
+ struct packet_lin_dma *new_dma_pkt,
+ u32 *new_dma_pkt_size)
+{
+ struct hl_userptr *userptr;
+ struct scatterlist *sg, *sg_next_iter;
+ u32 count, dma_desc_cnt, user_wrcomp_en_mask, ctl;
+ u64 len, len_next;
+ dma_addr_t dma_addr, dma_addr_next;
+ u64 device_memory_addr, addr;
+ enum dma_data_direction dir;
+ struct sg_table *sgt;
+ bool src_in_host = false;
+ bool skip_host_mem_pin = false;
+ bool user_memset;
+
+ ctl = le32_to_cpu(user_dma_pkt->ctl);
+
+ if (parser->hw_queue_id <= GAUDI_QUEUE_ID_DMA_0_3)
+ src_in_host = true;
+
+ user_memset = (ctl & GAUDI_PKT_LIN_DMA_CTL_MEMSET_MASK) >>
+ GAUDI_PKT_LIN_DMA_CTL_MEMSET_SHIFT;
+
+ if (src_in_host) {
+ addr = le64_to_cpu(user_dma_pkt->src_addr);
+ device_memory_addr = le64_to_cpu(user_dma_pkt->dst_addr);
+ dir = DMA_TO_DEVICE;
+ if (user_memset)
+ skip_host_mem_pin = true;
+ } else {
+ addr = le64_to_cpu(user_dma_pkt->dst_addr);
+ device_memory_addr = le64_to_cpu(user_dma_pkt->src_addr);
+ dir = DMA_FROM_DEVICE;
+ }
+
+ if ((!skip_host_mem_pin) &&
+ (!hl_userptr_is_pinned(hdev, addr,
+ le32_to_cpu(user_dma_pkt->tsize),
+ parser->job_userptr_list, &userptr))) {
+ dev_err(hdev->dev, "Userptr 0x%llx + 0x%x NOT mapped\n",
+ addr, user_dma_pkt->tsize);
+ return -EFAULT;
+ }
+
+ if ((user_memset) && (dir == DMA_TO_DEVICE)) {
+ memcpy(new_dma_pkt, user_dma_pkt, sizeof(*user_dma_pkt));
+ *new_dma_pkt_size = sizeof(*user_dma_pkt);
+ return 0;
+ }
+
+ user_wrcomp_en_mask = ctl & GAUDI_PKT_LIN_DMA_CTL_WRCOMP_EN_MASK;
+
+ sgt = userptr->sgt;
+ dma_desc_cnt = 0;
+
+ for_each_sgtable_dma_sg(sgt, sg, count) {
+ len = sg_dma_len(sg);
+ dma_addr = sg_dma_address(sg);
+
+ if (len == 0)
+ break;
+
+ while ((count + 1) < sgt->nents) {
+ sg_next_iter = sg_next(sg);
+ len_next = sg_dma_len(sg_next_iter);
+ dma_addr_next = sg_dma_address(sg_next_iter);
+
+ if (len_next == 0)
+ break;
+
+ if ((dma_addr + len == dma_addr_next) &&
+ (len + len_next <= DMA_MAX_TRANSFER_SIZE)) {
+ len += len_next;
+ count++;
+ sg = sg_next_iter;
+ } else {
+ break;
+ }
+ }
+
+ ctl = le32_to_cpu(user_dma_pkt->ctl);
+ if (likely(dma_desc_cnt))
+ ctl &= ~GAUDI_PKT_CTL_EB_MASK;
+ ctl &= ~GAUDI_PKT_LIN_DMA_CTL_WRCOMP_EN_MASK;
+ new_dma_pkt->ctl = cpu_to_le32(ctl);
+ new_dma_pkt->tsize = cpu_to_le32(len);
+
+ if (dir == DMA_TO_DEVICE) {
+ new_dma_pkt->src_addr = cpu_to_le64(dma_addr);
+ new_dma_pkt->dst_addr = cpu_to_le64(device_memory_addr);
+ } else {
+ new_dma_pkt->src_addr = cpu_to_le64(device_memory_addr);
+ new_dma_pkt->dst_addr = cpu_to_le64(dma_addr);
+ }
+
+ if (!user_memset)
+ device_memory_addr += len;
+ dma_desc_cnt++;
+ new_dma_pkt++;
+ }
+
+ if (!dma_desc_cnt) {
+ dev_err(hdev->dev,
+ "Error of 0 SG entries when patching DMA packet\n");
+ return -EFAULT;
+ }
+
+ /* Fix the last dma packet - wrcomp must be as user set it */
+ new_dma_pkt--;
+ new_dma_pkt->ctl |= cpu_to_le32(user_wrcomp_en_mask);
+
+ *new_dma_pkt_size = dma_desc_cnt * sizeof(struct packet_lin_dma);
+
+ return 0;
+}
+
+static int gaudi_patch_cb(struct hl_device *hdev,
+ struct hl_cs_parser *parser)
+{
+ u32 cb_parsed_length = 0;
+ u32 cb_patched_cur_length = 0;
+ int rc = 0;
+
+ /* cb_user_size is more than 0 so loop will always be executed */
+ while (cb_parsed_length < parser->user_cb_size) {
+ enum packet_id pkt_id;
+ u16 pkt_size;
+ u32 new_pkt_size = 0;
+ struct gaudi_packet *user_pkt, *kernel_pkt;
+
+ user_pkt = parser->user_cb->kernel_address + cb_parsed_length;
+ kernel_pkt = parser->patched_cb->kernel_address +
+ cb_patched_cur_length;
+
+ pkt_id = (enum packet_id) (
+ (le64_to_cpu(user_pkt->header) &
+ PACKET_HEADER_PACKET_ID_MASK) >>
+ PACKET_HEADER_PACKET_ID_SHIFT);
+
+ if (!validate_packet_id(pkt_id)) {
+ dev_err(hdev->dev, "Invalid packet id %u\n", pkt_id);
+ rc = -EINVAL;
+ break;
+ }
+
+ pkt_size = gaudi_packet_sizes[pkt_id];
+ cb_parsed_length += pkt_size;
+ if (cb_parsed_length > parser->user_cb_size) {
+ dev_err(hdev->dev,
+ "packet 0x%x is out of CB boundary\n", pkt_id);
+ rc = -EINVAL;
+ break;
+ }
+
+ switch (pkt_id) {
+ case PACKET_LIN_DMA:
+ rc = gaudi_patch_dma_packet(hdev, parser,
+ (struct packet_lin_dma *) user_pkt,
+ (struct packet_lin_dma *) kernel_pkt,
+ &new_pkt_size);
+ cb_patched_cur_length += new_pkt_size;
+ break;
+
+ case PACKET_MSG_PROT:
+ dev_err(hdev->dev,
+ "User not allowed to use MSG_PROT\n");
+ rc = -EPERM;
+ break;
+
+ case PACKET_CP_DMA:
+ dev_err(hdev->dev, "User not allowed to use CP_DMA\n");
+ rc = -EPERM;
+ break;
+
+ case PACKET_STOP:
+ dev_err(hdev->dev, "User not allowed to use STOP\n");
+ rc = -EPERM;
+ break;
+
+ case PACKET_WREG_32:
+ case PACKET_WREG_BULK:
+ case PACKET_MSG_LONG:
+ case PACKET_MSG_SHORT:
+ case PACKET_REPEAT:
+ case PACKET_FENCE:
+ case PACKET_NOP:
+ case PACKET_ARB_POINT:
+ case PACKET_LOAD_AND_EXE:
+ memcpy(kernel_pkt, user_pkt, pkt_size);
+ cb_patched_cur_length += pkt_size;
+ break;
+
+ default:
+ dev_err(hdev->dev, "Invalid packet header 0x%x\n",
+ pkt_id);
+ rc = -EINVAL;
+ break;
+ }
+
+ if (rc)
+ break;
+ }
+
+ return rc;
+}
+
+static int gaudi_parse_cb_mmu(struct hl_device *hdev,
+ struct hl_cs_parser *parser)
+{
+ u64 handle;
+ u32 patched_cb_size;
+ struct hl_cb *user_cb;
+ int rc;
+
+ /*
+ * The new CB should have space at the end for two MSG_PROT packets:
+ * 1. Optional NOP padding for cacheline alignment
+ * 2. A packet that will act as a completion packet
+ * 3. A packet that will generate MSI interrupt
+ */
+ if (parser->completion)
+ parser->patched_cb_size = parser->user_cb_size +
+ gaudi_get_patched_cb_extra_size(parser->user_cb_size);
+ else
+ parser->patched_cb_size = parser->user_cb_size;
+
+ rc = hl_cb_create(hdev, &hdev->kernel_mem_mgr, hdev->kernel_ctx,
+ parser->patched_cb_size, false, false,
+ &handle);
+
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to allocate patched CB for DMA CS %d\n",
+ rc);
+ return rc;
+ }
+
+ parser->patched_cb = hl_cb_get(&hdev->kernel_mem_mgr, handle);
+ /* hl_cb_get should never fail */
+ if (!parser->patched_cb) {
+ dev_crit(hdev->dev, "DMA CB handle invalid 0x%llx\n", handle);
+ rc = -EFAULT;
+ goto out;
+ }
+
+ /*
+ * We are protected from overflow because the check
+ * "parser->user_cb_size <= parser->user_cb->size" was done in get_cb_from_cs_chunk()
+ * in the common code. That check is done only if is_kernel_allocated_cb is true.
+ *
+ * There is no option to reach here without going through that check because:
+ * 1. validate_queue_index() assigns true to is_kernel_allocated_cb for any submission to
+ * an external queue.
+ * 2. For Gaudi, we only parse CBs that were submitted to the external queues.
+ */
+ memcpy(parser->patched_cb->kernel_address,
+ parser->user_cb->kernel_address,
+ parser->user_cb_size);
+
+ patched_cb_size = parser->patched_cb_size;
+
+ /* Validate patched CB instead of user CB */
+ user_cb = parser->user_cb;
+ parser->user_cb = parser->patched_cb;
+ rc = gaudi_validate_cb(hdev, parser, true);
+ parser->user_cb = user_cb;
+
+ if (rc) {
+ hl_cb_put(parser->patched_cb);
+ goto out;
+ }
+
+ if (patched_cb_size != parser->patched_cb_size) {
+ dev_err(hdev->dev, "user CB size mismatch\n");
+ hl_cb_put(parser->patched_cb);
+ rc = -EINVAL;
+ goto out;
+ }
+
+out:
+ /*
+ * Always call cb destroy here because we still have 1 reference
+ * to it by calling cb_get earlier. After the job will be completed,
+ * cb_put will release it, but here we want to remove it from the
+ * idr
+ */
+ hl_cb_destroy(&hdev->kernel_mem_mgr, handle);
+
+ return rc;
+}
+
+static int gaudi_parse_cb_no_mmu(struct hl_device *hdev,
+ struct hl_cs_parser *parser)
+{
+ u64 handle;
+ int rc;
+
+ rc = gaudi_validate_cb(hdev, parser, false);
+
+ if (rc)
+ goto free_userptr;
+
+ rc = hl_cb_create(hdev, &hdev->kernel_mem_mgr, hdev->kernel_ctx,
+ parser->patched_cb_size, false, false,
+ &handle);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to allocate patched CB for DMA CS %d\n", rc);
+ goto free_userptr;
+ }
+
+ parser->patched_cb = hl_cb_get(&hdev->kernel_mem_mgr, handle);
+ /* hl_cb_get should never fail here */
+ if (!parser->patched_cb) {
+ dev_crit(hdev->dev, "DMA CB handle invalid 0x%llx\n", handle);
+ rc = -EFAULT;
+ goto out;
+ }
+
+ rc = gaudi_patch_cb(hdev, parser);
+
+ if (rc)
+ hl_cb_put(parser->patched_cb);
+
+out:
+ /*
+ * Always call cb destroy here because we still have 1 reference
+ * to it by calling cb_get earlier. After the job will be completed,
+ * cb_put will release it, but here we want to remove it from the
+ * idr
+ */
+ hl_cb_destroy(&hdev->kernel_mem_mgr, handle);
+
+free_userptr:
+ if (rc)
+ hl_userptr_delete_list(hdev, parser->job_userptr_list);
+ return rc;
+}
+
+static int gaudi_parse_cb_no_ext_queue(struct hl_device *hdev,
+ struct hl_cs_parser *parser)
+{
+ struct asic_fixed_properties *asic_prop = &hdev->asic_prop;
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ u32 nic_queue_offset, nic_mask_q_id;
+
+ if ((parser->hw_queue_id >= GAUDI_QUEUE_ID_NIC_0_0) &&
+ (parser->hw_queue_id <= GAUDI_QUEUE_ID_NIC_9_3)) {
+ nic_queue_offset = parser->hw_queue_id - GAUDI_QUEUE_ID_NIC_0_0;
+ nic_mask_q_id = 1 << (HW_CAP_NIC_SHIFT + (nic_queue_offset >> 2));
+
+ if (!(gaudi->hw_cap_initialized & nic_mask_q_id)) {
+ dev_err(hdev->dev, "h/w queue %d is disabled\n", parser->hw_queue_id);
+ return -EINVAL;
+ }
+ }
+
+ /* For internal queue jobs just check if CB address is valid */
+ if (hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb,
+ parser->user_cb_size,
+ asic_prop->sram_user_base_address,
+ asic_prop->sram_end_address))
+ return 0;
+
+ if (hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb,
+ parser->user_cb_size,
+ asic_prop->dram_user_base_address,
+ asic_prop->dram_end_address))
+ return 0;
+
+ /* PMMU and HPMMU addresses are equal, check only one of them */
+ if (hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb,
+ parser->user_cb_size,
+ asic_prop->pmmu.start_addr,
+ asic_prop->pmmu.end_addr))
+ return 0;
+
+ dev_err(hdev->dev,
+ "CB address 0x%px + 0x%x for internal QMAN is not valid\n",
+ parser->user_cb, parser->user_cb_size);
+
+ return -EFAULT;
+}
+
+static int gaudi_cs_parser(struct hl_device *hdev, struct hl_cs_parser *parser)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ if (parser->queue_type == QUEUE_TYPE_INT)
+ return gaudi_parse_cb_no_ext_queue(hdev, parser);
+
+ if (gaudi->hw_cap_initialized & HW_CAP_MMU)
+ return gaudi_parse_cb_mmu(hdev, parser);
+ else
+ return gaudi_parse_cb_no_mmu(hdev, parser);
+}
+
+static void gaudi_add_end_of_cb_packets(struct hl_device *hdev, void *kernel_address,
+ u32 len, u32 original_len, u64 cq_addr, u32 cq_val,
+ u32 msi_vec, bool eb)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ struct packet_msg_prot *cq_pkt;
+ struct packet_nop *cq_padding;
+ u64 msi_addr;
+ u32 tmp;
+
+ cq_padding = kernel_address + original_len;
+ cq_pkt = kernel_address + len - (sizeof(struct packet_msg_prot) * 2);
+
+ while ((void *)cq_padding < (void *)cq_pkt) {
+ cq_padding->ctl = cpu_to_le32(FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_NOP));
+ cq_padding++;
+ }
+
+ tmp = FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_PROT);
+ tmp |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1);
+
+ if (eb)
+ tmp |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, 1);
+
+ cq_pkt->ctl = cpu_to_le32(tmp);
+ cq_pkt->value = cpu_to_le32(cq_val);
+ cq_pkt->addr = cpu_to_le64(cq_addr);
+
+ cq_pkt++;
+
+ tmp = FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_PROT);
+ tmp |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1);
+ cq_pkt->ctl = cpu_to_le32(tmp);
+ cq_pkt->value = cpu_to_le32(1);
+
+ if (gaudi->multi_msi_mode)
+ msi_addr = mmPCIE_MSI_INTR_0 + msi_vec * 4;
+ else
+ msi_addr = mmPCIE_CORE_MSI_REQ;
+
+ cq_pkt->addr = cpu_to_le64(CFG_BASE + msi_addr);
+}
+
+static void gaudi_update_eq_ci(struct hl_device *hdev, u32 val)
+{
+ WREG32(mmCPU_IF_EQ_RD_OFFS, val);
+}
+
+static int gaudi_memset_device_memory(struct hl_device *hdev, u64 addr,
+ u32 size, u64 val)
+{
+ struct packet_lin_dma *lin_dma_pkt;
+ struct hl_cs_job *job;
+ u32 cb_size, ctl, err_cause;
+ struct hl_cb *cb;
+ int rc;
+
+ cb = hl_cb_kernel_create(hdev, PAGE_SIZE, false);
+ if (!cb)
+ return -EFAULT;
+
+ lin_dma_pkt = cb->kernel_address;
+ memset(lin_dma_pkt, 0, sizeof(*lin_dma_pkt));
+ cb_size = sizeof(*lin_dma_pkt);
+
+ ctl = FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_LIN_DMA);
+ ctl |= FIELD_PREP(GAUDI_PKT_LIN_DMA_CTL_MEMSET_MASK, 1);
+ ctl |= FIELD_PREP(GAUDI_PKT_LIN_DMA_CTL_LIN_MASK, 1);
+ ctl |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1);
+ ctl |= FIELD_PREP(GAUDI_PKT_CTL_RB_MASK, 1);
+
+ lin_dma_pkt->ctl = cpu_to_le32(ctl);
+ lin_dma_pkt->src_addr = cpu_to_le64(val);
+ lin_dma_pkt->dst_addr |= cpu_to_le64(addr);
+ lin_dma_pkt->tsize = cpu_to_le32(size);
+
+ job = hl_cs_allocate_job(hdev, QUEUE_TYPE_EXT, true);
+ if (!job) {
+ dev_err(hdev->dev, "Failed to allocate a new job\n");
+ rc = -ENOMEM;
+ goto release_cb;
+ }
+
+ /* Verify DMA is OK */
+ err_cause = RREG32(mmDMA0_CORE_ERR_CAUSE);
+ if (err_cause && !hdev->init_done) {
+ dev_dbg(hdev->dev,
+ "Clearing DMA0 engine from errors (cause 0x%x)\n",
+ err_cause);
+ WREG32(mmDMA0_CORE_ERR_CAUSE, err_cause);
+ }
+
+ job->id = 0;
+ job->user_cb = cb;
+ atomic_inc(&job->user_cb->cs_cnt);
+ job->user_cb_size = cb_size;
+ job->hw_queue_id = GAUDI_QUEUE_ID_DMA_0_0;
+ job->patched_cb = job->user_cb;
+ job->job_cb_size = job->user_cb_size + sizeof(struct packet_msg_prot);
+
+ hl_debugfs_add_job(hdev, job);
+
+ rc = gaudi_send_job_on_qman0(hdev, job);
+ hl_debugfs_remove_job(hdev, job);
+ kfree(job);
+ atomic_dec(&cb->cs_cnt);
+
+ /* Verify DMA is OK */
+ err_cause = RREG32(mmDMA0_CORE_ERR_CAUSE);
+ if (err_cause) {
+ dev_err(hdev->dev, "DMA Failed, cause 0x%x\n", err_cause);
+ rc = -EIO;
+ if (!hdev->init_done) {
+ dev_dbg(hdev->dev,
+ "Clearing DMA0 engine from errors (cause 0x%x)\n",
+ err_cause);
+ WREG32(mmDMA0_CORE_ERR_CAUSE, err_cause);
+ }
+ }
+
+release_cb:
+ hl_cb_put(cb);
+ hl_cb_destroy(&hdev->kernel_mem_mgr, cb->buf->handle);
+
+ return rc;
+}
+
+static int gaudi_memset_registers(struct hl_device *hdev, u64 reg_base,
+ u32 num_regs, u32 val)
+{
+ struct packet_msg_long *pkt;
+ struct hl_cs_job *job;
+ u32 cb_size, ctl;
+ struct hl_cb *cb;
+ int i, rc;
+
+ cb_size = (sizeof(*pkt) * num_regs) + sizeof(struct packet_msg_prot);
+
+ if (cb_size > SZ_2M) {
+ dev_err(hdev->dev, "CB size must be smaller than %uMB", SZ_2M);
+ return -ENOMEM;
+ }
+
+ cb = hl_cb_kernel_create(hdev, cb_size, false);
+ if (!cb)
+ return -EFAULT;
+
+ pkt = cb->kernel_address;
+
+ ctl = FIELD_PREP(GAUDI_PKT_LONG_CTL_OP_MASK, 0); /* write the value */
+ ctl |= FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_LONG);
+ ctl |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, 1);
+ ctl |= FIELD_PREP(GAUDI_PKT_CTL_RB_MASK, 1);
+ ctl |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1);
+
+ for (i = 0; i < num_regs ; i++, pkt++) {
+ pkt->ctl = cpu_to_le32(ctl);
+ pkt->value = cpu_to_le32(val);
+ pkt->addr = cpu_to_le64(reg_base + (i * 4));
+ }
+
+ job = hl_cs_allocate_job(hdev, QUEUE_TYPE_EXT, true);
+ if (!job) {
+ dev_err(hdev->dev, "Failed to allocate a new job\n");
+ rc = -ENOMEM;
+ goto release_cb;
+ }
+
+ job->id = 0;
+ job->user_cb = cb;
+ atomic_inc(&job->user_cb->cs_cnt);
+ job->user_cb_size = cb_size;
+ job->hw_queue_id = GAUDI_QUEUE_ID_DMA_0_0;
+ job->patched_cb = job->user_cb;
+ job->job_cb_size = cb_size;
+
+ hl_debugfs_add_job(hdev, job);
+
+ rc = gaudi_send_job_on_qman0(hdev, job);
+ hl_debugfs_remove_job(hdev, job);
+ kfree(job);
+ atomic_dec(&cb->cs_cnt);
+
+release_cb:
+ hl_cb_put(cb);
+ hl_cb_destroy(&hdev->kernel_mem_mgr, cb->buf->handle);
+
+ return rc;
+}
+
+static int gaudi_restore_sm_registers(struct hl_device *hdev)
+{
+ u64 base_addr;
+ u32 num_regs;
+ int rc;
+
+ base_addr = CFG_BASE + mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0;
+ num_regs = NUM_OF_SOB_IN_BLOCK;
+ rc = gaudi_memset_registers(hdev, base_addr, num_regs, 0);
+ if (rc) {
+ dev_err(hdev->dev, "failed resetting SM registers");
+ return -ENOMEM;
+ }
+
+ base_addr = CFG_BASE + mmSYNC_MNGR_E_S_SYNC_MNGR_OBJS_SOB_OBJ_0;
+ num_regs = NUM_OF_SOB_IN_BLOCK;
+ rc = gaudi_memset_registers(hdev, base_addr, num_regs, 0);
+ if (rc) {
+ dev_err(hdev->dev, "failed resetting SM registers");
+ return -ENOMEM;
+ }
+
+ base_addr = CFG_BASE + mmSYNC_MNGR_W_N_SYNC_MNGR_OBJS_SOB_OBJ_0;
+ num_regs = NUM_OF_SOB_IN_BLOCK;
+ rc = gaudi_memset_registers(hdev, base_addr, num_regs, 0);
+ if (rc) {
+ dev_err(hdev->dev, "failed resetting SM registers");
+ return -ENOMEM;
+ }
+
+ base_addr = CFG_BASE + mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_STATUS_0;
+ num_regs = NUM_OF_MONITORS_IN_BLOCK;
+ rc = gaudi_memset_registers(hdev, base_addr, num_regs, 0);
+ if (rc) {
+ dev_err(hdev->dev, "failed resetting SM registers");
+ return -ENOMEM;
+ }
+
+ base_addr = CFG_BASE + mmSYNC_MNGR_E_S_SYNC_MNGR_OBJS_MON_STATUS_0;
+ num_regs = NUM_OF_MONITORS_IN_BLOCK;
+ rc = gaudi_memset_registers(hdev, base_addr, num_regs, 0);
+ if (rc) {
+ dev_err(hdev->dev, "failed resetting SM registers");
+ return -ENOMEM;
+ }
+
+ base_addr = CFG_BASE + mmSYNC_MNGR_W_N_SYNC_MNGR_OBJS_MON_STATUS_0;
+ num_regs = NUM_OF_MONITORS_IN_BLOCK;
+ rc = gaudi_memset_registers(hdev, base_addr, num_regs, 0);
+ if (rc) {
+ dev_err(hdev->dev, "failed resetting SM registers");
+ return -ENOMEM;
+ }
+
+ base_addr = CFG_BASE + mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0 +
+ (GAUDI_FIRST_AVAILABLE_W_S_SYNC_OBJECT * 4);
+ num_regs = NUM_OF_SOB_IN_BLOCK - GAUDI_FIRST_AVAILABLE_W_S_SYNC_OBJECT;
+ rc = gaudi_memset_registers(hdev, base_addr, num_regs, 0);
+ if (rc) {
+ dev_err(hdev->dev, "failed resetting SM registers");
+ return -ENOMEM;
+ }
+
+ base_addr = CFG_BASE + mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_STATUS_0 +
+ (GAUDI_FIRST_AVAILABLE_W_S_MONITOR * 4);
+ num_regs = NUM_OF_MONITORS_IN_BLOCK - GAUDI_FIRST_AVAILABLE_W_S_MONITOR;
+ rc = gaudi_memset_registers(hdev, base_addr, num_regs, 0);
+ if (rc) {
+ dev_err(hdev->dev, "failed resetting SM registers");
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static void gaudi_restore_dma_registers(struct hl_device *hdev)
+{
+ u32 sob_delta = mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_1 -
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0;
+ int i;
+
+ for (i = 0 ; i < DMA_NUMBER_OF_CHANNELS ; i++) {
+ u64 sob_addr = CFG_BASE +
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0 +
+ (i * sob_delta);
+ u32 dma_offset = i * DMA_CORE_OFFSET;
+
+ WREG32(mmDMA0_CORE_WR_COMP_ADDR_LO + dma_offset,
+ lower_32_bits(sob_addr));
+ WREG32(mmDMA0_CORE_WR_COMP_ADDR_HI + dma_offset,
+ upper_32_bits(sob_addr));
+ WREG32(mmDMA0_CORE_WR_COMP_WDATA + dma_offset, 0x80000001);
+
+ /* For DMAs 2-7, need to restore WR_AWUSER_31_11 as it can be
+ * modified by the user for SRAM reduction
+ */
+ if (i > 1)
+ WREG32(mmDMA0_CORE_WR_AWUSER_31_11 + dma_offset,
+ 0x00000001);
+ }
+}
+
+static void gaudi_restore_qm_registers(struct hl_device *hdev)
+{
+ u32 qman_offset;
+ int i;
+
+ for (i = 0 ; i < DMA_NUMBER_OF_CHANNELS ; i++) {
+ qman_offset = i * DMA_QMAN_OFFSET;
+ WREG32(mmDMA0_QM_ARB_CFG_0 + qman_offset, 0);
+ }
+
+ for (i = 0 ; i < MME_NUMBER_OF_MASTER_ENGINES ; i++) {
+ qman_offset = i * (mmMME2_QM_BASE - mmMME0_QM_BASE);
+ WREG32(mmMME0_QM_ARB_CFG_0 + qman_offset, 0);
+ }
+
+ for (i = 0 ; i < TPC_NUMBER_OF_ENGINES ; i++) {
+ qman_offset = i * TPC_QMAN_OFFSET;
+ WREG32(mmTPC0_QM_ARB_CFG_0 + qman_offset, 0);
+ }
+
+ for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++) {
+ qman_offset = (i >> 1) * NIC_MACRO_QMAN_OFFSET +
+ (i & 0x1) * NIC_ENGINE_QMAN_OFFSET;
+ WREG32(mmNIC0_QM0_ARB_CFG_0 + qman_offset, 0);
+ }
+}
+
+static int gaudi_restore_user_registers(struct hl_device *hdev)
+{
+ int rc;
+
+ rc = gaudi_restore_sm_registers(hdev);
+ if (rc)
+ return rc;
+
+ gaudi_restore_dma_registers(hdev);
+ gaudi_restore_qm_registers(hdev);
+
+ return 0;
+}
+
+static int gaudi_context_switch(struct hl_device *hdev, u32 asid)
+{
+ return 0;
+}
+
+static int gaudi_mmu_clear_pgt_range(struct hl_device *hdev)
+{
+ u32 size = hdev->asic_prop.mmu_pgt_size +
+ hdev->asic_prop.mmu_cache_mng_size;
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ u64 addr = hdev->asic_prop.mmu_pgt_addr;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_MMU))
+ return 0;
+
+ return gaudi_memset_device_memory(hdev, addr, size, 0);
+}
+
+static void gaudi_restore_phase_topology(struct hl_device *hdev)
+{
+
+}
+
+static int gaudi_dma_core_transfer(struct hl_device *hdev, int dma_id, u64 addr,
+ u32 size_to_dma, dma_addr_t dma_addr)
+{
+ u32 err_cause, val;
+ u64 dma_offset;
+ int rc;
+
+ dma_offset = dma_id * DMA_CORE_OFFSET;
+
+ WREG32(mmDMA0_CORE_SRC_BASE_LO + dma_offset, lower_32_bits(addr));
+ WREG32(mmDMA0_CORE_SRC_BASE_HI + dma_offset, upper_32_bits(addr));
+ WREG32(mmDMA0_CORE_DST_BASE_LO + dma_offset, lower_32_bits(dma_addr));
+ WREG32(mmDMA0_CORE_DST_BASE_HI + dma_offset, upper_32_bits(dma_addr));
+ WREG32(mmDMA0_CORE_DST_TSIZE_0 + dma_offset, size_to_dma);
+ WREG32(mmDMA0_CORE_COMMIT + dma_offset,
+ (1 << DMA0_CORE_COMMIT_LIN_SHIFT));
+
+ rc = hl_poll_timeout(
+ hdev,
+ mmDMA0_CORE_STS0 + dma_offset,
+ val,
+ ((val & DMA0_CORE_STS0_BUSY_MASK) == 0),
+ 0,
+ 1000000);
+
+ if (rc) {
+ dev_err(hdev->dev,
+ "DMA %d timed-out during reading of 0x%llx\n",
+ dma_id, addr);
+ return -EIO;
+ }
+
+ /* Verify DMA is OK */
+ err_cause = RREG32(mmDMA0_CORE_ERR_CAUSE + dma_offset);
+ if (err_cause) {
+ dev_err(hdev->dev, "DMA Failed, cause 0x%x\n", err_cause);
+ dev_dbg(hdev->dev,
+ "Clearing DMA0 engine from errors (cause 0x%x)\n",
+ err_cause);
+ WREG32(mmDMA0_CORE_ERR_CAUSE + dma_offset, err_cause);
+
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static int gaudi_debugfs_read_dma(struct hl_device *hdev, u64 addr, u32 size,
+ void *blob_addr)
+{
+ u32 dma_core_sts0, err_cause, cfg1, size_left, pos, size_to_dma;
+ u32 qm_glbl_sts0, qm_cgm_sts;
+ u64 dma_offset, qm_offset;
+ dma_addr_t dma_addr;
+ void *kernel_addr;
+ bool is_eng_idle;
+ int rc = 0, dma_id;
+
+ kernel_addr = hl_asic_dma_alloc_coherent(hdev, SZ_2M, &dma_addr, GFP_KERNEL | __GFP_ZERO);
+
+ if (!kernel_addr)
+ return -ENOMEM;
+
+ hdev->asic_funcs->hw_queues_lock(hdev);
+
+ dma_id = gaudi_dma_assignment[GAUDI_PCI_DMA_1];
+ dma_offset = dma_id * DMA_CORE_OFFSET;
+ qm_offset = dma_id * DMA_QMAN_OFFSET;
+ dma_core_sts0 = RREG32(mmDMA0_CORE_STS0 + dma_offset);
+ qm_glbl_sts0 = RREG32(mmDMA0_QM_GLBL_STS0 + qm_offset);
+ qm_cgm_sts = RREG32(mmDMA0_QM_CGM_STS + qm_offset);
+ is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_cgm_sts) &&
+ IS_DMA_IDLE(dma_core_sts0);
+
+ if (!is_eng_idle) {
+ dma_id = gaudi_dma_assignment[GAUDI_PCI_DMA_2];
+ dma_offset = dma_id * DMA_CORE_OFFSET;
+ qm_offset = dma_id * DMA_QMAN_OFFSET;
+ dma_core_sts0 = RREG32(mmDMA0_CORE_STS0 + dma_offset);
+ qm_glbl_sts0 = RREG32(mmDMA0_QM_GLBL_STS0 + qm_offset);
+ qm_cgm_sts = RREG32(mmDMA0_QM_CGM_STS + qm_offset);
+ is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_cgm_sts) &&
+ IS_DMA_IDLE(dma_core_sts0);
+
+ if (!is_eng_idle) {
+ dev_err_ratelimited(hdev->dev,
+ "Can't read via DMA because it is BUSY\n");
+ rc = -EAGAIN;
+ goto out;
+ }
+ }
+
+ cfg1 = RREG32(mmDMA0_QM_GLBL_CFG1 + qm_offset);
+ WREG32(mmDMA0_QM_GLBL_CFG1 + qm_offset,
+ 0xF << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT);
+
+ /* TODO: remove this by mapping the DMA temporary buffer to the MMU
+ * using the compute ctx ASID, if exists. If not, use the kernel ctx
+ * ASID
+ */
+ WREG32_OR(mmDMA0_CORE_PROT + dma_offset, BIT(DMA0_CORE_PROT_VAL_SHIFT));
+
+ /* Verify DMA is OK */
+ err_cause = RREG32(mmDMA0_CORE_ERR_CAUSE + dma_offset);
+ if (err_cause) {
+ dev_dbg(hdev->dev,
+ "Clearing DMA0 engine from errors (cause 0x%x)\n",
+ err_cause);
+ WREG32(mmDMA0_CORE_ERR_CAUSE + dma_offset, err_cause);
+ }
+
+ pos = 0;
+ size_left = size;
+ size_to_dma = SZ_2M;
+
+ while (size_left > 0) {
+
+ if (size_left < SZ_2M)
+ size_to_dma = size_left;
+
+ rc = gaudi_dma_core_transfer(hdev, dma_id, addr, size_to_dma,
+ dma_addr);
+ if (rc)
+ break;
+
+ memcpy(blob_addr + pos, kernel_addr, size_to_dma);
+
+ if (size_left <= SZ_2M)
+ break;
+
+ pos += SZ_2M;
+ addr += SZ_2M;
+ size_left -= SZ_2M;
+ }
+
+ /* TODO: remove this by mapping the DMA temporary buffer to the MMU
+ * using the compute ctx ASID, if exists. If not, use the kernel ctx
+ * ASID
+ */
+ WREG32_AND(mmDMA0_CORE_PROT + dma_offset,
+ ~BIT(DMA0_CORE_PROT_VAL_SHIFT));
+
+ WREG32(mmDMA0_QM_GLBL_CFG1 + qm_offset, cfg1);
+
+out:
+ hdev->asic_funcs->hw_queues_unlock(hdev);
+
+ hl_asic_dma_free_coherent(hdev, SZ_2M, kernel_addr, dma_addr);
+
+ return rc;
+}
+
+static u64 gaudi_read_pte(struct hl_device *hdev, u64 addr)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ if (hdev->reset_info.hard_reset_pending)
+ return U64_MAX;
+
+ return readq(hdev->pcie_bar[HBM_BAR_ID] +
+ (addr - gaudi->hbm_bar_cur_addr));
+}
+
+static void gaudi_write_pte(struct hl_device *hdev, u64 addr, u64 val)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ if (hdev->reset_info.hard_reset_pending)
+ return;
+
+ writeq(val, hdev->pcie_bar[HBM_BAR_ID] +
+ (addr - gaudi->hbm_bar_cur_addr));
+}
+
+void gaudi_mmu_prepare_reg(struct hl_device *hdev, u64 reg, u32 asid)
+{
+ /* mask to zero the MMBP and ASID bits */
+ WREG32_AND(reg, ~0x7FF);
+ WREG32_OR(reg, asid);
+}
+
+static void gaudi_mmu_prepare(struct hl_device *hdev, u32 asid)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_MMU))
+ return;
+
+ if (asid & ~DMA0_QM_GLBL_NON_SECURE_PROPS_0_ASID_MASK) {
+ dev_crit(hdev->dev, "asid %u is too big\n", asid);
+ return;
+ }
+
+ gaudi_mmu_prepare_reg(hdev, mmDMA0_QM_GLBL_NON_SECURE_PROPS_0, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA0_QM_GLBL_NON_SECURE_PROPS_1, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA0_QM_GLBL_NON_SECURE_PROPS_2, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA0_QM_GLBL_NON_SECURE_PROPS_3, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA0_QM_GLBL_NON_SECURE_PROPS_4, asid);
+
+ gaudi_mmu_prepare_reg(hdev, mmDMA1_QM_GLBL_NON_SECURE_PROPS_0, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA1_QM_GLBL_NON_SECURE_PROPS_1, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA1_QM_GLBL_NON_SECURE_PROPS_2, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA1_QM_GLBL_NON_SECURE_PROPS_3, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA1_QM_GLBL_NON_SECURE_PROPS_4, asid);
+
+ gaudi_mmu_prepare_reg(hdev, mmDMA2_QM_GLBL_NON_SECURE_PROPS_0, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA2_QM_GLBL_NON_SECURE_PROPS_1, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA2_QM_GLBL_NON_SECURE_PROPS_2, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA2_QM_GLBL_NON_SECURE_PROPS_3, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA2_QM_GLBL_NON_SECURE_PROPS_4, asid);
+
+ gaudi_mmu_prepare_reg(hdev, mmDMA3_QM_GLBL_NON_SECURE_PROPS_0, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA3_QM_GLBL_NON_SECURE_PROPS_1, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA3_QM_GLBL_NON_SECURE_PROPS_2, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA3_QM_GLBL_NON_SECURE_PROPS_3, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA3_QM_GLBL_NON_SECURE_PROPS_4, asid);
+
+ gaudi_mmu_prepare_reg(hdev, mmDMA4_QM_GLBL_NON_SECURE_PROPS_0, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA4_QM_GLBL_NON_SECURE_PROPS_1, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA4_QM_GLBL_NON_SECURE_PROPS_2, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA4_QM_GLBL_NON_SECURE_PROPS_3, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA4_QM_GLBL_NON_SECURE_PROPS_4, asid);
+
+ gaudi_mmu_prepare_reg(hdev, mmDMA5_QM_GLBL_NON_SECURE_PROPS_0, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA5_QM_GLBL_NON_SECURE_PROPS_1, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA5_QM_GLBL_NON_SECURE_PROPS_2, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA5_QM_GLBL_NON_SECURE_PROPS_3, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA5_QM_GLBL_NON_SECURE_PROPS_4, asid);
+
+ gaudi_mmu_prepare_reg(hdev, mmDMA6_QM_GLBL_NON_SECURE_PROPS_0, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA6_QM_GLBL_NON_SECURE_PROPS_1, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA6_QM_GLBL_NON_SECURE_PROPS_2, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA6_QM_GLBL_NON_SECURE_PROPS_3, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA6_QM_GLBL_NON_SECURE_PROPS_4, asid);
+
+ gaudi_mmu_prepare_reg(hdev, mmDMA7_QM_GLBL_NON_SECURE_PROPS_0, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA7_QM_GLBL_NON_SECURE_PROPS_1, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA7_QM_GLBL_NON_SECURE_PROPS_2, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA7_QM_GLBL_NON_SECURE_PROPS_3, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA7_QM_GLBL_NON_SECURE_PROPS_4, asid);
+
+ gaudi_mmu_prepare_reg(hdev, mmDMA0_CORE_NON_SECURE_PROPS, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA1_CORE_NON_SECURE_PROPS, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA2_CORE_NON_SECURE_PROPS, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA3_CORE_NON_SECURE_PROPS, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA4_CORE_NON_SECURE_PROPS, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA5_CORE_NON_SECURE_PROPS, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA6_CORE_NON_SECURE_PROPS, asid);
+ gaudi_mmu_prepare_reg(hdev, mmDMA7_CORE_NON_SECURE_PROPS, asid);
+
+ gaudi_mmu_prepare_reg(hdev, mmTPC0_QM_GLBL_NON_SECURE_PROPS_0, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC0_QM_GLBL_NON_SECURE_PROPS_1, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC0_QM_GLBL_NON_SECURE_PROPS_2, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC0_QM_GLBL_NON_SECURE_PROPS_3, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC0_QM_GLBL_NON_SECURE_PROPS_4, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC0_CFG_ARUSER_LO, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC0_CFG_AWUSER_LO, asid);
+
+ gaudi_mmu_prepare_reg(hdev, mmTPC1_QM_GLBL_NON_SECURE_PROPS_0, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC1_QM_GLBL_NON_SECURE_PROPS_1, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC1_QM_GLBL_NON_SECURE_PROPS_2, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC1_QM_GLBL_NON_SECURE_PROPS_3, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC1_QM_GLBL_NON_SECURE_PROPS_4, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC1_CFG_ARUSER_LO, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC1_CFG_AWUSER_LO, asid);
+
+ gaudi_mmu_prepare_reg(hdev, mmTPC2_QM_GLBL_NON_SECURE_PROPS_0, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC2_QM_GLBL_NON_SECURE_PROPS_1, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC2_QM_GLBL_NON_SECURE_PROPS_2, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC2_QM_GLBL_NON_SECURE_PROPS_3, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC2_QM_GLBL_NON_SECURE_PROPS_4, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC2_CFG_ARUSER_LO, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC2_CFG_AWUSER_LO, asid);
+
+ gaudi_mmu_prepare_reg(hdev, mmTPC3_QM_GLBL_NON_SECURE_PROPS_0, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC3_QM_GLBL_NON_SECURE_PROPS_1, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC3_QM_GLBL_NON_SECURE_PROPS_2, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC3_QM_GLBL_NON_SECURE_PROPS_3, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC3_QM_GLBL_NON_SECURE_PROPS_4, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC3_CFG_ARUSER_LO, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC3_CFG_AWUSER_LO, asid);
+
+ gaudi_mmu_prepare_reg(hdev, mmTPC4_QM_GLBL_NON_SECURE_PROPS_0, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC4_QM_GLBL_NON_SECURE_PROPS_1, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC4_QM_GLBL_NON_SECURE_PROPS_2, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC4_QM_GLBL_NON_SECURE_PROPS_3, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC4_QM_GLBL_NON_SECURE_PROPS_4, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC4_CFG_ARUSER_LO, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC4_CFG_AWUSER_LO, asid);
+
+ gaudi_mmu_prepare_reg(hdev, mmTPC5_QM_GLBL_NON_SECURE_PROPS_0, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC5_QM_GLBL_NON_SECURE_PROPS_1, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC5_QM_GLBL_NON_SECURE_PROPS_2, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC5_QM_GLBL_NON_SECURE_PROPS_3, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC5_QM_GLBL_NON_SECURE_PROPS_4, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC5_CFG_ARUSER_LO, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC5_CFG_AWUSER_LO, asid);
+
+ gaudi_mmu_prepare_reg(hdev, mmTPC6_QM_GLBL_NON_SECURE_PROPS_0, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC6_QM_GLBL_NON_SECURE_PROPS_1, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC6_QM_GLBL_NON_SECURE_PROPS_2, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC6_QM_GLBL_NON_SECURE_PROPS_3, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC6_QM_GLBL_NON_SECURE_PROPS_4, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC6_CFG_ARUSER_LO, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC6_CFG_AWUSER_LO, asid);
+
+ gaudi_mmu_prepare_reg(hdev, mmTPC7_QM_GLBL_NON_SECURE_PROPS_0, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC7_QM_GLBL_NON_SECURE_PROPS_1, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC7_QM_GLBL_NON_SECURE_PROPS_2, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC7_QM_GLBL_NON_SECURE_PROPS_3, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC7_QM_GLBL_NON_SECURE_PROPS_4, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC7_CFG_ARUSER_LO, asid);
+ gaudi_mmu_prepare_reg(hdev, mmTPC7_CFG_AWUSER_LO, asid);
+
+ gaudi_mmu_prepare_reg(hdev, mmMME0_QM_GLBL_NON_SECURE_PROPS_0, asid);
+ gaudi_mmu_prepare_reg(hdev, mmMME0_QM_GLBL_NON_SECURE_PROPS_1, asid);
+ gaudi_mmu_prepare_reg(hdev, mmMME0_QM_GLBL_NON_SECURE_PROPS_2, asid);
+ gaudi_mmu_prepare_reg(hdev, mmMME0_QM_GLBL_NON_SECURE_PROPS_3, asid);
+ gaudi_mmu_prepare_reg(hdev, mmMME0_QM_GLBL_NON_SECURE_PROPS_4, asid);
+ gaudi_mmu_prepare_reg(hdev, mmMME2_QM_GLBL_NON_SECURE_PROPS_0, asid);
+ gaudi_mmu_prepare_reg(hdev, mmMME2_QM_GLBL_NON_SECURE_PROPS_1, asid);
+ gaudi_mmu_prepare_reg(hdev, mmMME2_QM_GLBL_NON_SECURE_PROPS_2, asid);
+ gaudi_mmu_prepare_reg(hdev, mmMME2_QM_GLBL_NON_SECURE_PROPS_3, asid);
+ gaudi_mmu_prepare_reg(hdev, mmMME2_QM_GLBL_NON_SECURE_PROPS_4, asid);
+
+ gaudi_mmu_prepare_reg(hdev, mmMME0_SBAB_ARUSER0, asid);
+ gaudi_mmu_prepare_reg(hdev, mmMME0_SBAB_ARUSER1, asid);
+ gaudi_mmu_prepare_reg(hdev, mmMME1_SBAB_ARUSER0, asid);
+ gaudi_mmu_prepare_reg(hdev, mmMME1_SBAB_ARUSER1, asid);
+ gaudi_mmu_prepare_reg(hdev, mmMME2_SBAB_ARUSER0, asid);
+ gaudi_mmu_prepare_reg(hdev, mmMME2_SBAB_ARUSER1, asid);
+ gaudi_mmu_prepare_reg(hdev, mmMME3_SBAB_ARUSER0, asid);
+ gaudi_mmu_prepare_reg(hdev, mmMME3_SBAB_ARUSER1, asid);
+ gaudi_mmu_prepare_reg(hdev, mmMME0_ACC_WBC, asid);
+ gaudi_mmu_prepare_reg(hdev, mmMME1_ACC_WBC, asid);
+ gaudi_mmu_prepare_reg(hdev, mmMME2_ACC_WBC, asid);
+ gaudi_mmu_prepare_reg(hdev, mmMME3_ACC_WBC, asid);
+
+ if (gaudi->hw_cap_initialized & HW_CAP_NIC0) {
+ gaudi_mmu_prepare_reg(hdev, mmNIC0_QM0_GLBL_NON_SECURE_PROPS_0,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC0_QM0_GLBL_NON_SECURE_PROPS_1,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC0_QM0_GLBL_NON_SECURE_PROPS_2,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC0_QM0_GLBL_NON_SECURE_PROPS_3,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC0_QM0_GLBL_NON_SECURE_PROPS_4,
+ asid);
+ }
+
+ if (gaudi->hw_cap_initialized & HW_CAP_NIC1) {
+ gaudi_mmu_prepare_reg(hdev, mmNIC0_QM1_GLBL_NON_SECURE_PROPS_0,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC0_QM1_GLBL_NON_SECURE_PROPS_1,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC0_QM1_GLBL_NON_SECURE_PROPS_2,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC0_QM1_GLBL_NON_SECURE_PROPS_3,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC0_QM1_GLBL_NON_SECURE_PROPS_4,
+ asid);
+ }
+
+ if (gaudi->hw_cap_initialized & HW_CAP_NIC2) {
+ gaudi_mmu_prepare_reg(hdev, mmNIC1_QM0_GLBL_NON_SECURE_PROPS_0,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC1_QM0_GLBL_NON_SECURE_PROPS_1,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC1_QM0_GLBL_NON_SECURE_PROPS_2,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC1_QM0_GLBL_NON_SECURE_PROPS_3,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC1_QM0_GLBL_NON_SECURE_PROPS_4,
+ asid);
+ }
+
+ if (gaudi->hw_cap_initialized & HW_CAP_NIC3) {
+ gaudi_mmu_prepare_reg(hdev, mmNIC1_QM1_GLBL_NON_SECURE_PROPS_0,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC1_QM1_GLBL_NON_SECURE_PROPS_1,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC1_QM1_GLBL_NON_SECURE_PROPS_2,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC1_QM1_GLBL_NON_SECURE_PROPS_3,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC1_QM1_GLBL_NON_SECURE_PROPS_4,
+ asid);
+ }
+
+ if (gaudi->hw_cap_initialized & HW_CAP_NIC4) {
+ gaudi_mmu_prepare_reg(hdev, mmNIC2_QM0_GLBL_NON_SECURE_PROPS_0,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC2_QM0_GLBL_NON_SECURE_PROPS_1,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC2_QM0_GLBL_NON_SECURE_PROPS_2,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC2_QM0_GLBL_NON_SECURE_PROPS_3,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC2_QM0_GLBL_NON_SECURE_PROPS_4,
+ asid);
+ }
+
+ if (gaudi->hw_cap_initialized & HW_CAP_NIC5) {
+ gaudi_mmu_prepare_reg(hdev, mmNIC2_QM1_GLBL_NON_SECURE_PROPS_0,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC2_QM1_GLBL_NON_SECURE_PROPS_1,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC2_QM1_GLBL_NON_SECURE_PROPS_2,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC2_QM1_GLBL_NON_SECURE_PROPS_3,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC2_QM1_GLBL_NON_SECURE_PROPS_4,
+ asid);
+ }
+
+ if (gaudi->hw_cap_initialized & HW_CAP_NIC6) {
+ gaudi_mmu_prepare_reg(hdev, mmNIC3_QM0_GLBL_NON_SECURE_PROPS_0,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC3_QM0_GLBL_NON_SECURE_PROPS_1,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC3_QM0_GLBL_NON_SECURE_PROPS_2,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC3_QM0_GLBL_NON_SECURE_PROPS_3,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC3_QM0_GLBL_NON_SECURE_PROPS_4,
+ asid);
+ }
+
+ if (gaudi->hw_cap_initialized & HW_CAP_NIC7) {
+ gaudi_mmu_prepare_reg(hdev, mmNIC3_QM1_GLBL_NON_SECURE_PROPS_0,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC3_QM1_GLBL_NON_SECURE_PROPS_1,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC3_QM1_GLBL_NON_SECURE_PROPS_2,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC3_QM1_GLBL_NON_SECURE_PROPS_3,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC3_QM1_GLBL_NON_SECURE_PROPS_4,
+ asid);
+ }
+
+ if (gaudi->hw_cap_initialized & HW_CAP_NIC8) {
+ gaudi_mmu_prepare_reg(hdev, mmNIC4_QM0_GLBL_NON_SECURE_PROPS_0,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC4_QM0_GLBL_NON_SECURE_PROPS_1,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC4_QM0_GLBL_NON_SECURE_PROPS_2,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC4_QM0_GLBL_NON_SECURE_PROPS_3,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC4_QM0_GLBL_NON_SECURE_PROPS_4,
+ asid);
+ }
+
+ if (gaudi->hw_cap_initialized & HW_CAP_NIC9) {
+ gaudi_mmu_prepare_reg(hdev, mmNIC4_QM1_GLBL_NON_SECURE_PROPS_0,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC4_QM1_GLBL_NON_SECURE_PROPS_1,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC4_QM1_GLBL_NON_SECURE_PROPS_2,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC4_QM1_GLBL_NON_SECURE_PROPS_3,
+ asid);
+ gaudi_mmu_prepare_reg(hdev, mmNIC4_QM1_GLBL_NON_SECURE_PROPS_4,
+ asid);
+ }
+
+ gaudi_mmu_prepare_reg(hdev, mmPSOC_GLOBAL_CONF_TRACE_ARUSER, asid);
+ gaudi_mmu_prepare_reg(hdev, mmPSOC_GLOBAL_CONF_TRACE_AWUSER, asid);
+}
+
+static int gaudi_send_job_on_qman0(struct hl_device *hdev,
+ struct hl_cs_job *job)
+{
+ struct packet_msg_prot *fence_pkt;
+ u32 *fence_ptr;
+ dma_addr_t fence_dma_addr;
+ struct hl_cb *cb;
+ u32 tmp, timeout, dma_offset;
+ int rc;
+
+ if (hdev->pldm)
+ timeout = GAUDI_PLDM_QMAN0_TIMEOUT_USEC;
+ else
+ timeout = HL_DEVICE_TIMEOUT_USEC;
+
+ fence_ptr = hl_asic_dma_pool_zalloc(hdev, 4, GFP_KERNEL, &fence_dma_addr);
+ if (!fence_ptr) {
+ dev_err(hdev->dev,
+ "Failed to allocate fence memory for QMAN0\n");
+ return -ENOMEM;
+ }
+
+ cb = job->patched_cb;
+
+ fence_pkt = cb->kernel_address +
+ job->job_cb_size - sizeof(struct packet_msg_prot);
+
+ tmp = FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_PROT);
+ tmp |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, 1);
+ tmp |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1);
+
+ fence_pkt->ctl = cpu_to_le32(tmp);
+ fence_pkt->value = cpu_to_le32(GAUDI_QMAN0_FENCE_VAL);
+ fence_pkt->addr = cpu_to_le64(fence_dma_addr);
+
+ dma_offset = gaudi_dma_assignment[GAUDI_PCI_DMA_1] * DMA_CORE_OFFSET;
+
+ WREG32(mmDMA0_CORE_PROT + dma_offset,
+ BIT(DMA0_CORE_PROT_ERR_VAL_SHIFT) | BIT(DMA0_CORE_PROT_VAL_SHIFT));
+
+ rc = hl_hw_queue_send_cb_no_cmpl(hdev, GAUDI_QUEUE_ID_DMA_0_0,
+ job->job_cb_size, cb->bus_address);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to send CB on QMAN0, %d\n", rc);
+ goto free_fence_ptr;
+ }
+
+ rc = hl_poll_timeout_memory(hdev, fence_ptr, tmp,
+ (tmp == GAUDI_QMAN0_FENCE_VAL), 1000,
+ timeout, true);
+
+ hl_hw_queue_inc_ci_kernel(hdev, GAUDI_QUEUE_ID_DMA_0_0);
+
+ if (rc == -ETIMEDOUT) {
+ dev_err(hdev->dev, "QMAN0 Job timeout (0x%x)\n", tmp);
+ goto free_fence_ptr;
+ }
+
+free_fence_ptr:
+ WREG32(mmDMA0_CORE_PROT + dma_offset, BIT(DMA0_CORE_PROT_ERR_VAL_SHIFT));
+
+ hl_asic_dma_pool_free(hdev, (void *) fence_ptr, fence_dma_addr);
+ return rc;
+}
+
+static void gaudi_get_event_desc(u16 event_type, char *desc, size_t size)
+{
+ if (event_type >= GAUDI_EVENT_SIZE)
+ goto event_not_supported;
+
+ if (!gaudi_irq_map_table[event_type].valid)
+ goto event_not_supported;
+
+ snprintf(desc, size, gaudi_irq_map_table[event_type].name);
+
+ return;
+
+event_not_supported:
+ snprintf(desc, size, "N/A");
+}
+
+static const char *gaudi_get_razwi_initiator_dma_name(struct hl_device *hdev, u32 x_y,
+ bool is_write, u16 *engine_id_1,
+ u16 *engine_id_2)
+{
+ u32 dma_id[2], dma_offset, err_cause[2], mask, i;
+
+ mask = is_write ? DMA0_CORE_ERR_CAUSE_HBW_WR_ERR_MASK :
+ DMA0_CORE_ERR_CAUSE_HBW_RD_ERR_MASK;
+
+ switch (x_y) {
+ case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_S_0:
+ case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_S_1:
+ dma_id[0] = 0;
+ dma_id[1] = 2;
+ break;
+ case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_S_0:
+ case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_S_1:
+ dma_id[0] = 1;
+ dma_id[1] = 3;
+ break;
+ case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_N_0:
+ case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_N_1:
+ dma_id[0] = 4;
+ dma_id[1] = 6;
+ break;
+ case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_N_0:
+ case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_N_1:
+ dma_id[0] = 5;
+ dma_id[1] = 7;
+ break;
+ default:
+ goto unknown_initiator;
+ }
+
+ for (i = 0 ; i < 2 ; i++) {
+ dma_offset = dma_id[i] * DMA_CORE_OFFSET;
+ err_cause[i] = RREG32(mmDMA0_CORE_ERR_CAUSE + dma_offset);
+ }
+
+ switch (x_y) {
+ case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_S_0:
+ case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_S_1:
+ if ((err_cause[0] & mask) && !(err_cause[1] & mask)) {
+ *engine_id_1 = GAUDI_ENGINE_ID_DMA_0;
+ return "DMA0";
+ } else if (!(err_cause[0] & mask) && (err_cause[1] & mask)) {
+ *engine_id_1 = GAUDI_ENGINE_ID_DMA_2;
+ return "DMA2";
+ } else {
+ *engine_id_1 = GAUDI_ENGINE_ID_DMA_0;
+ *engine_id_2 = GAUDI_ENGINE_ID_DMA_2;
+ return "DMA0 or DMA2";
+ }
+ case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_S_0:
+ case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_S_1:
+ if ((err_cause[0] & mask) && !(err_cause[1] & mask)) {
+ *engine_id_1 = GAUDI_ENGINE_ID_DMA_1;
+ return "DMA1";
+ } else if (!(err_cause[0] & mask) && (err_cause[1] & mask)) {
+ *engine_id_1 = GAUDI_ENGINE_ID_DMA_3;
+ return "DMA3";
+ } else {
+ *engine_id_1 = GAUDI_ENGINE_ID_DMA_1;
+ *engine_id_2 = GAUDI_ENGINE_ID_DMA_3;
+ return "DMA1 or DMA3";
+ }
+ case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_N_0:
+ case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_N_1:
+ if ((err_cause[0] & mask) && !(err_cause[1] & mask)) {
+ *engine_id_1 = GAUDI_ENGINE_ID_DMA_4;
+ return "DMA4";
+ } else if (!(err_cause[0] & mask) && (err_cause[1] & mask)) {
+ *engine_id_1 = GAUDI_ENGINE_ID_DMA_6;
+ return "DMA6";
+ } else {
+ *engine_id_1 = GAUDI_ENGINE_ID_DMA_4;
+ *engine_id_2 = GAUDI_ENGINE_ID_DMA_6;
+ return "DMA4 or DMA6";
+ }
+ case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_N_0:
+ case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_N_1:
+ if ((err_cause[0] & mask) && !(err_cause[1] & mask)) {
+ *engine_id_1 = GAUDI_ENGINE_ID_DMA_5;
+ return "DMA5";
+ } else if (!(err_cause[0] & mask) && (err_cause[1] & mask)) {
+ *engine_id_1 = GAUDI_ENGINE_ID_DMA_7;
+ return "DMA7";
+ } else {
+ *engine_id_1 = GAUDI_ENGINE_ID_DMA_5;
+ *engine_id_2 = GAUDI_ENGINE_ID_DMA_7;
+ return "DMA5 or DMA7";
+ }
+ }
+
+unknown_initiator:
+ return "unknown initiator";
+}
+
+static const char *gaudi_get_razwi_initiator_name(struct hl_device *hdev, bool is_write,
+ u16 *engine_id_1, u16 *engine_id_2)
+{
+ u32 val, x_y, axi_id;
+
+ val = is_write ? RREG32(mmMMU_UP_RAZWI_WRITE_ID) :
+ RREG32(mmMMU_UP_RAZWI_READ_ID);
+ x_y = val & ((RAZWI_INITIATOR_Y_MASK << RAZWI_INITIATOR_Y_SHIFT) |
+ (RAZWI_INITIATOR_X_MASK << RAZWI_INITIATOR_X_SHIFT));
+ axi_id = val & (RAZWI_INITIATOR_AXI_ID_MASK <<
+ RAZWI_INITIATOR_AXI_ID_SHIFT);
+
+ switch (x_y) {
+ case RAZWI_INITIATOR_ID_X_Y_TPC0_NIC0:
+ if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_TPC)) {
+ *engine_id_1 = GAUDI_ENGINE_ID_TPC_0;
+ return "TPC0";
+ }
+ if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_NIC)) {
+ *engine_id_1 = GAUDI_ENGINE_ID_NIC_0;
+ return "NIC0";
+ }
+ break;
+ case RAZWI_INITIATOR_ID_X_Y_TPC1:
+ *engine_id_1 = GAUDI_ENGINE_ID_TPC_1;
+ return "TPC1";
+ case RAZWI_INITIATOR_ID_X_Y_MME0_0:
+ case RAZWI_INITIATOR_ID_X_Y_MME0_1:
+ *engine_id_1 = GAUDI_ENGINE_ID_MME_0;
+ return "MME0";
+ case RAZWI_INITIATOR_ID_X_Y_MME1_0:
+ case RAZWI_INITIATOR_ID_X_Y_MME1_1:
+ *engine_id_1 = GAUDI_ENGINE_ID_MME_1;
+ return "MME1";
+ case RAZWI_INITIATOR_ID_X_Y_TPC2:
+ *engine_id_1 = GAUDI_ENGINE_ID_TPC_2;
+ return "TPC2";
+ case RAZWI_INITIATOR_ID_X_Y_TPC3_PCI_CPU_PSOC:
+ if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_TPC)) {
+ *engine_id_1 = GAUDI_ENGINE_ID_TPC_3;
+ return "TPC3";
+ }
+ /* PCI, CPU or PSOC does not have engine id*/
+ if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_PCI))
+ return "PCI";
+ if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_CPU))
+ return "CPU";
+ if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_PSOC))
+ return "PSOC";
+ break;
+ case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_S_0:
+ case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_S_1:
+ case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_S_0:
+ case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_S_1:
+ case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_N_0:
+ case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_N_1:
+ case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_N_0:
+ case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_N_1:
+ return gaudi_get_razwi_initiator_dma_name(hdev, x_y, is_write,
+ engine_id_1, engine_id_2);
+ case RAZWI_INITIATOR_ID_X_Y_TPC4_NIC1_NIC2:
+ if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_TPC)) {
+ *engine_id_1 = GAUDI_ENGINE_ID_TPC_4;
+ return "TPC4";
+ }
+ if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_NIC)) {
+ *engine_id_1 = GAUDI_ENGINE_ID_NIC_1;
+ return "NIC1";
+ }
+ if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_NIC_FT)) {
+ *engine_id_1 = GAUDI_ENGINE_ID_NIC_2;
+ return "NIC2";
+ }
+ break;
+ case RAZWI_INITIATOR_ID_X_Y_TPC5:
+ *engine_id_1 = GAUDI_ENGINE_ID_TPC_5;
+ return "TPC5";
+ case RAZWI_INITIATOR_ID_X_Y_MME2_0:
+ case RAZWI_INITIATOR_ID_X_Y_MME2_1:
+ *engine_id_1 = GAUDI_ENGINE_ID_MME_2;
+ return "MME2";
+ case RAZWI_INITIATOR_ID_X_Y_MME3_0:
+ case RAZWI_INITIATOR_ID_X_Y_MME3_1:
+ *engine_id_1 = GAUDI_ENGINE_ID_MME_3;
+ return "MME3";
+ case RAZWI_INITIATOR_ID_X_Y_TPC6:
+ *engine_id_1 = GAUDI_ENGINE_ID_TPC_6;
+ return "TPC6";
+ case RAZWI_INITIATOR_ID_X_Y_TPC7_NIC4_NIC5:
+ if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_TPC)) {
+ *engine_id_1 = GAUDI_ENGINE_ID_TPC_7;
+ return "TPC7";
+ }
+ if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_NIC)) {
+ *engine_id_1 = GAUDI_ENGINE_ID_NIC_4;
+ return "NIC4";
+ }
+ if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_NIC_FT)) {
+ *engine_id_1 = GAUDI_ENGINE_ID_NIC_5;
+ return "NIC5";
+ }
+ break;
+ default:
+ break;
+ }
+
+ dev_err(hdev->dev,
+ "Unknown RAZWI initiator ID 0x%x [Y=%d, X=%d, AXI_ID=%d]\n",
+ val,
+ (val >> RAZWI_INITIATOR_Y_SHIFT) & RAZWI_INITIATOR_Y_MASK,
+ (val >> RAZWI_INITIATOR_X_SHIFT) & RAZWI_INITIATOR_X_MASK,
+ (val >> RAZWI_INITIATOR_AXI_ID_SHIFT) &
+ RAZWI_INITIATOR_AXI_ID_MASK);
+
+ return "unknown initiator";
+}
+
+static void gaudi_print_and_get_razwi_info(struct hl_device *hdev, u16 *engine_id_1,
+ u16 *engine_id_2, bool *is_read, bool *is_write)
+{
+
+ if (RREG32(mmMMU_UP_RAZWI_WRITE_VLD)) {
+ dev_err_ratelimited(hdev->dev,
+ "RAZWI event caused by illegal write of %s\n",
+ gaudi_get_razwi_initiator_name(hdev, true, engine_id_1, engine_id_2));
+ WREG32(mmMMU_UP_RAZWI_WRITE_VLD, 0);
+ *is_write = true;
+ }
+
+ if (RREG32(mmMMU_UP_RAZWI_READ_VLD)) {
+ dev_err_ratelimited(hdev->dev,
+ "RAZWI event caused by illegal read of %s\n",
+ gaudi_get_razwi_initiator_name(hdev, false, engine_id_1, engine_id_2));
+ WREG32(mmMMU_UP_RAZWI_READ_VLD, 0);
+ *is_read = true;
+ }
+}
+
+static void gaudi_print_and_get_mmu_error_info(struct hl_device *hdev, u64 *addr, u64 *event_mask)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ u32 val;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_MMU))
+ return;
+
+ val = RREG32(mmMMU_UP_PAGE_ERROR_CAPTURE);
+ if (val & MMU_UP_PAGE_ERROR_CAPTURE_ENTRY_VALID_MASK) {
+ *addr = val & MMU_UP_PAGE_ERROR_CAPTURE_VA_49_32_MASK;
+ *addr <<= 32;
+ *addr |= RREG32(mmMMU_UP_PAGE_ERROR_CAPTURE_VA);
+
+ dev_err_ratelimited(hdev->dev, "MMU page fault on va 0x%llx\n", *addr);
+ hl_handle_page_fault(hdev, *addr, 0, true, event_mask);
+
+ WREG32(mmMMU_UP_PAGE_ERROR_CAPTURE, 0);
+ }
+
+ val = RREG32(mmMMU_UP_ACCESS_ERROR_CAPTURE);
+ if (val & MMU_UP_ACCESS_ERROR_CAPTURE_ENTRY_VALID_MASK) {
+ *addr = val & MMU_UP_ACCESS_ERROR_CAPTURE_VA_49_32_MASK;
+ *addr <<= 32;
+ *addr |= RREG32(mmMMU_UP_ACCESS_ERROR_CAPTURE_VA);
+
+ dev_err_ratelimited(hdev->dev, "MMU access error on va 0x%llx\n", *addr);
+
+ WREG32(mmMMU_UP_ACCESS_ERROR_CAPTURE, 0);
+ }
+}
+
+/*
+ * +-------------------+------------------------------------------------------+
+ * | Configuration Reg | Description |
+ * | Address | |
+ * +-------------------+------------------------------------------------------+
+ * | 0xF30 - 0xF3F |ECC single error indication (1 bit per memory wrapper)|
+ * | |0xF30 memory wrappers 31:0 (MSB to LSB) |
+ * | |0xF34 memory wrappers 63:32 |
+ * | |0xF38 memory wrappers 95:64 |
+ * | |0xF3C memory wrappers 127:96 |
+ * +-------------------+------------------------------------------------------+
+ * | 0xF40 - 0xF4F |ECC double error indication (1 bit per memory wrapper)|
+ * | |0xF40 memory wrappers 31:0 (MSB to LSB) |
+ * | |0xF44 memory wrappers 63:32 |
+ * | |0xF48 memory wrappers 95:64 |
+ * | |0xF4C memory wrappers 127:96 |
+ * +-------------------+------------------------------------------------------+
+ */
+static int gaudi_extract_ecc_info(struct hl_device *hdev,
+ struct ecc_info_extract_params *params, u64 *ecc_address,
+ u64 *ecc_syndrom, u8 *memory_wrapper_idx)
+{
+ u32 i, num_mem_regs, reg, err_bit;
+ u64 err_addr, err_word = 0;
+
+ num_mem_regs = params->num_memories / 32 +
+ ((params->num_memories % 32) ? 1 : 0);
+
+ if (params->block_address >= CFG_BASE)
+ params->block_address -= CFG_BASE;
+
+ if (params->derr)
+ err_addr = params->block_address + GAUDI_ECC_DERR0_OFFSET;
+ else
+ err_addr = params->block_address + GAUDI_ECC_SERR0_OFFSET;
+
+ /* Set invalid wrapper index */
+ *memory_wrapper_idx = 0xFF;
+
+ /* Iterate through memory wrappers, a single bit must be set */
+ for (i = 0 ; i < num_mem_regs ; i++) {
+ err_addr += i * 4;
+ err_word = RREG32(err_addr);
+ if (err_word) {
+ err_bit = __ffs(err_word);
+ *memory_wrapper_idx = err_bit + (32 * i);
+ break;
+ }
+ }
+
+ if (*memory_wrapper_idx == 0xFF) {
+ dev_err(hdev->dev, "ECC error information cannot be found\n");
+ return -EINVAL;
+ }
+
+ WREG32(params->block_address + GAUDI_ECC_MEM_SEL_OFFSET,
+ *memory_wrapper_idx);
+
+ *ecc_address =
+ RREG32(params->block_address + GAUDI_ECC_ADDRESS_OFFSET);
+ *ecc_syndrom =
+ RREG32(params->block_address + GAUDI_ECC_SYNDROME_OFFSET);
+
+ /* Clear error indication */
+ reg = RREG32(params->block_address + GAUDI_ECC_MEM_INFO_CLR_OFFSET);
+ if (params->derr)
+ reg |= FIELD_PREP(GAUDI_ECC_MEM_INFO_CLR_DERR_MASK, 1);
+ else
+ reg |= FIELD_PREP(GAUDI_ECC_MEM_INFO_CLR_SERR_MASK, 1);
+
+ WREG32(params->block_address + GAUDI_ECC_MEM_INFO_CLR_OFFSET, reg);
+
+ return 0;
+}
+
+/*
+ * gaudi_queue_idx_dec - decrement queue index (pi/ci) and handle wrap
+ *
+ * @idx: the current pi/ci value
+ * @q_len: the queue length (power of 2)
+ *
+ * @return the cyclically decremented index
+ */
+static inline u32 gaudi_queue_idx_dec(u32 idx, u32 q_len)
+{
+ u32 mask = q_len - 1;
+
+ /*
+ * modular decrement is equivalent to adding (queue_size -1)
+ * later we take LSBs to make sure the value is in the
+ * range [0, queue_len - 1]
+ */
+ return (idx + q_len - 1) & mask;
+}
+
+/**
+ * gaudi_handle_sw_config_stream_data - print SW config stream data
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @stream: the QMAN's stream
+ * @qman_base: base address of QMAN registers block
+ * @event_mask: mask of the last events occurred
+ */
+static void gaudi_handle_sw_config_stream_data(struct hl_device *hdev, u32 stream,
+ u64 qman_base, u64 event_mask)
+{
+ u64 cq_ptr_lo, cq_ptr_hi, cq_tsize, cq_ptr;
+ u32 cq_ptr_lo_off, size;
+
+ cq_ptr_lo_off = mmTPC0_QM_CQ_PTR_LO_1 - mmTPC0_QM_CQ_PTR_LO_0;
+
+ cq_ptr_lo = qman_base + (mmTPC0_QM_CQ_PTR_LO_0 - mmTPC0_QM_BASE) +
+ stream * cq_ptr_lo_off;
+ cq_ptr_hi = cq_ptr_lo +
+ (mmTPC0_QM_CQ_PTR_HI_0 - mmTPC0_QM_CQ_PTR_LO_0);
+ cq_tsize = cq_ptr_lo +
+ (mmTPC0_QM_CQ_TSIZE_0 - mmTPC0_QM_CQ_PTR_LO_0);
+
+ cq_ptr = (((u64) RREG32(cq_ptr_hi)) << 32) | RREG32(cq_ptr_lo);
+ size = RREG32(cq_tsize);
+ dev_info(hdev->dev, "stop on err: stream: %u, addr: %#llx, size: %u\n",
+ stream, cq_ptr, size);
+
+ if (event_mask & HL_NOTIFIER_EVENT_UNDEFINED_OPCODE) {
+ hdev->captured_err_info.undef_opcode.cq_addr = cq_ptr;
+ hdev->captured_err_info.undef_opcode.cq_size = size;
+ hdev->captured_err_info.undef_opcode.stream_id = stream;
+ }
+}
+
+/**
+ * gaudi_handle_last_pqes_on_err - print last PQEs on error
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @qid_base: first QID of the QMAN (out of 4 streams)
+ * @stream: the QMAN's stream
+ * @qman_base: base address of QMAN registers block
+ * @event_mask: mask of the last events occurred
+ * @pr_sw_conf: if true print the SW config stream data (CQ PTR and SIZE)
+ */
+static void gaudi_handle_last_pqes_on_err(struct hl_device *hdev, u32 qid_base,
+ u32 stream, u64 qman_base,
+ u64 event_mask,
+ bool pr_sw_conf)
+{
+ u32 ci, qm_ci_stream_off, queue_len;
+ struct hl_hw_queue *q;
+ u64 pq_ci, addr[PQ_FETCHER_CACHE_SIZE];
+ int i;
+
+ q = &hdev->kernel_queues[qid_base + stream];
+
+ qm_ci_stream_off = mmTPC0_QM_PQ_CI_1 - mmTPC0_QM_PQ_CI_0;
+ pq_ci = qman_base + (mmTPC0_QM_PQ_CI_0 - mmTPC0_QM_BASE) +
+ stream * qm_ci_stream_off;
+
+ queue_len = (q->queue_type == QUEUE_TYPE_INT) ?
+ q->int_queue_len : HL_QUEUE_LENGTH;
+
+ hdev->asic_funcs->hw_queues_lock(hdev);
+
+ if (pr_sw_conf)
+ gaudi_handle_sw_config_stream_data(hdev, stream, qman_base, event_mask);
+
+ ci = RREG32(pq_ci);
+
+ /* we should start printing form ci -1 */
+ ci = gaudi_queue_idx_dec(ci, queue_len);
+ memset(addr, 0, sizeof(addr));
+
+ for (i = 0; i < PQ_FETCHER_CACHE_SIZE; i++) {
+ struct hl_bd *bd;
+ u32 len;
+
+ bd = q->kernel_address;
+ bd += ci;
+
+ len = le32_to_cpu(bd->len);
+ /* len 0 means uninitialized entry- break */
+ if (!len)
+ break;
+
+ addr[i] = le64_to_cpu(bd->ptr);
+
+ dev_info(hdev->dev, "stop on err PQE(stream %u): ci: %u, addr: %#llx, size: %u\n",
+ stream, ci, addr[i], len);
+
+ /* get previous ci, wrap if needed */
+ ci = gaudi_queue_idx_dec(ci, queue_len);
+ }
+
+ if (event_mask & HL_NOTIFIER_EVENT_UNDEFINED_OPCODE) {
+ struct undefined_opcode_info *undef_opcode = &hdev->captured_err_info.undef_opcode;
+ u32 arr_idx = undef_opcode->cb_addr_streams_len;
+
+ if (arr_idx == 0) {
+ undef_opcode->timestamp = ktime_get();
+ undef_opcode->engine_id = gaudi_queue_id_to_engine_id[qid_base];
+ }
+
+ memcpy(undef_opcode->cb_addr_streams[arr_idx], addr, sizeof(addr));
+ undef_opcode->cb_addr_streams_len++;
+ }
+
+ hdev->asic_funcs->hw_queues_unlock(hdev);
+}
+
+/**
+ * handle_qman_data_on_err - extract QMAN data on error
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @qid_base: first QID of the QMAN (out of 4 streams)
+ * @stream: the QMAN's stream
+ * @qman_base: base address of QMAN registers block
+ * @event_mask: mask of the last events occurred
+ *
+ * This function attempt to exatract as much data as possible on QMAN error.
+ * On upper CP print the SW config stream data and last 8 PQEs.
+ * On lower CP print SW config data and last PQEs of ALL 4 upper CPs
+ */
+static void handle_qman_data_on_err(struct hl_device *hdev, u32 qid_base,
+ u32 stream, u64 qman_base, u64 event_mask)
+{
+ u32 i;
+
+ if (stream != QMAN_STREAMS) {
+ gaudi_handle_last_pqes_on_err(hdev, qid_base, stream,
+ qman_base, event_mask, true);
+ return;
+ }
+
+ /* handle Lower-CP */
+ gaudi_handle_sw_config_stream_data(hdev, stream, qman_base, event_mask);
+
+ for (i = 0; i < QMAN_STREAMS; i++)
+ gaudi_handle_last_pqes_on_err(hdev, qid_base, i,
+ qman_base, event_mask, false);
+}
+
+static void gaudi_handle_qman_err_generic(struct hl_device *hdev,
+ const char *qm_name,
+ u64 qman_base,
+ u32 qid_base,
+ u64 *event_mask)
+{
+ u32 i, j, glbl_sts_val, arb_err_val, glbl_sts_clr_val;
+ u64 glbl_sts_addr, arb_err_addr;
+ char reg_desc[32];
+
+ glbl_sts_addr = qman_base + (mmTPC0_QM_GLBL_STS1_0 - mmTPC0_QM_BASE);
+ arb_err_addr = qman_base + (mmTPC0_QM_ARB_ERR_CAUSE - mmTPC0_QM_BASE);
+
+ /* Iterate through all stream GLBL_STS1 registers + Lower CP */
+ for (i = 0 ; i < QMAN_STREAMS + 1 ; i++) {
+ glbl_sts_clr_val = 0;
+ glbl_sts_val = RREG32(glbl_sts_addr + 4 * i);
+
+ if (!glbl_sts_val)
+ continue;
+
+ if (i == QMAN_STREAMS)
+ snprintf(reg_desc, ARRAY_SIZE(reg_desc), "LowerCP");
+ else
+ snprintf(reg_desc, ARRAY_SIZE(reg_desc), "stream%u", i);
+
+ for (j = 0 ; j < GAUDI_NUM_OF_QM_ERR_CAUSE ; j++) {
+ if (glbl_sts_val & BIT(j)) {
+ dev_err_ratelimited(hdev->dev,
+ "%s %s. err cause: %s\n",
+ qm_name, reg_desc,
+ gaudi_qman_error_cause[j]);
+ glbl_sts_clr_val |= BIT(j);
+ }
+ }
+ /* check for undefined opcode */
+ if (glbl_sts_val & TPC0_QM_GLBL_STS1_CP_UNDEF_CMD_ERR_MASK &&
+ hdev->captured_err_info.undef_opcode.write_enable) {
+ memset(&hdev->captured_err_info.undef_opcode, 0,
+ sizeof(hdev->captured_err_info.undef_opcode));
+
+ hdev->captured_err_info.undef_opcode.write_enable = false;
+ *event_mask |= HL_NOTIFIER_EVENT_UNDEFINED_OPCODE;
+ }
+
+ /* Write 1 clear errors */
+ if (!hdev->stop_on_err)
+ WREG32(glbl_sts_addr + 4 * i, glbl_sts_clr_val);
+ else
+ handle_qman_data_on_err(hdev, qid_base, i, qman_base, *event_mask);
+ }
+
+ arb_err_val = RREG32(arb_err_addr);
+
+ if (!arb_err_val)
+ return;
+
+ for (j = 0 ; j < GAUDI_NUM_OF_QM_ARB_ERR_CAUSE ; j++) {
+ if (arb_err_val & BIT(j)) {
+ dev_err_ratelimited(hdev->dev,
+ "%s ARB_ERR. err cause: %s\n",
+ qm_name,
+ gaudi_qman_arb_error_cause[j]);
+ }
+ }
+}
+
+static void gaudi_print_sm_sei_info(struct hl_device *hdev, u16 event_type,
+ struct hl_eq_sm_sei_data *sei_data)
+{
+ u32 index = event_type - GAUDI_EVENT_DMA_IF_SEI_0;
+
+ /* Flip the bits as the enum is ordered in the opposite way */
+ index = (index ^ 0x3) & 0x3;
+
+ switch (sei_data->sei_cause) {
+ case SM_SEI_SO_OVERFLOW:
+ dev_err_ratelimited(hdev->dev,
+ "%s SEI Error: SOB Group %u overflow/underflow",
+ gaudi_sync_manager_names[index],
+ le32_to_cpu(sei_data->sei_log));
+ break;
+ case SM_SEI_LBW_4B_UNALIGNED:
+ dev_err_ratelimited(hdev->dev,
+ "%s SEI Error: Unaligned 4B LBW access, monitor agent address low - %#x",
+ gaudi_sync_manager_names[index],
+ le32_to_cpu(sei_data->sei_log));
+ break;
+ case SM_SEI_AXI_RESPONSE_ERR:
+ dev_err_ratelimited(hdev->dev,
+ "%s SEI Error: AXI ID %u response error",
+ gaudi_sync_manager_names[index],
+ le32_to_cpu(sei_data->sei_log));
+ break;
+ default:
+ dev_err_ratelimited(hdev->dev, "Unknown SM SEI cause %u",
+ le32_to_cpu(sei_data->sei_log));
+ break;
+ }
+}
+
+static void gaudi_handle_ecc_event(struct hl_device *hdev, u16 event_type,
+ struct hl_eq_ecc_data *ecc_data)
+{
+ struct ecc_info_extract_params params;
+ u64 ecc_address = 0, ecc_syndrom = 0;
+ u8 index, memory_wrapper_idx = 0;
+ bool extract_info_from_fw;
+ int rc;
+
+ if (hdev->asic_prop.fw_security_enabled) {
+ extract_info_from_fw = true;
+ goto extract_ecc_info;
+ }
+
+ switch (event_type) {
+ case GAUDI_EVENT_PCIE_CORE_SERR ... GAUDI_EVENT_PCIE_PHY_DERR:
+ case GAUDI_EVENT_DMA0_SERR_ECC ... GAUDI_EVENT_MMU_DERR:
+ extract_info_from_fw = true;
+ break;
+ case GAUDI_EVENT_TPC0_SERR ... GAUDI_EVENT_TPC7_SERR:
+ index = event_type - GAUDI_EVENT_TPC0_SERR;
+ params.block_address = mmTPC0_CFG_BASE + index * TPC_CFG_OFFSET;
+ params.num_memories = 90;
+ params.derr = false;
+ extract_info_from_fw = false;
+ break;
+ case GAUDI_EVENT_TPC0_DERR ... GAUDI_EVENT_TPC7_DERR:
+ index = event_type - GAUDI_EVENT_TPC0_DERR;
+ params.block_address =
+ mmTPC0_CFG_BASE + index * TPC_CFG_OFFSET;
+ params.num_memories = 90;
+ params.derr = true;
+ extract_info_from_fw = false;
+ break;
+ case GAUDI_EVENT_MME0_ACC_SERR:
+ case GAUDI_EVENT_MME1_ACC_SERR:
+ case GAUDI_EVENT_MME2_ACC_SERR:
+ case GAUDI_EVENT_MME3_ACC_SERR:
+ index = (event_type - GAUDI_EVENT_MME0_ACC_SERR) / 4;
+ params.block_address = mmMME0_ACC_BASE + index * MME_ACC_OFFSET;
+ params.num_memories = 128;
+ params.derr = false;
+ extract_info_from_fw = false;
+ break;
+ case GAUDI_EVENT_MME0_ACC_DERR:
+ case GAUDI_EVENT_MME1_ACC_DERR:
+ case GAUDI_EVENT_MME2_ACC_DERR:
+ case GAUDI_EVENT_MME3_ACC_DERR:
+ index = (event_type - GAUDI_EVENT_MME0_ACC_DERR) / 4;
+ params.block_address = mmMME0_ACC_BASE + index * MME_ACC_OFFSET;
+ params.num_memories = 128;
+ params.derr = true;
+ extract_info_from_fw = false;
+ break;
+ case GAUDI_EVENT_MME0_SBAB_SERR:
+ case GAUDI_EVENT_MME1_SBAB_SERR:
+ case GAUDI_EVENT_MME2_SBAB_SERR:
+ case GAUDI_EVENT_MME3_SBAB_SERR:
+ index = (event_type - GAUDI_EVENT_MME0_SBAB_SERR) / 4;
+ params.block_address =
+ mmMME0_SBAB_BASE + index * MME_ACC_OFFSET;
+ params.num_memories = 33;
+ params.derr = false;
+ extract_info_from_fw = false;
+ break;
+ case GAUDI_EVENT_MME0_SBAB_DERR:
+ case GAUDI_EVENT_MME1_SBAB_DERR:
+ case GAUDI_EVENT_MME2_SBAB_DERR:
+ case GAUDI_EVENT_MME3_SBAB_DERR:
+ index = (event_type - GAUDI_EVENT_MME0_SBAB_DERR) / 4;
+ params.block_address =
+ mmMME0_SBAB_BASE + index * MME_ACC_OFFSET;
+ params.num_memories = 33;
+ params.derr = true;
+ extract_info_from_fw = false;
+ break;
+ default:
+ return;
+ }
+
+extract_ecc_info:
+ if (extract_info_from_fw) {
+ ecc_address = le64_to_cpu(ecc_data->ecc_address);
+ ecc_syndrom = le64_to_cpu(ecc_data->ecc_syndrom);
+ memory_wrapper_idx = ecc_data->memory_wrapper_idx;
+ } else {
+ rc = gaudi_extract_ecc_info(hdev, ¶ms, &ecc_address,
+ &ecc_syndrom, &memory_wrapper_idx);
+ if (rc)
+ return;
+ }
+
+ dev_err(hdev->dev,
+ "ECC error detected. address: %#llx. Syndrom: %#llx. block id %u\n",
+ ecc_address, ecc_syndrom, memory_wrapper_idx);
+}
+
+static void gaudi_handle_qman_err(struct hl_device *hdev, u16 event_type, u64 *event_mask)
+{
+ u64 qman_base;
+ char desc[32];
+ u32 qid_base;
+ u8 index;
+
+ switch (event_type) {
+ case GAUDI_EVENT_TPC0_QM ... GAUDI_EVENT_TPC7_QM:
+ index = event_type - GAUDI_EVENT_TPC0_QM;
+ qid_base = GAUDI_QUEUE_ID_TPC_0_0 + index * QMAN_STREAMS;
+ qman_base = mmTPC0_QM_BASE + index * TPC_QMAN_OFFSET;
+ snprintf(desc, ARRAY_SIZE(desc), "%s%d", "TPC_QM", index);
+ break;
+ case GAUDI_EVENT_MME0_QM ... GAUDI_EVENT_MME2_QM:
+ if (event_type == GAUDI_EVENT_MME0_QM) {
+ index = 0;
+ qid_base = GAUDI_QUEUE_ID_MME_0_0;
+ } else { /* event_type == GAUDI_EVENT_MME2_QM */
+ index = 2;
+ qid_base = GAUDI_QUEUE_ID_MME_1_0;
+ }
+ qman_base = mmMME0_QM_BASE + index * MME_QMAN_OFFSET;
+ snprintf(desc, ARRAY_SIZE(desc), "%s%d", "MME_QM", index);
+ break;
+ case GAUDI_EVENT_DMA0_QM ... GAUDI_EVENT_DMA7_QM:
+ index = event_type - GAUDI_EVENT_DMA0_QM;
+ qid_base = GAUDI_QUEUE_ID_DMA_0_0 + index * QMAN_STREAMS;
+ /* skip GAUDI_QUEUE_ID_CPU_PQ if necessary */
+ if (index > 1)
+ qid_base++;
+ qman_base = mmDMA0_QM_BASE + index * DMA_QMAN_OFFSET;
+ snprintf(desc, ARRAY_SIZE(desc), "%s%d", "DMA_QM", index);
+ break;
+ case GAUDI_EVENT_NIC0_QM0:
+ qid_base = GAUDI_QUEUE_ID_NIC_0_0;
+ qman_base = mmNIC0_QM0_BASE;
+ snprintf(desc, ARRAY_SIZE(desc), "NIC0_QM0");
+ break;
+ case GAUDI_EVENT_NIC0_QM1:
+ qid_base = GAUDI_QUEUE_ID_NIC_1_0;
+ qman_base = mmNIC0_QM1_BASE;
+ snprintf(desc, ARRAY_SIZE(desc), "NIC0_QM1");
+ break;
+ case GAUDI_EVENT_NIC1_QM0:
+ qid_base = GAUDI_QUEUE_ID_NIC_2_0;
+ qman_base = mmNIC1_QM0_BASE;
+ snprintf(desc, ARRAY_SIZE(desc), "NIC1_QM0");
+ break;
+ case GAUDI_EVENT_NIC1_QM1:
+ qid_base = GAUDI_QUEUE_ID_NIC_3_0;
+ qman_base = mmNIC1_QM1_BASE;
+ snprintf(desc, ARRAY_SIZE(desc), "NIC1_QM1");
+ break;
+ case GAUDI_EVENT_NIC2_QM0:
+ qid_base = GAUDI_QUEUE_ID_NIC_4_0;
+ qman_base = mmNIC2_QM0_BASE;
+ snprintf(desc, ARRAY_SIZE(desc), "NIC2_QM0");
+ break;
+ case GAUDI_EVENT_NIC2_QM1:
+ qid_base = GAUDI_QUEUE_ID_NIC_5_0;
+ qman_base = mmNIC2_QM1_BASE;
+ snprintf(desc, ARRAY_SIZE(desc), "NIC2_QM1");
+ break;
+ case GAUDI_EVENT_NIC3_QM0:
+ qid_base = GAUDI_QUEUE_ID_NIC_6_0;
+ qman_base = mmNIC3_QM0_BASE;
+ snprintf(desc, ARRAY_SIZE(desc), "NIC3_QM0");
+ break;
+ case GAUDI_EVENT_NIC3_QM1:
+ qid_base = GAUDI_QUEUE_ID_NIC_7_0;
+ qman_base = mmNIC3_QM1_BASE;
+ snprintf(desc, ARRAY_SIZE(desc), "NIC3_QM1");
+ break;
+ case GAUDI_EVENT_NIC4_QM0:
+ qid_base = GAUDI_QUEUE_ID_NIC_8_0;
+ qman_base = mmNIC4_QM0_BASE;
+ snprintf(desc, ARRAY_SIZE(desc), "NIC4_QM0");
+ break;
+ case GAUDI_EVENT_NIC4_QM1:
+ qid_base = GAUDI_QUEUE_ID_NIC_9_0;
+ qman_base = mmNIC4_QM1_BASE;
+ snprintf(desc, ARRAY_SIZE(desc), "NIC4_QM1");
+ break;
+ default:
+ return;
+ }
+
+ gaudi_handle_qman_err_generic(hdev, desc, qman_base, qid_base, event_mask);
+}
+
+static void gaudi_print_irq_info(struct hl_device *hdev, u16 event_type,
+ bool razwi, u64 *event_mask)
+{
+ bool is_read = false, is_write = false;
+ u16 engine_id[2], num_of_razwi_eng = 0;
+ char desc[64] = "";
+ u64 razwi_addr = 0;
+ u8 razwi_flags = 0;
+
+ /*
+ * Init engine id by default as not valid and only if razwi initiated from engine with
+ * engine id it will get valid value.
+ */
+ engine_id[0] = HL_RAZWI_NA_ENG_ID;
+ engine_id[1] = HL_RAZWI_NA_ENG_ID;
+
+ gaudi_get_event_desc(event_type, desc, sizeof(desc));
+ dev_err_ratelimited(hdev->dev, "Received H/W interrupt %d [\"%s\"]\n",
+ event_type, desc);
+
+ if (razwi) {
+ gaudi_print_and_get_razwi_info(hdev, &engine_id[0], &engine_id[1], &is_read,
+ &is_write);
+ gaudi_print_and_get_mmu_error_info(hdev, &razwi_addr, event_mask);
+
+ if (is_read)
+ razwi_flags |= HL_RAZWI_READ;
+ if (is_write)
+ razwi_flags |= HL_RAZWI_WRITE;
+
+ if (engine_id[0] != HL_RAZWI_NA_ENG_ID) {
+ if (engine_id[1] != HL_RAZWI_NA_ENG_ID)
+ num_of_razwi_eng = 2;
+ else
+ num_of_razwi_eng = 1;
+ }
+
+ hl_handle_razwi(hdev, razwi_addr, engine_id, num_of_razwi_eng, razwi_flags,
+ event_mask);
+ }
+}
+
+static void gaudi_print_out_of_sync_info(struct hl_device *hdev,
+ struct cpucp_pkt_sync_err *sync_err)
+{
+ struct hl_hw_queue *q = &hdev->kernel_queues[GAUDI_QUEUE_ID_CPU_PQ];
+
+ dev_err(hdev->dev, "Out of sync with FW, FW: pi=%u, ci=%u, LKD: pi=%u, ci=%d\n",
+ le32_to_cpu(sync_err->pi), le32_to_cpu(sync_err->ci), q->pi, atomic_read(&q->ci));
+}
+
+static void gaudi_print_fw_alive_info(struct hl_device *hdev,
+ struct hl_eq_fw_alive *fw_alive)
+{
+ dev_err(hdev->dev,
+ "FW alive report: severity=%s, process_id=%u, thread_id=%u, uptime=%llu seconds\n",
+ (fw_alive->severity == FW_ALIVE_SEVERITY_MINOR) ? "Minor" : "Critical",
+ le32_to_cpu(fw_alive->process_id),
+ le32_to_cpu(fw_alive->thread_id),
+ le64_to_cpu(fw_alive->uptime_seconds));
+}
+
+static void gaudi_print_nic_axi_irq_info(struct hl_device *hdev, u16 event_type,
+ void *data)
+{
+ char desc[64] = "", *type;
+ struct eq_nic_sei_event *eq_nic_sei = data;
+ u16 nic_id = event_type - GAUDI_EVENT_NIC_SEI_0;
+
+ switch (eq_nic_sei->axi_error_cause) {
+ case RXB:
+ type = "RXB";
+ break;
+ case RXE:
+ type = "RXE";
+ break;
+ case TXS:
+ type = "TXS";
+ break;
+ case TXE:
+ type = "TXE";
+ break;
+ case QPC_RESP:
+ type = "QPC_RESP";
+ break;
+ case NON_AXI_ERR:
+ type = "NON_AXI_ERR";
+ break;
+ case TMR:
+ type = "TMR";
+ break;
+ default:
+ dev_err(hdev->dev, "unknown NIC AXI cause %d\n",
+ eq_nic_sei->axi_error_cause);
+ type = "N/A";
+ break;
+ }
+
+ snprintf(desc, sizeof(desc), "NIC%d_%s%d", nic_id, type,
+ eq_nic_sei->id);
+ dev_err_ratelimited(hdev->dev, "Received H/W interrupt %d [\"%s\"]\n",
+ event_type, desc);
+}
+
+static int gaudi_compute_reset_late_init(struct hl_device *hdev)
+{
+ /* GAUDI doesn't support any reset except hard-reset */
+ return -EPERM;
+}
+
+static int gaudi_hbm_read_interrupts(struct hl_device *hdev, int device,
+ struct hl_eq_hbm_ecc_data *hbm_ecc_data)
+{
+ u32 base, val, val2, wr_par, rd_par, ca_par, derr, serr, type, ch;
+ int rc = 0;
+
+ if (hdev->asic_prop.fw_app_cpu_boot_dev_sts0 &
+ CPU_BOOT_DEV_STS0_HBM_ECC_EN) {
+ if (!hbm_ecc_data) {
+ dev_err(hdev->dev, "No FW ECC data");
+ return 0;
+ }
+
+ wr_par = FIELD_GET(CPUCP_PKT_HBM_ECC_INFO_WR_PAR_MASK,
+ le32_to_cpu(hbm_ecc_data->hbm_ecc_info));
+ rd_par = FIELD_GET(CPUCP_PKT_HBM_ECC_INFO_RD_PAR_MASK,
+ le32_to_cpu(hbm_ecc_data->hbm_ecc_info));
+ ca_par = FIELD_GET(CPUCP_PKT_HBM_ECC_INFO_CA_PAR_MASK,
+ le32_to_cpu(hbm_ecc_data->hbm_ecc_info));
+ derr = FIELD_GET(CPUCP_PKT_HBM_ECC_INFO_DERR_MASK,
+ le32_to_cpu(hbm_ecc_data->hbm_ecc_info));
+ serr = FIELD_GET(CPUCP_PKT_HBM_ECC_INFO_SERR_MASK,
+ le32_to_cpu(hbm_ecc_data->hbm_ecc_info));
+ type = FIELD_GET(CPUCP_PKT_HBM_ECC_INFO_TYPE_MASK,
+ le32_to_cpu(hbm_ecc_data->hbm_ecc_info));
+ ch = FIELD_GET(CPUCP_PKT_HBM_ECC_INFO_HBM_CH_MASK,
+ le32_to_cpu(hbm_ecc_data->hbm_ecc_info));
+
+ dev_err(hdev->dev,
+ "HBM%d pc%d interrupts info: WR_PAR=%d, RD_PAR=%d, CA_PAR=%d, SERR=%d, DERR=%d\n",
+ device, ch, wr_par, rd_par, ca_par, serr, derr);
+ dev_err(hdev->dev,
+ "HBM%d pc%d ECC info: 1ST_ERR_ADDR=0x%x, 1ST_ERR_TYPE=%d, SEC_CONT_CNT=%u, SEC_CNT=%d, DEC_CNT=%d\n",
+ device, ch, hbm_ecc_data->first_addr, type,
+ hbm_ecc_data->sec_cont_cnt, hbm_ecc_data->sec_cnt,
+ hbm_ecc_data->dec_cnt);
+ return 0;
+ }
+
+ if (hdev->asic_prop.fw_security_enabled) {
+ dev_info(hdev->dev, "Cannot access MC regs for ECC data while security is enabled\n");
+ return 0;
+ }
+
+ base = GAUDI_HBM_CFG_BASE + device * GAUDI_HBM_CFG_OFFSET;
+ for (ch = 0 ; ch < GAUDI_HBM_CHANNELS ; ch++) {
+ val = RREG32_MASK(base + ch * 0x1000 + 0x06C, 0x0000FFFF);
+ val = (val & 0xFF) | ((val >> 8) & 0xFF);
+ if (val) {
+ rc = -EIO;
+ dev_err(hdev->dev,
+ "HBM%d pc%d interrupts info: WR_PAR=%d, RD_PAR=%d, CA_PAR=%d, SERR=%d, DERR=%d\n",
+ device, ch * 2, val & 0x1, (val >> 1) & 0x1,
+ (val >> 2) & 0x1, (val >> 3) & 0x1,
+ (val >> 4) & 0x1);
+
+ val2 = RREG32(base + ch * 0x1000 + 0x060);
+ dev_err(hdev->dev,
+ "HBM%d pc%d ECC info: 1ST_ERR_ADDR=0x%x, 1ST_ERR_TYPE=%d, SEC_CONT_CNT=%d, SEC_CNT=%d, DEC_CNT=%d\n",
+ device, ch * 2,
+ RREG32(base + ch * 0x1000 + 0x064),
+ (val2 & 0x200) >> 9, (val2 & 0xFC00) >> 10,
+ (val2 & 0xFF0000) >> 16,
+ (val2 & 0xFF000000) >> 24);
+ }
+
+ val = RREG32_MASK(base + ch * 0x1000 + 0x07C, 0x0000FFFF);
+ val = (val & 0xFF) | ((val >> 8) & 0xFF);
+ if (val) {
+ rc = -EIO;
+ dev_err(hdev->dev,
+ "HBM%d pc%d interrupts info: WR_PAR=%d, RD_PAR=%d, CA_PAR=%d, SERR=%d, DERR=%d\n",
+ device, ch * 2 + 1, val & 0x1, (val >> 1) & 0x1,
+ (val >> 2) & 0x1, (val >> 3) & 0x1,
+ (val >> 4) & 0x1);
+
+ val2 = RREG32(base + ch * 0x1000 + 0x070);
+ dev_err(hdev->dev,
+ "HBM%d pc%d ECC info: 1ST_ERR_ADDR=0x%x, 1ST_ERR_TYPE=%d, SEC_CONT_CNT=%d, SEC_CNT=%d, DEC_CNT=%d\n",
+ device, ch * 2 + 1,
+ RREG32(base + ch * 0x1000 + 0x074),
+ (val2 & 0x200) >> 9, (val2 & 0xFC00) >> 10,
+ (val2 & 0xFF0000) >> 16,
+ (val2 & 0xFF000000) >> 24);
+ }
+
+ /* Clear interrupts */
+ RMWREG32(base + (ch * 0x1000) + 0x060, 0x1C8, 0x1FF);
+ RMWREG32(base + (ch * 0x1000) + 0x070, 0x1C8, 0x1FF);
+ WREG32(base + (ch * 0x1000) + 0x06C, 0x1F1F);
+ WREG32(base + (ch * 0x1000) + 0x07C, 0x1F1F);
+ RMWREG32(base + (ch * 0x1000) + 0x060, 0x0, 0xF);
+ RMWREG32(base + (ch * 0x1000) + 0x070, 0x0, 0xF);
+ }
+
+ val = RREG32(base + 0x8F30);
+ val2 = RREG32(base + 0x8F34);
+ if (val | val2) {
+ rc = -EIO;
+ dev_err(hdev->dev,
+ "HBM %d MC SRAM SERR info: Reg 0x8F30=0x%x, Reg 0x8F34=0x%x\n",
+ device, val, val2);
+ }
+ val = RREG32(base + 0x8F40);
+ val2 = RREG32(base + 0x8F44);
+ if (val | val2) {
+ rc = -EIO;
+ dev_err(hdev->dev,
+ "HBM %d MC SRAM DERR info: Reg 0x8F40=0x%x, Reg 0x8F44=0x%x\n",
+ device, val, val2);
+ }
+
+ return rc;
+}
+
+static int gaudi_hbm_event_to_dev(u16 hbm_event_type)
+{
+ switch (hbm_event_type) {
+ case GAUDI_EVENT_HBM0_SPI_0:
+ case GAUDI_EVENT_HBM0_SPI_1:
+ return 0;
+ case GAUDI_EVENT_HBM1_SPI_0:
+ case GAUDI_EVENT_HBM1_SPI_1:
+ return 1;
+ case GAUDI_EVENT_HBM2_SPI_0:
+ case GAUDI_EVENT_HBM2_SPI_1:
+ return 2;
+ case GAUDI_EVENT_HBM3_SPI_0:
+ case GAUDI_EVENT_HBM3_SPI_1:
+ return 3;
+ default:
+ break;
+ }
+
+ /* Should never happen */
+ return 0;
+}
+
+static bool gaudi_tpc_read_interrupts(struct hl_device *hdev, u8 tpc_id,
+ char *interrupt_name)
+{
+ u32 tpc_offset = tpc_id * TPC_CFG_OFFSET, tpc_interrupts_cause, i;
+ bool soft_reset_required = false;
+
+ tpc_interrupts_cause = RREG32(mmTPC0_CFG_TPC_INTR_CAUSE + tpc_offset) &
+ TPC0_CFG_TPC_INTR_CAUSE_CAUSE_MASK;
+
+ for (i = 0 ; i < GAUDI_NUM_OF_TPC_INTR_CAUSE ; i++)
+ if (tpc_interrupts_cause & BIT(i)) {
+ dev_err_ratelimited(hdev->dev,
+ "TPC%d_%s interrupt cause: %s\n",
+ tpc_id, interrupt_name,
+ gaudi_tpc_interrupts_cause[i]);
+ /* If this is QM error, we need to soft-reset */
+ if (i == 15)
+ soft_reset_required = true;
+ }
+
+ /* Clear interrupts */
+ WREG32(mmTPC0_CFG_TPC_INTR_CAUSE + tpc_offset, 0);
+
+ return soft_reset_required;
+}
+
+static int tpc_dec_event_to_tpc_id(u16 tpc_dec_event_type)
+{
+ return (tpc_dec_event_type - GAUDI_EVENT_TPC0_DEC) >> 1;
+}
+
+static int tpc_krn_event_to_tpc_id(u16 tpc_dec_event_type)
+{
+ return (tpc_dec_event_type - GAUDI_EVENT_TPC0_KRN_ERR) / 6;
+}
+
+static void gaudi_print_clk_change_info(struct hl_device *hdev, u16 event_type, u64 *event_mask)
+{
+ ktime_t zero_time = ktime_set(0, 0);
+
+ mutex_lock(&hdev->clk_throttling.lock);
+
+ switch (event_type) {
+ case GAUDI_EVENT_FIX_POWER_ENV_S:
+ hdev->clk_throttling.current_reason |= HL_CLK_THROTTLE_POWER;
+ hdev->clk_throttling.aggregated_reason |= HL_CLK_THROTTLE_POWER;
+ hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_POWER].start = ktime_get();
+ hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_POWER].end = zero_time;
+ dev_info_ratelimited(hdev->dev,
+ "Clock throttling due to power consumption\n");
+ break;
+
+ case GAUDI_EVENT_FIX_POWER_ENV_E:
+ hdev->clk_throttling.current_reason &= ~HL_CLK_THROTTLE_POWER;
+ hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_POWER].end = ktime_get();
+ dev_info_ratelimited(hdev->dev,
+ "Power envelop is safe, back to optimal clock\n");
+ break;
+
+ case GAUDI_EVENT_FIX_THERMAL_ENV_S:
+ hdev->clk_throttling.current_reason |= HL_CLK_THROTTLE_THERMAL;
+ hdev->clk_throttling.aggregated_reason |= HL_CLK_THROTTLE_THERMAL;
+ hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].start = ktime_get();
+ hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].end = zero_time;
+ *event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ dev_info_ratelimited(hdev->dev,
+ "Clock throttling due to overheating\n");
+ break;
+
+ case GAUDI_EVENT_FIX_THERMAL_ENV_E:
+ hdev->clk_throttling.current_reason &= ~HL_CLK_THROTTLE_THERMAL;
+ hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].end = ktime_get();
+ *event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ dev_info_ratelimited(hdev->dev,
+ "Thermal envelop is safe, back to optimal clock\n");
+ break;
+
+ default:
+ dev_err(hdev->dev, "Received invalid clock change event %d\n",
+ event_type);
+ break;
+ }
+
+ mutex_unlock(&hdev->clk_throttling.lock);
+}
+
+static void gaudi_handle_eqe(struct hl_device *hdev, struct hl_eq_entry *eq_entry)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ u64 data = le64_to_cpu(eq_entry->data[0]), event_mask = 0;
+ u32 ctl = le32_to_cpu(eq_entry->hdr.ctl);
+ u32 fw_fatal_err_flag = 0, flags = 0;
+ u16 event_type = ((ctl & EQ_CTL_EVENT_TYPE_MASK)
+ >> EQ_CTL_EVENT_TYPE_SHIFT);
+ bool reset_required, reset_direct = false;
+ u8 cause;
+ int rc;
+
+ if (event_type >= GAUDI_EVENT_SIZE) {
+ dev_err(hdev->dev, "Event type %u exceeds maximum of %u",
+ event_type, GAUDI_EVENT_SIZE - 1);
+ return;
+ }
+
+ gaudi->events_stat[event_type]++;
+ gaudi->events_stat_aggregate[event_type]++;
+
+ switch (event_type) {
+ case GAUDI_EVENT_PCIE_CORE_DERR:
+ case GAUDI_EVENT_PCIE_IF_DERR:
+ case GAUDI_EVENT_PCIE_PHY_DERR:
+ case GAUDI_EVENT_TPC0_DERR ... GAUDI_EVENT_TPC7_DERR:
+ case GAUDI_EVENT_MME0_ACC_DERR:
+ case GAUDI_EVENT_MME0_SBAB_DERR:
+ case GAUDI_EVENT_MME1_ACC_DERR:
+ case GAUDI_EVENT_MME1_SBAB_DERR:
+ case GAUDI_EVENT_MME2_ACC_DERR:
+ case GAUDI_EVENT_MME2_SBAB_DERR:
+ case GAUDI_EVENT_MME3_ACC_DERR:
+ case GAUDI_EVENT_MME3_SBAB_DERR:
+ case GAUDI_EVENT_DMA0_DERR_ECC ... GAUDI_EVENT_DMA7_DERR_ECC:
+ fallthrough;
+ case GAUDI_EVENT_CPU_IF_ECC_DERR:
+ case GAUDI_EVENT_PSOC_MEM_DERR:
+ case GAUDI_EVENT_PSOC_CORESIGHT_DERR:
+ case GAUDI_EVENT_SRAM0_DERR ... GAUDI_EVENT_SRAM28_DERR:
+ case GAUDI_EVENT_NIC0_DERR ... GAUDI_EVENT_NIC4_DERR:
+ case GAUDI_EVENT_DMA_IF0_DERR ... GAUDI_EVENT_DMA_IF3_DERR:
+ case GAUDI_EVENT_HBM_0_DERR ... GAUDI_EVENT_HBM_3_DERR:
+ case GAUDI_EVENT_MMU_DERR:
+ case GAUDI_EVENT_NIC0_CS_DBG_DERR ... GAUDI_EVENT_NIC4_CS_DBG_DERR:
+ gaudi_print_irq_info(hdev, event_type, true, &event_mask);
+ gaudi_handle_ecc_event(hdev, event_type, &eq_entry->ecc_data);
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ fw_fatal_err_flag = HL_DRV_RESET_FW_FATAL_ERR;
+ goto reset_device;
+
+ case GAUDI_EVENT_GIC500:
+ case GAUDI_EVENT_AXI_ECC:
+ case GAUDI_EVENT_L2_RAM_ECC:
+ case GAUDI_EVENT_PLL0 ... GAUDI_EVENT_PLL17:
+ gaudi_print_irq_info(hdev, event_type, false, &event_mask);
+ fw_fatal_err_flag = HL_DRV_RESET_FW_FATAL_ERR;
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ goto reset_device;
+
+ case GAUDI_EVENT_HBM0_SPI_0:
+ case GAUDI_EVENT_HBM1_SPI_0:
+ case GAUDI_EVENT_HBM2_SPI_0:
+ case GAUDI_EVENT_HBM3_SPI_0:
+ gaudi_print_irq_info(hdev, event_type, false, &event_mask);
+ gaudi_hbm_read_interrupts(hdev,
+ gaudi_hbm_event_to_dev(event_type),
+ &eq_entry->hbm_ecc_data);
+ fw_fatal_err_flag = HL_DRV_RESET_FW_FATAL_ERR;
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ goto reset_device;
+
+ case GAUDI_EVENT_HBM0_SPI_1:
+ case GAUDI_EVENT_HBM1_SPI_1:
+ case GAUDI_EVENT_HBM2_SPI_1:
+ case GAUDI_EVENT_HBM3_SPI_1:
+ gaudi_print_irq_info(hdev, event_type, false, &event_mask);
+ gaudi_hbm_read_interrupts(hdev,
+ gaudi_hbm_event_to_dev(event_type),
+ &eq_entry->hbm_ecc_data);
+ hl_fw_unmask_irq(hdev, event_type);
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+
+ case GAUDI_EVENT_TPC0_DEC:
+ case GAUDI_EVENT_TPC1_DEC:
+ case GAUDI_EVENT_TPC2_DEC:
+ case GAUDI_EVENT_TPC3_DEC:
+ case GAUDI_EVENT_TPC4_DEC:
+ case GAUDI_EVENT_TPC5_DEC:
+ case GAUDI_EVENT_TPC6_DEC:
+ case GAUDI_EVENT_TPC7_DEC:
+ /* In TPC DEC event, notify on TPC assertion. While there isn't
+ * a specific event for assertion yet, the FW generates TPC DEC event.
+ * The SW upper layer will inspect an internal mapped area to indicate
+ * if the event is a TPC Assertion or a "real" TPC DEC.
+ */
+ event_mask |= HL_NOTIFIER_EVENT_TPC_ASSERT;
+ gaudi_print_irq_info(hdev, event_type, true, &event_mask);
+ reset_required = gaudi_tpc_read_interrupts(hdev,
+ tpc_dec_event_to_tpc_id(event_type),
+ "AXI_SLV_DEC_Error");
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ if (reset_required) {
+ dev_err(hdev->dev, "reset required due to %s\n",
+ gaudi_irq_map_table[event_type].name);
+
+ reset_direct = true;
+ goto reset_device;
+ } else {
+ hl_fw_unmask_irq(hdev, event_type);
+ event_mask |= HL_NOTIFIER_EVENT_DEVICE_RESET;
+ }
+ break;
+
+ case GAUDI_EVENT_TPC0_KRN_ERR:
+ case GAUDI_EVENT_TPC1_KRN_ERR:
+ case GAUDI_EVENT_TPC2_KRN_ERR:
+ case GAUDI_EVENT_TPC3_KRN_ERR:
+ case GAUDI_EVENT_TPC4_KRN_ERR:
+ case GAUDI_EVENT_TPC5_KRN_ERR:
+ case GAUDI_EVENT_TPC6_KRN_ERR:
+ case GAUDI_EVENT_TPC7_KRN_ERR:
+ gaudi_print_irq_info(hdev, event_type, true, &event_mask);
+ reset_required = gaudi_tpc_read_interrupts(hdev,
+ tpc_krn_event_to_tpc_id(event_type),
+ "KRN_ERR");
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ if (reset_required) {
+ dev_err(hdev->dev, "reset required due to %s\n",
+ gaudi_irq_map_table[event_type].name);
+
+ reset_direct = true;
+ goto reset_device;
+ } else {
+ hl_fw_unmask_irq(hdev, event_type);
+ event_mask |= HL_NOTIFIER_EVENT_DEVICE_RESET;
+ }
+ break;
+
+ case GAUDI_EVENT_PCIE_CORE_SERR:
+ case GAUDI_EVENT_PCIE_IF_SERR:
+ case GAUDI_EVENT_PCIE_PHY_SERR:
+ case GAUDI_EVENT_TPC0_SERR ... GAUDI_EVENT_TPC7_SERR:
+ case GAUDI_EVENT_MME0_ACC_SERR:
+ case GAUDI_EVENT_MME0_SBAB_SERR:
+ case GAUDI_EVENT_MME1_ACC_SERR:
+ case GAUDI_EVENT_MME1_SBAB_SERR:
+ case GAUDI_EVENT_MME2_ACC_SERR:
+ case GAUDI_EVENT_MME2_SBAB_SERR:
+ case GAUDI_EVENT_MME3_ACC_SERR:
+ case GAUDI_EVENT_MME3_SBAB_SERR:
+ case GAUDI_EVENT_DMA0_SERR_ECC ... GAUDI_EVENT_DMA7_SERR_ECC:
+ case GAUDI_EVENT_CPU_IF_ECC_SERR:
+ case GAUDI_EVENT_PSOC_MEM_SERR:
+ case GAUDI_EVENT_PSOC_CORESIGHT_SERR:
+ case GAUDI_EVENT_SRAM0_SERR ... GAUDI_EVENT_SRAM28_SERR:
+ case GAUDI_EVENT_NIC0_SERR ... GAUDI_EVENT_NIC4_SERR:
+ case GAUDI_EVENT_DMA_IF0_SERR ... GAUDI_EVENT_DMA_IF3_SERR:
+ case GAUDI_EVENT_HBM_0_SERR ... GAUDI_EVENT_HBM_3_SERR:
+ fallthrough;
+ case GAUDI_EVENT_MMU_SERR:
+ gaudi_print_irq_info(hdev, event_type, true, &event_mask);
+ gaudi_handle_ecc_event(hdev, event_type, &eq_entry->ecc_data);
+ hl_fw_unmask_irq(hdev, event_type);
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+
+ case GAUDI_EVENT_PCIE_DEC:
+ case GAUDI_EVENT_CPU_AXI_SPLITTER:
+ case GAUDI_EVENT_PSOC_AXI_DEC:
+ case GAUDI_EVENT_PSOC_PRSTN_FALL:
+ gaudi_print_irq_info(hdev, event_type, true, &event_mask);
+ hl_fw_unmask_irq(hdev, event_type);
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+
+ case GAUDI_EVENT_MMU_PAGE_FAULT:
+ case GAUDI_EVENT_MMU_WR_PERM:
+ gaudi_print_irq_info(hdev, event_type, true, &event_mask);
+ hl_fw_unmask_irq(hdev, event_type);
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ break;
+
+ case GAUDI_EVENT_MME0_WBC_RSP:
+ case GAUDI_EVENT_MME0_SBAB0_RSP:
+ case GAUDI_EVENT_MME1_WBC_RSP:
+ case GAUDI_EVENT_MME1_SBAB0_RSP:
+ case GAUDI_EVENT_MME2_WBC_RSP:
+ case GAUDI_EVENT_MME2_SBAB0_RSP:
+ case GAUDI_EVENT_MME3_WBC_RSP:
+ case GAUDI_EVENT_MME3_SBAB0_RSP:
+ case GAUDI_EVENT_RAZWI_OR_ADC:
+ case GAUDI_EVENT_MME0_QM ... GAUDI_EVENT_MME2_QM:
+ case GAUDI_EVENT_DMA0_QM ... GAUDI_EVENT_DMA7_QM:
+ fallthrough;
+ case GAUDI_EVENT_NIC0_QM0:
+ case GAUDI_EVENT_NIC0_QM1:
+ case GAUDI_EVENT_NIC1_QM0:
+ case GAUDI_EVENT_NIC1_QM1:
+ case GAUDI_EVENT_NIC2_QM0:
+ case GAUDI_EVENT_NIC2_QM1:
+ case GAUDI_EVENT_NIC3_QM0:
+ case GAUDI_EVENT_NIC3_QM1:
+ case GAUDI_EVENT_NIC4_QM0:
+ case GAUDI_EVENT_NIC4_QM1:
+ case GAUDI_EVENT_DMA0_CORE ... GAUDI_EVENT_DMA7_CORE:
+ case GAUDI_EVENT_TPC0_QM ... GAUDI_EVENT_TPC7_QM:
+ gaudi_print_irq_info(hdev, event_type, true, &event_mask);
+ gaudi_handle_qman_err(hdev, event_type, &event_mask);
+ hl_fw_unmask_irq(hdev, event_type);
+ event_mask |= (HL_NOTIFIER_EVENT_USER_ENGINE_ERR | HL_NOTIFIER_EVENT_DEVICE_RESET);
+ break;
+
+ case GAUDI_EVENT_RAZWI_OR_ADC_SW:
+ gaudi_print_irq_info(hdev, event_type, true, &event_mask);
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ goto reset_device;
+
+ case GAUDI_EVENT_TPC0_BMON_SPMU:
+ case GAUDI_EVENT_TPC1_BMON_SPMU:
+ case GAUDI_EVENT_TPC2_BMON_SPMU:
+ case GAUDI_EVENT_TPC3_BMON_SPMU:
+ case GAUDI_EVENT_TPC4_BMON_SPMU:
+ case GAUDI_EVENT_TPC5_BMON_SPMU:
+ case GAUDI_EVENT_TPC6_BMON_SPMU:
+ case GAUDI_EVENT_TPC7_BMON_SPMU:
+ case GAUDI_EVENT_DMA_BM_CH0 ... GAUDI_EVENT_DMA_BM_CH7:
+ gaudi_print_irq_info(hdev, event_type, false, &event_mask);
+ hl_fw_unmask_irq(hdev, event_type);
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ break;
+
+ case GAUDI_EVENT_NIC_SEI_0 ... GAUDI_EVENT_NIC_SEI_4:
+ gaudi_print_nic_axi_irq_info(hdev, event_type, &data);
+ hl_fw_unmask_irq(hdev, event_type);
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ break;
+
+ case GAUDI_EVENT_DMA_IF_SEI_0 ... GAUDI_EVENT_DMA_IF_SEI_3:
+ gaudi_print_irq_info(hdev, event_type, false, &event_mask);
+ gaudi_print_sm_sei_info(hdev, event_type,
+ &eq_entry->sm_sei_data);
+ rc = hl_state_dump(hdev);
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ if (rc)
+ dev_err(hdev->dev,
+ "Error during system state dump %d\n", rc);
+ hl_fw_unmask_irq(hdev, event_type);
+ break;
+
+ case GAUDI_EVENT_STATUS_NIC0_ENG0 ... GAUDI_EVENT_STATUS_NIC4_ENG1:
+ break;
+
+ case GAUDI_EVENT_FIX_POWER_ENV_S ... GAUDI_EVENT_FIX_THERMAL_ENV_E:
+ gaudi_print_clk_change_info(hdev, event_type, &event_mask);
+ hl_fw_unmask_irq(hdev, event_type);
+ break;
+
+ case GAUDI_EVENT_PSOC_GPIO_U16_0:
+ cause = le64_to_cpu(eq_entry->data[0]) & 0xFF;
+ dev_err(hdev->dev,
+ "Received high temp H/W interrupt %d (cause %d)\n",
+ event_type, cause);
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ break;
+
+ case GAUDI_EVENT_DEV_RESET_REQ:
+ gaudi_print_irq_info(hdev, event_type, false, &event_mask);
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ goto reset_device;
+
+ case GAUDI_EVENT_PKT_QUEUE_OUT_SYNC:
+ gaudi_print_irq_info(hdev, event_type, false, &event_mask);
+ gaudi_print_out_of_sync_info(hdev, &eq_entry->pkt_sync_err);
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ goto reset_device;
+
+ case GAUDI_EVENT_FW_ALIVE_S:
+ gaudi_print_irq_info(hdev, event_type, false, &event_mask);
+ gaudi_print_fw_alive_info(hdev, &eq_entry->fw_alive);
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ goto reset_device;
+
+ default:
+ dev_err(hdev->dev, "Received invalid H/W interrupt %d\n",
+ event_type);
+ break;
+ }
+
+ if (event_mask)
+ hl_notifier_event_send_all(hdev, event_mask);
+
+ return;
+
+reset_device:
+ reset_required = true;
+
+ if (hdev->asic_prop.fw_security_enabled && !reset_direct) {
+ flags = HL_DRV_RESET_HARD | HL_DRV_RESET_BYPASS_REQ_TO_FW | fw_fatal_err_flag;
+
+ /* notify on device unavailable while the reset triggered by fw */
+ event_mask |= (HL_NOTIFIER_EVENT_DEVICE_RESET |
+ HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE);
+ } else if (hdev->hard_reset_on_fw_events) {
+ flags = HL_DRV_RESET_HARD | HL_DRV_RESET_DELAY | fw_fatal_err_flag;
+ event_mask |= HL_NOTIFIER_EVENT_DEVICE_RESET;
+ } else {
+ reset_required = false;
+ }
+
+ if (reset_required) {
+ hl_device_cond_reset(hdev, flags, event_mask);
+ } else {
+ hl_fw_unmask_irq(hdev, event_type);
+ /* Notification on occurred event needs to be sent although reset is not executed */
+ if (event_mask)
+ hl_notifier_event_send_all(hdev, event_mask);
+ }
+}
+
+static void *gaudi_get_events_stat(struct hl_device *hdev, bool aggregate, u32 *size)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ if (aggregate) {
+ *size = (u32) sizeof(gaudi->events_stat_aggregate);
+ return gaudi->events_stat_aggregate;
+ }
+
+ *size = (u32) sizeof(gaudi->events_stat);
+ return gaudi->events_stat;
+}
+
+static int gaudi_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ u32 status, timeout_usec;
+ int rc;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_MMU) ||
+ hdev->reset_info.hard_reset_pending)
+ return 0;
+
+ if (hdev->pldm)
+ timeout_usec = GAUDI_PLDM_MMU_TIMEOUT_USEC;
+ else
+ timeout_usec = MMU_CONFIG_TIMEOUT_USEC;
+
+ /* L0 & L1 invalidation */
+ WREG32(mmSTLB_INV_PS, 3);
+ WREG32(mmSTLB_CACHE_INV, gaudi->mmu_cache_inv_pi++);
+ WREG32(mmSTLB_INV_PS, 2);
+
+ rc = hl_poll_timeout(
+ hdev,
+ mmSTLB_INV_PS,
+ status,
+ !status,
+ 1000,
+ timeout_usec);
+
+ WREG32(mmSTLB_INV_SET, 0);
+
+ return rc;
+}
+
+static int gaudi_mmu_invalidate_cache_range(struct hl_device *hdev,
+ bool is_hard, u32 flags,
+ u32 asid, u64 va, u64 size)
+{
+ /* Treat as invalidate all because there is no range invalidation
+ * in Gaudi
+ */
+ return hdev->asic_funcs->mmu_invalidate_cache(hdev, is_hard, flags);
+}
+
+static int gaudi_mmu_update_asid_hop0_addr(struct hl_device *hdev, u32 asid, u64 phys_addr)
+{
+ u32 status, timeout_usec;
+ int rc;
+
+ if (hdev->pldm)
+ timeout_usec = GAUDI_PLDM_MMU_TIMEOUT_USEC;
+ else
+ timeout_usec = MMU_CONFIG_TIMEOUT_USEC;
+
+ WREG32(MMU_ASID, asid);
+ WREG32(MMU_HOP0_PA43_12, phys_addr >> MMU_HOP0_PA43_12_SHIFT);
+ WREG32(MMU_HOP0_PA49_44, phys_addr >> MMU_HOP0_PA49_44_SHIFT);
+ WREG32(MMU_BUSY, 0x80000000);
+
+ rc = hl_poll_timeout(
+ hdev,
+ MMU_BUSY,
+ status,
+ !(status & 0x80000000),
+ 1000,
+ timeout_usec);
+
+ if (rc) {
+ dev_err(hdev->dev,
+ "Timeout during MMU hop0 config of asid %d\n", asid);
+ return rc;
+ }
+
+ return 0;
+}
+
+static int gaudi_send_heartbeat(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_CPU_Q))
+ return 0;
+
+ return hl_fw_send_heartbeat(hdev);
+}
+
+static int gaudi_cpucp_info_get(struct hl_device *hdev)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ int rc;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_CPU_Q))
+ return 0;
+
+ rc = hl_fw_cpucp_handshake(hdev, mmCPU_BOOT_DEV_STS0,
+ mmCPU_BOOT_DEV_STS1, mmCPU_BOOT_ERR0,
+ mmCPU_BOOT_ERR1);
+ if (rc)
+ return rc;
+
+ if (!strlen(prop->cpucp_info.card_name))
+ strncpy(prop->cpucp_info.card_name, GAUDI_DEFAULT_CARD_NAME,
+ CARD_NAME_MAX_LEN);
+
+ hdev->card_type = le32_to_cpu(hdev->asic_prop.cpucp_info.card_type);
+
+ set_default_power_values(hdev);
+
+ return 0;
+}
+
+static bool gaudi_is_device_idle(struct hl_device *hdev, u64 *mask_arr, u8 mask_len,
+ struct engines_data *e)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ const char *fmt = "%-5d%-9s%#-14x%#-12x%#x\n";
+ const char *mme_slave_fmt = "%-5d%-9s%-14s%-12s%#x\n";
+ const char *nic_fmt = "%-5d%-9s%#-14x%#x\n";
+ unsigned long *mask = (unsigned long *)mask_arr;
+ u32 qm_glbl_sts0, qm_cgm_sts, dma_core_sts0, tpc_cfg_sts, mme_arch_sts;
+ bool is_idle = true, is_eng_idle, is_slave;
+ u64 offset;
+ int i, dma_id, port;
+
+ if (e)
+ hl_engine_data_sprintf(e,
+ "\nDMA is_idle QM_GLBL_STS0 QM_CGM_STS DMA_CORE_STS0\n"
+ "--- ------- ------------ ---------- -------------\n");
+
+ for (i = 0 ; i < DMA_NUMBER_OF_CHNLS ; i++) {
+ dma_id = gaudi_dma_assignment[i];
+ offset = dma_id * DMA_QMAN_OFFSET;
+
+ qm_glbl_sts0 = RREG32(mmDMA0_QM_GLBL_STS0 + offset);
+ qm_cgm_sts = RREG32(mmDMA0_QM_CGM_STS + offset);
+ dma_core_sts0 = RREG32(mmDMA0_CORE_STS0 + offset);
+ is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_cgm_sts) &&
+ IS_DMA_IDLE(dma_core_sts0);
+ is_idle &= is_eng_idle;
+
+ if (mask && !is_eng_idle)
+ set_bit(GAUDI_ENGINE_ID_DMA_0 + dma_id, mask);
+ if (e)
+ hl_engine_data_sprintf(e, fmt, dma_id,
+ is_eng_idle ? "Y" : "N", qm_glbl_sts0,
+ qm_cgm_sts, dma_core_sts0);
+ }
+
+ if (e)
+ hl_engine_data_sprintf(e,
+ "\nTPC is_idle QM_GLBL_STS0 QM_CGM_STS CFG_STATUS\n"
+ "--- ------- ------------ ---------- ----------\n");
+
+ for (i = 0 ; i < TPC_NUMBER_OF_ENGINES ; i++) {
+ offset = i * TPC_QMAN_OFFSET;
+ qm_glbl_sts0 = RREG32(mmTPC0_QM_GLBL_STS0 + offset);
+ qm_cgm_sts = RREG32(mmTPC0_QM_CGM_STS + offset);
+ tpc_cfg_sts = RREG32(mmTPC0_CFG_STATUS + offset);
+ is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_cgm_sts) &&
+ IS_TPC_IDLE(tpc_cfg_sts);
+ is_idle &= is_eng_idle;
+
+ if (mask && !is_eng_idle)
+ set_bit(GAUDI_ENGINE_ID_TPC_0 + i, mask);
+ if (e)
+ hl_engine_data_sprintf(e, fmt, i,
+ is_eng_idle ? "Y" : "N",
+ qm_glbl_sts0, qm_cgm_sts, tpc_cfg_sts);
+ }
+
+ if (e)
+ hl_engine_data_sprintf(e,
+ "\nMME is_idle QM_GLBL_STS0 QM_CGM_STS ARCH_STATUS\n"
+ "--- ------- ------------ ---------- -----------\n");
+
+ for (i = 0 ; i < MME_NUMBER_OF_ENGINES ; i++) {
+ offset = i * MME_QMAN_OFFSET;
+ mme_arch_sts = RREG32(mmMME0_CTRL_ARCH_STATUS + offset);
+ is_eng_idle = IS_MME_IDLE(mme_arch_sts);
+
+ /* MME 1 & 3 are slaves, no need to check their QMANs */
+ is_slave = i % 2;
+ if (!is_slave) {
+ qm_glbl_sts0 = RREG32(mmMME0_QM_GLBL_STS0 + offset);
+ qm_cgm_sts = RREG32(mmMME0_QM_CGM_STS + offset);
+ is_eng_idle &= IS_QM_IDLE(qm_glbl_sts0, qm_cgm_sts);
+ }
+
+ is_idle &= is_eng_idle;
+
+ if (mask && !is_eng_idle)
+ set_bit(GAUDI_ENGINE_ID_MME_0 + i, mask);
+ if (e) {
+ if (!is_slave)
+ hl_engine_data_sprintf(e, fmt, i,
+ is_eng_idle ? "Y" : "N",
+ qm_glbl_sts0, qm_cgm_sts, mme_arch_sts);
+ else
+ hl_engine_data_sprintf(e, mme_slave_fmt, i,
+ is_eng_idle ? "Y" : "N", "-",
+ "-", mme_arch_sts);
+ }
+ }
+
+ if (e)
+ hl_engine_data_sprintf(e,
+ "\nNIC is_idle QM_GLBL_STS0 QM_CGM_STS\n"
+ "--- ------- ------------ ----------\n");
+
+ for (i = 0 ; i < (NIC_NUMBER_OF_ENGINES / 2) ; i++) {
+ offset = i * NIC_MACRO_QMAN_OFFSET;
+ port = 2 * i;
+ if (gaudi->hw_cap_initialized & BIT(HW_CAP_NIC_SHIFT + port)) {
+ qm_glbl_sts0 = RREG32(mmNIC0_QM0_GLBL_STS0 + offset);
+ qm_cgm_sts = RREG32(mmNIC0_QM0_CGM_STS + offset);
+ is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_cgm_sts);
+ is_idle &= is_eng_idle;
+
+ if (mask && !is_eng_idle)
+ set_bit(GAUDI_ENGINE_ID_NIC_0 + port, mask);
+ if (e)
+ hl_engine_data_sprintf(e, nic_fmt, port,
+ is_eng_idle ? "Y" : "N",
+ qm_glbl_sts0, qm_cgm_sts);
+ }
+
+ port = 2 * i + 1;
+ if (gaudi->hw_cap_initialized & BIT(HW_CAP_NIC_SHIFT + port)) {
+ qm_glbl_sts0 = RREG32(mmNIC0_QM1_GLBL_STS0 + offset);
+ qm_cgm_sts = RREG32(mmNIC0_QM1_CGM_STS + offset);
+ is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_cgm_sts);
+ is_idle &= is_eng_idle;
+
+ if (mask && !is_eng_idle)
+ set_bit(GAUDI_ENGINE_ID_NIC_0 + port, mask);
+ if (e)
+ hl_engine_data_sprintf(e, nic_fmt, port,
+ is_eng_idle ? "Y" : "N",
+ qm_glbl_sts0, qm_cgm_sts);
+ }
+ }
+
+ if (e)
+ hl_engine_data_sprintf(e, "\n");
+
+ return is_idle;
+}
+
+static void gaudi_hw_queues_lock(struct hl_device *hdev)
+ __acquires(&gaudi->hw_queues_lock)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ spin_lock(&gaudi->hw_queues_lock);
+}
+
+static void gaudi_hw_queues_unlock(struct hl_device *hdev)
+ __releases(&gaudi->hw_queues_lock)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ spin_unlock(&gaudi->hw_queues_lock);
+}
+
+static u32 gaudi_get_pci_id(struct hl_device *hdev)
+{
+ return hdev->pdev->device;
+}
+
+static int gaudi_get_eeprom_data(struct hl_device *hdev, void *data,
+ size_t max_size)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_CPU_Q))
+ return 0;
+
+ return hl_fw_get_eeprom_data(hdev, data, max_size);
+}
+
+static int gaudi_get_monitor_dump(struct hl_device *hdev, void *data)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_CPU_Q))
+ return 0;
+
+ return hl_fw_get_monitor_dump(hdev, data);
+}
+
+/*
+ * this function should be used only during initialization and/or after reset,
+ * when there are no active users.
+ */
+static int gaudi_run_tpc_kernel(struct hl_device *hdev, u64 tpc_kernel, u32 tpc_id)
+{
+ u64 kernel_timeout;
+ u32 status, offset;
+ int rc;
+
+ offset = tpc_id * (mmTPC1_CFG_STATUS - mmTPC0_CFG_STATUS);
+
+ if (hdev->pldm)
+ kernel_timeout = GAUDI_PLDM_TPC_KERNEL_WAIT_USEC;
+ else
+ kernel_timeout = HL_DEVICE_TIMEOUT_USEC;
+
+ WREG32(mmTPC0_CFG_QM_KERNEL_BASE_ADDRESS_LOW + offset,
+ lower_32_bits(tpc_kernel));
+ WREG32(mmTPC0_CFG_QM_KERNEL_BASE_ADDRESS_HIGH + offset,
+ upper_32_bits(tpc_kernel));
+
+ WREG32(mmTPC0_CFG_ICACHE_BASE_ADDERESS_LOW + offset,
+ lower_32_bits(tpc_kernel));
+ WREG32(mmTPC0_CFG_ICACHE_BASE_ADDERESS_HIGH + offset,
+ upper_32_bits(tpc_kernel));
+ /* set a valid LUT pointer, content is of no significance */
+ WREG32(mmTPC0_CFG_LUT_FUNC256_BASE_ADDR_LO + offset,
+ lower_32_bits(tpc_kernel));
+ WREG32(mmTPC0_CFG_LUT_FUNC256_BASE_ADDR_HI + offset,
+ upper_32_bits(tpc_kernel));
+
+ WREG32(mmTPC0_CFG_QM_SYNC_OBJECT_ADDR + offset,
+ lower_32_bits(CFG_BASE +
+ mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0));
+
+ WREG32(mmTPC0_CFG_TPC_CMD + offset,
+ (1 << TPC0_CFG_TPC_CMD_ICACHE_INVALIDATE_SHIFT |
+ 1 << TPC0_CFG_TPC_CMD_ICACHE_PREFETCH_64KB_SHIFT));
+ /* wait a bit for the engine to start executing */
+ usleep_range(1000, 1500);
+
+ /* wait until engine has finished executing */
+ rc = hl_poll_timeout(
+ hdev,
+ mmTPC0_CFG_STATUS + offset,
+ status,
+ (status & TPC0_CFG_STATUS_VECTOR_PIPE_EMPTY_MASK) ==
+ TPC0_CFG_STATUS_VECTOR_PIPE_EMPTY_MASK,
+ 1000,
+ kernel_timeout);
+
+ if (rc) {
+ dev_err(hdev->dev,
+ "Timeout while waiting for TPC%d icache prefetch\n",
+ tpc_id);
+ return -EIO;
+ }
+
+ WREG32(mmTPC0_CFG_TPC_EXECUTE + offset,
+ 1 << TPC0_CFG_TPC_EXECUTE_V_SHIFT);
+
+ /* wait a bit for the engine to start executing */
+ usleep_range(1000, 1500);
+
+ /* wait until engine has finished executing */
+ rc = hl_poll_timeout(
+ hdev,
+ mmTPC0_CFG_STATUS + offset,
+ status,
+ (status & TPC0_CFG_STATUS_VECTOR_PIPE_EMPTY_MASK) ==
+ TPC0_CFG_STATUS_VECTOR_PIPE_EMPTY_MASK,
+ 1000,
+ kernel_timeout);
+
+ if (rc) {
+ dev_err(hdev->dev,
+ "Timeout while waiting for TPC%d vector pipe\n",
+ tpc_id);
+ return -EIO;
+ }
+
+ rc = hl_poll_timeout(
+ hdev,
+ mmTPC0_CFG_WQ_INFLIGHT_CNTR + offset,
+ status,
+ (status == 0),
+ 1000,
+ kernel_timeout);
+
+ if (rc) {
+ dev_err(hdev->dev,
+ "Timeout while waiting for TPC%d kernel to execute\n",
+ tpc_id);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static int gaudi_internal_cb_pool_init(struct hl_device *hdev,
+ struct hl_ctx *ctx)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+ int min_alloc_order, rc, collective_cb_size;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_MMU))
+ return 0;
+
+ hdev->internal_cb_pool_virt_addr = hl_asic_dma_alloc_coherent(hdev,
+ HOST_SPACE_INTERNAL_CB_SZ,
+ &hdev->internal_cb_pool_dma_addr,
+ GFP_KERNEL | __GFP_ZERO);
+
+ if (!hdev->internal_cb_pool_virt_addr)
+ return -ENOMEM;
+
+ collective_cb_size = sizeof(struct packet_msg_short) * 5 +
+ sizeof(struct packet_fence);
+ min_alloc_order = ilog2(collective_cb_size);
+
+ hdev->internal_cb_pool = gen_pool_create(min_alloc_order, -1);
+ if (!hdev->internal_cb_pool) {
+ dev_err(hdev->dev,
+ "Failed to create internal CB pool\n");
+ rc = -ENOMEM;
+ goto free_internal_cb_pool;
+ }
+
+ rc = gen_pool_add(hdev->internal_cb_pool,
+ (uintptr_t) hdev->internal_cb_pool_virt_addr,
+ HOST_SPACE_INTERNAL_CB_SZ, -1);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to add memory to internal CB pool\n");
+ rc = -EFAULT;
+ goto destroy_internal_cb_pool;
+ }
+
+ hdev->internal_cb_va_base = hl_reserve_va_block(hdev, ctx,
+ HL_VA_RANGE_TYPE_HOST, HOST_SPACE_INTERNAL_CB_SZ,
+ HL_MMU_VA_ALIGNMENT_NOT_NEEDED);
+
+ if (!hdev->internal_cb_va_base) {
+ rc = -ENOMEM;
+ goto destroy_internal_cb_pool;
+ }
+
+ mutex_lock(&hdev->mmu_lock);
+ rc = hl_mmu_map_contiguous(ctx, hdev->internal_cb_va_base,
+ hdev->internal_cb_pool_dma_addr,
+ HOST_SPACE_INTERNAL_CB_SZ);
+
+ hl_mmu_invalidate_cache(hdev, false, MMU_OP_USERPTR);
+ mutex_unlock(&hdev->mmu_lock);
+
+ if (rc)
+ goto unreserve_internal_cb_pool;
+
+ return 0;
+
+unreserve_internal_cb_pool:
+ hl_unreserve_va_block(hdev, ctx, hdev->internal_cb_va_base,
+ HOST_SPACE_INTERNAL_CB_SZ);
+destroy_internal_cb_pool:
+ gen_pool_destroy(hdev->internal_cb_pool);
+free_internal_cb_pool:
+ hl_asic_dma_free_coherent(hdev, HOST_SPACE_INTERNAL_CB_SZ, hdev->internal_cb_pool_virt_addr,
+ hdev->internal_cb_pool_dma_addr);
+
+ return rc;
+}
+
+static void gaudi_internal_cb_pool_fini(struct hl_device *hdev,
+ struct hl_ctx *ctx)
+{
+ struct gaudi_device *gaudi = hdev->asic_specific;
+
+ if (!(gaudi->hw_cap_initialized & HW_CAP_MMU))
+ return;
+
+ mutex_lock(&hdev->mmu_lock);
+ hl_mmu_unmap_contiguous(ctx, hdev->internal_cb_va_base,
+ HOST_SPACE_INTERNAL_CB_SZ);
+ hl_unreserve_va_block(hdev, ctx, hdev->internal_cb_va_base,
+ HOST_SPACE_INTERNAL_CB_SZ);
+ hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR);
+ mutex_unlock(&hdev->mmu_lock);
+
+ gen_pool_destroy(hdev->internal_cb_pool);
+
+ hl_asic_dma_free_coherent(hdev, HOST_SPACE_INTERNAL_CB_SZ, hdev->internal_cb_pool_virt_addr,
+ hdev->internal_cb_pool_dma_addr);
+}
+
+static int gaudi_ctx_init(struct hl_ctx *ctx)
+{
+ int rc;
+
+ if (ctx->asid == HL_KERNEL_ASID_ID)
+ return 0;
+
+ rc = gaudi_internal_cb_pool_init(ctx->hdev, ctx);
+ if (rc)
+ return rc;
+
+ rc = gaudi_restore_user_registers(ctx->hdev);
+ if (rc)
+ gaudi_internal_cb_pool_fini(ctx->hdev, ctx);
+
+ return rc;
+}
+
+static void gaudi_ctx_fini(struct hl_ctx *ctx)
+{
+ if (ctx->asid == HL_KERNEL_ASID_ID)
+ return;
+
+ gaudi_internal_cb_pool_fini(ctx->hdev, ctx);
+}
+
+static int gaudi_pre_schedule_cs(struct hl_cs *cs)
+{
+ return 0;
+}
+
+static u32 gaudi_get_queue_id_for_cq(struct hl_device *hdev, u32 cq_idx)
+{
+ return gaudi_cq_assignment[cq_idx];
+}
+
+static u32 gaudi_get_signal_cb_size(struct hl_device *hdev)
+{
+ return sizeof(struct packet_msg_short) +
+ sizeof(struct packet_msg_prot) * 2;
+}
+
+static u32 gaudi_get_wait_cb_size(struct hl_device *hdev)
+{
+ return sizeof(struct packet_msg_short) * 4 +
+ sizeof(struct packet_fence) +
+ sizeof(struct packet_msg_prot) * 2;
+}
+
+static u32 gaudi_get_sob_addr(struct hl_device *hdev, u32 sob_id)
+{
+ return mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0 + (sob_id * 4);
+}
+
+static u32 gaudi_gen_signal_cb(struct hl_device *hdev, void *data, u16 sob_id,
+ u32 size, bool eb)
+{
+ struct hl_cb *cb = (struct hl_cb *) data;
+ struct packet_msg_short *pkt;
+ u32 value, ctl, pkt_size = sizeof(*pkt);
+
+ pkt = cb->kernel_address + size;
+ memset(pkt, 0, pkt_size);
+
+ /* Inc by 1, Mode ADD */
+ value = FIELD_PREP(GAUDI_PKT_SHORT_VAL_SOB_SYNC_VAL_MASK, 1);
+ value |= FIELD_PREP(GAUDI_PKT_SHORT_VAL_SOB_MOD_MASK, 1);
+
+ ctl = FIELD_PREP(GAUDI_PKT_SHORT_CTL_ADDR_MASK, sob_id * 4);
+ ctl |= FIELD_PREP(GAUDI_PKT_SHORT_CTL_OP_MASK, 0); /* write the value */
+ ctl |= FIELD_PREP(GAUDI_PKT_SHORT_CTL_BASE_MASK, 3); /* W_S SOB base */
+ ctl |= FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_SHORT);
+ ctl |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, eb);
+ ctl |= FIELD_PREP(GAUDI_PKT_CTL_RB_MASK, 1);
+ ctl |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1);
+
+ pkt->value = cpu_to_le32(value);
+ pkt->ctl = cpu_to_le32(ctl);
+
+ return size + pkt_size;
+}
+
+static u32 gaudi_add_mon_msg_short(struct packet_msg_short *pkt, u32 value,
+ u16 addr)
+{
+ u32 ctl, pkt_size = sizeof(*pkt);
+
+ memset(pkt, 0, pkt_size);
+
+ ctl = FIELD_PREP(GAUDI_PKT_SHORT_CTL_ADDR_MASK, addr);
+ ctl |= FIELD_PREP(GAUDI_PKT_SHORT_CTL_BASE_MASK, 2); /* W_S MON base */
+ ctl |= FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_SHORT);
+ ctl |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, 0);
+ ctl |= FIELD_PREP(GAUDI_PKT_CTL_RB_MASK, 1);
+ ctl |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 0); /* last pkt MB */
+
+ pkt->value = cpu_to_le32(value);
+ pkt->ctl = cpu_to_le32(ctl);
+
+ return pkt_size;
+}
+
+static u32 gaudi_add_arm_monitor_pkt(struct hl_device *hdev,
+ struct packet_msg_short *pkt, u16 sob_base, u8 sob_mask,
+ u16 sob_val, u16 mon_id)
+{
+ u64 monitor_base;
+ u32 ctl, value, pkt_size = sizeof(*pkt);
+ u16 msg_addr_offset;
+ u8 mask;
+
+ if (hl_gen_sob_mask(sob_base, sob_mask, &mask)) {
+ dev_err(hdev->dev,
+ "sob_base %u (mask %#x) is not valid\n",
+ sob_base, sob_mask);
+ return 0;
+ }
+
+ /*
+ * monitor_base should be the content of the base0 address registers,
+ * so it will be added to the msg short offsets
+ */
+ monitor_base = mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0;
+
+ msg_addr_offset =
+ (mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_ARM_0 + mon_id * 4) -
+ monitor_base;
+
+ memset(pkt, 0, pkt_size);
+
+ /* Monitor config packet: bind the monitor to a sync object */
+ value = FIELD_PREP(GAUDI_PKT_SHORT_VAL_MON_SYNC_GID_MASK, sob_base / 8);
+ value |= FIELD_PREP(GAUDI_PKT_SHORT_VAL_MON_SYNC_VAL_MASK, sob_val);
+ value |= FIELD_PREP(GAUDI_PKT_SHORT_VAL_MON_MODE_MASK,
+ 0); /* GREATER OR EQUAL*/
+ value |= FIELD_PREP(GAUDI_PKT_SHORT_VAL_MON_MASK_MASK, mask);
+
+ ctl = FIELD_PREP(GAUDI_PKT_SHORT_CTL_ADDR_MASK, msg_addr_offset);
+ ctl |= FIELD_PREP(GAUDI_PKT_SHORT_CTL_OP_MASK, 0); /* write the value */
+ ctl |= FIELD_PREP(GAUDI_PKT_SHORT_CTL_BASE_MASK, 2); /* W_S MON base */
+ ctl |= FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_SHORT);
+ ctl |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, 0);
+ ctl |= FIELD_PREP(GAUDI_PKT_CTL_RB_MASK, 1);
+ ctl |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1);
+
+ pkt->value = cpu_to_le32(value);
+ pkt->ctl = cpu_to_le32(ctl);
+
+ return pkt_size;
+}
+
+static u32 gaudi_add_fence_pkt(struct packet_fence *pkt)
+{
+ u32 ctl, cfg, pkt_size = sizeof(*pkt);
+
+ memset(pkt, 0, pkt_size);
+
+ cfg = FIELD_PREP(GAUDI_PKT_FENCE_CFG_DEC_VAL_MASK, 1);
+ cfg |= FIELD_PREP(GAUDI_PKT_FENCE_CFG_TARGET_VAL_MASK, 1);
+ cfg |= FIELD_PREP(GAUDI_PKT_FENCE_CFG_ID_MASK, 2);
+
+ ctl = FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_FENCE);
+ ctl |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, 0);
+ ctl |= FIELD_PREP(GAUDI_PKT_CTL_RB_MASK, 1);
+ ctl |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1);
+
+ pkt->cfg = cpu_to_le32(cfg);
+ pkt->ctl = cpu_to_le32(ctl);
+
+ return pkt_size;
+}
+
+static int gaudi_get_fence_addr(struct hl_device *hdev, u32 queue_id, u64 *addr)
+{
+ u32 offset, nic_index;
+
+ switch (queue_id) {
+ case GAUDI_QUEUE_ID_DMA_0_0:
+ offset = mmDMA0_QM_CP_FENCE2_RDATA_0;
+ break;
+ case GAUDI_QUEUE_ID_DMA_0_1:
+ offset = mmDMA0_QM_CP_FENCE2_RDATA_1;
+ break;
+ case GAUDI_QUEUE_ID_DMA_0_2:
+ offset = mmDMA0_QM_CP_FENCE2_RDATA_2;
+ break;
+ case GAUDI_QUEUE_ID_DMA_0_3:
+ offset = mmDMA0_QM_CP_FENCE2_RDATA_3;
+ break;
+ case GAUDI_QUEUE_ID_DMA_1_0:
+ offset = mmDMA1_QM_CP_FENCE2_RDATA_0;
+ break;
+ case GAUDI_QUEUE_ID_DMA_1_1:
+ offset = mmDMA1_QM_CP_FENCE2_RDATA_1;
+ break;
+ case GAUDI_QUEUE_ID_DMA_1_2:
+ offset = mmDMA1_QM_CP_FENCE2_RDATA_2;
+ break;
+ case GAUDI_QUEUE_ID_DMA_1_3:
+ offset = mmDMA1_QM_CP_FENCE2_RDATA_3;
+ break;
+ case GAUDI_QUEUE_ID_DMA_5_0:
+ offset = mmDMA5_QM_CP_FENCE2_RDATA_0;
+ break;
+ case GAUDI_QUEUE_ID_DMA_5_1:
+ offset = mmDMA5_QM_CP_FENCE2_RDATA_1;
+ break;
+ case GAUDI_QUEUE_ID_DMA_5_2:
+ offset = mmDMA5_QM_CP_FENCE2_RDATA_2;
+ break;
+ case GAUDI_QUEUE_ID_DMA_5_3:
+ offset = mmDMA5_QM_CP_FENCE2_RDATA_3;
+ break;
+ case GAUDI_QUEUE_ID_TPC_7_0:
+ offset = mmTPC7_QM_CP_FENCE2_RDATA_0;
+ break;
+ case GAUDI_QUEUE_ID_TPC_7_1:
+ offset = mmTPC7_QM_CP_FENCE2_RDATA_1;
+ break;
+ case GAUDI_QUEUE_ID_TPC_7_2:
+ offset = mmTPC7_QM_CP_FENCE2_RDATA_2;
+ break;
+ case GAUDI_QUEUE_ID_TPC_7_3:
+ offset = mmTPC7_QM_CP_FENCE2_RDATA_3;
+ break;
+ case GAUDI_QUEUE_ID_NIC_0_0:
+ case GAUDI_QUEUE_ID_NIC_1_0:
+ case GAUDI_QUEUE_ID_NIC_2_0:
+ case GAUDI_QUEUE_ID_NIC_3_0:
+ case GAUDI_QUEUE_ID_NIC_4_0:
+ case GAUDI_QUEUE_ID_NIC_5_0:
+ case GAUDI_QUEUE_ID_NIC_6_0:
+ case GAUDI_QUEUE_ID_NIC_7_0:
+ case GAUDI_QUEUE_ID_NIC_8_0:
+ case GAUDI_QUEUE_ID_NIC_9_0:
+ nic_index = (queue_id - GAUDI_QUEUE_ID_NIC_0_0) >> 2;
+ offset = mmNIC0_QM0_CP_FENCE2_RDATA_0 +
+ (nic_index >> 1) * NIC_MACRO_QMAN_OFFSET +
+ (nic_index & 0x1) * NIC_ENGINE_QMAN_OFFSET;
+ break;
+ case GAUDI_QUEUE_ID_NIC_0_1:
+ case GAUDI_QUEUE_ID_NIC_1_1:
+ case GAUDI_QUEUE_ID_NIC_2_1:
+ case GAUDI_QUEUE_ID_NIC_3_1:
+ case GAUDI_QUEUE_ID_NIC_4_1:
+ case GAUDI_QUEUE_ID_NIC_5_1:
+ case GAUDI_QUEUE_ID_NIC_6_1:
+ case GAUDI_QUEUE_ID_NIC_7_1:
+ case GAUDI_QUEUE_ID_NIC_8_1:
+ case GAUDI_QUEUE_ID_NIC_9_1:
+ nic_index = (queue_id - GAUDI_QUEUE_ID_NIC_0_1) >> 2;
+ offset = mmNIC0_QM0_CP_FENCE2_RDATA_1 +
+ (nic_index >> 1) * NIC_MACRO_QMAN_OFFSET +
+ (nic_index & 0x1) * NIC_ENGINE_QMAN_OFFSET;
+ break;
+ case GAUDI_QUEUE_ID_NIC_0_2:
+ case GAUDI_QUEUE_ID_NIC_1_2:
+ case GAUDI_QUEUE_ID_NIC_2_2:
+ case GAUDI_QUEUE_ID_NIC_3_2:
+ case GAUDI_QUEUE_ID_NIC_4_2:
+ case GAUDI_QUEUE_ID_NIC_5_2:
+ case GAUDI_QUEUE_ID_NIC_6_2:
+ case GAUDI_QUEUE_ID_NIC_7_2:
+ case GAUDI_QUEUE_ID_NIC_8_2:
+ case GAUDI_QUEUE_ID_NIC_9_2:
+ nic_index = (queue_id - GAUDI_QUEUE_ID_NIC_0_2) >> 2;
+ offset = mmNIC0_QM0_CP_FENCE2_RDATA_2 +
+ (nic_index >> 1) * NIC_MACRO_QMAN_OFFSET +
+ (nic_index & 0x1) * NIC_ENGINE_QMAN_OFFSET;
+ break;
+ case GAUDI_QUEUE_ID_NIC_0_3:
+ case GAUDI_QUEUE_ID_NIC_1_3:
+ case GAUDI_QUEUE_ID_NIC_2_3:
+ case GAUDI_QUEUE_ID_NIC_3_3:
+ case GAUDI_QUEUE_ID_NIC_4_3:
+ case GAUDI_QUEUE_ID_NIC_5_3:
+ case GAUDI_QUEUE_ID_NIC_6_3:
+ case GAUDI_QUEUE_ID_NIC_7_3:
+ case GAUDI_QUEUE_ID_NIC_8_3:
+ case GAUDI_QUEUE_ID_NIC_9_3:
+ nic_index = (queue_id - GAUDI_QUEUE_ID_NIC_0_3) >> 2;
+ offset = mmNIC0_QM0_CP_FENCE2_RDATA_3 +
+ (nic_index >> 1) * NIC_MACRO_QMAN_OFFSET +
+ (nic_index & 0x1) * NIC_ENGINE_QMAN_OFFSET;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ *addr = CFG_BASE + offset;
+
+ return 0;
+}
+
+static u32 gaudi_add_mon_pkts(void *buf, u16 mon_id, u64 fence_addr)
+{
+ u64 monitor_base;
+ u32 size = 0;
+ u16 msg_addr_offset;
+
+ /*
+ * monitor_base should be the content of the base0 address registers,
+ * so it will be added to the msg short offsets
+ */
+ monitor_base = mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0;
+
+ /* First monitor config packet: low address of the sync */
+ msg_addr_offset =
+ (mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + mon_id * 4) -
+ monitor_base;
+
+ size += gaudi_add_mon_msg_short(buf + size, (u32) fence_addr,
+ msg_addr_offset);
+
+ /* Second monitor config packet: high address of the sync */
+ msg_addr_offset =
+ (mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0 + mon_id * 4) -
+ monitor_base;
+
+ size += gaudi_add_mon_msg_short(buf + size, (u32) (fence_addr >> 32),
+ msg_addr_offset);
+
+ /*
+ * Third monitor config packet: the payload, i.e. what to write when the
+ * sync triggers
+ */
+ msg_addr_offset =
+ (mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + mon_id * 4) -
+ monitor_base;
+
+ size += gaudi_add_mon_msg_short(buf + size, 1, msg_addr_offset);
+
+ return size;
+}
+
+static u32 gaudi_gen_wait_cb(struct hl_device *hdev,
+ struct hl_gen_wait_properties *prop)
+{
+ struct hl_cb *cb = (struct hl_cb *) prop->data;
+ void *buf = cb->kernel_address;
+ u64 fence_addr = 0;
+ u32 size = prop->size;
+
+ if (gaudi_get_fence_addr(hdev, prop->q_idx, &fence_addr)) {
+ dev_crit(hdev->dev, "wrong queue id %d for wait packet\n",
+ prop->q_idx);
+ return 0;
+ }
+
+ size += gaudi_add_mon_pkts(buf + size, prop->mon_id, fence_addr);
+ size += gaudi_add_arm_monitor_pkt(hdev, buf + size, prop->sob_base,
+ prop->sob_mask, prop->sob_val, prop->mon_id);
+ size += gaudi_add_fence_pkt(buf + size);
+
+ return size;
+}
+
+static void gaudi_reset_sob(struct hl_device *hdev, void *data)
+{
+ struct hl_hw_sob *hw_sob = (struct hl_hw_sob *) data;
+
+ dev_dbg(hdev->dev, "reset SOB, q_idx: %d, sob_id: %d\n", hw_sob->q_idx,
+ hw_sob->sob_id);
+
+ WREG32(mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0 +
+ hw_sob->sob_id * 4, 0);
+
+ kref_init(&hw_sob->kref);
+}
+
+static u64 gaudi_get_device_time(struct hl_device *hdev)
+{
+ u64 device_time = ((u64) RREG32(mmPSOC_TIMESTAMP_CNTCVU)) << 32;
+
+ return device_time | RREG32(mmPSOC_TIMESTAMP_CNTCVL);
+}
+
+static int gaudi_get_hw_block_id(struct hl_device *hdev, u64 block_addr,
+ u32 *block_size, u32 *block_id)
+{
+ return -EPERM;
+}
+
+static int gaudi_block_mmap(struct hl_device *hdev,
+ struct vm_area_struct *vma,
+ u32 block_id, u32 block_size)
+{
+ return -EPERM;
+}
+
+static void gaudi_enable_events_from_fw(struct hl_device *hdev)
+{
+ struct cpu_dyn_regs *dyn_regs =
+ &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
+ u32 irq_handler_offset = hdev->asic_prop.gic_interrupts_enable ?
+ mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR :
+ le32_to_cpu(dyn_regs->gic_host_ints_irq);
+
+ WREG32(irq_handler_offset,
+ gaudi_irq_map_table[GAUDI_EVENT_INTS_REGISTER].cpu_id);
+}
+
+static int gaudi_ack_mmu_page_fault_or_access_error(struct hl_device *hdev, u64 mmu_cap_mask)
+{
+ return -EINVAL;
+}
+
+static int gaudi_map_pll_idx_to_fw_idx(u32 pll_idx)
+{
+ switch (pll_idx) {
+ case HL_GAUDI_CPU_PLL: return CPU_PLL;
+ case HL_GAUDI_PCI_PLL: return PCI_PLL;
+ case HL_GAUDI_NIC_PLL: return NIC_PLL;
+ case HL_GAUDI_DMA_PLL: return DMA_PLL;
+ case HL_GAUDI_MESH_PLL: return MESH_PLL;
+ case HL_GAUDI_MME_PLL: return MME_PLL;
+ case HL_GAUDI_TPC_PLL: return TPC_PLL;
+ case HL_GAUDI_IF_PLL: return IF_PLL;
+ case HL_GAUDI_SRAM_PLL: return SRAM_PLL;
+ case HL_GAUDI_HBM_PLL: return HBM_PLL;
+ default: return -EINVAL;
+ }
+}
+
+static int gaudi_add_sync_to_engine_map_entry(
+ struct hl_sync_to_engine_map *map, u32 reg_value,
+ enum hl_sync_engine_type engine_type, u32 engine_id)
+{
+ struct hl_sync_to_engine_map_entry *entry;
+
+ /* Reg value represents a partial address of sync object,
+ * it is used as unique identifier. For this we need to
+ * clear the cutoff cfg base bits from the value.
+ */
+ if (reg_value == 0 || reg_value == 0xffffffff)
+ return 0;
+ reg_value -= lower_32_bits(CFG_BASE);
+
+ /* create a new hash entry */
+ entry = kzalloc(sizeof(*entry), GFP_KERNEL);
+ if (!entry)
+ return -ENOMEM;
+ entry->engine_type = engine_type;
+ entry->engine_id = engine_id;
+ entry->sync_id = reg_value;
+ hash_add(map->tb, &entry->node, reg_value);
+
+ return 0;
+}
+
+static int gaudi_gen_sync_to_engine_map(struct hl_device *hdev,
+ struct hl_sync_to_engine_map *map)
+{
+ struct hl_state_dump_specs *sds = &hdev->state_dump_specs;
+ int i, j, rc;
+ u32 reg_value;
+
+ /* Iterate over TPC engines */
+ for (i = 0; i < sds->props[SP_NUM_OF_TPC_ENGINES]; ++i) {
+
+ reg_value = RREG32(sds->props[SP_TPC0_CFG_SO] +
+ sds->props[SP_NEXT_TPC] * i);
+
+ rc = gaudi_add_sync_to_engine_map_entry(map, reg_value,
+ ENGINE_TPC, i);
+ if (rc)
+ goto free_sync_to_engine_map;
+ }
+
+ /* Iterate over MME engines */
+ for (i = 0; i < sds->props[SP_NUM_OF_MME_ENGINES]; ++i) {
+ for (j = 0; j < sds->props[SP_SUB_MME_ENG_NUM]; ++j) {
+
+ reg_value = RREG32(sds->props[SP_MME_CFG_SO] +
+ sds->props[SP_NEXT_MME] * i +
+ j * sizeof(u32));
+
+ rc = gaudi_add_sync_to_engine_map_entry(
+ map, reg_value, ENGINE_MME,
+ i * sds->props[SP_SUB_MME_ENG_NUM] + j);
+ if (rc)
+ goto free_sync_to_engine_map;
+ }
+ }
+
+ /* Iterate over DMA engines */
+ for (i = 0; i < sds->props[SP_NUM_OF_DMA_ENGINES]; ++i) {
+ reg_value = RREG32(sds->props[SP_DMA_CFG_SO] +
+ sds->props[SP_DMA_QUEUES_OFFSET] * i);
+ rc = gaudi_add_sync_to_engine_map_entry(map, reg_value,
+ ENGINE_DMA, i);
+ if (rc)
+ goto free_sync_to_engine_map;
+ }
+
+ return 0;
+
+free_sync_to_engine_map:
+ hl_state_dump_free_sync_to_engine_map(map);
+
+ return rc;
+}
+
+static int gaudi_monitor_valid(struct hl_mon_state_dump *mon)
+{
+ return FIELD_GET(
+ SYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_STATUS_0_VALID_MASK,
+ mon->status);
+}
+
+static void gaudi_fill_sobs_from_mon(char *sobs, struct hl_mon_state_dump *mon)
+{
+ const size_t max_write = 10;
+ u32 gid, mask, sob;
+ int i, offset;
+
+ /* Sync object ID is calculated as follows:
+ * (8 * group_id + cleared bits in mask)
+ */
+ gid = FIELD_GET(SYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_ARM_0_SID_MASK,
+ mon->arm_data);
+ mask = FIELD_GET(SYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_ARM_0_MASK_MASK,
+ mon->arm_data);
+
+ for (i = 0, offset = 0; mask && offset < MONITOR_SOB_STRING_SIZE -
+ max_write; mask >>= 1, i++) {
+ if (!(mask & 1)) {
+ sob = gid * MONITOR_MAX_SOBS + i;
+
+ if (offset > 0)
+ offset += snprintf(sobs + offset, max_write,
+ ", ");
+
+ offset += snprintf(sobs + offset, max_write, "%u", sob);
+ }
+ }
+}
+
+static int gaudi_print_single_monitor(char **buf, size_t *size, size_t *offset,
+ struct hl_device *hdev,
+ struct hl_mon_state_dump *mon)
+{
+ const char *name;
+ char scratch_buf1[BIN_REG_STRING_SIZE],
+ scratch_buf2[BIN_REG_STRING_SIZE];
+ char monitored_sobs[MONITOR_SOB_STRING_SIZE] = {0};
+
+ name = hl_state_dump_get_monitor_name(hdev, mon);
+ if (!name)
+ name = "";
+
+ gaudi_fill_sobs_from_mon(monitored_sobs, mon);
+
+ return hl_snprintf_resize(
+ buf, size, offset,
+ "Mon id: %u%s, wait for group id: %u mask %s to reach val: %u and write %u to address 0x%llx. Pending: %s. Means sync objects [%s] are being monitored.",
+ mon->id, name,
+ FIELD_GET(SYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_ARM_0_SID_MASK,
+ mon->arm_data),
+ hl_format_as_binary(
+ scratch_buf1, sizeof(scratch_buf1),
+ FIELD_GET(
+ SYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_ARM_0_MASK_MASK,
+ mon->arm_data)),
+ FIELD_GET(SYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_ARM_0_SOD_MASK,
+ mon->arm_data),
+ mon->wr_data,
+ (((u64)mon->wr_addr_high) << 32) | mon->wr_addr_low,
+ hl_format_as_binary(
+ scratch_buf2, sizeof(scratch_buf2),
+ FIELD_GET(
+ SYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_STATUS_0_PENDING_MASK,
+ mon->status)),
+ monitored_sobs);
+}
+
+
+static int gaudi_print_fences_single_engine(
+ struct hl_device *hdev, u64 base_offset, u64 status_base_offset,
+ enum hl_sync_engine_type engine_type, u32 engine_id, char **buf,
+ size_t *size, size_t *offset)
+{
+ struct hl_state_dump_specs *sds = &hdev->state_dump_specs;
+ int rc = -ENOMEM, i;
+ u32 *statuses, *fences;
+
+ statuses = kcalloc(sds->props[SP_ENGINE_NUM_OF_QUEUES],
+ sizeof(*statuses), GFP_KERNEL);
+ if (!statuses)
+ goto out;
+
+ fences = kcalloc(sds->props[SP_ENGINE_NUM_OF_FENCES] *
+ sds->props[SP_ENGINE_NUM_OF_QUEUES],
+ sizeof(*fences), GFP_KERNEL);
+ if (!fences)
+ goto free_status;
+
+ for (i = 0; i < sds->props[SP_ENGINE_NUM_OF_FENCES]; ++i)
+ statuses[i] = RREG32(status_base_offset + i * sizeof(u32));
+
+ for (i = 0; i < sds->props[SP_ENGINE_NUM_OF_FENCES] *
+ sds->props[SP_ENGINE_NUM_OF_QUEUES]; ++i)
+ fences[i] = RREG32(base_offset + i * sizeof(u32));
+
+ /* The actual print */
+ for (i = 0; i < sds->props[SP_ENGINE_NUM_OF_QUEUES]; ++i) {
+ u32 fence_id;
+ u64 fence_cnt, fence_rdata;
+ const char *engine_name;
+
+ if (!FIELD_GET(TPC0_QM_CP_STS_0_FENCE_IN_PROGRESS_MASK,
+ statuses[i]))
+ continue;
+
+ fence_id =
+ FIELD_GET(TPC0_QM_CP_STS_0_FENCE_ID_MASK, statuses[i]);
+ fence_cnt = base_offset + CFG_BASE +
+ sizeof(u32) *
+ (i + fence_id * sds->props[SP_ENGINE_NUM_OF_QUEUES]);
+ fence_rdata = fence_cnt - sds->props[SP_FENCE0_CNT_OFFSET] +
+ sds->props[SP_FENCE0_RDATA_OFFSET];
+ engine_name = hl_sync_engine_to_string(engine_type);
+
+ rc = hl_snprintf_resize(
+ buf, size, offset,
+ "%s%u, stream %u: fence id %u cnt = 0x%llx (%s%u_QM.CP_FENCE%u_CNT_%u) rdata = 0x%llx (%s%u_QM.CP_FENCE%u_RDATA_%u) value = %u, cp_status = %u\n",
+ engine_name, engine_id,
+ i, fence_id,
+ fence_cnt, engine_name, engine_id, fence_id, i,
+ fence_rdata, engine_name, engine_id, fence_id, i,
+ fences[fence_id],
+ statuses[i]);
+ if (rc)
+ goto free_fences;
+ }
+
+ rc = 0;
+
+free_fences:
+ kfree(fences);
+free_status:
+ kfree(statuses);
+out:
+ return rc;
+}
+
+
+static struct hl_state_dump_specs_funcs gaudi_state_dump_funcs = {
+ .monitor_valid = gaudi_monitor_valid,
+ .print_single_monitor = gaudi_print_single_monitor,
+ .gen_sync_to_engine_map = gaudi_gen_sync_to_engine_map,
+ .print_fences_single_engine = gaudi_print_fences_single_engine,
+};
+
+static void gaudi_state_dump_init(struct hl_device *hdev)
+{
+ struct hl_state_dump_specs *sds = &hdev->state_dump_specs;
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(gaudi_so_id_to_str); ++i)
+ hash_add(sds->so_id_to_str_tb,
+ &gaudi_so_id_to_str[i].node,
+ gaudi_so_id_to_str[i].id);
+
+ for (i = 0; i < ARRAY_SIZE(gaudi_monitor_id_to_str); ++i)
+ hash_add(sds->monitor_id_to_str_tb,
+ &gaudi_monitor_id_to_str[i].node,
+ gaudi_monitor_id_to_str[i].id);
+
+ sds->props = gaudi_state_dump_specs_props;
+
+ sds->sync_namager_names = gaudi_sync_manager_names;
+
+ sds->funcs = gaudi_state_dump_funcs;
+}
+
+static u32 *gaudi_get_stream_master_qid_arr(void)
+{
+ return gaudi_stream_master;
+}
+
+static int gaudi_set_dram_properties(struct hl_device *hdev)
+{
+ return 0;
+}
+
+static int gaudi_set_binning_masks(struct hl_device *hdev)
+{
+ return 0;
+}
+
+static void gaudi_check_if_razwi_happened(struct hl_device *hdev)
+{
+}
+
+static ssize_t infineon_ver_show(struct device *dev, struct device_attribute *attr, char *buf)
+{
+ struct hl_device *hdev = dev_get_drvdata(dev);
+ struct cpucp_info *cpucp_info;
+
+ cpucp_info = &hdev->asic_prop.cpucp_info;
+
+ return sprintf(buf, "%#04x\n", le32_to_cpu(cpucp_info->infineon_version));
+}
+
+static DEVICE_ATTR_RO(infineon_ver);
+
+static struct attribute *gaudi_vrm_dev_attrs[] = {
+ &dev_attr_infineon_ver.attr,
+ NULL,
+};
+
+static void gaudi_add_device_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp,
+ struct attribute_group *dev_vrm_attr_grp)
+{
+ hl_sysfs_add_dev_clk_attr(hdev, dev_clk_attr_grp);
+ dev_vrm_attr_grp->attrs = gaudi_vrm_dev_attrs;
+}
+
+static int gaudi_send_device_activity(struct hl_device *hdev, bool open)
+{
+ return 0;
+}
+
+static const struct hl_asic_funcs gaudi_funcs = {
+ .early_init = gaudi_early_init,
+ .early_fini = gaudi_early_fini,
+ .late_init = gaudi_late_init,
+ .late_fini = gaudi_late_fini,
+ .sw_init = gaudi_sw_init,
+ .sw_fini = gaudi_sw_fini,
+ .hw_init = gaudi_hw_init,
+ .hw_fini = gaudi_hw_fini,
+ .halt_engines = gaudi_halt_engines,
+ .suspend = gaudi_suspend,
+ .resume = gaudi_resume,
+ .mmap = gaudi_mmap,
+ .ring_doorbell = gaudi_ring_doorbell,
+ .pqe_write = gaudi_pqe_write,
+ .asic_dma_alloc_coherent = gaudi_dma_alloc_coherent,
+ .asic_dma_free_coherent = gaudi_dma_free_coherent,
+ .scrub_device_mem = gaudi_scrub_device_mem,
+ .scrub_device_dram = gaudi_scrub_device_dram,
+ .get_int_queue_base = gaudi_get_int_queue_base,
+ .test_queues = gaudi_test_queues,
+ .asic_dma_pool_zalloc = gaudi_dma_pool_zalloc,
+ .asic_dma_pool_free = gaudi_dma_pool_free,
+ .cpu_accessible_dma_pool_alloc = gaudi_cpu_accessible_dma_pool_alloc,
+ .cpu_accessible_dma_pool_free = gaudi_cpu_accessible_dma_pool_free,
+ .hl_dma_unmap_sgtable = hl_dma_unmap_sgtable,
+ .cs_parser = gaudi_cs_parser,
+ .asic_dma_map_sgtable = hl_dma_map_sgtable,
+ .add_end_of_cb_packets = gaudi_add_end_of_cb_packets,
+ .update_eq_ci = gaudi_update_eq_ci,
+ .context_switch = gaudi_context_switch,
+ .restore_phase_topology = gaudi_restore_phase_topology,
+ .debugfs_read_dma = gaudi_debugfs_read_dma,
+ .add_device_attr = gaudi_add_device_attr,
+ .handle_eqe = gaudi_handle_eqe,
+ .get_events_stat = gaudi_get_events_stat,
+ .read_pte = gaudi_read_pte,
+ .write_pte = gaudi_write_pte,
+ .mmu_invalidate_cache = gaudi_mmu_invalidate_cache,
+ .mmu_invalidate_cache_range = gaudi_mmu_invalidate_cache_range,
+ .mmu_prefetch_cache_range = NULL,
+ .send_heartbeat = gaudi_send_heartbeat,
+ .debug_coresight = gaudi_debug_coresight,
+ .is_device_idle = gaudi_is_device_idle,
+ .compute_reset_late_init = gaudi_compute_reset_late_init,
+ .hw_queues_lock = gaudi_hw_queues_lock,
+ .hw_queues_unlock = gaudi_hw_queues_unlock,
+ .get_pci_id = gaudi_get_pci_id,
+ .get_eeprom_data = gaudi_get_eeprom_data,
+ .get_monitor_dump = gaudi_get_monitor_dump,
+ .send_cpu_message = gaudi_send_cpu_message,
+ .pci_bars_map = gaudi_pci_bars_map,
+ .init_iatu = gaudi_init_iatu,
+ .rreg = hl_rreg,
+ .wreg = hl_wreg,
+ .halt_coresight = gaudi_halt_coresight,
+ .ctx_init = gaudi_ctx_init,
+ .ctx_fini = gaudi_ctx_fini,
+ .pre_schedule_cs = gaudi_pre_schedule_cs,
+ .get_queue_id_for_cq = gaudi_get_queue_id_for_cq,
+ .load_firmware_to_device = gaudi_load_firmware_to_device,
+ .load_boot_fit_to_device = gaudi_load_boot_fit_to_device,
+ .get_signal_cb_size = gaudi_get_signal_cb_size,
+ .get_wait_cb_size = gaudi_get_wait_cb_size,
+ .gen_signal_cb = gaudi_gen_signal_cb,
+ .gen_wait_cb = gaudi_gen_wait_cb,
+ .reset_sob = gaudi_reset_sob,
+ .reset_sob_group = gaudi_reset_sob_group,
+ .get_device_time = gaudi_get_device_time,
+ .pb_print_security_errors = NULL,
+ .collective_wait_init_cs = gaudi_collective_wait_init_cs,
+ .collective_wait_create_jobs = gaudi_collective_wait_create_jobs,
+ .get_dec_base_addr = NULL,
+ .scramble_addr = hl_mmu_scramble_addr,
+ .descramble_addr = hl_mmu_descramble_addr,
+ .ack_protection_bits_errors = gaudi_ack_protection_bits_errors,
+ .get_hw_block_id = gaudi_get_hw_block_id,
+ .hw_block_mmap = gaudi_block_mmap,
+ .enable_events_from_fw = gaudi_enable_events_from_fw,
+ .ack_mmu_errors = gaudi_ack_mmu_page_fault_or_access_error,
+ .map_pll_idx_to_fw_idx = gaudi_map_pll_idx_to_fw_idx,
+ .init_firmware_preload_params = gaudi_init_firmware_preload_params,
+ .init_firmware_loader = gaudi_init_firmware_loader,
+ .init_cpu_scrambler_dram = gaudi_init_scrambler_hbm,
+ .state_dump_init = gaudi_state_dump_init,
+ .get_sob_addr = gaudi_get_sob_addr,
+ .set_pci_memory_regions = gaudi_set_pci_memory_regions,
+ .get_stream_master_qid_arr = gaudi_get_stream_master_qid_arr,
+ .check_if_razwi_happened = gaudi_check_if_razwi_happened,
+ .mmu_get_real_page_size = hl_mmu_get_real_page_size,
+ .access_dev_mem = hl_access_dev_mem,
+ .set_dram_bar_base = gaudi_set_hbm_bar_base,
+ .send_device_activity = gaudi_send_device_activity,
+ .set_dram_properties = gaudi_set_dram_properties,
+ .set_binning_masks = gaudi_set_binning_masks,
+};
+
+/**
+ * gaudi_set_asic_funcs - set GAUDI function pointers
+ *
+ * @hdev: pointer to hl_device structure
+ *
+ */
+void gaudi_set_asic_funcs(struct hl_device *hdev)
+{
+ hdev->asic_funcs = &gaudi_funcs;
+}
--- /dev/null
- vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP |
- VM_DONTCOPY | VM_NORESERVE;
+// SPDX-License-Identifier: GPL-2.0
+
+/*
+ * Copyright 2020-2022 HabanaLabs, Ltd.
+ * All Rights Reserved.
+ */
+
+#include "gaudi2P.h"
+#include "gaudi2_masks.h"
+#include "../include/gaudi2/gaudi2_special_blocks.h"
+#include "../include/hw_ip/mmu/mmu_general.h"
+#include "../include/hw_ip/mmu/mmu_v2_0.h"
+#include "../include/gaudi2/gaudi2_packets.h"
+#include "../include/gaudi2/gaudi2_reg_map.h"
+#include "../include/gaudi2/gaudi2_async_ids_map_extended.h"
+#include "../include/gaudi2/arc/gaudi2_arc_common_packets.h"
+
+#include <linux/module.h>
+#include <linux/pci.h>
+#include <linux/hwmon.h>
+#include <linux/iommu.h>
+
+#define GAUDI2_DMA_POOL_BLK_SIZE SZ_256 /* 256 bytes */
+
+#define GAUDI2_RESET_TIMEOUT_MSEC 2000 /* 2000ms */
+#define GAUDI2_RESET_POLL_TIMEOUT_USEC 50000 /* 50ms */
+#define GAUDI2_PLDM_HRESET_TIMEOUT_MSEC 25000 /* 25s */
+#define GAUDI2_PLDM_SRESET_TIMEOUT_MSEC 25000 /* 25s */
+#define GAUDI2_PLDM_RESET_POLL_TIMEOUT_USEC 3000000 /* 3s */
+#define GAUDI2_RESET_POLL_CNT 3
+#define GAUDI2_RESET_WAIT_MSEC 1 /* 1ms */
+#define GAUDI2_CPU_RESET_WAIT_MSEC 100 /* 100ms */
+#define GAUDI2_PLDM_RESET_WAIT_MSEC 1000 /* 1s */
+#define GAUDI2_CB_POOL_CB_CNT 512
+#define GAUDI2_CB_POOL_CB_SIZE SZ_128K /* 128KB */
+#define GAUDI2_MSG_TO_CPU_TIMEOUT_USEC 4000000 /* 4s */
+#define GAUDI2_WAIT_FOR_BL_TIMEOUT_USEC 25000000 /* 25s */
+#define GAUDI2_TEST_QUEUE_WAIT_USEC 100000 /* 100ms */
+#define GAUDI2_PLDM_TEST_QUEUE_WAIT_USEC 1000000 /* 1s */
+
+#define GAUDI2_ALLOC_CPU_MEM_RETRY_CNT 3
+
+/*
+ * since the code already has built-in support for binning of up to MAX_FAULTY_TPCS TPCs
+ * and the code relies on that value (for array size etc..) we define another value
+ * for MAX faulty TPCs which reflects the cluster binning requirements
+ */
+#define MAX_CLUSTER_BINNING_FAULTY_TPCS 1
+#define MAX_FAULTY_XBARS 1
+#define MAX_FAULTY_EDMAS 1
+#define MAX_FAULTY_DECODERS 1
+
+#define GAUDI2_TPC_FULL_MASK 0x1FFFFFF
+#define GAUDI2_HIF_HMMU_FULL_MASK 0xFFFF
+#define GAUDI2_DECODER_FULL_MASK 0x3FF
+
+#define GAUDI2_NA_EVENT_CAUSE 0xFF
+#define GAUDI2_NUM_OF_QM_ERR_CAUSE 18
+#define GAUDI2_NUM_OF_QM_LCP_ERR_CAUSE 25
+#define GAUDI2_NUM_OF_QM_ARB_ERR_CAUSE 3
+#define GAUDI2_NUM_OF_ARC_SEI_ERR_CAUSE 14
+#define GAUDI2_NUM_OF_CPU_SEI_ERR_CAUSE 3
+#define GAUDI2_NUM_OF_QM_SEI_ERR_CAUSE 2
+#define GAUDI2_NUM_OF_ROT_ERR_CAUSE 22
+#define GAUDI2_NUM_OF_TPC_INTR_CAUSE 30
+#define GAUDI2_NUM_OF_DEC_ERR_CAUSE 25
+#define GAUDI2_NUM_OF_MME_ERR_CAUSE 16
+#define GAUDI2_NUM_OF_MME_SBTE_ERR_CAUSE 5
+#define GAUDI2_NUM_OF_MME_WAP_ERR_CAUSE 7
+#define GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE 8
+#define GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE 19
+#define GAUDI2_NUM_OF_HBM_SEI_CAUSE 9
+#define GAUDI2_NUM_OF_SM_SEI_ERR_CAUSE 3
+#define GAUDI2_NUM_OF_PCIE_ADDR_DEC_ERR_CAUSE 3
+#define GAUDI2_NUM_OF_PMMU_FATAL_ERR_CAUSE 2
+#define GAUDI2_NUM_OF_HIF_FATAL_ERR_CAUSE 2
+#define GAUDI2_NUM_OF_AXI_DRAIN_ERR_CAUSE 2
+#define GAUDI2_NUM_OF_HBM_MC_SPI_CAUSE 5
+
+#define GAUDI2_MMU_CACHE_INV_TIMEOUT_USEC (MMU_CONFIG_TIMEOUT_USEC * 10)
+#define GAUDI2_PLDM_MMU_TIMEOUT_USEC (MMU_CONFIG_TIMEOUT_USEC * 200)
+#define GAUDI2_ARB_WDT_TIMEOUT (0x1000000)
+
+#define GAUDI2_VDEC_TIMEOUT_USEC 10000 /* 10ms */
+#define GAUDI2_PLDM_VDEC_TIMEOUT_USEC (GAUDI2_VDEC_TIMEOUT_USEC * 100)
+
+#define KDMA_TIMEOUT_USEC USEC_PER_SEC
+
+#define IS_DMA_IDLE(dma_core_idle_ind_mask) \
+ (!((dma_core_idle_ind_mask) & \
+ ((DCORE0_EDMA0_CORE_IDLE_IND_MASK_DESC_CNT_STS_MASK) | \
+ (DCORE0_EDMA0_CORE_IDLE_IND_MASK_COMP_MASK))))
+
+#define IS_MME_IDLE(mme_arch_sts) (((mme_arch_sts) & MME_ARCH_IDLE_MASK) == MME_ARCH_IDLE_MASK)
+
+#define IS_TPC_IDLE(tpc_cfg_sts) (((tpc_cfg_sts) & (TPC_IDLE_MASK)) == (TPC_IDLE_MASK))
+
+#define IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts) \
+ ((((qm_glbl_sts0) & (QM_IDLE_MASK)) == (QM_IDLE_MASK)) && \
+ (((qm_glbl_sts1) & (QM_ARC_IDLE_MASK)) == (QM_ARC_IDLE_MASK)) && \
+ (((qm_cgm_sts) & (CGM_IDLE_MASK)) == (CGM_IDLE_MASK)))
+
+#define PCIE_DEC_EN_MASK 0x300
+#define DEC_WORK_STATE_IDLE 0
+#define DEC_WORK_STATE_PEND 3
+#define IS_DEC_IDLE(dec_swreg15) \
+ (((dec_swreg15) & DCORE0_DEC0_CMD_SWREG15_SW_WORK_STATE_MASK) == DEC_WORK_STATE_IDLE || \
+ ((dec_swreg15) & DCORE0_DEC0_CMD_SWREG15_SW_WORK_STATE_MASK) == DEC_WORK_STATE_PEND)
+
+/* HBM MMU address scrambling parameters */
+#define GAUDI2_HBM_MMU_SCRM_MEM_SIZE SZ_8M
+#define GAUDI2_HBM_MMU_SCRM_DIV_SHIFT 26
+#define GAUDI2_HBM_MMU_SCRM_MOD_SHIFT 0
+#define GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK DRAM_VA_HINT_MASK
+#define GAUDI2_COMPENSATE_TLB_PAGE_SIZE_FACTOR 16
+#define MMU_RANGE_INV_VA_LSB_SHIFT 12
+#define MMU_RANGE_INV_VA_MSB_SHIFT 44
+#define MMU_RANGE_INV_EN_SHIFT 0
+#define MMU_RANGE_INV_ASID_EN_SHIFT 1
+#define MMU_RANGE_INV_ASID_SHIFT 2
+
+/* The last SPI_SEI cause bit, "burst_fifo_full", is expected to be triggered in PMMU because it has
+ * a 2 entries FIFO, and hence it is not enabled for it.
+ */
+#define GAUDI2_PMMU_SPI_SEI_ENABLE_MASK GENMASK(GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE - 2, 0)
+#define GAUDI2_HMMU_SPI_SEI_ENABLE_MASK GENMASK(GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE - 1, 0)
+
+#define GAUDI2_MAX_STRING_LEN 64
+
+#define GAUDI2_VDEC_MSIX_ENTRIES (GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM - \
+ GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM + 1)
+
+#define ENGINE_ID_DCORE_OFFSET (GAUDI2_DCORE1_ENGINE_ID_EDMA_0 - GAUDI2_DCORE0_ENGINE_ID_EDMA_0)
+
+enum hl_pmmu_fatal_cause {
+ LATENCY_RD_OUT_FIFO_OVERRUN,
+ LATENCY_WR_OUT_FIFO_OVERRUN,
+};
+
+enum hl_pcie_drain_ind_cause {
+ LBW_AXI_DRAIN_IND,
+ HBW_AXI_DRAIN_IND
+};
+
+static const u32 cluster_hmmu_hif_enabled_mask[GAUDI2_HBM_NUM] = {
+ [HBM_ID0] = 0xFFFC,
+ [HBM_ID1] = 0xFFCF,
+ [HBM_ID2] = 0xF7F7,
+ [HBM_ID3] = 0x7F7F,
+ [HBM_ID4] = 0xFCFF,
+ [HBM_ID5] = 0xCFFF,
+};
+
+static const u8 xbar_edge_to_hbm_cluster[EDMA_ID_SIZE] = {
+ [0] = HBM_ID0,
+ [1] = HBM_ID1,
+ [2] = HBM_ID4,
+ [3] = HBM_ID5,
+};
+
+static const u8 edma_to_hbm_cluster[EDMA_ID_SIZE] = {
+ [EDMA_ID_DCORE0_INSTANCE0] = HBM_ID0,
+ [EDMA_ID_DCORE0_INSTANCE1] = HBM_ID2,
+ [EDMA_ID_DCORE1_INSTANCE0] = HBM_ID1,
+ [EDMA_ID_DCORE1_INSTANCE1] = HBM_ID3,
+ [EDMA_ID_DCORE2_INSTANCE0] = HBM_ID2,
+ [EDMA_ID_DCORE2_INSTANCE1] = HBM_ID4,
+ [EDMA_ID_DCORE3_INSTANCE0] = HBM_ID3,
+ [EDMA_ID_DCORE3_INSTANCE1] = HBM_ID5,
+};
+
+static const int gaudi2_qman_async_event_id[] = {
+ [GAUDI2_QUEUE_ID_PDMA_0_0] = GAUDI2_EVENT_PDMA0_QM,
+ [GAUDI2_QUEUE_ID_PDMA_0_1] = GAUDI2_EVENT_PDMA0_QM,
+ [GAUDI2_QUEUE_ID_PDMA_0_2] = GAUDI2_EVENT_PDMA0_QM,
+ [GAUDI2_QUEUE_ID_PDMA_0_3] = GAUDI2_EVENT_PDMA0_QM,
+ [GAUDI2_QUEUE_ID_PDMA_1_0] = GAUDI2_EVENT_PDMA1_QM,
+ [GAUDI2_QUEUE_ID_PDMA_1_1] = GAUDI2_EVENT_PDMA1_QM,
+ [GAUDI2_QUEUE_ID_PDMA_1_2] = GAUDI2_EVENT_PDMA1_QM,
+ [GAUDI2_QUEUE_ID_PDMA_1_3] = GAUDI2_EVENT_PDMA1_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0] = GAUDI2_EVENT_HDMA0_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1] = GAUDI2_EVENT_HDMA0_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2] = GAUDI2_EVENT_HDMA0_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3] = GAUDI2_EVENT_HDMA0_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0] = GAUDI2_EVENT_HDMA1_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1] = GAUDI2_EVENT_HDMA1_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2] = GAUDI2_EVENT_HDMA1_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3] = GAUDI2_EVENT_HDMA1_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_MME_0_0] = GAUDI2_EVENT_MME0_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_MME_0_1] = GAUDI2_EVENT_MME0_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_MME_0_2] = GAUDI2_EVENT_MME0_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_MME_0_3] = GAUDI2_EVENT_MME0_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_0_0] = GAUDI2_EVENT_TPC0_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_0_1] = GAUDI2_EVENT_TPC0_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_0_2] = GAUDI2_EVENT_TPC0_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_0_3] = GAUDI2_EVENT_TPC0_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_1_0] = GAUDI2_EVENT_TPC1_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_1_1] = GAUDI2_EVENT_TPC1_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_1_2] = GAUDI2_EVENT_TPC1_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_1_3] = GAUDI2_EVENT_TPC1_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_2_0] = GAUDI2_EVENT_TPC2_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_2_1] = GAUDI2_EVENT_TPC2_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_2_2] = GAUDI2_EVENT_TPC2_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_2_3] = GAUDI2_EVENT_TPC2_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_3_0] = GAUDI2_EVENT_TPC3_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_3_1] = GAUDI2_EVENT_TPC3_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_3_2] = GAUDI2_EVENT_TPC3_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_3_3] = GAUDI2_EVENT_TPC3_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_4_0] = GAUDI2_EVENT_TPC4_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_4_1] = GAUDI2_EVENT_TPC4_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_4_2] = GAUDI2_EVENT_TPC4_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_4_3] = GAUDI2_EVENT_TPC4_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_5_0] = GAUDI2_EVENT_TPC5_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_5_1] = GAUDI2_EVENT_TPC5_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_5_2] = GAUDI2_EVENT_TPC5_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_5_3] = GAUDI2_EVENT_TPC5_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_6_0] = GAUDI2_EVENT_TPC24_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_6_1] = GAUDI2_EVENT_TPC24_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_6_2] = GAUDI2_EVENT_TPC24_QM,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_6_3] = GAUDI2_EVENT_TPC24_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0] = GAUDI2_EVENT_HDMA2_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1] = GAUDI2_EVENT_HDMA2_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2] = GAUDI2_EVENT_HDMA2_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3] = GAUDI2_EVENT_HDMA2_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0] = GAUDI2_EVENT_HDMA3_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1] = GAUDI2_EVENT_HDMA3_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2] = GAUDI2_EVENT_HDMA3_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3] = GAUDI2_EVENT_HDMA3_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_MME_0_0] = GAUDI2_EVENT_MME1_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_MME_0_1] = GAUDI2_EVENT_MME1_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_MME_0_2] = GAUDI2_EVENT_MME1_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_MME_0_3] = GAUDI2_EVENT_MME1_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_0_0] = GAUDI2_EVENT_TPC6_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_0_1] = GAUDI2_EVENT_TPC6_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_0_2] = GAUDI2_EVENT_TPC6_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_0_3] = GAUDI2_EVENT_TPC6_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_1_0] = GAUDI2_EVENT_TPC7_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_1_1] = GAUDI2_EVENT_TPC7_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_1_2] = GAUDI2_EVENT_TPC7_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_1_3] = GAUDI2_EVENT_TPC7_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_2_0] = GAUDI2_EVENT_TPC8_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_2_1] = GAUDI2_EVENT_TPC8_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_2_2] = GAUDI2_EVENT_TPC8_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_2_3] = GAUDI2_EVENT_TPC8_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_3_0] = GAUDI2_EVENT_TPC9_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_3_1] = GAUDI2_EVENT_TPC9_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_3_2] = GAUDI2_EVENT_TPC9_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_3_3] = GAUDI2_EVENT_TPC9_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_4_0] = GAUDI2_EVENT_TPC10_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_4_1] = GAUDI2_EVENT_TPC10_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_4_2] = GAUDI2_EVENT_TPC10_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_4_3] = GAUDI2_EVENT_TPC10_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_5_0] = GAUDI2_EVENT_TPC11_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_5_1] = GAUDI2_EVENT_TPC11_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_5_2] = GAUDI2_EVENT_TPC11_QM,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_5_3] = GAUDI2_EVENT_TPC11_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0] = GAUDI2_EVENT_HDMA4_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1] = GAUDI2_EVENT_HDMA4_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2] = GAUDI2_EVENT_HDMA4_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3] = GAUDI2_EVENT_HDMA4_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0] = GAUDI2_EVENT_HDMA5_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1] = GAUDI2_EVENT_HDMA5_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2] = GAUDI2_EVENT_HDMA5_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3] = GAUDI2_EVENT_HDMA5_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_MME_0_0] = GAUDI2_EVENT_MME2_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_MME_0_1] = GAUDI2_EVENT_MME2_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_MME_0_2] = GAUDI2_EVENT_MME2_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_MME_0_3] = GAUDI2_EVENT_MME2_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_0_0] = GAUDI2_EVENT_TPC12_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_0_1] = GAUDI2_EVENT_TPC12_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_0_2] = GAUDI2_EVENT_TPC12_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_0_3] = GAUDI2_EVENT_TPC12_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_1_0] = GAUDI2_EVENT_TPC13_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_1_1] = GAUDI2_EVENT_TPC13_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_1_2] = GAUDI2_EVENT_TPC13_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_1_3] = GAUDI2_EVENT_TPC13_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_2_0] = GAUDI2_EVENT_TPC14_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_2_1] = GAUDI2_EVENT_TPC14_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_2_2] = GAUDI2_EVENT_TPC14_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_2_3] = GAUDI2_EVENT_TPC14_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_3_0] = GAUDI2_EVENT_TPC15_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_3_1] = GAUDI2_EVENT_TPC15_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_3_2] = GAUDI2_EVENT_TPC15_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_3_3] = GAUDI2_EVENT_TPC15_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_4_0] = GAUDI2_EVENT_TPC16_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_4_1] = GAUDI2_EVENT_TPC16_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_4_2] = GAUDI2_EVENT_TPC16_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_4_3] = GAUDI2_EVENT_TPC16_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_5_0] = GAUDI2_EVENT_TPC17_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_5_1] = GAUDI2_EVENT_TPC17_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_5_2] = GAUDI2_EVENT_TPC17_QM,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_5_3] = GAUDI2_EVENT_TPC17_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0] = GAUDI2_EVENT_HDMA6_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1] = GAUDI2_EVENT_HDMA6_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2] = GAUDI2_EVENT_HDMA6_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3] = GAUDI2_EVENT_HDMA6_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0] = GAUDI2_EVENT_HDMA7_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1] = GAUDI2_EVENT_HDMA7_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2] = GAUDI2_EVENT_HDMA7_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3] = GAUDI2_EVENT_HDMA7_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_MME_0_0] = GAUDI2_EVENT_MME3_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_MME_0_1] = GAUDI2_EVENT_MME3_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_MME_0_2] = GAUDI2_EVENT_MME3_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_MME_0_3] = GAUDI2_EVENT_MME3_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_0_0] = GAUDI2_EVENT_TPC18_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_0_1] = GAUDI2_EVENT_TPC18_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_0_2] = GAUDI2_EVENT_TPC18_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_0_3] = GAUDI2_EVENT_TPC18_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_1_0] = GAUDI2_EVENT_TPC19_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_1_1] = GAUDI2_EVENT_TPC19_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_1_2] = GAUDI2_EVENT_TPC19_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_1_3] = GAUDI2_EVENT_TPC19_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_2_0] = GAUDI2_EVENT_TPC20_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_2_1] = GAUDI2_EVENT_TPC20_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_2_2] = GAUDI2_EVENT_TPC20_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_2_3] = GAUDI2_EVENT_TPC20_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_3_0] = GAUDI2_EVENT_TPC21_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_3_1] = GAUDI2_EVENT_TPC21_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_3_2] = GAUDI2_EVENT_TPC21_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_3_3] = GAUDI2_EVENT_TPC21_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_4_0] = GAUDI2_EVENT_TPC22_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_4_1] = GAUDI2_EVENT_TPC22_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_4_2] = GAUDI2_EVENT_TPC22_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_4_3] = GAUDI2_EVENT_TPC22_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_5_0] = GAUDI2_EVENT_TPC23_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_5_1] = GAUDI2_EVENT_TPC23_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_5_2] = GAUDI2_EVENT_TPC23_QM,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_5_3] = GAUDI2_EVENT_TPC23_QM,
+ [GAUDI2_QUEUE_ID_NIC_0_0] = GAUDI2_EVENT_NIC0_QM0,
+ [GAUDI2_QUEUE_ID_NIC_0_1] = GAUDI2_EVENT_NIC0_QM0,
+ [GAUDI2_QUEUE_ID_NIC_0_2] = GAUDI2_EVENT_NIC0_QM0,
+ [GAUDI2_QUEUE_ID_NIC_0_3] = GAUDI2_EVENT_NIC0_QM0,
+ [GAUDI2_QUEUE_ID_NIC_1_0] = GAUDI2_EVENT_NIC0_QM1,
+ [GAUDI2_QUEUE_ID_NIC_1_1] = GAUDI2_EVENT_NIC0_QM1,
+ [GAUDI2_QUEUE_ID_NIC_1_2] = GAUDI2_EVENT_NIC0_QM1,
+ [GAUDI2_QUEUE_ID_NIC_1_3] = GAUDI2_EVENT_NIC0_QM1,
+ [GAUDI2_QUEUE_ID_NIC_2_0] = GAUDI2_EVENT_NIC1_QM0,
+ [GAUDI2_QUEUE_ID_NIC_2_1] = GAUDI2_EVENT_NIC1_QM0,
+ [GAUDI2_QUEUE_ID_NIC_2_2] = GAUDI2_EVENT_NIC1_QM0,
+ [GAUDI2_QUEUE_ID_NIC_2_3] = GAUDI2_EVENT_NIC1_QM0,
+ [GAUDI2_QUEUE_ID_NIC_3_0] = GAUDI2_EVENT_NIC1_QM1,
+ [GAUDI2_QUEUE_ID_NIC_3_1] = GAUDI2_EVENT_NIC1_QM1,
+ [GAUDI2_QUEUE_ID_NIC_3_2] = GAUDI2_EVENT_NIC1_QM1,
+ [GAUDI2_QUEUE_ID_NIC_3_3] = GAUDI2_EVENT_NIC1_QM1,
+ [GAUDI2_QUEUE_ID_NIC_4_0] = GAUDI2_EVENT_NIC2_QM0,
+ [GAUDI2_QUEUE_ID_NIC_4_1] = GAUDI2_EVENT_NIC2_QM0,
+ [GAUDI2_QUEUE_ID_NIC_4_2] = GAUDI2_EVENT_NIC2_QM0,
+ [GAUDI2_QUEUE_ID_NIC_4_3] = GAUDI2_EVENT_NIC2_QM0,
+ [GAUDI2_QUEUE_ID_NIC_5_0] = GAUDI2_EVENT_NIC2_QM1,
+ [GAUDI2_QUEUE_ID_NIC_5_1] = GAUDI2_EVENT_NIC2_QM1,
+ [GAUDI2_QUEUE_ID_NIC_5_2] = GAUDI2_EVENT_NIC2_QM1,
+ [GAUDI2_QUEUE_ID_NIC_5_3] = GAUDI2_EVENT_NIC2_QM1,
+ [GAUDI2_QUEUE_ID_NIC_6_0] = GAUDI2_EVENT_NIC3_QM0,
+ [GAUDI2_QUEUE_ID_NIC_6_1] = GAUDI2_EVENT_NIC3_QM0,
+ [GAUDI2_QUEUE_ID_NIC_6_2] = GAUDI2_EVENT_NIC3_QM0,
+ [GAUDI2_QUEUE_ID_NIC_6_3] = GAUDI2_EVENT_NIC3_QM0,
+ [GAUDI2_QUEUE_ID_NIC_7_0] = GAUDI2_EVENT_NIC3_QM1,
+ [GAUDI2_QUEUE_ID_NIC_7_1] = GAUDI2_EVENT_NIC3_QM1,
+ [GAUDI2_QUEUE_ID_NIC_7_2] = GAUDI2_EVENT_NIC3_QM1,
+ [GAUDI2_QUEUE_ID_NIC_7_3] = GAUDI2_EVENT_NIC3_QM1,
+ [GAUDI2_QUEUE_ID_NIC_8_0] = GAUDI2_EVENT_NIC4_QM0,
+ [GAUDI2_QUEUE_ID_NIC_8_1] = GAUDI2_EVENT_NIC4_QM0,
+ [GAUDI2_QUEUE_ID_NIC_8_2] = GAUDI2_EVENT_NIC4_QM0,
+ [GAUDI2_QUEUE_ID_NIC_8_3] = GAUDI2_EVENT_NIC4_QM0,
+ [GAUDI2_QUEUE_ID_NIC_9_0] = GAUDI2_EVENT_NIC4_QM1,
+ [GAUDI2_QUEUE_ID_NIC_9_1] = GAUDI2_EVENT_NIC4_QM1,
+ [GAUDI2_QUEUE_ID_NIC_9_2] = GAUDI2_EVENT_NIC4_QM1,
+ [GAUDI2_QUEUE_ID_NIC_9_3] = GAUDI2_EVENT_NIC4_QM1,
+ [GAUDI2_QUEUE_ID_NIC_10_0] = GAUDI2_EVENT_NIC5_QM0,
+ [GAUDI2_QUEUE_ID_NIC_10_1] = GAUDI2_EVENT_NIC5_QM0,
+ [GAUDI2_QUEUE_ID_NIC_10_2] = GAUDI2_EVENT_NIC5_QM0,
+ [GAUDI2_QUEUE_ID_NIC_10_3] = GAUDI2_EVENT_NIC5_QM0,
+ [GAUDI2_QUEUE_ID_NIC_11_0] = GAUDI2_EVENT_NIC5_QM1,
+ [GAUDI2_QUEUE_ID_NIC_11_1] = GAUDI2_EVENT_NIC5_QM1,
+ [GAUDI2_QUEUE_ID_NIC_11_2] = GAUDI2_EVENT_NIC5_QM1,
+ [GAUDI2_QUEUE_ID_NIC_11_3] = GAUDI2_EVENT_NIC5_QM1,
+ [GAUDI2_QUEUE_ID_NIC_12_0] = GAUDI2_EVENT_NIC6_QM0,
+ [GAUDI2_QUEUE_ID_NIC_12_1] = GAUDI2_EVENT_NIC6_QM0,
+ [GAUDI2_QUEUE_ID_NIC_12_2] = GAUDI2_EVENT_NIC6_QM0,
+ [GAUDI2_QUEUE_ID_NIC_12_3] = GAUDI2_EVENT_NIC6_QM0,
+ [GAUDI2_QUEUE_ID_NIC_13_0] = GAUDI2_EVENT_NIC6_QM1,
+ [GAUDI2_QUEUE_ID_NIC_13_1] = GAUDI2_EVENT_NIC6_QM1,
+ [GAUDI2_QUEUE_ID_NIC_13_2] = GAUDI2_EVENT_NIC6_QM1,
+ [GAUDI2_QUEUE_ID_NIC_13_3] = GAUDI2_EVENT_NIC6_QM1,
+ [GAUDI2_QUEUE_ID_NIC_14_0] = GAUDI2_EVENT_NIC7_QM0,
+ [GAUDI2_QUEUE_ID_NIC_14_1] = GAUDI2_EVENT_NIC7_QM0,
+ [GAUDI2_QUEUE_ID_NIC_14_2] = GAUDI2_EVENT_NIC7_QM0,
+ [GAUDI2_QUEUE_ID_NIC_14_3] = GAUDI2_EVENT_NIC7_QM0,
+ [GAUDI2_QUEUE_ID_NIC_15_0] = GAUDI2_EVENT_NIC7_QM1,
+ [GAUDI2_QUEUE_ID_NIC_15_1] = GAUDI2_EVENT_NIC7_QM1,
+ [GAUDI2_QUEUE_ID_NIC_15_2] = GAUDI2_EVENT_NIC7_QM1,
+ [GAUDI2_QUEUE_ID_NIC_15_3] = GAUDI2_EVENT_NIC7_QM1,
+ [GAUDI2_QUEUE_ID_NIC_16_0] = GAUDI2_EVENT_NIC8_QM0,
+ [GAUDI2_QUEUE_ID_NIC_16_1] = GAUDI2_EVENT_NIC8_QM0,
+ [GAUDI2_QUEUE_ID_NIC_16_2] = GAUDI2_EVENT_NIC8_QM0,
+ [GAUDI2_QUEUE_ID_NIC_16_3] = GAUDI2_EVENT_NIC8_QM0,
+ [GAUDI2_QUEUE_ID_NIC_17_0] = GAUDI2_EVENT_NIC8_QM1,
+ [GAUDI2_QUEUE_ID_NIC_17_1] = GAUDI2_EVENT_NIC8_QM1,
+ [GAUDI2_QUEUE_ID_NIC_17_2] = GAUDI2_EVENT_NIC8_QM1,
+ [GAUDI2_QUEUE_ID_NIC_17_3] = GAUDI2_EVENT_NIC8_QM1,
+ [GAUDI2_QUEUE_ID_NIC_18_0] = GAUDI2_EVENT_NIC9_QM0,
+ [GAUDI2_QUEUE_ID_NIC_18_1] = GAUDI2_EVENT_NIC9_QM0,
+ [GAUDI2_QUEUE_ID_NIC_18_2] = GAUDI2_EVENT_NIC9_QM0,
+ [GAUDI2_QUEUE_ID_NIC_18_3] = GAUDI2_EVENT_NIC9_QM0,
+ [GAUDI2_QUEUE_ID_NIC_19_0] = GAUDI2_EVENT_NIC9_QM1,
+ [GAUDI2_QUEUE_ID_NIC_19_1] = GAUDI2_EVENT_NIC9_QM1,
+ [GAUDI2_QUEUE_ID_NIC_19_2] = GAUDI2_EVENT_NIC9_QM1,
+ [GAUDI2_QUEUE_ID_NIC_19_3] = GAUDI2_EVENT_NIC9_QM1,
+ [GAUDI2_QUEUE_ID_NIC_20_0] = GAUDI2_EVENT_NIC10_QM0,
+ [GAUDI2_QUEUE_ID_NIC_20_1] = GAUDI2_EVENT_NIC10_QM0,
+ [GAUDI2_QUEUE_ID_NIC_20_2] = GAUDI2_EVENT_NIC10_QM0,
+ [GAUDI2_QUEUE_ID_NIC_20_3] = GAUDI2_EVENT_NIC10_QM0,
+ [GAUDI2_QUEUE_ID_NIC_21_0] = GAUDI2_EVENT_NIC10_QM1,
+ [GAUDI2_QUEUE_ID_NIC_21_1] = GAUDI2_EVENT_NIC10_QM1,
+ [GAUDI2_QUEUE_ID_NIC_21_2] = GAUDI2_EVENT_NIC10_QM1,
+ [GAUDI2_QUEUE_ID_NIC_21_3] = GAUDI2_EVENT_NIC10_QM1,
+ [GAUDI2_QUEUE_ID_NIC_22_0] = GAUDI2_EVENT_NIC11_QM0,
+ [GAUDI2_QUEUE_ID_NIC_22_1] = GAUDI2_EVENT_NIC11_QM0,
+ [GAUDI2_QUEUE_ID_NIC_22_2] = GAUDI2_EVENT_NIC11_QM0,
+ [GAUDI2_QUEUE_ID_NIC_22_3] = GAUDI2_EVENT_NIC11_QM0,
+ [GAUDI2_QUEUE_ID_NIC_23_0] = GAUDI2_EVENT_NIC11_QM1,
+ [GAUDI2_QUEUE_ID_NIC_23_1] = GAUDI2_EVENT_NIC11_QM1,
+ [GAUDI2_QUEUE_ID_NIC_23_2] = GAUDI2_EVENT_NIC11_QM1,
+ [GAUDI2_QUEUE_ID_NIC_23_3] = GAUDI2_EVENT_NIC11_QM1,
+ [GAUDI2_QUEUE_ID_ROT_0_0] = GAUDI2_EVENT_ROTATOR0_ROT0_QM,
+ [GAUDI2_QUEUE_ID_ROT_0_1] = GAUDI2_EVENT_ROTATOR0_ROT0_QM,
+ [GAUDI2_QUEUE_ID_ROT_0_2] = GAUDI2_EVENT_ROTATOR0_ROT0_QM,
+ [GAUDI2_QUEUE_ID_ROT_0_3] = GAUDI2_EVENT_ROTATOR0_ROT0_QM,
+ [GAUDI2_QUEUE_ID_ROT_1_0] = GAUDI2_EVENT_ROTATOR1_ROT1_QM,
+ [GAUDI2_QUEUE_ID_ROT_1_1] = GAUDI2_EVENT_ROTATOR1_ROT1_QM,
+ [GAUDI2_QUEUE_ID_ROT_1_2] = GAUDI2_EVENT_ROTATOR1_ROT1_QM,
+ [GAUDI2_QUEUE_ID_ROT_1_3] = GAUDI2_EVENT_ROTATOR1_ROT1_QM
+};
+
+static const int gaudi2_dma_core_async_event_id[] = {
+ [DMA_CORE_ID_EDMA0] = GAUDI2_EVENT_HDMA0_CORE,
+ [DMA_CORE_ID_EDMA1] = GAUDI2_EVENT_HDMA1_CORE,
+ [DMA_CORE_ID_EDMA2] = GAUDI2_EVENT_HDMA2_CORE,
+ [DMA_CORE_ID_EDMA3] = GAUDI2_EVENT_HDMA3_CORE,
+ [DMA_CORE_ID_EDMA4] = GAUDI2_EVENT_HDMA4_CORE,
+ [DMA_CORE_ID_EDMA5] = GAUDI2_EVENT_HDMA5_CORE,
+ [DMA_CORE_ID_EDMA6] = GAUDI2_EVENT_HDMA6_CORE,
+ [DMA_CORE_ID_EDMA7] = GAUDI2_EVENT_HDMA7_CORE,
+ [DMA_CORE_ID_PDMA0] = GAUDI2_EVENT_PDMA0_CORE,
+ [DMA_CORE_ID_PDMA1] = GAUDI2_EVENT_PDMA1_CORE,
+ [DMA_CORE_ID_KDMA] = GAUDI2_EVENT_KDMA0_CORE,
+};
+
+static const char * const gaudi2_qm_sei_error_cause[GAUDI2_NUM_OF_QM_SEI_ERR_CAUSE] = {
+ "qman sei intr",
+ "arc sei intr"
+};
+
+static const char * const gaudi2_cpu_sei_error_cause[GAUDI2_NUM_OF_CPU_SEI_ERR_CAUSE] = {
+ "AXI_TERMINATOR WR",
+ "AXI_TERMINATOR RD",
+ "AXI SPLIT SEI Status"
+};
+
+static const char * const gaudi2_arc_sei_error_cause[GAUDI2_NUM_OF_ARC_SEI_ERR_CAUSE] = {
+ "cbu_bresp_sei_intr_cause",
+ "cbu_rresp_sei_intr_cause",
+ "lbu_bresp_sei_intr_cause",
+ "lbu_rresp_sei_intr_cause",
+ "cbu_axi_split_intr_cause",
+ "lbu_axi_split_intr_cause",
+ "arc_ip_excptn_sei_intr_cause",
+ "dmi_bresp_sei_intr_cause",
+ "aux2apb_err_sei_intr_cause",
+ "cfg_lbw_wr_terminated_intr_cause",
+ "cfg_lbw_rd_terminated_intr_cause",
+ "cfg_dccm_wr_terminated_intr_cause",
+ "cfg_dccm_rd_terminated_intr_cause",
+ "cfg_hbw_rd_terminated_intr_cause"
+};
+
+static const char * const gaudi2_dec_error_cause[GAUDI2_NUM_OF_DEC_ERR_CAUSE] = {
+ "msix_vcd_hbw_sei",
+ "msix_l2c_hbw_sei",
+ "msix_nrm_hbw_sei",
+ "msix_abnrm_hbw_sei",
+ "msix_vcd_lbw_sei",
+ "msix_l2c_lbw_sei",
+ "msix_nrm_lbw_sei",
+ "msix_abnrm_lbw_sei",
+ "apb_vcd_lbw_sei",
+ "apb_l2c_lbw_sei",
+ "apb_nrm_lbw_sei",
+ "apb_abnrm_lbw_sei",
+ "dec_sei",
+ "dec_apb_sei",
+ "trc_apb_sei",
+ "lbw_mstr_if_sei",
+ "axi_split_bresp_err_sei",
+ "hbw_axi_wr_viol_sei",
+ "hbw_axi_rd_viol_sei",
+ "lbw_axi_wr_viol_sei",
+ "lbw_axi_rd_viol_sei",
+ "vcd_spi",
+ "l2c_spi",
+ "nrm_spi",
+ "abnrm_spi",
+};
+
+static const char * const gaudi2_qman_error_cause[GAUDI2_NUM_OF_QM_ERR_CAUSE] = {
+ "PQ AXI HBW error",
+ "CQ AXI HBW error",
+ "CP AXI HBW error",
+ "CP error due to undefined OPCODE",
+ "CP encountered STOP OPCODE",
+ "CP AXI LBW error",
+ "CP WRREG32 or WRBULK returned error",
+ "N/A",
+ "FENCE 0 inc over max value and clipped",
+ "FENCE 1 inc over max value and clipped",
+ "FENCE 2 inc over max value and clipped",
+ "FENCE 3 inc over max value and clipped",
+ "FENCE 0 dec under min value and clipped",
+ "FENCE 1 dec under min value and clipped",
+ "FENCE 2 dec under min value and clipped",
+ "FENCE 3 dec under min value and clipped",
+ "CPDMA Up overflow",
+ "PQC L2H error"
+};
+
+static const char * const gaudi2_qman_lower_cp_error_cause[GAUDI2_NUM_OF_QM_LCP_ERR_CAUSE] = {
+ "RSVD0",
+ "CQ AXI HBW error",
+ "CP AXI HBW error",
+ "CP error due to undefined OPCODE",
+ "CP encountered STOP OPCODE",
+ "CP AXI LBW error",
+ "CP WRREG32 or WRBULK returned error",
+ "N/A",
+ "FENCE 0 inc over max value and clipped",
+ "FENCE 1 inc over max value and clipped",
+ "FENCE 2 inc over max value and clipped",
+ "FENCE 3 inc over max value and clipped",
+ "FENCE 0 dec under min value and clipped",
+ "FENCE 1 dec under min value and clipped",
+ "FENCE 2 dec under min value and clipped",
+ "FENCE 3 dec under min value and clipped",
+ "CPDMA Up overflow",
+ "RSVD17",
+ "CQ_WR_IFIFO_CI_ERR",
+ "CQ_WR_CTL_CI_ERR",
+ "ARC_CQF_RD_ERR",
+ "ARC_CQ_WR_IFIFO_CI_ERR",
+ "ARC_CQ_WR_CTL_CI_ERR",
+ "ARC_AXI_ERR",
+ "CP_SWITCH_WDT_ERR"
+};
+
+static const char * const gaudi2_qman_arb_error_cause[GAUDI2_NUM_OF_QM_ARB_ERR_CAUSE] = {
+ "Choice push while full error",
+ "Choice Q watchdog error",
+ "MSG AXI LBW returned with error"
+};
+
+static const char * const guadi2_rot_error_cause[GAUDI2_NUM_OF_ROT_ERR_CAUSE] = {
+ "qm_axi_err",
+ "qm_trace_fence_events",
+ "qm_sw_err",
+ "qm_cp_sw_stop",
+ "lbw_mstr_rresp_err",
+ "lbw_mstr_bresp_err",
+ "lbw_msg_slverr",
+ "hbw_msg_slverr",
+ "wbc_slverr",
+ "hbw_mstr_rresp_err",
+ "hbw_mstr_bresp_err",
+ "sb_resp_intr",
+ "mrsb_resp_intr",
+ "core_dw_status_0",
+ "core_dw_status_1",
+ "core_dw_status_2",
+ "core_dw_status_3",
+ "core_dw_status_4",
+ "core_dw_status_5",
+ "core_dw_status_6",
+ "core_dw_status_7",
+ "async_arc2cpu_sei_intr",
+};
+
+static const char * const gaudi2_tpc_interrupts_cause[GAUDI2_NUM_OF_TPC_INTR_CAUSE] = {
+ "tpc_address_exceed_slm",
+ "tpc_div_by_0",
+ "tpc_spu_mac_overflow",
+ "tpc_spu_addsub_overflow",
+ "tpc_spu_abs_overflow",
+ "tpc_spu_fma_fp_dst_nan",
+ "tpc_spu_fma_fp_dst_inf",
+ "tpc_spu_convert_fp_dst_nan",
+ "tpc_spu_convert_fp_dst_inf",
+ "tpc_spu_fp_dst_denorm",
+ "tpc_vpu_mac_overflow",
+ "tpc_vpu_addsub_overflow",
+ "tpc_vpu_abs_overflow",
+ "tpc_vpu_convert_fp_dst_nan",
+ "tpc_vpu_convert_fp_dst_inf",
+ "tpc_vpu_fma_fp_dst_nan",
+ "tpc_vpu_fma_fp_dst_inf",
+ "tpc_vpu_fp_dst_denorm",
+ "tpc_assertions",
+ "tpc_illegal_instruction",
+ "tpc_pc_wrap_around",
+ "tpc_qm_sw_err",
+ "tpc_hbw_rresp_err",
+ "tpc_hbw_bresp_err",
+ "tpc_lbw_rresp_err",
+ "tpc_lbw_bresp_err",
+ "st_unlock_already_locked",
+ "invalid_lock_access",
+ "LD_L protection violation",
+ "ST_L protection violation",
+};
+
+static const char * const guadi2_mme_error_cause[GAUDI2_NUM_OF_MME_ERR_CAUSE] = {
+ "agu_resp_intr",
+ "qman_axi_err",
+ "wap sei (wbc axi err)",
+ "arc sei",
+ "cfg access error",
+ "qm_sw_err",
+ "sbte_dbg_intr_0",
+ "sbte_dbg_intr_1",
+ "sbte_dbg_intr_2",
+ "sbte_dbg_intr_3",
+ "sbte_dbg_intr_4",
+ "sbte_prtn_intr_0",
+ "sbte_prtn_intr_1",
+ "sbte_prtn_intr_2",
+ "sbte_prtn_intr_3",
+ "sbte_prtn_intr_4",
+};
+
+static const char * const guadi2_mme_sbte_error_cause[GAUDI2_NUM_OF_MME_SBTE_ERR_CAUSE] = {
+ "i0",
+ "i1",
+ "i2",
+ "i3",
+ "i4",
+};
+
+static const char * const guadi2_mme_wap_error_cause[GAUDI2_NUM_OF_MME_WAP_ERR_CAUSE] = {
+ "WBC ERR RESP_0",
+ "WBC ERR RESP_1",
+ "AP SOURCE POS INF",
+ "AP SOURCE NEG INF",
+ "AP SOURCE NAN",
+ "AP RESULT POS INF",
+ "AP RESULT NEG INF",
+};
+
+static const char * const gaudi2_dma_core_interrupts_cause[GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE] = {
+ "HBW Read returned with error RRESP",
+ "HBW write returned with error BRESP",
+ "LBW write returned with error BRESP",
+ "descriptor_fifo_overflow",
+ "KDMA SB LBW Read returned with error",
+ "KDMA WBC LBW Write returned with error",
+ "TRANSPOSE ENGINE DESC FIFO OVERFLOW",
+ "WRONG CFG FOR COMMIT IN LIN DMA"
+};
+
+static const char * const gaudi2_kdma_core_interrupts_cause[GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE] = {
+ "HBW/LBW Read returned with error RRESP",
+ "HBW/LBW write returned with error BRESP",
+ "LBW write returned with error BRESP",
+ "descriptor_fifo_overflow",
+ "KDMA SB LBW Read returned with error",
+ "KDMA WBC LBW Write returned with error",
+ "TRANSPOSE ENGINE DESC FIFO OVERFLOW",
+ "WRONG CFG FOR COMMIT IN LIN DMA"
+};
+
+struct gaudi2_sm_sei_cause_data {
+ const char *cause_name;
+ const char *log_name;
+};
+
+static const struct gaudi2_sm_sei_cause_data
+gaudi2_sm_sei_cause[GAUDI2_NUM_OF_SM_SEI_ERR_CAUSE] = {
+ {"calculated SO value overflow/underflow", "SOB ID"},
+ {"payload address of monitor is not aligned to 4B", "monitor addr"},
+ {"armed monitor write got BRESP (SLVERR or DECERR)", "AXI id"},
+};
+
+static const char * const
+gaudi2_pmmu_fatal_interrupts_cause[GAUDI2_NUM_OF_PMMU_FATAL_ERR_CAUSE] = {
+ "LATENCY_RD_OUT_FIFO_OVERRUN",
+ "LATENCY_WR_OUT_FIFO_OVERRUN",
+};
+
+static const char * const
+gaudi2_hif_fatal_interrupts_cause[GAUDI2_NUM_OF_HIF_FATAL_ERR_CAUSE] = {
+ "LATENCY_RD_OUT_FIFO_OVERRUN",
+ "LATENCY_WR_OUT_FIFO_OVERRUN",
+};
+
+static const char * const
+gaudi2_psoc_axi_drain_interrupts_cause[GAUDI2_NUM_OF_AXI_DRAIN_ERR_CAUSE] = {
+ "AXI drain HBW",
+ "AXI drain LBW",
+};
+
+static const char * const
+gaudi2_pcie_addr_dec_error_cause[GAUDI2_NUM_OF_PCIE_ADDR_DEC_ERR_CAUSE] = {
+ "HBW error response",
+ "LBW error response",
+ "TLP is blocked by RR"
+};
+
+const u32 gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_SIZE] = {
+ [GAUDI2_QUEUE_ID_PDMA_0_0] = mmPDMA0_QM_BASE,
+ [GAUDI2_QUEUE_ID_PDMA_0_1] = mmPDMA0_QM_BASE,
+ [GAUDI2_QUEUE_ID_PDMA_0_2] = mmPDMA0_QM_BASE,
+ [GAUDI2_QUEUE_ID_PDMA_0_3] = mmPDMA0_QM_BASE,
+ [GAUDI2_QUEUE_ID_PDMA_1_0] = mmPDMA1_QM_BASE,
+ [GAUDI2_QUEUE_ID_PDMA_1_1] = mmPDMA1_QM_BASE,
+ [GAUDI2_QUEUE_ID_PDMA_1_2] = mmPDMA1_QM_BASE,
+ [GAUDI2_QUEUE_ID_PDMA_1_3] = mmPDMA1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0] = mmDCORE0_EDMA0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1] = mmDCORE0_EDMA0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2] = mmDCORE0_EDMA0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3] = mmDCORE0_EDMA0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0] = mmDCORE0_EDMA1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1] = mmDCORE0_EDMA1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2] = mmDCORE0_EDMA1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3] = mmDCORE0_EDMA1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_MME_0_0] = mmDCORE0_MME_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_MME_0_1] = mmDCORE0_MME_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_MME_0_2] = mmDCORE0_MME_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_MME_0_3] = mmDCORE0_MME_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_0_0] = mmDCORE0_TPC0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_0_1] = mmDCORE0_TPC0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_0_2] = mmDCORE0_TPC0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_0_3] = mmDCORE0_TPC0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_1_0] = mmDCORE0_TPC1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_1_1] = mmDCORE0_TPC1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_1_2] = mmDCORE0_TPC1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_1_3] = mmDCORE0_TPC1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_2_0] = mmDCORE0_TPC2_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_2_1] = mmDCORE0_TPC2_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_2_2] = mmDCORE0_TPC2_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_2_3] = mmDCORE0_TPC2_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_3_0] = mmDCORE0_TPC3_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_3_1] = mmDCORE0_TPC3_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_3_2] = mmDCORE0_TPC3_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_3_3] = mmDCORE0_TPC3_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_4_0] = mmDCORE0_TPC4_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_4_1] = mmDCORE0_TPC4_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_4_2] = mmDCORE0_TPC4_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_4_3] = mmDCORE0_TPC4_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_5_0] = mmDCORE0_TPC5_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_5_1] = mmDCORE0_TPC5_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_5_2] = mmDCORE0_TPC5_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_5_3] = mmDCORE0_TPC5_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_6_0] = mmDCORE0_TPC6_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_6_1] = mmDCORE0_TPC6_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_6_2] = mmDCORE0_TPC6_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_6_3] = mmDCORE0_TPC6_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0] = mmDCORE1_EDMA0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1] = mmDCORE1_EDMA0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2] = mmDCORE1_EDMA0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3] = mmDCORE1_EDMA0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0] = mmDCORE1_EDMA1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1] = mmDCORE1_EDMA1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2] = mmDCORE1_EDMA1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3] = mmDCORE1_EDMA1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_MME_0_0] = mmDCORE1_MME_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_MME_0_1] = mmDCORE1_MME_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_MME_0_2] = mmDCORE1_MME_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_MME_0_3] = mmDCORE1_MME_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_0_0] = mmDCORE1_TPC0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_0_1] = mmDCORE1_TPC0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_0_2] = mmDCORE1_TPC0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_0_3] = mmDCORE1_TPC0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_1_0] = mmDCORE1_TPC1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_1_1] = mmDCORE1_TPC1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_1_2] = mmDCORE1_TPC1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_1_3] = mmDCORE1_TPC1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_2_0] = mmDCORE1_TPC2_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_2_1] = mmDCORE1_TPC2_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_2_2] = mmDCORE1_TPC2_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_2_3] = mmDCORE1_TPC2_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_3_0] = mmDCORE1_TPC3_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_3_1] = mmDCORE1_TPC3_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_3_2] = mmDCORE1_TPC3_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_3_3] = mmDCORE1_TPC3_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_4_0] = mmDCORE1_TPC4_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_4_1] = mmDCORE1_TPC4_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_4_2] = mmDCORE1_TPC4_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_4_3] = mmDCORE1_TPC4_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_5_0] = mmDCORE1_TPC5_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_5_1] = mmDCORE1_TPC5_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_5_2] = mmDCORE1_TPC5_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_5_3] = mmDCORE1_TPC5_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0] = mmDCORE2_EDMA0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1] = mmDCORE2_EDMA0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2] = mmDCORE2_EDMA0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3] = mmDCORE2_EDMA0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0] = mmDCORE2_EDMA1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1] = mmDCORE2_EDMA1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2] = mmDCORE2_EDMA1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3] = mmDCORE2_EDMA1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_MME_0_0] = mmDCORE2_MME_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_MME_0_1] = mmDCORE2_MME_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_MME_0_2] = mmDCORE2_MME_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_MME_0_3] = mmDCORE2_MME_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_0_0] = mmDCORE2_TPC0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_0_1] = mmDCORE2_TPC0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_0_2] = mmDCORE2_TPC0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_0_3] = mmDCORE2_TPC0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_1_0] = mmDCORE2_TPC1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_1_1] = mmDCORE2_TPC1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_1_2] = mmDCORE2_TPC1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_1_3] = mmDCORE2_TPC1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_2_0] = mmDCORE2_TPC2_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_2_1] = mmDCORE2_TPC2_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_2_2] = mmDCORE2_TPC2_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_2_3] = mmDCORE2_TPC2_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_3_0] = mmDCORE2_TPC3_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_3_1] = mmDCORE2_TPC3_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_3_2] = mmDCORE2_TPC3_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_3_3] = mmDCORE2_TPC3_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_4_0] = mmDCORE2_TPC4_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_4_1] = mmDCORE2_TPC4_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_4_2] = mmDCORE2_TPC4_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_4_3] = mmDCORE2_TPC4_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_5_0] = mmDCORE2_TPC5_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_5_1] = mmDCORE2_TPC5_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_5_2] = mmDCORE2_TPC5_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_5_3] = mmDCORE2_TPC5_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0] = mmDCORE3_EDMA0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1] = mmDCORE3_EDMA0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2] = mmDCORE3_EDMA0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3] = mmDCORE3_EDMA0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0] = mmDCORE3_EDMA1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1] = mmDCORE3_EDMA1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2] = mmDCORE3_EDMA1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3] = mmDCORE3_EDMA1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_MME_0_0] = mmDCORE3_MME_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_MME_0_1] = mmDCORE3_MME_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_MME_0_2] = mmDCORE3_MME_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_MME_0_3] = mmDCORE3_MME_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_0_0] = mmDCORE3_TPC0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_0_1] = mmDCORE3_TPC0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_0_2] = mmDCORE3_TPC0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_0_3] = mmDCORE3_TPC0_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_1_0] = mmDCORE3_TPC1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_1_1] = mmDCORE3_TPC1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_1_2] = mmDCORE3_TPC1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_1_3] = mmDCORE3_TPC1_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_2_0] = mmDCORE3_TPC2_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_2_1] = mmDCORE3_TPC2_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_2_2] = mmDCORE3_TPC2_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_2_3] = mmDCORE3_TPC2_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_3_0] = mmDCORE3_TPC3_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_3_1] = mmDCORE3_TPC3_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_3_2] = mmDCORE3_TPC3_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_3_3] = mmDCORE3_TPC3_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_4_0] = mmDCORE3_TPC4_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_4_1] = mmDCORE3_TPC4_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_4_2] = mmDCORE3_TPC4_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_4_3] = mmDCORE3_TPC4_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_5_0] = mmDCORE3_TPC5_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_5_1] = mmDCORE3_TPC5_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_5_2] = mmDCORE3_TPC5_QM_BASE,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_5_3] = mmDCORE3_TPC5_QM_BASE,
+ [GAUDI2_QUEUE_ID_NIC_0_0] = mmNIC0_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_0_1] = mmNIC0_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_0_2] = mmNIC0_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_0_3] = mmNIC0_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_1_0] = mmNIC0_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_1_1] = mmNIC0_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_1_2] = mmNIC0_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_1_3] = mmNIC0_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_2_0] = mmNIC1_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_2_1] = mmNIC1_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_2_2] = mmNIC1_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_2_3] = mmNIC1_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_3_0] = mmNIC1_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_3_1] = mmNIC1_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_3_2] = mmNIC1_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_3_3] = mmNIC1_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_4_0] = mmNIC2_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_4_1] = mmNIC2_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_4_2] = mmNIC2_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_4_3] = mmNIC2_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_5_0] = mmNIC2_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_5_1] = mmNIC2_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_5_2] = mmNIC2_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_5_3] = mmNIC2_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_6_0] = mmNIC3_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_6_1] = mmNIC3_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_6_2] = mmNIC3_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_6_3] = mmNIC3_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_7_0] = mmNIC3_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_7_1] = mmNIC3_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_7_2] = mmNIC3_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_7_3] = mmNIC3_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_8_0] = mmNIC4_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_8_1] = mmNIC4_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_8_2] = mmNIC4_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_8_3] = mmNIC4_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_9_0] = mmNIC4_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_9_1] = mmNIC4_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_9_2] = mmNIC4_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_9_3] = mmNIC4_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_10_0] = mmNIC5_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_10_1] = mmNIC5_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_10_2] = mmNIC5_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_10_3] = mmNIC5_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_11_0] = mmNIC5_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_11_1] = mmNIC5_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_11_2] = mmNIC5_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_11_3] = mmNIC5_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_12_0] = mmNIC6_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_12_1] = mmNIC6_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_12_2] = mmNIC6_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_12_3] = mmNIC6_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_13_0] = mmNIC6_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_13_1] = mmNIC6_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_13_2] = mmNIC6_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_13_3] = mmNIC6_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_14_0] = mmNIC7_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_14_1] = mmNIC7_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_14_2] = mmNIC7_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_14_3] = mmNIC7_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_15_0] = mmNIC7_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_15_1] = mmNIC7_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_15_2] = mmNIC7_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_15_3] = mmNIC7_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_16_0] = mmNIC8_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_16_1] = mmNIC8_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_16_2] = mmNIC8_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_16_3] = mmNIC8_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_17_0] = mmNIC8_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_17_1] = mmNIC8_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_17_2] = mmNIC8_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_17_3] = mmNIC8_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_18_0] = mmNIC9_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_18_1] = mmNIC9_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_18_2] = mmNIC9_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_18_3] = mmNIC9_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_19_0] = mmNIC9_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_19_1] = mmNIC9_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_19_2] = mmNIC9_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_19_3] = mmNIC9_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_20_0] = mmNIC10_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_20_1] = mmNIC10_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_20_2] = mmNIC10_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_20_3] = mmNIC10_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_21_0] = mmNIC10_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_21_1] = mmNIC10_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_21_2] = mmNIC10_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_21_3] = mmNIC10_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_22_0] = mmNIC11_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_22_1] = mmNIC11_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_22_2] = mmNIC11_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_22_3] = mmNIC11_QM0_BASE,
+ [GAUDI2_QUEUE_ID_NIC_23_0] = mmNIC11_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_23_1] = mmNIC11_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_23_2] = mmNIC11_QM1_BASE,
+ [GAUDI2_QUEUE_ID_NIC_23_3] = mmNIC11_QM1_BASE,
+ [GAUDI2_QUEUE_ID_ROT_0_0] = mmROT0_QM_BASE,
+ [GAUDI2_QUEUE_ID_ROT_0_1] = mmROT0_QM_BASE,
+ [GAUDI2_QUEUE_ID_ROT_0_2] = mmROT0_QM_BASE,
+ [GAUDI2_QUEUE_ID_ROT_0_3] = mmROT0_QM_BASE,
+ [GAUDI2_QUEUE_ID_ROT_1_0] = mmROT1_QM_BASE,
+ [GAUDI2_QUEUE_ID_ROT_1_1] = mmROT1_QM_BASE,
+ [GAUDI2_QUEUE_ID_ROT_1_2] = mmROT1_QM_BASE,
+ [GAUDI2_QUEUE_ID_ROT_1_3] = mmROT1_QM_BASE
+};
+
+static const u32 gaudi2_arc_blocks_bases[NUM_ARC_CPUS] = {
+ [CPU_ID_SCHED_ARC0] = mmARC_FARM_ARC0_AUX_BASE,
+ [CPU_ID_SCHED_ARC1] = mmARC_FARM_ARC1_AUX_BASE,
+ [CPU_ID_SCHED_ARC2] = mmARC_FARM_ARC2_AUX_BASE,
+ [CPU_ID_SCHED_ARC3] = mmARC_FARM_ARC3_AUX_BASE,
+ [CPU_ID_SCHED_ARC4] = mmDCORE1_MME_QM_ARC_AUX_BASE,
+ [CPU_ID_SCHED_ARC5] = mmDCORE3_MME_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC0] = mmDCORE0_TPC0_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC1] = mmDCORE0_TPC1_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC2] = mmDCORE0_TPC2_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC3] = mmDCORE0_TPC3_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC4] = mmDCORE0_TPC4_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC5] = mmDCORE0_TPC5_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC6] = mmDCORE1_TPC0_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC7] = mmDCORE1_TPC1_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC8] = mmDCORE1_TPC2_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC9] = mmDCORE1_TPC3_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC10] = mmDCORE1_TPC4_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC11] = mmDCORE1_TPC5_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC12] = mmDCORE2_TPC0_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC13] = mmDCORE2_TPC1_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC14] = mmDCORE2_TPC2_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC15] = mmDCORE2_TPC3_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC16] = mmDCORE2_TPC4_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC17] = mmDCORE2_TPC5_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC18] = mmDCORE3_TPC0_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC19] = mmDCORE3_TPC1_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC20] = mmDCORE3_TPC2_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC21] = mmDCORE3_TPC3_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC22] = mmDCORE3_TPC4_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC23] = mmDCORE3_TPC5_QM_ARC_AUX_BASE,
+ [CPU_ID_TPC_QMAN_ARC24] = mmDCORE0_TPC6_QM_ARC_AUX_BASE,
+ [CPU_ID_MME_QMAN_ARC0] = mmDCORE0_MME_QM_ARC_AUX_BASE,
+ [CPU_ID_MME_QMAN_ARC1] = mmDCORE2_MME_QM_ARC_AUX_BASE,
+ [CPU_ID_EDMA_QMAN_ARC0] = mmDCORE0_EDMA0_QM_ARC_AUX_BASE,
+ [CPU_ID_EDMA_QMAN_ARC1] = mmDCORE0_EDMA1_QM_ARC_AUX_BASE,
+ [CPU_ID_EDMA_QMAN_ARC2] = mmDCORE1_EDMA0_QM_ARC_AUX_BASE,
+ [CPU_ID_EDMA_QMAN_ARC3] = mmDCORE1_EDMA1_QM_ARC_AUX_BASE,
+ [CPU_ID_EDMA_QMAN_ARC4] = mmDCORE2_EDMA0_QM_ARC_AUX_BASE,
+ [CPU_ID_EDMA_QMAN_ARC5] = mmDCORE2_EDMA1_QM_ARC_AUX_BASE,
+ [CPU_ID_EDMA_QMAN_ARC6] = mmDCORE3_EDMA0_QM_ARC_AUX_BASE,
+ [CPU_ID_EDMA_QMAN_ARC7] = mmDCORE3_EDMA1_QM_ARC_AUX_BASE,
+ [CPU_ID_PDMA_QMAN_ARC0] = mmPDMA0_QM_ARC_AUX_BASE,
+ [CPU_ID_PDMA_QMAN_ARC1] = mmPDMA1_QM_ARC_AUX_BASE,
+ [CPU_ID_ROT_QMAN_ARC0] = mmROT0_QM_ARC_AUX_BASE,
+ [CPU_ID_ROT_QMAN_ARC1] = mmROT1_QM_ARC_AUX_BASE,
+ [CPU_ID_NIC_QMAN_ARC0] = mmNIC0_QM_ARC_AUX0_BASE,
+ [CPU_ID_NIC_QMAN_ARC1] = mmNIC0_QM_ARC_AUX1_BASE,
+ [CPU_ID_NIC_QMAN_ARC2] = mmNIC1_QM_ARC_AUX0_BASE,
+ [CPU_ID_NIC_QMAN_ARC3] = mmNIC1_QM_ARC_AUX1_BASE,
+ [CPU_ID_NIC_QMAN_ARC4] = mmNIC2_QM_ARC_AUX0_BASE,
+ [CPU_ID_NIC_QMAN_ARC5] = mmNIC2_QM_ARC_AUX1_BASE,
+ [CPU_ID_NIC_QMAN_ARC6] = mmNIC3_QM_ARC_AUX0_BASE,
+ [CPU_ID_NIC_QMAN_ARC7] = mmNIC3_QM_ARC_AUX1_BASE,
+ [CPU_ID_NIC_QMAN_ARC8] = mmNIC4_QM_ARC_AUX0_BASE,
+ [CPU_ID_NIC_QMAN_ARC9] = mmNIC4_QM_ARC_AUX1_BASE,
+ [CPU_ID_NIC_QMAN_ARC10] = mmNIC5_QM_ARC_AUX0_BASE,
+ [CPU_ID_NIC_QMAN_ARC11] = mmNIC5_QM_ARC_AUX1_BASE,
+ [CPU_ID_NIC_QMAN_ARC12] = mmNIC6_QM_ARC_AUX0_BASE,
+ [CPU_ID_NIC_QMAN_ARC13] = mmNIC6_QM_ARC_AUX1_BASE,
+ [CPU_ID_NIC_QMAN_ARC14] = mmNIC7_QM_ARC_AUX0_BASE,
+ [CPU_ID_NIC_QMAN_ARC15] = mmNIC7_QM_ARC_AUX1_BASE,
+ [CPU_ID_NIC_QMAN_ARC16] = mmNIC8_QM_ARC_AUX0_BASE,
+ [CPU_ID_NIC_QMAN_ARC17] = mmNIC8_QM_ARC_AUX1_BASE,
+ [CPU_ID_NIC_QMAN_ARC18] = mmNIC9_QM_ARC_AUX0_BASE,
+ [CPU_ID_NIC_QMAN_ARC19] = mmNIC9_QM_ARC_AUX1_BASE,
+ [CPU_ID_NIC_QMAN_ARC20] = mmNIC10_QM_ARC_AUX0_BASE,
+ [CPU_ID_NIC_QMAN_ARC21] = mmNIC10_QM_ARC_AUX1_BASE,
+ [CPU_ID_NIC_QMAN_ARC22] = mmNIC11_QM_ARC_AUX0_BASE,
+ [CPU_ID_NIC_QMAN_ARC23] = mmNIC11_QM_ARC_AUX1_BASE,
+};
+
+static const u32 gaudi2_arc_dccm_bases[NUM_ARC_CPUS] = {
+ [CPU_ID_SCHED_ARC0] = mmARC_FARM_ARC0_DCCM0_BASE,
+ [CPU_ID_SCHED_ARC1] = mmARC_FARM_ARC1_DCCM0_BASE,
+ [CPU_ID_SCHED_ARC2] = mmARC_FARM_ARC2_DCCM0_BASE,
+ [CPU_ID_SCHED_ARC3] = mmARC_FARM_ARC3_DCCM0_BASE,
+ [CPU_ID_SCHED_ARC4] = mmDCORE1_MME_QM_ARC_DCCM_BASE,
+ [CPU_ID_SCHED_ARC5] = mmDCORE3_MME_QM_ARC_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC0] = mmDCORE0_TPC0_QM_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC1] = mmDCORE0_TPC1_QM_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC2] = mmDCORE0_TPC2_QM_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC3] = mmDCORE0_TPC3_QM_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC4] = mmDCORE0_TPC4_QM_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC5] = mmDCORE0_TPC5_QM_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC6] = mmDCORE1_TPC0_QM_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC7] = mmDCORE1_TPC1_QM_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC8] = mmDCORE1_TPC2_QM_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC9] = mmDCORE1_TPC3_QM_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC10] = mmDCORE1_TPC4_QM_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC11] = mmDCORE1_TPC5_QM_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC12] = mmDCORE2_TPC0_QM_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC13] = mmDCORE2_TPC1_QM_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC14] = mmDCORE2_TPC2_QM_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC15] = mmDCORE2_TPC3_QM_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC16] = mmDCORE2_TPC4_QM_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC17] = mmDCORE2_TPC5_QM_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC18] = mmDCORE3_TPC0_QM_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC19] = mmDCORE3_TPC1_QM_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC20] = mmDCORE3_TPC2_QM_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC21] = mmDCORE3_TPC3_QM_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC22] = mmDCORE3_TPC4_QM_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC23] = mmDCORE3_TPC5_QM_DCCM_BASE,
+ [CPU_ID_TPC_QMAN_ARC24] = mmDCORE0_TPC6_QM_DCCM_BASE,
+ [CPU_ID_MME_QMAN_ARC0] = mmDCORE0_MME_QM_ARC_DCCM_BASE,
+ [CPU_ID_MME_QMAN_ARC1] = mmDCORE2_MME_QM_ARC_DCCM_BASE,
+ [CPU_ID_EDMA_QMAN_ARC0] = mmDCORE0_EDMA0_QM_DCCM_BASE,
+ [CPU_ID_EDMA_QMAN_ARC1] = mmDCORE0_EDMA1_QM_DCCM_BASE,
+ [CPU_ID_EDMA_QMAN_ARC2] = mmDCORE1_EDMA0_QM_DCCM_BASE,
+ [CPU_ID_EDMA_QMAN_ARC3] = mmDCORE1_EDMA1_QM_DCCM_BASE,
+ [CPU_ID_EDMA_QMAN_ARC4] = mmDCORE2_EDMA0_QM_DCCM_BASE,
+ [CPU_ID_EDMA_QMAN_ARC5] = mmDCORE2_EDMA1_QM_DCCM_BASE,
+ [CPU_ID_EDMA_QMAN_ARC6] = mmDCORE3_EDMA0_QM_DCCM_BASE,
+ [CPU_ID_EDMA_QMAN_ARC7] = mmDCORE3_EDMA1_QM_DCCM_BASE,
+ [CPU_ID_PDMA_QMAN_ARC0] = mmPDMA0_QM_ARC_DCCM_BASE,
+ [CPU_ID_PDMA_QMAN_ARC1] = mmPDMA1_QM_ARC_DCCM_BASE,
+ [CPU_ID_ROT_QMAN_ARC0] = mmROT0_QM_ARC_DCCM_BASE,
+ [CPU_ID_ROT_QMAN_ARC1] = mmROT1_QM_ARC_DCCM_BASE,
+ [CPU_ID_NIC_QMAN_ARC0] = mmNIC0_QM_DCCM0_BASE,
+ [CPU_ID_NIC_QMAN_ARC1] = mmNIC0_QM_DCCM1_BASE,
+ [CPU_ID_NIC_QMAN_ARC2] = mmNIC1_QM_DCCM0_BASE,
+ [CPU_ID_NIC_QMAN_ARC3] = mmNIC1_QM_DCCM1_BASE,
+ [CPU_ID_NIC_QMAN_ARC4] = mmNIC2_QM_DCCM0_BASE,
+ [CPU_ID_NIC_QMAN_ARC5] = mmNIC2_QM_DCCM1_BASE,
+ [CPU_ID_NIC_QMAN_ARC6] = mmNIC3_QM_DCCM0_BASE,
+ [CPU_ID_NIC_QMAN_ARC7] = mmNIC3_QM_DCCM1_BASE,
+ [CPU_ID_NIC_QMAN_ARC8] = mmNIC4_QM_DCCM0_BASE,
+ [CPU_ID_NIC_QMAN_ARC9] = mmNIC4_QM_DCCM1_BASE,
+ [CPU_ID_NIC_QMAN_ARC10] = mmNIC5_QM_DCCM0_BASE,
+ [CPU_ID_NIC_QMAN_ARC11] = mmNIC5_QM_DCCM1_BASE,
+ [CPU_ID_NIC_QMAN_ARC12] = mmNIC6_QM_DCCM0_BASE,
+ [CPU_ID_NIC_QMAN_ARC13] = mmNIC6_QM_DCCM1_BASE,
+ [CPU_ID_NIC_QMAN_ARC14] = mmNIC7_QM_DCCM0_BASE,
+ [CPU_ID_NIC_QMAN_ARC15] = mmNIC7_QM_DCCM1_BASE,
+ [CPU_ID_NIC_QMAN_ARC16] = mmNIC8_QM_DCCM0_BASE,
+ [CPU_ID_NIC_QMAN_ARC17] = mmNIC8_QM_DCCM1_BASE,
+ [CPU_ID_NIC_QMAN_ARC18] = mmNIC9_QM_DCCM0_BASE,
+ [CPU_ID_NIC_QMAN_ARC19] = mmNIC9_QM_DCCM1_BASE,
+ [CPU_ID_NIC_QMAN_ARC20] = mmNIC10_QM_DCCM0_BASE,
+ [CPU_ID_NIC_QMAN_ARC21] = mmNIC10_QM_DCCM1_BASE,
+ [CPU_ID_NIC_QMAN_ARC22] = mmNIC11_QM_DCCM0_BASE,
+ [CPU_ID_NIC_QMAN_ARC23] = mmNIC11_QM_DCCM1_BASE,
+};
+
+const u32 gaudi2_mme_ctrl_lo_blocks_bases[MME_ID_SIZE] = {
+ [MME_ID_DCORE0] = mmDCORE0_MME_CTRL_LO_BASE,
+ [MME_ID_DCORE1] = mmDCORE1_MME_CTRL_LO_BASE,
+ [MME_ID_DCORE2] = mmDCORE2_MME_CTRL_LO_BASE,
+ [MME_ID_DCORE3] = mmDCORE3_MME_CTRL_LO_BASE,
+};
+
+static const u32 gaudi2_queue_id_to_arc_id[GAUDI2_QUEUE_ID_SIZE] = {
+ [GAUDI2_QUEUE_ID_PDMA_0_0] = CPU_ID_PDMA_QMAN_ARC0,
+ [GAUDI2_QUEUE_ID_PDMA_0_1] = CPU_ID_PDMA_QMAN_ARC0,
+ [GAUDI2_QUEUE_ID_PDMA_0_2] = CPU_ID_PDMA_QMAN_ARC0,
+ [GAUDI2_QUEUE_ID_PDMA_0_3] = CPU_ID_PDMA_QMAN_ARC0,
+ [GAUDI2_QUEUE_ID_PDMA_1_0] = CPU_ID_PDMA_QMAN_ARC1,
+ [GAUDI2_QUEUE_ID_PDMA_1_1] = CPU_ID_PDMA_QMAN_ARC1,
+ [GAUDI2_QUEUE_ID_PDMA_1_2] = CPU_ID_PDMA_QMAN_ARC1,
+ [GAUDI2_QUEUE_ID_PDMA_1_3] = CPU_ID_PDMA_QMAN_ARC1,
+ [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0] = CPU_ID_EDMA_QMAN_ARC0,
+ [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1] = CPU_ID_EDMA_QMAN_ARC0,
+ [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2] = CPU_ID_EDMA_QMAN_ARC0,
+ [GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3] = CPU_ID_EDMA_QMAN_ARC0,
+ [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0] = CPU_ID_EDMA_QMAN_ARC1,
+ [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1] = CPU_ID_EDMA_QMAN_ARC1,
+ [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2] = CPU_ID_EDMA_QMAN_ARC1,
+ [GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3] = CPU_ID_EDMA_QMAN_ARC1,
+ [GAUDI2_QUEUE_ID_DCORE0_MME_0_0] = CPU_ID_MME_QMAN_ARC0,
+ [GAUDI2_QUEUE_ID_DCORE0_MME_0_1] = CPU_ID_MME_QMAN_ARC0,
+ [GAUDI2_QUEUE_ID_DCORE0_MME_0_2] = CPU_ID_MME_QMAN_ARC0,
+ [GAUDI2_QUEUE_ID_DCORE0_MME_0_3] = CPU_ID_MME_QMAN_ARC0,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_0_0] = CPU_ID_TPC_QMAN_ARC0,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_0_1] = CPU_ID_TPC_QMAN_ARC0,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_0_2] = CPU_ID_TPC_QMAN_ARC0,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_0_3] = CPU_ID_TPC_QMAN_ARC0,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_1_0] = CPU_ID_TPC_QMAN_ARC1,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_1_1] = CPU_ID_TPC_QMAN_ARC1,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_1_2] = CPU_ID_TPC_QMAN_ARC1,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_1_3] = CPU_ID_TPC_QMAN_ARC1,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_2_0] = CPU_ID_TPC_QMAN_ARC2,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_2_1] = CPU_ID_TPC_QMAN_ARC2,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_2_2] = CPU_ID_TPC_QMAN_ARC2,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_2_3] = CPU_ID_TPC_QMAN_ARC2,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_3_0] = CPU_ID_TPC_QMAN_ARC3,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_3_1] = CPU_ID_TPC_QMAN_ARC3,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_3_2] = CPU_ID_TPC_QMAN_ARC3,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_3_3] = CPU_ID_TPC_QMAN_ARC3,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_4_0] = CPU_ID_TPC_QMAN_ARC4,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_4_1] = CPU_ID_TPC_QMAN_ARC4,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_4_2] = CPU_ID_TPC_QMAN_ARC4,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_4_3] = CPU_ID_TPC_QMAN_ARC4,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_5_0] = CPU_ID_TPC_QMAN_ARC5,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_5_1] = CPU_ID_TPC_QMAN_ARC5,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_5_2] = CPU_ID_TPC_QMAN_ARC5,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_5_3] = CPU_ID_TPC_QMAN_ARC5,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_6_0] = CPU_ID_TPC_QMAN_ARC24,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_6_1] = CPU_ID_TPC_QMAN_ARC24,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_6_2] = CPU_ID_TPC_QMAN_ARC24,
+ [GAUDI2_QUEUE_ID_DCORE0_TPC_6_3] = CPU_ID_TPC_QMAN_ARC24,
+ [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0] = CPU_ID_EDMA_QMAN_ARC2,
+ [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1] = CPU_ID_EDMA_QMAN_ARC2,
+ [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2] = CPU_ID_EDMA_QMAN_ARC2,
+ [GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3] = CPU_ID_EDMA_QMAN_ARC2,
+ [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0] = CPU_ID_EDMA_QMAN_ARC3,
+ [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1] = CPU_ID_EDMA_QMAN_ARC3,
+ [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2] = CPU_ID_EDMA_QMAN_ARC3,
+ [GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3] = CPU_ID_EDMA_QMAN_ARC3,
+ [GAUDI2_QUEUE_ID_DCORE1_MME_0_0] = CPU_ID_SCHED_ARC4,
+ [GAUDI2_QUEUE_ID_DCORE1_MME_0_1] = CPU_ID_SCHED_ARC4,
+ [GAUDI2_QUEUE_ID_DCORE1_MME_0_2] = CPU_ID_SCHED_ARC4,
+ [GAUDI2_QUEUE_ID_DCORE1_MME_0_3] = CPU_ID_SCHED_ARC4,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_0_0] = CPU_ID_TPC_QMAN_ARC6,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_0_1] = CPU_ID_TPC_QMAN_ARC6,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_0_2] = CPU_ID_TPC_QMAN_ARC6,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_0_3] = CPU_ID_TPC_QMAN_ARC6,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_1_0] = CPU_ID_TPC_QMAN_ARC7,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_1_1] = CPU_ID_TPC_QMAN_ARC7,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_1_2] = CPU_ID_TPC_QMAN_ARC7,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_1_3] = CPU_ID_TPC_QMAN_ARC7,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_2_0] = CPU_ID_TPC_QMAN_ARC8,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_2_1] = CPU_ID_TPC_QMAN_ARC8,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_2_2] = CPU_ID_TPC_QMAN_ARC8,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_2_3] = CPU_ID_TPC_QMAN_ARC8,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_3_0] = CPU_ID_TPC_QMAN_ARC9,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_3_1] = CPU_ID_TPC_QMAN_ARC9,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_3_2] = CPU_ID_TPC_QMAN_ARC9,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_3_3] = CPU_ID_TPC_QMAN_ARC9,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_4_0] = CPU_ID_TPC_QMAN_ARC10,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_4_1] = CPU_ID_TPC_QMAN_ARC10,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_4_2] = CPU_ID_TPC_QMAN_ARC10,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_4_3] = CPU_ID_TPC_QMAN_ARC10,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_5_0] = CPU_ID_TPC_QMAN_ARC11,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_5_1] = CPU_ID_TPC_QMAN_ARC11,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_5_2] = CPU_ID_TPC_QMAN_ARC11,
+ [GAUDI2_QUEUE_ID_DCORE1_TPC_5_3] = CPU_ID_TPC_QMAN_ARC11,
+ [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0] = CPU_ID_EDMA_QMAN_ARC4,
+ [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1] = CPU_ID_EDMA_QMAN_ARC4,
+ [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2] = CPU_ID_EDMA_QMAN_ARC4,
+ [GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3] = CPU_ID_EDMA_QMAN_ARC4,
+ [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0] = CPU_ID_EDMA_QMAN_ARC5,
+ [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1] = CPU_ID_EDMA_QMAN_ARC5,
+ [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2] = CPU_ID_EDMA_QMAN_ARC5,
+ [GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3] = CPU_ID_EDMA_QMAN_ARC5,
+ [GAUDI2_QUEUE_ID_DCORE2_MME_0_0] = CPU_ID_MME_QMAN_ARC1,
+ [GAUDI2_QUEUE_ID_DCORE2_MME_0_1] = CPU_ID_MME_QMAN_ARC1,
+ [GAUDI2_QUEUE_ID_DCORE2_MME_0_2] = CPU_ID_MME_QMAN_ARC1,
+ [GAUDI2_QUEUE_ID_DCORE2_MME_0_3] = CPU_ID_MME_QMAN_ARC1,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_0_0] = CPU_ID_TPC_QMAN_ARC12,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_0_1] = CPU_ID_TPC_QMAN_ARC12,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_0_2] = CPU_ID_TPC_QMAN_ARC12,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_0_3] = CPU_ID_TPC_QMAN_ARC12,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_1_0] = CPU_ID_TPC_QMAN_ARC13,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_1_1] = CPU_ID_TPC_QMAN_ARC13,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_1_2] = CPU_ID_TPC_QMAN_ARC13,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_1_3] = CPU_ID_TPC_QMAN_ARC13,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_2_0] = CPU_ID_TPC_QMAN_ARC14,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_2_1] = CPU_ID_TPC_QMAN_ARC14,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_2_2] = CPU_ID_TPC_QMAN_ARC14,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_2_3] = CPU_ID_TPC_QMAN_ARC14,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_3_0] = CPU_ID_TPC_QMAN_ARC15,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_3_1] = CPU_ID_TPC_QMAN_ARC15,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_3_2] = CPU_ID_TPC_QMAN_ARC15,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_3_3] = CPU_ID_TPC_QMAN_ARC15,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_4_0] = CPU_ID_TPC_QMAN_ARC16,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_4_1] = CPU_ID_TPC_QMAN_ARC16,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_4_2] = CPU_ID_TPC_QMAN_ARC16,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_4_3] = CPU_ID_TPC_QMAN_ARC16,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_5_0] = CPU_ID_TPC_QMAN_ARC17,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_5_1] = CPU_ID_TPC_QMAN_ARC17,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_5_2] = CPU_ID_TPC_QMAN_ARC17,
+ [GAUDI2_QUEUE_ID_DCORE2_TPC_5_3] = CPU_ID_TPC_QMAN_ARC17,
+ [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0] = CPU_ID_EDMA_QMAN_ARC6,
+ [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1] = CPU_ID_EDMA_QMAN_ARC6,
+ [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2] = CPU_ID_EDMA_QMAN_ARC6,
+ [GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3] = CPU_ID_EDMA_QMAN_ARC6,
+ [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0] = CPU_ID_EDMA_QMAN_ARC7,
+ [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1] = CPU_ID_EDMA_QMAN_ARC7,
+ [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2] = CPU_ID_EDMA_QMAN_ARC7,
+ [GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3] = CPU_ID_EDMA_QMAN_ARC7,
+ [GAUDI2_QUEUE_ID_DCORE3_MME_0_0] = CPU_ID_SCHED_ARC5,
+ [GAUDI2_QUEUE_ID_DCORE3_MME_0_1] = CPU_ID_SCHED_ARC5,
+ [GAUDI2_QUEUE_ID_DCORE3_MME_0_2] = CPU_ID_SCHED_ARC5,
+ [GAUDI2_QUEUE_ID_DCORE3_MME_0_3] = CPU_ID_SCHED_ARC5,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_0_0] = CPU_ID_TPC_QMAN_ARC18,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_0_1] = CPU_ID_TPC_QMAN_ARC18,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_0_2] = CPU_ID_TPC_QMAN_ARC18,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_0_3] = CPU_ID_TPC_QMAN_ARC18,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_1_0] = CPU_ID_TPC_QMAN_ARC19,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_1_1] = CPU_ID_TPC_QMAN_ARC19,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_1_2] = CPU_ID_TPC_QMAN_ARC19,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_1_3] = CPU_ID_TPC_QMAN_ARC19,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_2_0] = CPU_ID_TPC_QMAN_ARC20,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_2_1] = CPU_ID_TPC_QMAN_ARC20,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_2_2] = CPU_ID_TPC_QMAN_ARC20,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_2_3] = CPU_ID_TPC_QMAN_ARC20,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_3_0] = CPU_ID_TPC_QMAN_ARC21,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_3_1] = CPU_ID_TPC_QMAN_ARC21,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_3_2] = CPU_ID_TPC_QMAN_ARC21,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_3_3] = CPU_ID_TPC_QMAN_ARC21,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_4_0] = CPU_ID_TPC_QMAN_ARC22,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_4_1] = CPU_ID_TPC_QMAN_ARC22,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_4_2] = CPU_ID_TPC_QMAN_ARC22,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_4_3] = CPU_ID_TPC_QMAN_ARC22,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_5_0] = CPU_ID_TPC_QMAN_ARC23,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_5_1] = CPU_ID_TPC_QMAN_ARC23,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_5_2] = CPU_ID_TPC_QMAN_ARC23,
+ [GAUDI2_QUEUE_ID_DCORE3_TPC_5_3] = CPU_ID_TPC_QMAN_ARC23,
+ [GAUDI2_QUEUE_ID_NIC_0_0] = CPU_ID_NIC_QMAN_ARC0,
+ [GAUDI2_QUEUE_ID_NIC_0_1] = CPU_ID_NIC_QMAN_ARC0,
+ [GAUDI2_QUEUE_ID_NIC_0_2] = CPU_ID_NIC_QMAN_ARC0,
+ [GAUDI2_QUEUE_ID_NIC_0_3] = CPU_ID_NIC_QMAN_ARC0,
+ [GAUDI2_QUEUE_ID_NIC_1_0] = CPU_ID_NIC_QMAN_ARC1,
+ [GAUDI2_QUEUE_ID_NIC_1_1] = CPU_ID_NIC_QMAN_ARC1,
+ [GAUDI2_QUEUE_ID_NIC_1_2] = CPU_ID_NIC_QMAN_ARC1,
+ [GAUDI2_QUEUE_ID_NIC_1_3] = CPU_ID_NIC_QMAN_ARC1,
+ [GAUDI2_QUEUE_ID_NIC_2_0] = CPU_ID_NIC_QMAN_ARC2,
+ [GAUDI2_QUEUE_ID_NIC_2_1] = CPU_ID_NIC_QMAN_ARC2,
+ [GAUDI2_QUEUE_ID_NIC_2_2] = CPU_ID_NIC_QMAN_ARC2,
+ [GAUDI2_QUEUE_ID_NIC_2_3] = CPU_ID_NIC_QMAN_ARC2,
+ [GAUDI2_QUEUE_ID_NIC_3_0] = CPU_ID_NIC_QMAN_ARC3,
+ [GAUDI2_QUEUE_ID_NIC_3_1] = CPU_ID_NIC_QMAN_ARC3,
+ [GAUDI2_QUEUE_ID_NIC_3_2] = CPU_ID_NIC_QMAN_ARC3,
+ [GAUDI2_QUEUE_ID_NIC_3_3] = CPU_ID_NIC_QMAN_ARC3,
+ [GAUDI2_QUEUE_ID_NIC_4_0] = CPU_ID_NIC_QMAN_ARC4,
+ [GAUDI2_QUEUE_ID_NIC_4_1] = CPU_ID_NIC_QMAN_ARC4,
+ [GAUDI2_QUEUE_ID_NIC_4_2] = CPU_ID_NIC_QMAN_ARC4,
+ [GAUDI2_QUEUE_ID_NIC_4_3] = CPU_ID_NIC_QMAN_ARC4,
+ [GAUDI2_QUEUE_ID_NIC_5_0] = CPU_ID_NIC_QMAN_ARC5,
+ [GAUDI2_QUEUE_ID_NIC_5_1] = CPU_ID_NIC_QMAN_ARC5,
+ [GAUDI2_QUEUE_ID_NIC_5_2] = CPU_ID_NIC_QMAN_ARC5,
+ [GAUDI2_QUEUE_ID_NIC_5_3] = CPU_ID_NIC_QMAN_ARC5,
+ [GAUDI2_QUEUE_ID_NIC_6_0] = CPU_ID_NIC_QMAN_ARC6,
+ [GAUDI2_QUEUE_ID_NIC_6_1] = CPU_ID_NIC_QMAN_ARC6,
+ [GAUDI2_QUEUE_ID_NIC_6_2] = CPU_ID_NIC_QMAN_ARC6,
+ [GAUDI2_QUEUE_ID_NIC_6_3] = CPU_ID_NIC_QMAN_ARC6,
+ [GAUDI2_QUEUE_ID_NIC_7_0] = CPU_ID_NIC_QMAN_ARC7,
+ [GAUDI2_QUEUE_ID_NIC_7_1] = CPU_ID_NIC_QMAN_ARC7,
+ [GAUDI2_QUEUE_ID_NIC_7_2] = CPU_ID_NIC_QMAN_ARC7,
+ [GAUDI2_QUEUE_ID_NIC_7_3] = CPU_ID_NIC_QMAN_ARC7,
+ [GAUDI2_QUEUE_ID_NIC_8_0] = CPU_ID_NIC_QMAN_ARC8,
+ [GAUDI2_QUEUE_ID_NIC_8_1] = CPU_ID_NIC_QMAN_ARC8,
+ [GAUDI2_QUEUE_ID_NIC_8_2] = CPU_ID_NIC_QMAN_ARC8,
+ [GAUDI2_QUEUE_ID_NIC_8_3] = CPU_ID_NIC_QMAN_ARC8,
+ [GAUDI2_QUEUE_ID_NIC_9_0] = CPU_ID_NIC_QMAN_ARC9,
+ [GAUDI2_QUEUE_ID_NIC_9_1] = CPU_ID_NIC_QMAN_ARC9,
+ [GAUDI2_QUEUE_ID_NIC_9_2] = CPU_ID_NIC_QMAN_ARC9,
+ [GAUDI2_QUEUE_ID_NIC_9_3] = CPU_ID_NIC_QMAN_ARC9,
+ [GAUDI2_QUEUE_ID_NIC_10_0] = CPU_ID_NIC_QMAN_ARC10,
+ [GAUDI2_QUEUE_ID_NIC_10_1] = CPU_ID_NIC_QMAN_ARC10,
+ [GAUDI2_QUEUE_ID_NIC_10_2] = CPU_ID_NIC_QMAN_ARC10,
+ [GAUDI2_QUEUE_ID_NIC_10_3] = CPU_ID_NIC_QMAN_ARC10,
+ [GAUDI2_QUEUE_ID_NIC_11_0] = CPU_ID_NIC_QMAN_ARC11,
+ [GAUDI2_QUEUE_ID_NIC_11_1] = CPU_ID_NIC_QMAN_ARC11,
+ [GAUDI2_QUEUE_ID_NIC_11_2] = CPU_ID_NIC_QMAN_ARC11,
+ [GAUDI2_QUEUE_ID_NIC_11_3] = CPU_ID_NIC_QMAN_ARC11,
+ [GAUDI2_QUEUE_ID_NIC_12_0] = CPU_ID_NIC_QMAN_ARC12,
+ [GAUDI2_QUEUE_ID_NIC_12_1] = CPU_ID_NIC_QMAN_ARC12,
+ [GAUDI2_QUEUE_ID_NIC_12_2] = CPU_ID_NIC_QMAN_ARC12,
+ [GAUDI2_QUEUE_ID_NIC_12_3] = CPU_ID_NIC_QMAN_ARC12,
+ [GAUDI2_QUEUE_ID_NIC_13_0] = CPU_ID_NIC_QMAN_ARC13,
+ [GAUDI2_QUEUE_ID_NIC_13_1] = CPU_ID_NIC_QMAN_ARC13,
+ [GAUDI2_QUEUE_ID_NIC_13_2] = CPU_ID_NIC_QMAN_ARC13,
+ [GAUDI2_QUEUE_ID_NIC_13_3] = CPU_ID_NIC_QMAN_ARC13,
+ [GAUDI2_QUEUE_ID_NIC_14_0] = CPU_ID_NIC_QMAN_ARC14,
+ [GAUDI2_QUEUE_ID_NIC_14_1] = CPU_ID_NIC_QMAN_ARC14,
+ [GAUDI2_QUEUE_ID_NIC_14_2] = CPU_ID_NIC_QMAN_ARC14,
+ [GAUDI2_QUEUE_ID_NIC_14_3] = CPU_ID_NIC_QMAN_ARC14,
+ [GAUDI2_QUEUE_ID_NIC_15_0] = CPU_ID_NIC_QMAN_ARC15,
+ [GAUDI2_QUEUE_ID_NIC_15_1] = CPU_ID_NIC_QMAN_ARC15,
+ [GAUDI2_QUEUE_ID_NIC_15_2] = CPU_ID_NIC_QMAN_ARC15,
+ [GAUDI2_QUEUE_ID_NIC_15_3] = CPU_ID_NIC_QMAN_ARC15,
+ [GAUDI2_QUEUE_ID_NIC_16_0] = CPU_ID_NIC_QMAN_ARC16,
+ [GAUDI2_QUEUE_ID_NIC_16_1] = CPU_ID_NIC_QMAN_ARC16,
+ [GAUDI2_QUEUE_ID_NIC_16_2] = CPU_ID_NIC_QMAN_ARC16,
+ [GAUDI2_QUEUE_ID_NIC_16_3] = CPU_ID_NIC_QMAN_ARC16,
+ [GAUDI2_QUEUE_ID_NIC_17_0] = CPU_ID_NIC_QMAN_ARC17,
+ [GAUDI2_QUEUE_ID_NIC_17_1] = CPU_ID_NIC_QMAN_ARC17,
+ [GAUDI2_QUEUE_ID_NIC_17_2] = CPU_ID_NIC_QMAN_ARC17,
+ [GAUDI2_QUEUE_ID_NIC_17_3] = CPU_ID_NIC_QMAN_ARC17,
+ [GAUDI2_QUEUE_ID_NIC_18_0] = CPU_ID_NIC_QMAN_ARC18,
+ [GAUDI2_QUEUE_ID_NIC_18_1] = CPU_ID_NIC_QMAN_ARC18,
+ [GAUDI2_QUEUE_ID_NIC_18_2] = CPU_ID_NIC_QMAN_ARC18,
+ [GAUDI2_QUEUE_ID_NIC_18_3] = CPU_ID_NIC_QMAN_ARC18,
+ [GAUDI2_QUEUE_ID_NIC_19_0] = CPU_ID_NIC_QMAN_ARC19,
+ [GAUDI2_QUEUE_ID_NIC_19_1] = CPU_ID_NIC_QMAN_ARC19,
+ [GAUDI2_QUEUE_ID_NIC_19_2] = CPU_ID_NIC_QMAN_ARC19,
+ [GAUDI2_QUEUE_ID_NIC_19_3] = CPU_ID_NIC_QMAN_ARC19,
+ [GAUDI2_QUEUE_ID_NIC_20_0] = CPU_ID_NIC_QMAN_ARC20,
+ [GAUDI2_QUEUE_ID_NIC_20_1] = CPU_ID_NIC_QMAN_ARC20,
+ [GAUDI2_QUEUE_ID_NIC_20_2] = CPU_ID_NIC_QMAN_ARC20,
+ [GAUDI2_QUEUE_ID_NIC_20_3] = CPU_ID_NIC_QMAN_ARC20,
+ [GAUDI2_QUEUE_ID_NIC_21_0] = CPU_ID_NIC_QMAN_ARC21,
+ [GAUDI2_QUEUE_ID_NIC_21_1] = CPU_ID_NIC_QMAN_ARC21,
+ [GAUDI2_QUEUE_ID_NIC_21_2] = CPU_ID_NIC_QMAN_ARC21,
+ [GAUDI2_QUEUE_ID_NIC_21_3] = CPU_ID_NIC_QMAN_ARC21,
+ [GAUDI2_QUEUE_ID_NIC_22_0] = CPU_ID_NIC_QMAN_ARC22,
+ [GAUDI2_QUEUE_ID_NIC_22_1] = CPU_ID_NIC_QMAN_ARC22,
+ [GAUDI2_QUEUE_ID_NIC_22_2] = CPU_ID_NIC_QMAN_ARC22,
+ [GAUDI2_QUEUE_ID_NIC_22_3] = CPU_ID_NIC_QMAN_ARC22,
+ [GAUDI2_QUEUE_ID_NIC_23_0] = CPU_ID_NIC_QMAN_ARC23,
+ [GAUDI2_QUEUE_ID_NIC_23_1] = CPU_ID_NIC_QMAN_ARC23,
+ [GAUDI2_QUEUE_ID_NIC_23_2] = CPU_ID_NIC_QMAN_ARC23,
+ [GAUDI2_QUEUE_ID_NIC_23_3] = CPU_ID_NIC_QMAN_ARC23,
+ [GAUDI2_QUEUE_ID_ROT_0_0] = CPU_ID_ROT_QMAN_ARC0,
+ [GAUDI2_QUEUE_ID_ROT_0_1] = CPU_ID_ROT_QMAN_ARC0,
+ [GAUDI2_QUEUE_ID_ROT_0_2] = CPU_ID_ROT_QMAN_ARC0,
+ [GAUDI2_QUEUE_ID_ROT_0_3] = CPU_ID_ROT_QMAN_ARC0,
+ [GAUDI2_QUEUE_ID_ROT_1_0] = CPU_ID_ROT_QMAN_ARC1,
+ [GAUDI2_QUEUE_ID_ROT_1_1] = CPU_ID_ROT_QMAN_ARC1,
+ [GAUDI2_QUEUE_ID_ROT_1_2] = CPU_ID_ROT_QMAN_ARC1,
+ [GAUDI2_QUEUE_ID_ROT_1_3] = CPU_ID_ROT_QMAN_ARC1
+};
+
+const u32 gaudi2_dma_core_blocks_bases[DMA_CORE_ID_SIZE] = {
+ [DMA_CORE_ID_PDMA0] = mmPDMA0_CORE_BASE,
+ [DMA_CORE_ID_PDMA1] = mmPDMA1_CORE_BASE,
+ [DMA_CORE_ID_EDMA0] = mmDCORE0_EDMA0_CORE_BASE,
+ [DMA_CORE_ID_EDMA1] = mmDCORE0_EDMA1_CORE_BASE,
+ [DMA_CORE_ID_EDMA2] = mmDCORE1_EDMA0_CORE_BASE,
+ [DMA_CORE_ID_EDMA3] = mmDCORE1_EDMA1_CORE_BASE,
+ [DMA_CORE_ID_EDMA4] = mmDCORE2_EDMA0_CORE_BASE,
+ [DMA_CORE_ID_EDMA5] = mmDCORE2_EDMA1_CORE_BASE,
+ [DMA_CORE_ID_EDMA6] = mmDCORE3_EDMA0_CORE_BASE,
+ [DMA_CORE_ID_EDMA7] = mmDCORE3_EDMA1_CORE_BASE,
+ [DMA_CORE_ID_KDMA] = mmARC_FARM_KDMA_BASE
+};
+
+const u32 gaudi2_mme_acc_blocks_bases[MME_ID_SIZE] = {
+ [MME_ID_DCORE0] = mmDCORE0_MME_ACC_BASE,
+ [MME_ID_DCORE1] = mmDCORE1_MME_ACC_BASE,
+ [MME_ID_DCORE2] = mmDCORE2_MME_ACC_BASE,
+ [MME_ID_DCORE3] = mmDCORE3_MME_ACC_BASE
+};
+
+static const u32 gaudi2_tpc_cfg_blocks_bases[TPC_ID_SIZE] = {
+ [TPC_ID_DCORE0_TPC0] = mmDCORE0_TPC0_CFG_BASE,
+ [TPC_ID_DCORE0_TPC1] = mmDCORE0_TPC1_CFG_BASE,
+ [TPC_ID_DCORE0_TPC2] = mmDCORE0_TPC2_CFG_BASE,
+ [TPC_ID_DCORE0_TPC3] = mmDCORE0_TPC3_CFG_BASE,
+ [TPC_ID_DCORE0_TPC4] = mmDCORE0_TPC4_CFG_BASE,
+ [TPC_ID_DCORE0_TPC5] = mmDCORE0_TPC5_CFG_BASE,
+ [TPC_ID_DCORE1_TPC0] = mmDCORE1_TPC0_CFG_BASE,
+ [TPC_ID_DCORE1_TPC1] = mmDCORE1_TPC1_CFG_BASE,
+ [TPC_ID_DCORE1_TPC2] = mmDCORE1_TPC2_CFG_BASE,
+ [TPC_ID_DCORE1_TPC3] = mmDCORE1_TPC3_CFG_BASE,
+ [TPC_ID_DCORE1_TPC4] = mmDCORE1_TPC4_CFG_BASE,
+ [TPC_ID_DCORE1_TPC5] = mmDCORE1_TPC5_CFG_BASE,
+ [TPC_ID_DCORE2_TPC0] = mmDCORE2_TPC0_CFG_BASE,
+ [TPC_ID_DCORE2_TPC1] = mmDCORE2_TPC1_CFG_BASE,
+ [TPC_ID_DCORE2_TPC2] = mmDCORE2_TPC2_CFG_BASE,
+ [TPC_ID_DCORE2_TPC3] = mmDCORE2_TPC3_CFG_BASE,
+ [TPC_ID_DCORE2_TPC4] = mmDCORE2_TPC4_CFG_BASE,
+ [TPC_ID_DCORE2_TPC5] = mmDCORE2_TPC5_CFG_BASE,
+ [TPC_ID_DCORE3_TPC0] = mmDCORE3_TPC0_CFG_BASE,
+ [TPC_ID_DCORE3_TPC1] = mmDCORE3_TPC1_CFG_BASE,
+ [TPC_ID_DCORE3_TPC2] = mmDCORE3_TPC2_CFG_BASE,
+ [TPC_ID_DCORE3_TPC3] = mmDCORE3_TPC3_CFG_BASE,
+ [TPC_ID_DCORE3_TPC4] = mmDCORE3_TPC4_CFG_BASE,
+ [TPC_ID_DCORE3_TPC5] = mmDCORE3_TPC5_CFG_BASE,
+ [TPC_ID_DCORE0_TPC6] = mmDCORE0_TPC6_CFG_BASE,
+};
+
+const u32 gaudi2_rot_blocks_bases[ROTATOR_ID_SIZE] = {
+ [ROTATOR_ID_0] = mmROT0_BASE,
+ [ROTATOR_ID_1] = mmROT1_BASE
+};
+
+static const u32 gaudi2_tpc_id_to_queue_id[TPC_ID_SIZE] = {
+ [TPC_ID_DCORE0_TPC0] = GAUDI2_QUEUE_ID_DCORE0_TPC_0_0,
+ [TPC_ID_DCORE0_TPC1] = GAUDI2_QUEUE_ID_DCORE0_TPC_1_0,
+ [TPC_ID_DCORE0_TPC2] = GAUDI2_QUEUE_ID_DCORE0_TPC_2_0,
+ [TPC_ID_DCORE0_TPC3] = GAUDI2_QUEUE_ID_DCORE0_TPC_3_0,
+ [TPC_ID_DCORE0_TPC4] = GAUDI2_QUEUE_ID_DCORE0_TPC_4_0,
+ [TPC_ID_DCORE0_TPC5] = GAUDI2_QUEUE_ID_DCORE0_TPC_5_0,
+ [TPC_ID_DCORE1_TPC0] = GAUDI2_QUEUE_ID_DCORE1_TPC_0_0,
+ [TPC_ID_DCORE1_TPC1] = GAUDI2_QUEUE_ID_DCORE1_TPC_1_0,
+ [TPC_ID_DCORE1_TPC2] = GAUDI2_QUEUE_ID_DCORE1_TPC_2_0,
+ [TPC_ID_DCORE1_TPC3] = GAUDI2_QUEUE_ID_DCORE1_TPC_3_0,
+ [TPC_ID_DCORE1_TPC4] = GAUDI2_QUEUE_ID_DCORE1_TPC_4_0,
+ [TPC_ID_DCORE1_TPC5] = GAUDI2_QUEUE_ID_DCORE1_TPC_5_0,
+ [TPC_ID_DCORE2_TPC0] = GAUDI2_QUEUE_ID_DCORE2_TPC_0_0,
+ [TPC_ID_DCORE2_TPC1] = GAUDI2_QUEUE_ID_DCORE2_TPC_1_0,
+ [TPC_ID_DCORE2_TPC2] = GAUDI2_QUEUE_ID_DCORE2_TPC_2_0,
+ [TPC_ID_DCORE2_TPC3] = GAUDI2_QUEUE_ID_DCORE2_TPC_3_0,
+ [TPC_ID_DCORE2_TPC4] = GAUDI2_QUEUE_ID_DCORE2_TPC_4_0,
+ [TPC_ID_DCORE2_TPC5] = GAUDI2_QUEUE_ID_DCORE2_TPC_5_0,
+ [TPC_ID_DCORE3_TPC0] = GAUDI2_QUEUE_ID_DCORE3_TPC_0_0,
+ [TPC_ID_DCORE3_TPC1] = GAUDI2_QUEUE_ID_DCORE3_TPC_1_0,
+ [TPC_ID_DCORE3_TPC2] = GAUDI2_QUEUE_ID_DCORE3_TPC_2_0,
+ [TPC_ID_DCORE3_TPC3] = GAUDI2_QUEUE_ID_DCORE3_TPC_3_0,
+ [TPC_ID_DCORE3_TPC4] = GAUDI2_QUEUE_ID_DCORE3_TPC_4_0,
+ [TPC_ID_DCORE3_TPC5] = GAUDI2_QUEUE_ID_DCORE3_TPC_5_0,
+ [TPC_ID_DCORE0_TPC6] = GAUDI2_QUEUE_ID_DCORE0_TPC_6_0,
+};
+
+static const u32 gaudi2_rot_id_to_queue_id[ROTATOR_ID_SIZE] = {
+ [ROTATOR_ID_0] = GAUDI2_QUEUE_ID_ROT_0_0,
+ [ROTATOR_ID_1] = GAUDI2_QUEUE_ID_ROT_1_0,
+};
+
+const u32 edma_stream_base[NUM_OF_EDMA_PER_DCORE * NUM_OF_DCORES] = {
+ GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0,
+ GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0,
+ GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0,
+ GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0,
+ GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0,
+ GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0,
+ GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0,
+ GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0,
+};
+
+static const char gaudi2_vdec_irq_name[GAUDI2_VDEC_MSIX_ENTRIES][GAUDI2_MAX_STRING_LEN] = {
+ "gaudi2 vdec 0_0", "gaudi2 vdec 0_0 abnormal",
+ "gaudi2 vdec 0_1", "gaudi2 vdec 0_1 abnormal",
+ "gaudi2 vdec 1_0", "gaudi2 vdec 1_0 abnormal",
+ "gaudi2 vdec 1_1", "gaudi2 vdec 1_1 abnormal",
+ "gaudi2 vdec 2_0", "gaudi2 vdec 2_0 abnormal",
+ "gaudi2 vdec 2_1", "gaudi2 vdec 2_1 abnormal",
+ "gaudi2 vdec 3_0", "gaudi2 vdec 3_0 abnormal",
+ "gaudi2 vdec 3_1", "gaudi2 vdec 3_1 abnormal",
+ "gaudi2 vdec s_0", "gaudi2 vdec s_0 abnormal",
+ "gaudi2 vdec s_1", "gaudi2 vdec s_1 abnormal"
+};
+
+static const u32 rtr_coordinates_to_rtr_id[NUM_OF_RTR_PER_DCORE * NUM_OF_DCORES] = {
+ RTR_ID_X_Y(2, 4),
+ RTR_ID_X_Y(3, 4),
+ RTR_ID_X_Y(4, 4),
+ RTR_ID_X_Y(5, 4),
+ RTR_ID_X_Y(6, 4),
+ RTR_ID_X_Y(7, 4),
+ RTR_ID_X_Y(8, 4),
+ RTR_ID_X_Y(9, 4),
+ RTR_ID_X_Y(10, 4),
+ RTR_ID_X_Y(11, 4),
+ RTR_ID_X_Y(12, 4),
+ RTR_ID_X_Y(13, 4),
+ RTR_ID_X_Y(14, 4),
+ RTR_ID_X_Y(15, 4),
+ RTR_ID_X_Y(16, 4),
+ RTR_ID_X_Y(17, 4),
+ RTR_ID_X_Y(2, 11),
+ RTR_ID_X_Y(3, 11),
+ RTR_ID_X_Y(4, 11),
+ RTR_ID_X_Y(5, 11),
+ RTR_ID_X_Y(6, 11),
+ RTR_ID_X_Y(7, 11),
+ RTR_ID_X_Y(8, 11),
+ RTR_ID_X_Y(9, 11),
+ RTR_ID_X_Y(0, 0),/* 24 no id */
+ RTR_ID_X_Y(0, 0),/* 25 no id */
+ RTR_ID_X_Y(0, 0),/* 26 no id */
+ RTR_ID_X_Y(0, 0),/* 27 no id */
+ RTR_ID_X_Y(14, 11),
+ RTR_ID_X_Y(15, 11),
+ RTR_ID_X_Y(16, 11),
+ RTR_ID_X_Y(17, 11)
+};
+
+enum rtr_id {
+ DCORE0_RTR0,
+ DCORE0_RTR1,
+ DCORE0_RTR2,
+ DCORE0_RTR3,
+ DCORE0_RTR4,
+ DCORE0_RTR5,
+ DCORE0_RTR6,
+ DCORE0_RTR7,
+ DCORE1_RTR0,
+ DCORE1_RTR1,
+ DCORE1_RTR2,
+ DCORE1_RTR3,
+ DCORE1_RTR4,
+ DCORE1_RTR5,
+ DCORE1_RTR6,
+ DCORE1_RTR7,
+ DCORE2_RTR0,
+ DCORE2_RTR1,
+ DCORE2_RTR2,
+ DCORE2_RTR3,
+ DCORE2_RTR4,
+ DCORE2_RTR5,
+ DCORE2_RTR6,
+ DCORE2_RTR7,
+ DCORE3_RTR0,
+ DCORE3_RTR1,
+ DCORE3_RTR2,
+ DCORE3_RTR3,
+ DCORE3_RTR4,
+ DCORE3_RTR5,
+ DCORE3_RTR6,
+ DCORE3_RTR7,
+};
+
+static const u32 gaudi2_tpc_initiator_hbw_rtr_id[NUM_OF_TPC_PER_DCORE * NUM_OF_DCORES + 1] = {
+ DCORE0_RTR1, DCORE0_RTR1, DCORE0_RTR2, DCORE0_RTR2, DCORE0_RTR3, DCORE0_RTR3,
+ DCORE1_RTR6, DCORE1_RTR6, DCORE1_RTR5, DCORE1_RTR5, DCORE1_RTR4, DCORE1_RTR4,
+ DCORE2_RTR3, DCORE2_RTR3, DCORE2_RTR2, DCORE2_RTR2, DCORE2_RTR1, DCORE2_RTR1,
+ DCORE3_RTR4, DCORE3_RTR4, DCORE3_RTR5, DCORE3_RTR5, DCORE3_RTR6, DCORE3_RTR6,
+ DCORE0_RTR0
+};
+
+static const u32 gaudi2_tpc_initiator_lbw_rtr_id[NUM_OF_TPC_PER_DCORE * NUM_OF_DCORES + 1] = {
+ DCORE0_RTR1, DCORE0_RTR1, DCORE0_RTR1, DCORE0_RTR1, DCORE0_RTR2, DCORE0_RTR2,
+ DCORE1_RTR7, DCORE1_RTR7, DCORE1_RTR6, DCORE1_RTR6, DCORE1_RTR5, DCORE1_RTR5,
+ DCORE2_RTR2, DCORE2_RTR2, DCORE2_RTR1, DCORE2_RTR1, DCORE2_RTR0, DCORE2_RTR0,
+ DCORE3_RTR5, DCORE3_RTR5, DCORE3_RTR6, DCORE3_RTR6, DCORE3_RTR7, DCORE3_RTR7,
+ DCORE0_RTR0
+};
+
+static const u32 gaudi2_dec_initiator_hbw_rtr_id[NUMBER_OF_DEC] = {
+ DCORE0_RTR0, DCORE0_RTR0, DCORE1_RTR7, DCORE1_RTR7, DCORE2_RTR0, DCORE2_RTR0,
+ DCORE3_RTR7, DCORE3_RTR7, DCORE0_RTR0, DCORE0_RTR0
+};
+
+static const u32 gaudi2_dec_initiator_lbw_rtr_id[NUMBER_OF_DEC] = {
+ DCORE0_RTR1, DCORE0_RTR1, DCORE1_RTR6, DCORE1_RTR6, DCORE2_RTR1, DCORE2_RTR1,
+ DCORE3_RTR6, DCORE3_RTR6, DCORE0_RTR0, DCORE0_RTR0
+};
+
+static const u32 gaudi2_nic_initiator_hbw_rtr_id[NIC_NUMBER_OF_MACROS] = {
+ DCORE1_RTR7, DCORE1_RTR7, DCORE1_RTR7, DCORE1_RTR7, DCORE1_RTR7, DCORE2_RTR0,
+ DCORE2_RTR0, DCORE2_RTR0, DCORE2_RTR0, DCORE3_RTR7, DCORE3_RTR7, DCORE3_RTR7
+};
+
+static const u32 gaudi2_nic_initiator_lbw_rtr_id[NIC_NUMBER_OF_MACROS] = {
+ DCORE1_RTR7, DCORE1_RTR7, DCORE1_RTR7, DCORE1_RTR7, DCORE1_RTR7, DCORE2_RTR0,
+ DCORE2_RTR0, DCORE2_RTR0, DCORE2_RTR0, DCORE3_RTR7, DCORE3_RTR7, DCORE3_RTR7
+};
+
+static const u32 gaudi2_edma_initiator_hbw_sft[NUM_OF_EDMA_PER_DCORE * NUM_OF_DCORES] = {
+ mmSFT0_HBW_RTR_IF1_MSTR_IF_RR_SHRD_HBW_BASE,
+ mmSFT0_HBW_RTR_IF0_MSTR_IF_RR_SHRD_HBW_BASE,
+ mmSFT1_HBW_RTR_IF1_MSTR_IF_RR_SHRD_HBW_BASE,
+ mmSFT1_HBW_RTR_IF0_MSTR_IF_RR_SHRD_HBW_BASE,
+ mmSFT2_HBW_RTR_IF0_MSTR_IF_RR_SHRD_HBW_BASE,
+ mmSFT2_HBW_RTR_IF1_MSTR_IF_RR_SHRD_HBW_BASE,
+ mmSFT3_HBW_RTR_IF0_MSTR_IF_RR_SHRD_HBW_BASE,
+ mmSFT3_HBW_RTR_IF1_MSTR_IF_RR_SHRD_HBW_BASE
+};
+
+static const u32 gaudi2_pdma_initiator_hbw_rtr_id[NUM_OF_PDMA] = {
+ DCORE0_RTR0, DCORE0_RTR0
+};
+
+static const u32 gaudi2_pdma_initiator_lbw_rtr_id[NUM_OF_PDMA] = {
+ DCORE0_RTR2, DCORE0_RTR2
+};
+
+static const u32 gaudi2_rot_initiator_hbw_rtr_id[NUM_OF_ROT] = {
+ DCORE2_RTR0, DCORE3_RTR7
+};
+
+static const u32 gaudi2_rot_initiator_lbw_rtr_id[NUM_OF_ROT] = {
+ DCORE2_RTR2, DCORE3_RTR5
+};
+
+struct mme_initiators_rtr_id {
+ u32 wap0;
+ u32 wap1;
+ u32 write;
+ u32 read;
+ u32 sbte0;
+ u32 sbte1;
+ u32 sbte2;
+ u32 sbte3;
+ u32 sbte4;
+};
+
+enum mme_initiators {
+ MME_WAP0 = 0,
+ MME_WAP1,
+ MME_WRITE,
+ MME_READ,
+ MME_SBTE0,
+ MME_SBTE1,
+ MME_SBTE2,
+ MME_SBTE3,
+ MME_SBTE4,
+ MME_INITIATORS_MAX
+};
+
+static const struct mme_initiators_rtr_id
+gaudi2_mme_initiator_rtr_id[NUM_OF_MME_PER_DCORE * NUM_OF_DCORES] = {
+ { .wap0 = 5, .wap1 = 7, .write = 6, .read = 7,
+ .sbte0 = 7, .sbte1 = 4, .sbte2 = 4, .sbte3 = 5, .sbte4 = 6},
+ { .wap0 = 10, .wap1 = 8, .write = 9, .read = 8,
+ .sbte0 = 11, .sbte1 = 11, .sbte2 = 10, .sbte3 = 9, .sbte4 = 8},
+ { .wap0 = 21, .wap1 = 23, .write = 22, .read = 23,
+ .sbte0 = 20, .sbte1 = 20, .sbte2 = 21, .sbte3 = 22, .sbte4 = 23},
+ { .wap0 = 30, .wap1 = 28, .write = 29, .read = 30,
+ .sbte0 = 31, .sbte1 = 31, .sbte2 = 30, .sbte3 = 29, .sbte4 = 28},
+};
+
+enum razwi_event_sources {
+ RAZWI_TPC,
+ RAZWI_MME,
+ RAZWI_EDMA,
+ RAZWI_PDMA,
+ RAZWI_NIC,
+ RAZWI_DEC,
+ RAZWI_ROT
+};
+
+struct hbm_mc_error_causes {
+ u32 mask;
+ char cause[50];
+};
+
+static struct hl_special_block_info gaudi2_special_blocks[] = GAUDI2_SPECIAL_BLOCKS;
+
+/* Special blocks iterator is currently used to configure security protection bits,
+ * and read global errors. Most HW blocks are addressable and those who aren't (N/A)-
+ * must be skipped. Following configurations are commonly used for both PB config
+ * and global error reading, since currently they both share the same settings.
+ * Once it changes, we must remember to use separate configurations for either one.
+ */
+static int gaudi2_iterator_skip_block_types[] = {
+ GAUDI2_BLOCK_TYPE_PLL,
+ GAUDI2_BLOCK_TYPE_EU_BIST,
+ GAUDI2_BLOCK_TYPE_HBM,
+ GAUDI2_BLOCK_TYPE_XFT
+};
+
+static struct range gaudi2_iterator_skip_block_ranges[] = {
+ /* Skip all PSOC blocks except for PSOC_GLOBAL_CONF */
+ {mmPSOC_I2C_M0_BASE, mmPSOC_EFUSE_BASE},
+ {mmPSOC_BTL_BASE, mmPSOC_MSTR_IF_RR_SHRD_HBW_BASE},
+ /* Skip all CPU blocks except for CPU_IF */
+ {mmCPU_CA53_CFG_BASE, mmCPU_CA53_CFG_BASE},
+ {mmCPU_TIMESTAMP_BASE, mmCPU_MSTR_IF_RR_SHRD_HBW_BASE}
+};
+
+static struct hbm_mc_error_causes hbm_mc_spi[GAUDI2_NUM_OF_HBM_MC_SPI_CAUSE] = {
+ {HBM_MC_SPI_TEMP_PIN_CHG_MASK, "temperature pins changed"},
+ {HBM_MC_SPI_THR_ENG_MASK, "temperature-based throttling engaged"},
+ {HBM_MC_SPI_THR_DIS_ENG_MASK, "temperature-based throttling disengaged"},
+ {HBM_MC_SPI_IEEE1500_COMP_MASK, "IEEE1500 op comp"},
+ {HBM_MC_SPI_IEEE1500_PAUSED_MASK, "IEEE1500 op paused"},
+};
+
+static const char * const hbm_mc_sei_cause[GAUDI2_NUM_OF_HBM_SEI_CAUSE] = {
+ [HBM_SEI_CMD_PARITY_EVEN] = "SEI C/A parity even",
+ [HBM_SEI_CMD_PARITY_ODD] = "SEI C/A parity odd",
+ [HBM_SEI_READ_ERR] = "SEI read data error",
+ [HBM_SEI_WRITE_DATA_PARITY_ERR] = "SEI write data parity error",
+ [HBM_SEI_CATTRIP] = "SEI CATTRIP asserted",
+ [HBM_SEI_MEM_BIST_FAIL] = "SEI memory BIST fail",
+ [HBM_SEI_DFI] = "SEI DFI error",
+ [HBM_SEI_INV_TEMP_READ_OUT] = "SEI invalid temp read",
+ [HBM_SEI_BIST_FAIL] = "SEI BIST fail"
+};
+
+struct mmu_spi_sei_cause {
+ char cause[50];
+ int clear_bit;
+};
+
+static const struct mmu_spi_sei_cause gaudi2_mmu_spi_sei[GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE] = {
+ {"page fault", 1}, /* INTERRUPT_CLR[1] */
+ {"page access", 1}, /* INTERRUPT_CLR[1] */
+ {"bypass ddr", 2}, /* INTERRUPT_CLR[2] */
+ {"multi hit", 2}, /* INTERRUPT_CLR[2] */
+ {"mmu rei0", -1}, /* no clear register bit */
+ {"mmu rei1", -1}, /* no clear register bit */
+ {"stlb rei0", -1}, /* no clear register bit */
+ {"stlb rei1", -1}, /* no clear register bit */
+ {"rr privileged write hit", 2}, /* INTERRUPT_CLR[2] */
+ {"rr privileged read hit", 2}, /* INTERRUPT_CLR[2] */
+ {"rr secure write hit", 2}, /* INTERRUPT_CLR[2] */
+ {"rr secure read hit", 2}, /* INTERRUPT_CLR[2] */
+ {"bist_fail no use", 2}, /* INTERRUPT_CLR[2] */
+ {"bist_fail no use", 2}, /* INTERRUPT_CLR[2] */
+ {"bist_fail no use", 2}, /* INTERRUPT_CLR[2] */
+ {"bist_fail no use", 2}, /* INTERRUPT_CLR[2] */
+ {"slave error", 16}, /* INTERRUPT_CLR[16] */
+ {"dec error", 17}, /* INTERRUPT_CLR[17] */
+ {"burst fifo full", 2} /* INTERRUPT_CLR[2] */
+};
+
+struct gaudi2_cache_invld_params {
+ u64 start_va;
+ u64 end_va;
+ u32 inv_start_val;
+ u32 flags;
+ bool range_invalidation;
+};
+
+struct gaudi2_tpc_idle_data {
+ struct engines_data *e;
+ unsigned long *mask;
+ bool *is_idle;
+ const char *tpc_fmt;
+};
+
+struct gaudi2_tpc_mmu_data {
+ u32 rw_asid;
+};
+
+static s64 gaudi2_state_dump_specs_props[SP_MAX] = {0};
+
+static int gaudi2_memset_device_memory(struct hl_device *hdev, u64 addr, u64 size, u64 val);
+static bool gaudi2_is_queue_enabled(struct hl_device *hdev, u32 hw_queue_id);
+static bool gaudi2_is_arc_enabled(struct hl_device *hdev, u64 arc_id);
+static void gaudi2_clr_arc_id_cap(struct hl_device *hdev, u64 arc_id);
+static void gaudi2_set_arc_id_cap(struct hl_device *hdev, u64 arc_id);
+static void gaudi2_memset_device_lbw(struct hl_device *hdev, u32 addr, u32 size, u32 val);
+static int gaudi2_send_job_to_kdma(struct hl_device *hdev, u64 src_addr, u64 dst_addr, u32 size,
+ bool is_memset);
+static u64 gaudi2_mmu_scramble_addr(struct hl_device *hdev, u64 raw_addr);
+
+static void gaudi2_init_scrambler_hbm(struct hl_device *hdev)
+{
+
+}
+
+static u32 gaudi2_get_signal_cb_size(struct hl_device *hdev)
+{
+ return sizeof(struct packet_msg_short);
+}
+
+static u32 gaudi2_get_wait_cb_size(struct hl_device *hdev)
+{
+ return sizeof(struct packet_msg_short) * 4 + sizeof(struct packet_fence);
+}
+
+void gaudi2_iterate_tpcs(struct hl_device *hdev, struct iterate_module_ctx *ctx)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ int dcore, inst, tpc_seq;
+ u32 offset;
+
+ /* init the return code */
+ ctx->rc = 0;
+
+ for (dcore = 0; dcore < NUM_OF_DCORES; dcore++) {
+ for (inst = 0; inst < NUM_OF_TPC_PER_DCORE; inst++) {
+ tpc_seq = dcore * NUM_OF_TPC_PER_DCORE + inst;
+
+ if (!(prop->tpc_enabled_mask & BIT(tpc_seq)))
+ continue;
+
+ offset = (DCORE_OFFSET * dcore) + (DCORE_TPC_OFFSET * inst);
+
+ ctx->fn(hdev, dcore, inst, offset, ctx);
+ if (ctx->rc) {
+ dev_err(hdev->dev, "TPC iterator failed for DCORE%d TPC%d\n",
+ dcore, inst);
+ return;
+ }
+ }
+ }
+
+ if (!(prop->tpc_enabled_mask & BIT(TPC_ID_DCORE0_TPC6)))
+ return;
+
+ /* special check for PCI TPC (DCORE0_TPC6) */
+ offset = DCORE_TPC_OFFSET * (NUM_DCORE0_TPC - 1);
+ ctx->fn(hdev, 0, NUM_DCORE0_TPC - 1, offset, ctx);
+ if (ctx->rc)
+ dev_err(hdev->dev, "TPC iterator failed for DCORE0 TPC6\n");
+}
+
+static bool gaudi2_host_phys_addr_valid(u64 addr)
+{
+ if ((addr < HOST_PHYS_BASE_0 + HOST_PHYS_SIZE_0) || (addr >= HOST_PHYS_BASE_1))
+ return true;
+
+ return false;
+}
+
+static int set_number_of_functional_hbms(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u8 faulty_hbms = hweight64(hdev->dram_binning);
+
+ /* check if all HBMs should be used */
+ if (!faulty_hbms) {
+ dev_dbg(hdev->dev, "All HBM are in use (no binning)\n");
+ prop->num_functional_hbms = GAUDI2_HBM_NUM;
+ return 0;
+ }
+
+ /*
+ * check for error condition in which number of binning
+ * candidates is higher than the maximum supported by the
+ * driver (in which case binning mask shall be ignored and driver will
+ * set the default)
+ */
+ if (faulty_hbms > MAX_FAULTY_HBMS) {
+ dev_err(hdev->dev,
+ "HBM binning supports max of %d faulty HBMs, supplied mask 0x%llx.\n",
+ MAX_FAULTY_HBMS, hdev->dram_binning);
+ return -EINVAL;
+ }
+
+ /*
+ * by default, number of functional HBMs in Gaudi2 is always
+ * GAUDI2_HBM_NUM - 1.
+ */
+ prop->num_functional_hbms = GAUDI2_HBM_NUM - faulty_hbms;
+ return 0;
+}
+
+static int gaudi2_set_dram_properties(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u32 basic_hbm_page_size;
+ int rc;
+
+ rc = set_number_of_functional_hbms(hdev);
+ if (rc)
+ return -EINVAL;
+
+ /*
+ * Due to HW bug in which TLB size is x16 smaller than expected we use a workaround
+ * in which we are using x16 bigger page size to be able to populate the entire
+ * HBM mappings in the TLB
+ */
+ basic_hbm_page_size = prop->num_functional_hbms * SZ_8M;
+ prop->dram_page_size = GAUDI2_COMPENSATE_TLB_PAGE_SIZE_FACTOR * basic_hbm_page_size;
+ prop->device_mem_alloc_default_page_size = prop->dram_page_size;
+ prop->dram_size = prop->num_functional_hbms * SZ_16G;
+ prop->dram_base_address = DRAM_PHYS_BASE;
+ prop->dram_end_address = prop->dram_base_address + prop->dram_size;
+ prop->dram_supports_virtual_memory = true;
+
+ prop->dram_user_base_address = DRAM_PHYS_BASE + prop->dram_page_size;
+ prop->dram_hints_align_mask = ~GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK;
+ prop->hints_dram_reserved_va_range.start_addr = RESERVED_VA_RANGE_FOR_ARC_ON_HBM_START;
+ prop->hints_dram_reserved_va_range.end_addr = RESERVED_VA_RANGE_FOR_ARC_ON_HBM_END;
+
+ /* since DRAM page size differs from DMMU page size we need to allocate
+ * DRAM memory in units of dram_page size and mapping this memory in
+ * units of DMMU page size. we overcome this size mismatch using a
+ * scrambling routine which takes a DRAM page and converts it to a DMMU
+ * page.
+ * We therefore:
+ * 1. partition the virtual address space to DRAM-page (whole) pages.
+ * (suppose we get n such pages)
+ * 2. limit the amount of virtual address space we got from 1 above to
+ * a multiple of 64M as we don't want the scrambled address to cross
+ * the DRAM virtual address space.
+ * ( m = (n * DRAM_page_size) / DMMU_page_size).
+ * 3. determine the and address accordingly
+ * end_addr = start_addr + m * 48M
+ *
+ * the DRAM address MSBs (63:48) are not part of the roundup calculation
+ */
+ prop->dmmu.start_addr = prop->dram_base_address +
+ (prop->dram_page_size *
+ DIV_ROUND_UP_SECTOR_T(prop->dram_size, prop->dram_page_size));
+
+ prop->dmmu.end_addr = prop->dmmu.start_addr + prop->dram_page_size *
+ div_u64((VA_HBM_SPACE_END - prop->dmmu.start_addr), prop->dmmu.page_size);
+
+ return 0;
+}
+
+static int gaudi2_set_fixed_properties(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct hw_queue_properties *q_props;
+ u32 num_sync_stream_queues = 0;
+ int i;
+
+ prop->max_queues = GAUDI2_QUEUE_ID_SIZE;
+ prop->hw_queues_props = kcalloc(prop->max_queues, sizeof(struct hw_queue_properties),
+ GFP_KERNEL);
+
+ if (!prop->hw_queues_props)
+ return -ENOMEM;
+
+ q_props = prop->hw_queues_props;
+
+ for (i = 0 ; i < GAUDI2_QUEUE_ID_CPU_PQ ; i++) {
+ q_props[i].type = QUEUE_TYPE_HW;
+ q_props[i].driver_only = 0;
+
+ if (i >= GAUDI2_QUEUE_ID_NIC_0_0 && i <= GAUDI2_QUEUE_ID_NIC_23_3) {
+ q_props[i].supports_sync_stream = 0;
+ } else {
+ q_props[i].supports_sync_stream = 1;
+ num_sync_stream_queues++;
+ }
+
+ q_props[i].cb_alloc_flags = CB_ALLOC_USER;
+ }
+
+ q_props[GAUDI2_QUEUE_ID_CPU_PQ].type = QUEUE_TYPE_CPU;
+ q_props[GAUDI2_QUEUE_ID_CPU_PQ].driver_only = 1;
+ q_props[GAUDI2_QUEUE_ID_CPU_PQ].cb_alloc_flags = CB_ALLOC_KERNEL;
+
+ prop->cache_line_size = DEVICE_CACHE_LINE_SIZE;
+ prop->cfg_base_address = CFG_BASE;
+ prop->device_dma_offset_for_host_access = HOST_PHYS_BASE_0;
+ prop->host_base_address = HOST_PHYS_BASE_0;
+ prop->host_end_address = prop->host_base_address + HOST_PHYS_SIZE_0;
+ prop->max_pending_cs = GAUDI2_MAX_PENDING_CS;
+ prop->completion_queues_count = GAUDI2_RESERVED_CQ_NUMBER;
+ prop->user_dec_intr_count = NUMBER_OF_DEC;
+ prop->user_interrupt_count = GAUDI2_IRQ_NUM_USER_LAST - GAUDI2_IRQ_NUM_USER_FIRST + 1;
+ prop->completion_mode = HL_COMPLETION_MODE_CS;
+ prop->sync_stream_first_sob = GAUDI2_RESERVED_SOB_NUMBER;
+ prop->sync_stream_first_mon = GAUDI2_RESERVED_MON_NUMBER;
+
+ prop->sram_base_address = SRAM_BASE_ADDR;
+ prop->sram_size = SRAM_SIZE;
+ prop->sram_end_address = prop->sram_base_address + prop->sram_size;
+ prop->sram_user_base_address = prop->sram_base_address + SRAM_USER_BASE_OFFSET;
+
+ prop->hints_range_reservation = true;
+
+ if (hdev->pldm)
+ prop->mmu_pgt_size = 0x800000; /* 8MB */
+ else
+ prop->mmu_pgt_size = MMU_PAGE_TABLES_INITIAL_SIZE;
+
+ prop->mmu_pte_size = HL_PTE_SIZE;
+ prop->mmu_hop_table_size = HOP_TABLE_SIZE_512_PTE;
+ prop->mmu_hop0_tables_total_size = HOP0_512_PTE_TABLES_TOTAL_SIZE;
+
+ prop->dmmu.hop_shifts[MMU_HOP0] = DHOP0_SHIFT;
+ prop->dmmu.hop_shifts[MMU_HOP1] = DHOP1_SHIFT;
+ prop->dmmu.hop_shifts[MMU_HOP2] = DHOP2_SHIFT;
+ prop->dmmu.hop_shifts[MMU_HOP3] = DHOP3_SHIFT;
+ prop->dmmu.hop_shifts[MMU_HOP4] = DHOP4_SHIFT;
+ prop->dmmu.hop_masks[MMU_HOP0] = DHOP0_MASK;
+ prop->dmmu.hop_masks[MMU_HOP1] = DHOP1_MASK;
+ prop->dmmu.hop_masks[MMU_HOP2] = DHOP2_MASK;
+ prop->dmmu.hop_masks[MMU_HOP3] = DHOP3_MASK;
+ prop->dmmu.hop_masks[MMU_HOP4] = DHOP4_MASK;
+ prop->dmmu.page_size = PAGE_SIZE_1GB;
+ prop->dmmu.num_hops = MMU_ARCH_6_HOPS;
+ prop->dmmu.last_mask = LAST_MASK;
+ prop->dmmu.host_resident = 1;
+ /* TODO: will be duplicated until implementing per-MMU props */
+ prop->dmmu.hop_table_size = prop->mmu_hop_table_size;
+ prop->dmmu.hop0_tables_total_size = prop->mmu_hop0_tables_total_size;
+
+ /*
+ * this is done in order to be able to validate FW descriptor (i.e. validating that
+ * the addresses and allocated space for FW image does not cross memory bounds).
+ * for this reason we set the DRAM size to the minimum possible and later it will
+ * be modified according to what reported in the cpucp info packet
+ */
+ prop->dram_size = (GAUDI2_HBM_NUM - 1) * SZ_16G;
+
+ hdev->pmmu_huge_range = true;
+ prop->pmmu.host_resident = 1;
+ prop->pmmu.num_hops = MMU_ARCH_6_HOPS;
+ prop->pmmu.last_mask = LAST_MASK;
+ /* TODO: will be duplicated until implementing per-MMU props */
+ prop->pmmu.hop_table_size = prop->mmu_hop_table_size;
+ prop->pmmu.hop0_tables_total_size = prop->mmu_hop0_tables_total_size;
+
+ prop->hints_host_reserved_va_range.start_addr = RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START;
+ prop->hints_host_reserved_va_range.end_addr = RESERVED_VA_RANGE_FOR_ARC_ON_HOST_END;
+ prop->hints_host_hpage_reserved_va_range.start_addr =
+ RESERVED_VA_RANGE_FOR_ARC_ON_HOST_HPAGE_START;
+ prop->hints_host_hpage_reserved_va_range.end_addr =
+ RESERVED_VA_RANGE_FOR_ARC_ON_HOST_HPAGE_END;
+
+ if (PAGE_SIZE == SZ_64K) {
+ prop->pmmu.hop_shifts[MMU_HOP0] = HOP0_SHIFT_64K;
+ prop->pmmu.hop_shifts[MMU_HOP1] = HOP1_SHIFT_64K;
+ prop->pmmu.hop_shifts[MMU_HOP2] = HOP2_SHIFT_64K;
+ prop->pmmu.hop_shifts[MMU_HOP3] = HOP3_SHIFT_64K;
+ prop->pmmu.hop_shifts[MMU_HOP4] = HOP4_SHIFT_64K;
+ prop->pmmu.hop_shifts[MMU_HOP5] = HOP5_SHIFT_64K;
+ prop->pmmu.hop_masks[MMU_HOP0] = HOP0_MASK_64K;
+ prop->pmmu.hop_masks[MMU_HOP1] = HOP1_MASK_64K;
+ prop->pmmu.hop_masks[MMU_HOP2] = HOP2_MASK_64K;
+ prop->pmmu.hop_masks[MMU_HOP3] = HOP3_MASK_64K;
+ prop->pmmu.hop_masks[MMU_HOP4] = HOP4_MASK_64K;
+ prop->pmmu.hop_masks[MMU_HOP5] = HOP5_MASK_64K;
+ prop->pmmu.start_addr = VA_HOST_SPACE_PAGE_START;
+ prop->pmmu.end_addr = VA_HOST_SPACE_PAGE_END;
+ prop->pmmu.page_size = PAGE_SIZE_64KB;
+
+ /* shifts and masks are the same in PMMU and HPMMU */
+ memcpy(&prop->pmmu_huge, &prop->pmmu, sizeof(prop->pmmu));
+ prop->pmmu_huge.page_size = PAGE_SIZE_16MB;
+ prop->pmmu_huge.start_addr = VA_HOST_SPACE_HPAGE_START;
+ prop->pmmu_huge.end_addr = VA_HOST_SPACE_HPAGE_END;
+ } else {
+ prop->pmmu.hop_shifts[MMU_HOP0] = HOP0_SHIFT_4K;
+ prop->pmmu.hop_shifts[MMU_HOP1] = HOP1_SHIFT_4K;
+ prop->pmmu.hop_shifts[MMU_HOP2] = HOP2_SHIFT_4K;
+ prop->pmmu.hop_shifts[MMU_HOP3] = HOP3_SHIFT_4K;
+ prop->pmmu.hop_shifts[MMU_HOP4] = HOP4_SHIFT_4K;
+ prop->pmmu.hop_shifts[MMU_HOP5] = HOP5_SHIFT_4K;
+ prop->pmmu.hop_masks[MMU_HOP0] = HOP0_MASK_4K;
+ prop->pmmu.hop_masks[MMU_HOP1] = HOP1_MASK_4K;
+ prop->pmmu.hop_masks[MMU_HOP2] = HOP2_MASK_4K;
+ prop->pmmu.hop_masks[MMU_HOP3] = HOP3_MASK_4K;
+ prop->pmmu.hop_masks[MMU_HOP4] = HOP4_MASK_4K;
+ prop->pmmu.hop_masks[MMU_HOP5] = HOP5_MASK_4K;
+ prop->pmmu.start_addr = VA_HOST_SPACE_PAGE_START;
+ prop->pmmu.end_addr = VA_HOST_SPACE_PAGE_END;
+ prop->pmmu.page_size = PAGE_SIZE_4KB;
+
+ /* shifts and masks are the same in PMMU and HPMMU */
+ memcpy(&prop->pmmu_huge, &prop->pmmu, sizeof(prop->pmmu));
+ prop->pmmu_huge.page_size = PAGE_SIZE_2MB;
+ prop->pmmu_huge.start_addr = VA_HOST_SPACE_HPAGE_START;
+ prop->pmmu_huge.end_addr = VA_HOST_SPACE_HPAGE_END;
+ }
+
+ prop->num_engine_cores = CPU_ID_MAX;
+ prop->cfg_size = CFG_SIZE;
+ prop->max_asid = MAX_ASID;
+ prop->num_of_events = GAUDI2_EVENT_SIZE;
+
+ prop->dc_power_default = DC_POWER_DEFAULT;
+
+ prop->cb_pool_cb_cnt = GAUDI2_CB_POOL_CB_CNT;
+ prop->cb_pool_cb_size = GAUDI2_CB_POOL_CB_SIZE;
+ prop->pcie_dbi_base_address = CFG_BASE + mmPCIE_DBI_BASE;
+ prop->pcie_aux_dbi_reg_addr = CFG_BASE + mmPCIE_AUX_DBI;
+
+ strncpy(prop->cpucp_info.card_name, GAUDI2_DEFAULT_CARD_NAME, CARD_NAME_MAX_LEN);
+
+ prop->mme_master_slave_mode = 1;
+
+ prop->first_available_user_sob[0] = GAUDI2_RESERVED_SOB_NUMBER +
+ (num_sync_stream_queues * HL_RSVD_SOBS);
+
+ prop->first_available_user_mon[0] = GAUDI2_RESERVED_MON_NUMBER +
+ (num_sync_stream_queues * HL_RSVD_MONS);
+
+ prop->first_available_user_interrupt = GAUDI2_IRQ_NUM_USER_FIRST;
+
+ prop->first_available_cq[0] = GAUDI2_RESERVED_CQ_NUMBER;
+
+ prop->fw_cpu_boot_dev_sts0_valid = false;
+ prop->fw_cpu_boot_dev_sts1_valid = false;
+ prop->hard_reset_done_by_fw = false;
+ prop->gic_interrupts_enable = true;
+
+ prop->server_type = HL_SERVER_TYPE_UNKNOWN;
+
+ prop->max_dec = NUMBER_OF_DEC;
+
+ prop->clk_pll_index = HL_GAUDI2_MME_PLL;
+
+ prop->dma_mask = 64;
+
+ prop->hbw_flush_reg = mmPCIE_WRAP_SPECIAL_GLBL_SPARE_0;
+
+ return 0;
+}
+
+static int gaudi2_pci_bars_map(struct hl_device *hdev)
+{
+ static const char * const name[] = {"CFG_SRAM", "MSIX", "DRAM"};
+ bool is_wc[3] = {false, false, true};
+ int rc;
+
+ rc = hl_pci_bars_map(hdev, name, is_wc);
+ if (rc)
+ return rc;
+
+ hdev->rmmio = hdev->pcie_bar[SRAM_CFG_BAR_ID] + (CFG_BASE - STM_FLASH_BASE_ADDR);
+
+ return 0;
+}
+
+static u64 gaudi2_set_hbm_bar_base(struct hl_device *hdev, u64 addr)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ struct hl_inbound_pci_region pci_region;
+ u64 old_addr = addr;
+ int rc;
+
+ if ((gaudi2) && (gaudi2->dram_bar_cur_addr == addr))
+ return old_addr;
+
+ if (hdev->asic_prop.iatu_done_by_fw)
+ return U64_MAX;
+
+ /* Inbound Region 2 - Bar 4 - Point to DRAM */
+ pci_region.mode = PCI_BAR_MATCH_MODE;
+ pci_region.bar = DRAM_BAR_ID;
+ pci_region.addr = addr;
+ rc = hl_pci_set_inbound_region(hdev, 2, &pci_region);
+ if (rc)
+ return U64_MAX;
+
+ if (gaudi2) {
+ old_addr = gaudi2->dram_bar_cur_addr;
+ gaudi2->dram_bar_cur_addr = addr;
+ }
+
+ return old_addr;
+}
+
+static int gaudi2_init_iatu(struct hl_device *hdev)
+{
+ struct hl_inbound_pci_region inbound_region;
+ struct hl_outbound_pci_region outbound_region;
+ u32 bar_addr_low, bar_addr_high;
+ int rc;
+
+ if (hdev->asic_prop.iatu_done_by_fw)
+ return 0;
+
+ /* Temporary inbound Region 0 - Bar 0 - Point to CFG
+ * We must map this region in BAR match mode in order to
+ * fetch BAR physical base address
+ */
+ inbound_region.mode = PCI_BAR_MATCH_MODE;
+ inbound_region.bar = SRAM_CFG_BAR_ID;
+ /* Base address must be aligned to Bar size which is 256 MB */
+ inbound_region.addr = STM_FLASH_BASE_ADDR - STM_FLASH_ALIGNED_OFF;
+ rc = hl_pci_set_inbound_region(hdev, 0, &inbound_region);
+ if (rc)
+ return rc;
+
+ /* Fetch physical BAR address */
+ bar_addr_high = RREG32(mmPCIE_DBI_BAR1_REG + STM_FLASH_ALIGNED_OFF);
+ bar_addr_low = RREG32(mmPCIE_DBI_BAR0_REG + STM_FLASH_ALIGNED_OFF) & ~0xF;
+
+ hdev->pcie_bar_phys[SRAM_CFG_BAR_ID] = (u64)bar_addr_high << 32 | bar_addr_low;
+
+ /* Inbound Region 0 - Bar 0 - Point to CFG */
+ inbound_region.mode = PCI_ADDRESS_MATCH_MODE;
+ inbound_region.bar = SRAM_CFG_BAR_ID;
+ inbound_region.offset_in_bar = 0;
+ inbound_region.addr = STM_FLASH_BASE_ADDR;
+ inbound_region.size = CFG_REGION_SIZE;
+ rc = hl_pci_set_inbound_region(hdev, 0, &inbound_region);
+ if (rc)
+ return rc;
+
+ /* Inbound Region 1 - Bar 0 - Point to BAR0_RESERVED + SRAM */
+ inbound_region.mode = PCI_ADDRESS_MATCH_MODE;
+ inbound_region.bar = SRAM_CFG_BAR_ID;
+ inbound_region.offset_in_bar = CFG_REGION_SIZE;
+ inbound_region.addr = BAR0_RSRVD_BASE_ADDR;
+ inbound_region.size = BAR0_RSRVD_SIZE + SRAM_SIZE;
+ rc = hl_pci_set_inbound_region(hdev, 1, &inbound_region);
+ if (rc)
+ return rc;
+
+ /* Inbound Region 2 - Bar 4 - Point to DRAM */
+ inbound_region.mode = PCI_BAR_MATCH_MODE;
+ inbound_region.bar = DRAM_BAR_ID;
+ inbound_region.addr = DRAM_PHYS_BASE;
+ rc = hl_pci_set_inbound_region(hdev, 2, &inbound_region);
+ if (rc)
+ return rc;
+
+ /* Outbound Region 0 - Point to Host */
+ outbound_region.addr = HOST_PHYS_BASE_0;
+ outbound_region.size = HOST_PHYS_SIZE_0;
+ rc = hl_pci_set_outbound_region(hdev, &outbound_region);
+
+ return rc;
+}
+
+static enum hl_device_hw_state gaudi2_get_hw_state(struct hl_device *hdev)
+{
+ return RREG32(mmHW_STATE);
+}
+
+static int gaudi2_tpc_binning_init_prop(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+
+ /*
+ * check for error condition in which number of binning candidates
+ * is higher than the maximum supported by the driver
+ */
+ if (hweight64(hdev->tpc_binning) > MAX_CLUSTER_BINNING_FAULTY_TPCS) {
+ dev_err(hdev->dev, "TPC binning is supported for max of %d faulty TPCs, provided mask 0x%llx\n",
+ MAX_CLUSTER_BINNING_FAULTY_TPCS,
+ hdev->tpc_binning);
+ return -EINVAL;
+ }
+
+ prop->tpc_binning_mask = hdev->tpc_binning;
+ prop->tpc_enabled_mask = GAUDI2_TPC_FULL_MASK;
+
+ return 0;
+}
+
+static int gaudi2_set_tpc_binning_masks(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct hw_queue_properties *q_props = prop->hw_queues_props;
+ u64 tpc_binning_mask;
+ u8 subst_idx = 0;
+ int i, rc;
+
+ rc = gaudi2_tpc_binning_init_prop(hdev);
+ if (rc)
+ return rc;
+
+ tpc_binning_mask = prop->tpc_binning_mask;
+
+ for (i = 0 ; i < MAX_FAULTY_TPCS ; i++) {
+ u8 subst_seq, binned, qid_base;
+
+ if (tpc_binning_mask == 0)
+ break;
+
+ if (subst_idx == 0) {
+ subst_seq = TPC_ID_DCORE0_TPC6;
+ qid_base = GAUDI2_QUEUE_ID_DCORE0_TPC_6_0;
+ } else {
+ subst_seq = TPC_ID_DCORE3_TPC5;
+ qid_base = GAUDI2_QUEUE_ID_DCORE3_TPC_5_0;
+ }
+
+
+ /* clear bit from mask */
+ binned = __ffs(tpc_binning_mask);
+ /*
+ * Coverity complains about possible out-of-bound access in
+ * clear_bit
+ */
+ if (binned >= TPC_ID_SIZE) {
+ dev_err(hdev->dev,
+ "Invalid binned TPC (binning mask: %llx)\n",
+ tpc_binning_mask);
+ return -EINVAL;
+ }
+ clear_bit(binned, (unsigned long *)&tpc_binning_mask);
+
+ /* also clear replacing TPC bit from enabled mask */
+ clear_bit(subst_seq, (unsigned long *)&prop->tpc_enabled_mask);
+
+ /* bin substite TPC's Qs */
+ q_props[qid_base].binned = 1;
+ q_props[qid_base + 1].binned = 1;
+ q_props[qid_base + 2].binned = 1;
+ q_props[qid_base + 3].binned = 1;
+
+ subst_idx++;
+ }
+
+ return 0;
+}
+
+static int gaudi2_set_dec_binning_masks(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u8 num_faulty;
+
+ num_faulty = hweight32(hdev->decoder_binning);
+
+ /*
+ * check for error condition in which number of binning candidates
+ * is higher than the maximum supported by the driver
+ */
+ if (num_faulty > MAX_FAULTY_DECODERS) {
+ dev_err(hdev->dev, "decoder binning is supported for max of single faulty decoder, provided mask 0x%x\n",
+ hdev->decoder_binning);
+ return -EINVAL;
+ }
+
+ prop->decoder_binning_mask = (hdev->decoder_binning & GAUDI2_DECODER_FULL_MASK);
+
+ if (prop->decoder_binning_mask)
+ prop->decoder_enabled_mask = (GAUDI2_DECODER_FULL_MASK & ~BIT(DEC_ID_PCIE_VDEC1));
+ else
+ prop->decoder_enabled_mask = GAUDI2_DECODER_FULL_MASK;
+
+ return 0;
+}
+
+static void gaudi2_set_dram_binning_masks(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+
+ /* check if we should override default binning */
+ if (!hdev->dram_binning) {
+ prop->dram_binning_mask = 0;
+ prop->dram_enabled_mask = GAUDI2_DRAM_FULL_MASK;
+ return;
+ }
+
+ /* set DRAM binning constraints */
+ prop->faulty_dram_cluster_map |= hdev->dram_binning;
+ prop->dram_binning_mask = hdev->dram_binning;
+ prop->dram_enabled_mask = GAUDI2_DRAM_FULL_MASK & ~BIT(HBM_ID5);
+}
+
+static int gaudi2_set_edma_binning_masks(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct hw_queue_properties *q_props;
+ u8 seq, num_faulty;
+
+ num_faulty = hweight32(hdev->edma_binning);
+
+ /*
+ * check for error condition in which number of binning candidates
+ * is higher than the maximum supported by the driver
+ */
+ if (num_faulty > MAX_FAULTY_EDMAS) {
+ dev_err(hdev->dev,
+ "EDMA binning is supported for max of single faulty EDMA, provided mask 0x%x\n",
+ hdev->edma_binning);
+ return -EINVAL;
+ }
+
+ if (!hdev->edma_binning) {
+ prop->edma_binning_mask = 0;
+ prop->edma_enabled_mask = GAUDI2_EDMA_FULL_MASK;
+ return 0;
+ }
+
+ seq = __ffs((unsigned long)hdev->edma_binning);
+
+ /* set binning constraints */
+ prop->faulty_dram_cluster_map |= BIT(edma_to_hbm_cluster[seq]);
+ prop->edma_binning_mask = hdev->edma_binning;
+ prop->edma_enabled_mask = GAUDI2_EDMA_FULL_MASK & ~BIT(EDMA_ID_DCORE3_INSTANCE1);
+
+ /* bin substitute EDMA's queue */
+ q_props = prop->hw_queues_props;
+ q_props[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0].binned = 1;
+ q_props[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1].binned = 1;
+ q_props[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2].binned = 1;
+ q_props[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3].binned = 1;
+
+ return 0;
+}
+
+static int gaudi2_set_xbar_edge_enable_mask(struct hl_device *hdev, u32 xbar_edge_iso_mask)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u8 num_faulty, seq;
+
+ /* check if we should override default binning */
+ if (!xbar_edge_iso_mask) {
+ prop->xbar_edge_enabled_mask = GAUDI2_XBAR_EDGE_FULL_MASK;
+ return 0;
+ }
+
+ /*
+ * note that it can be set to value other than 0 only after cpucp packet (i.e.
+ * only the FW can set a redundancy value). for user it'll always be 0.
+ */
+ num_faulty = hweight32(xbar_edge_iso_mask);
+
+ /*
+ * check for error condition in which number of binning candidates
+ * is higher than the maximum supported by the driver
+ */
+ if (num_faulty > MAX_FAULTY_XBARS) {
+ dev_err(hdev->dev, "we cannot have more than %d faulty XBAR EDGE\n",
+ MAX_FAULTY_XBARS);
+ return -EINVAL;
+ }
+
+ seq = __ffs((unsigned long)xbar_edge_iso_mask);
+
+ /* set binning constraints */
+ prop->faulty_dram_cluster_map |= BIT(xbar_edge_to_hbm_cluster[seq]);
+ prop->xbar_edge_enabled_mask = (~xbar_edge_iso_mask) & GAUDI2_XBAR_EDGE_FULL_MASK;
+
+ return 0;
+}
+
+static int gaudi2_set_cluster_binning_masks_common(struct hl_device *hdev, u8 xbar_edge_iso_mask)
+{
+ int rc;
+
+ /*
+ * mark all clusters as good, each component will "fail" cluster
+ * based on eFuse/user values.
+ * If more than single cluster is faulty- the chip is unusable
+ */
+ hdev->asic_prop.faulty_dram_cluster_map = 0;
+
+ gaudi2_set_dram_binning_masks(hdev);
+
+ rc = gaudi2_set_edma_binning_masks(hdev);
+ if (rc)
+ return rc;
+
+ rc = gaudi2_set_xbar_edge_enable_mask(hdev, xbar_edge_iso_mask);
+ if (rc)
+ return rc;
+
+
+ /* always initially set to full mask */
+ hdev->asic_prop.hmmu_hif_enabled_mask = GAUDI2_HIF_HMMU_FULL_MASK;
+
+ return 0;
+}
+
+static int gaudi2_set_cluster_binning_masks(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ int rc;
+
+ rc = gaudi2_set_cluster_binning_masks_common(hdev, prop->cpucp_info.xbar_binning_mask);
+ if (rc)
+ return rc;
+
+ /* if we have DRAM binning reported by FW we should perform cluster config */
+ if (prop->faulty_dram_cluster_map) {
+ u8 cluster_seq = __ffs((unsigned long)prop->faulty_dram_cluster_map);
+
+ prop->hmmu_hif_enabled_mask = cluster_hmmu_hif_enabled_mask[cluster_seq];
+ }
+
+ return 0;
+}
+
+static int gaudi2_set_binning_masks(struct hl_device *hdev)
+{
+ int rc;
+
+ rc = gaudi2_set_cluster_binning_masks(hdev);
+ if (rc)
+ return rc;
+
+ rc = gaudi2_set_tpc_binning_masks(hdev);
+ if (rc)
+ return rc;
+
+ rc = gaudi2_set_dec_binning_masks(hdev);
+ if (rc)
+ return rc;
+
+ return 0;
+}
+
+static int gaudi2_cpucp_info_get(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ long max_power;
+ u64 dram_size;
+ int rc;
+
+ if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q))
+ return 0;
+
+ /* No point of asking this information again when not doing hard reset, as the device
+ * CPU hasn't been reset
+ */
+ if (hdev->reset_info.in_compute_reset)
+ return 0;
+
+ rc = hl_fw_cpucp_handshake(hdev, mmCPU_BOOT_DEV_STS0, mmCPU_BOOT_DEV_STS1, mmCPU_BOOT_ERR0,
+ mmCPU_BOOT_ERR1);
+ if (rc)
+ return rc;
+
+ dram_size = le64_to_cpu(prop->cpucp_info.dram_size);
+ if (dram_size) {
+ /* we can have wither 5 or 6 HBMs. other values are invalid */
+
+ if ((dram_size != ((GAUDI2_HBM_NUM - 1) * SZ_16G)) &&
+ (dram_size != (GAUDI2_HBM_NUM * SZ_16G))) {
+ dev_err(hdev->dev,
+ "F/W reported invalid DRAM size %llu. Trying to use default size %llu\n",
+ dram_size, prop->dram_size);
+ dram_size = prop->dram_size;
+ }
+
+ prop->dram_size = dram_size;
+ prop->dram_end_address = prop->dram_base_address + dram_size;
+ }
+
+ if (!strlen(prop->cpucp_info.card_name))
+ strncpy(prop->cpucp_info.card_name, GAUDI2_DEFAULT_CARD_NAME, CARD_NAME_MAX_LEN);
+
+ /* Overwrite binning masks with the actual binning values from F/W */
+ hdev->dram_binning = prop->cpucp_info.dram_binning_mask;
+ hdev->edma_binning = prop->cpucp_info.edma_binning_mask;
+ hdev->tpc_binning = le64_to_cpu(prop->cpucp_info.tpc_binning_mask);
+ hdev->decoder_binning = lower_32_bits(le64_to_cpu(prop->cpucp_info.decoder_binning_mask));
+
+ /*
+ * at this point the DRAM parameters need to be updated according to data obtained
+ * from the FW
+ */
+ rc = hdev->asic_funcs->set_dram_properties(hdev);
+ if (rc)
+ return rc;
+
+ rc = hdev->asic_funcs->set_binning_masks(hdev);
+ if (rc)
+ return rc;
+
+ max_power = hl_fw_get_max_power(hdev);
+ if (max_power < 0)
+ return max_power;
+
+ prop->max_power_default = (u64) max_power;
+
+ return 0;
+}
+
+static int gaudi2_fetch_psoc_frequency(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u16 pll_freq_arr[HL_PLL_NUM_OUTPUTS];
+ int rc;
+
+ if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q))
+ return 0;
+
+ rc = hl_fw_cpucp_pll_info_get(hdev, HL_GAUDI2_CPU_PLL, pll_freq_arr);
+ if (rc)
+ return rc;
+
+ hdev->asic_prop.psoc_timestamp_frequency = pll_freq_arr[3];
+
+ return 0;
+}
+
+static int gaudi2_early_init(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct pci_dev *pdev = hdev->pdev;
+ resource_size_t pci_bar_size;
+ int rc;
+
+ rc = gaudi2_set_fixed_properties(hdev);
+ if (rc)
+ return rc;
+
+ /* Check BAR sizes */
+ pci_bar_size = pci_resource_len(pdev, SRAM_CFG_BAR_ID);
+
+ if (pci_bar_size != CFG_BAR_SIZE) {
+ dev_err(hdev->dev, "Not " HL_NAME "? BAR %d size %pa, expecting %llu\n",
+ SRAM_CFG_BAR_ID, &pci_bar_size, CFG_BAR_SIZE);
+ rc = -ENODEV;
+ goto free_queue_props;
+ }
+
+ pci_bar_size = pci_resource_len(pdev, MSIX_BAR_ID);
+ if (pci_bar_size != MSIX_BAR_SIZE) {
+ dev_err(hdev->dev, "Not " HL_NAME "? BAR %d size %pa, expecting %llu\n",
+ MSIX_BAR_ID, &pci_bar_size, MSIX_BAR_SIZE);
+ rc = -ENODEV;
+ goto free_queue_props;
+ }
+
+ prop->dram_pci_bar_size = pci_resource_len(pdev, DRAM_BAR_ID);
+ hdev->dram_pci_bar_start = pci_resource_start(pdev, DRAM_BAR_ID);
+
+ /*
+ * Only in pldm driver config iATU
+ */
+ if (hdev->pldm)
+ hdev->asic_prop.iatu_done_by_fw = false;
+ else
+ hdev->asic_prop.iatu_done_by_fw = true;
+
+ rc = hl_pci_init(hdev);
+ if (rc)
+ goto free_queue_props;
+
+ /* Before continuing in the initialization, we need to read the preboot
+ * version to determine whether we run with a security-enabled firmware
+ */
+ rc = hl_fw_read_preboot_status(hdev);
+ if (rc) {
+ if (hdev->reset_on_preboot_fail)
+ hdev->asic_funcs->hw_fini(hdev, true, false);
+ goto pci_fini;
+ }
+
+ if (gaudi2_get_hw_state(hdev) == HL_DEVICE_HW_STATE_DIRTY) {
+ dev_dbg(hdev->dev, "H/W state is dirty, must reset before initializing\n");
+ hdev->asic_funcs->hw_fini(hdev, true, false);
+ }
+
+ return 0;
+
+pci_fini:
+ hl_pci_fini(hdev);
+free_queue_props:
+ kfree(hdev->asic_prop.hw_queues_props);
+ return rc;
+}
+
+static int gaudi2_early_fini(struct hl_device *hdev)
+{
+ kfree(hdev->asic_prop.hw_queues_props);
+ hl_pci_fini(hdev);
+
+ return 0;
+}
+
+static bool gaudi2_is_arc_nic_owned(u64 arc_id)
+{
+ switch (arc_id) {
+ case CPU_ID_NIC_QMAN_ARC0...CPU_ID_NIC_QMAN_ARC23:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static bool gaudi2_is_arc_tpc_owned(u64 arc_id)
+{
+ switch (arc_id) {
+ case CPU_ID_TPC_QMAN_ARC0...CPU_ID_TPC_QMAN_ARC24:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static void gaudi2_init_arcs(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u64 arc_id;
+ u32 i;
+
+ for (i = CPU_ID_SCHED_ARC0 ; i <= CPU_ID_SCHED_ARC3 ; i++) {
+ if (gaudi2_is_arc_enabled(hdev, i))
+ continue;
+
+ gaudi2_set_arc_id_cap(hdev, i);
+ }
+
+ for (i = GAUDI2_QUEUE_ID_PDMA_0_0 ; i < GAUDI2_QUEUE_ID_CPU_PQ ; i += 4) {
+ if (!gaudi2_is_queue_enabled(hdev, i))
+ continue;
+
+ arc_id = gaudi2_queue_id_to_arc_id[i];
+ if (gaudi2_is_arc_enabled(hdev, arc_id))
+ continue;
+
+ if (gaudi2_is_arc_nic_owned(arc_id) &&
+ !(hdev->nic_ports_mask & BIT_ULL(arc_id - CPU_ID_NIC_QMAN_ARC0)))
+ continue;
+
+ if (gaudi2_is_arc_tpc_owned(arc_id) && !(gaudi2->tpc_hw_cap_initialized &
+ BIT_ULL(arc_id - CPU_ID_TPC_QMAN_ARC0)))
+ continue;
+
+ gaudi2_set_arc_id_cap(hdev, arc_id);
+ }
+}
+
+static int gaudi2_scrub_arc_dccm(struct hl_device *hdev, u32 cpu_id)
+{
+ u32 reg_base, reg_val;
+ int rc;
+
+ switch (cpu_id) {
+ case CPU_ID_SCHED_ARC0 ... CPU_ID_SCHED_ARC3:
+ /* Each ARC scheduler has 2 consecutive DCCM blocks */
+ rc = gaudi2_send_job_to_kdma(hdev, 0, CFG_BASE + gaudi2_arc_dccm_bases[cpu_id],
+ ARC_DCCM_BLOCK_SIZE * 2, true);
+ if (rc)
+ return rc;
+ break;
+ case CPU_ID_SCHED_ARC4:
+ case CPU_ID_SCHED_ARC5:
+ case CPU_ID_MME_QMAN_ARC0:
+ case CPU_ID_MME_QMAN_ARC1:
+ reg_base = gaudi2_arc_blocks_bases[cpu_id];
+
+ /* Scrub lower DCCM block */
+ rc = gaudi2_send_job_to_kdma(hdev, 0, CFG_BASE + gaudi2_arc_dccm_bases[cpu_id],
+ ARC_DCCM_BLOCK_SIZE, true);
+ if (rc)
+ return rc;
+
+ /* Switch to upper DCCM block */
+ reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_MME_ARC_UPPER_DCCM_EN_VAL_MASK, 1);
+ WREG32(reg_base + ARC_DCCM_UPPER_EN_OFFSET, reg_val);
+
+ /* Scrub upper DCCM block */
+ rc = gaudi2_send_job_to_kdma(hdev, 0, CFG_BASE + gaudi2_arc_dccm_bases[cpu_id],
+ ARC_DCCM_BLOCK_SIZE, true);
+ if (rc)
+ return rc;
+
+ /* Switch to lower DCCM block */
+ reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_MME_ARC_UPPER_DCCM_EN_VAL_MASK, 0);
+ WREG32(reg_base + ARC_DCCM_UPPER_EN_OFFSET, reg_val);
+ break;
+ default:
+ rc = gaudi2_send_job_to_kdma(hdev, 0, CFG_BASE + gaudi2_arc_dccm_bases[cpu_id],
+ ARC_DCCM_BLOCK_SIZE, true);
+ if (rc)
+ return rc;
+ }
+
+ return 0;
+}
+
+static void gaudi2_scrub_arcs_dccm(struct hl_device *hdev)
+{
+ u16 arc_id;
+
+ for (arc_id = CPU_ID_SCHED_ARC0 ; arc_id < CPU_ID_MAX ; arc_id++) {
+ if (!gaudi2_is_arc_enabled(hdev, arc_id))
+ continue;
+
+ gaudi2_scrub_arc_dccm(hdev, arc_id);
+ }
+}
+
+static int gaudi2_late_init(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ int rc;
+
+ hdev->asic_prop.supports_advanced_cpucp_rc = true;
+
+ rc = hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_ENABLE_PCI_ACCESS,
+ gaudi2->virt_msix_db_dma_addr);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to enable PCI access from CPU\n");
+ return rc;
+ }
+
+ rc = gaudi2_fetch_psoc_frequency(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to fetch psoc frequency\n");
+ goto disable_pci_access;
+ }
+
+ gaudi2_init_arcs(hdev);
+ gaudi2_scrub_arcs_dccm(hdev);
+ gaudi2_init_security(hdev);
+
+ return 0;
+
+disable_pci_access:
+ hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0);
+
+ return rc;
+}
+
+static void gaudi2_late_fini(struct hl_device *hdev)
+{
+ hl_hwmon_release_resources(hdev);
+}
+
+static void gaudi2_user_mapped_dec_init(struct gaudi2_device *gaudi2, u32 start_idx)
+{
+ struct user_mapped_block *blocks = gaudi2->mapped_blocks;
+
+ HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE0_DEC0_CMD_BASE, HL_BLOCK_SIZE);
+ HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE0_DEC1_CMD_BASE, HL_BLOCK_SIZE);
+ HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE1_DEC0_CMD_BASE, HL_BLOCK_SIZE);
+ HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE1_DEC1_CMD_BASE, HL_BLOCK_SIZE);
+ HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE2_DEC0_CMD_BASE, HL_BLOCK_SIZE);
+ HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE2_DEC1_CMD_BASE, HL_BLOCK_SIZE);
+ HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE3_DEC0_CMD_BASE, HL_BLOCK_SIZE);
+ HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE3_DEC1_CMD_BASE, HL_BLOCK_SIZE);
+ HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmPCIE_DEC0_CMD_BASE, HL_BLOCK_SIZE);
+ HL_USR_MAPPED_BLK_INIT(&blocks[start_idx], mmPCIE_DEC1_CMD_BASE, HL_BLOCK_SIZE);
+}
+
+static void gaudi2_user_mapped_blocks_init(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ struct user_mapped_block *blocks = gaudi2->mapped_blocks;
+ u32 block_size, umr_start_idx, num_umr_blocks;
+ int i;
+
+ for (i = 0 ; i < NUM_ARC_CPUS ; i++) {
+ if (i >= CPU_ID_SCHED_ARC0 && i <= CPU_ID_SCHED_ARC3)
+ block_size = ARC_DCCM_BLOCK_SIZE * 2;
+ else
+ block_size = ARC_DCCM_BLOCK_SIZE;
+
+ blocks[i].address = gaudi2_arc_dccm_bases[i];
+ blocks[i].size = block_size;
+ }
+
+ blocks[NUM_ARC_CPUS].address = mmARC_FARM_ARC0_ACP_ENG_BASE;
+ blocks[NUM_ARC_CPUS].size = HL_BLOCK_SIZE;
+
+ blocks[NUM_ARC_CPUS + 1].address = mmARC_FARM_ARC1_ACP_ENG_BASE;
+ blocks[NUM_ARC_CPUS + 1].size = HL_BLOCK_SIZE;
+
+ blocks[NUM_ARC_CPUS + 2].address = mmARC_FARM_ARC2_ACP_ENG_BASE;
+ blocks[NUM_ARC_CPUS + 2].size = HL_BLOCK_SIZE;
+
+ blocks[NUM_ARC_CPUS + 3].address = mmARC_FARM_ARC3_ACP_ENG_BASE;
+ blocks[NUM_ARC_CPUS + 3].size = HL_BLOCK_SIZE;
+
+ blocks[NUM_ARC_CPUS + 4].address = mmDCORE0_MME_QM_ARC_ACP_ENG_BASE;
+ blocks[NUM_ARC_CPUS + 4].size = HL_BLOCK_SIZE;
+
+ blocks[NUM_ARC_CPUS + 5].address = mmDCORE1_MME_QM_ARC_ACP_ENG_BASE;
+ blocks[NUM_ARC_CPUS + 5].size = HL_BLOCK_SIZE;
+
+ blocks[NUM_ARC_CPUS + 6].address = mmDCORE2_MME_QM_ARC_ACP_ENG_BASE;
+ blocks[NUM_ARC_CPUS + 6].size = HL_BLOCK_SIZE;
+
+ blocks[NUM_ARC_CPUS + 7].address = mmDCORE3_MME_QM_ARC_ACP_ENG_BASE;
+ blocks[NUM_ARC_CPUS + 7].size = HL_BLOCK_SIZE;
+
+ umr_start_idx = NUM_ARC_CPUS + NUM_OF_USER_ACP_BLOCKS;
+ num_umr_blocks = NIC_NUMBER_OF_ENGINES * NUM_OF_USER_NIC_UMR_BLOCKS;
+ for (i = 0 ; i < num_umr_blocks ; i++) {
+ u8 nic_id, umr_block_id;
+
+ nic_id = i / NUM_OF_USER_NIC_UMR_BLOCKS;
+ umr_block_id = i % NUM_OF_USER_NIC_UMR_BLOCKS;
+
+ blocks[umr_start_idx + i].address =
+ mmNIC0_UMR0_0_UNSECURE_DOORBELL0_BASE +
+ (nic_id / NIC_NUMBER_OF_QM_PER_MACRO) * NIC_OFFSET +
+ (nic_id % NIC_NUMBER_OF_QM_PER_MACRO) * NIC_QM_OFFSET +
+ umr_block_id * NIC_UMR_OFFSET;
+ blocks[umr_start_idx + i].size = HL_BLOCK_SIZE;
+ }
+
+ /* Expose decoder HW configuration block to user */
+ gaudi2_user_mapped_dec_init(gaudi2, USR_MAPPED_BLK_DEC_START_IDX);
+
+ for (i = 1; i < NUM_OF_DCORES; ++i) {
+ blocks[USR_MAPPED_BLK_SM_START_IDX + 2 * (i - 1)].size = SM_OBJS_BLOCK_SIZE;
+ blocks[USR_MAPPED_BLK_SM_START_IDX + 2 * (i - 1) + 1].size = HL_BLOCK_SIZE;
+
+ blocks[USR_MAPPED_BLK_SM_START_IDX + 2 * (i - 1)].address =
+ mmDCORE0_SYNC_MNGR_OBJS_BASE + i * DCORE_OFFSET;
+
+ blocks[USR_MAPPED_BLK_SM_START_IDX + 2 * (i - 1) + 1].address =
+ mmDCORE0_SYNC_MNGR_GLBL_BASE + i * DCORE_OFFSET;
+ }
+}
+
+static int gaudi2_alloc_cpu_accessible_dma_mem(struct hl_device *hdev)
+{
+ dma_addr_t dma_addr_arr[GAUDI2_ALLOC_CPU_MEM_RETRY_CNT] = {}, end_addr;
+ void *virt_addr_arr[GAUDI2_ALLOC_CPU_MEM_RETRY_CNT] = {};
+ int i, j, rc = 0;
+
+ /* The device ARC works with 32-bits addresses, and because there is a single HW register
+ * that holds the extension bits (49..28), these bits must be identical in all the allocated
+ * range.
+ */
+
+ for (i = 0 ; i < GAUDI2_ALLOC_CPU_MEM_RETRY_CNT ; i++) {
+ virt_addr_arr[i] = hl_asic_dma_alloc_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE,
+ &dma_addr_arr[i], GFP_KERNEL | __GFP_ZERO);
+ if (!virt_addr_arr[i]) {
+ rc = -ENOMEM;
+ goto free_dma_mem_arr;
+ }
+
+ end_addr = dma_addr_arr[i] + HL_CPU_ACCESSIBLE_MEM_SIZE - 1;
+ if (GAUDI2_ARC_PCI_MSB_ADDR(dma_addr_arr[i]) == GAUDI2_ARC_PCI_MSB_ADDR(end_addr))
+ break;
+ }
+
+ if (i == GAUDI2_ALLOC_CPU_MEM_RETRY_CNT) {
+ dev_err(hdev->dev,
+ "MSB of ARC accessible DMA memory are not identical in all range\n");
+ rc = -EFAULT;
+ goto free_dma_mem_arr;
+ }
+
+ hdev->cpu_accessible_dma_mem = virt_addr_arr[i];
+ hdev->cpu_accessible_dma_address = dma_addr_arr[i];
+
+free_dma_mem_arr:
+ for (j = 0 ; j < i ; j++)
+ hl_asic_dma_free_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, virt_addr_arr[j],
+ dma_addr_arr[j]);
+
+ return rc;
+}
+
+static void gaudi2_set_pci_memory_regions(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct pci_mem_region *region;
+
+ /* CFG */
+ region = &hdev->pci_mem_region[PCI_REGION_CFG];
+ region->region_base = CFG_BASE;
+ region->region_size = CFG_SIZE;
+ region->offset_in_bar = CFG_BASE - STM_FLASH_BASE_ADDR;
+ region->bar_size = CFG_BAR_SIZE;
+ region->bar_id = SRAM_CFG_BAR_ID;
+ region->used = 1;
+
+ /* SRAM */
+ region = &hdev->pci_mem_region[PCI_REGION_SRAM];
+ region->region_base = SRAM_BASE_ADDR;
+ region->region_size = SRAM_SIZE;
+ region->offset_in_bar = CFG_REGION_SIZE + BAR0_RSRVD_SIZE;
+ region->bar_size = CFG_BAR_SIZE;
+ region->bar_id = SRAM_CFG_BAR_ID;
+ region->used = 1;
+
+ /* DRAM */
+ region = &hdev->pci_mem_region[PCI_REGION_DRAM];
+ region->region_base = DRAM_PHYS_BASE;
+ region->region_size = hdev->asic_prop.dram_size;
+ region->offset_in_bar = 0;
+ region->bar_size = prop->dram_pci_bar_size;
+ region->bar_id = DRAM_BAR_ID;
+ region->used = 1;
+}
+
+static void gaudi2_user_interrupt_setup(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ int i, j, k;
+
+ /* Initialize common user CQ interrupt */
+ HL_USR_INTR_STRUCT_INIT(hdev->common_user_cq_interrupt, hdev,
+ HL_COMMON_USER_CQ_INTERRUPT_ID, HL_USR_INTERRUPT_CQ);
+
+ /* Initialize common decoder interrupt */
+ HL_USR_INTR_STRUCT_INIT(hdev->common_decoder_interrupt, hdev,
+ HL_COMMON_DEC_INTERRUPT_ID, HL_USR_INTERRUPT_DECODER);
+
+ /* User interrupts structure holds both decoder and user interrupts from various engines.
+ * We first initialize the decoder interrupts and then we add the user interrupts.
+ * The only limitation is that the last decoder interrupt id must be smaller
+ * then GAUDI2_IRQ_NUM_USER_FIRST. This is checked at compilation time.
+ */
+
+ /* Initialize decoder interrupts, expose only normal interrupts,
+ * error interrupts to be handled by driver
+ */
+ for (i = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM, j = 0 ; i <= GAUDI2_IRQ_NUM_SHARED_DEC1_NRM;
+ i += 2, j++)
+ HL_USR_INTR_STRUCT_INIT(hdev->user_interrupt[j], hdev, i,
+ HL_USR_INTERRUPT_DECODER);
+
+ for (i = GAUDI2_IRQ_NUM_USER_FIRST, k = 0 ; k < prop->user_interrupt_count; i++, j++, k++)
+ HL_USR_INTR_STRUCT_INIT(hdev->user_interrupt[j], hdev, i, HL_USR_INTERRUPT_CQ);
+}
+
+static inline int gaudi2_get_non_zero_random_int(void)
+{
+ int rand = get_random_u32();
+
+ return rand ? rand : 1;
+}
+
+static void gaudi2_special_blocks_free(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct hl_skip_blocks_cfg *skip_special_blocks_cfg =
+ &prop->skip_special_blocks_cfg;
+
+ kfree(prop->special_blocks);
+ kfree(skip_special_blocks_cfg->block_types);
+ kfree(skip_special_blocks_cfg->block_ranges);
+}
+
+static void gaudi2_special_blocks_iterator_free(struct hl_device *hdev)
+{
+ gaudi2_special_blocks_free(hdev);
+}
+
+static bool gaudi2_special_block_skip(struct hl_device *hdev,
+ struct hl_special_blocks_cfg *special_blocks_cfg,
+ u32 blk_idx, u32 major, u32 minor, u32 sub_minor)
+{
+ return false;
+}
+
+static int gaudi2_special_blocks_config(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ int i, rc;
+
+ /* Configure Special blocks */
+ prop->glbl_err_cause_num = GAUDI2_NUM_OF_GLBL_ERR_CAUSE;
+ prop->num_of_special_blocks = ARRAY_SIZE(gaudi2_special_blocks);
+ prop->special_blocks = kmalloc_array(prop->num_of_special_blocks,
+ sizeof(*prop->special_blocks), GFP_KERNEL);
+ if (!prop->special_blocks)
+ return -ENOMEM;
+
+ for (i = 0 ; i < prop->num_of_special_blocks ; i++)
+ memcpy(&prop->special_blocks[i], &gaudi2_special_blocks[i],
+ sizeof(*prop->special_blocks));
+
+ /* Configure when to skip Special blocks */
+ memset(&prop->skip_special_blocks_cfg, 0, sizeof(prop->skip_special_blocks_cfg));
+ prop->skip_special_blocks_cfg.skip_block_hook = gaudi2_special_block_skip;
+
+ if (ARRAY_SIZE(gaudi2_iterator_skip_block_types)) {
+ prop->skip_special_blocks_cfg.block_types =
+ kmalloc_array(ARRAY_SIZE(gaudi2_iterator_skip_block_types),
+ sizeof(gaudi2_iterator_skip_block_types[0]), GFP_KERNEL);
+ if (!prop->skip_special_blocks_cfg.block_types) {
+ rc = -ENOMEM;
+ goto free_special_blocks;
+ }
+
+ memcpy(prop->skip_special_blocks_cfg.block_types, gaudi2_iterator_skip_block_types,
+ sizeof(gaudi2_iterator_skip_block_types));
+
+ prop->skip_special_blocks_cfg.block_types_len =
+ ARRAY_SIZE(gaudi2_iterator_skip_block_types);
+ }
+
+ if (ARRAY_SIZE(gaudi2_iterator_skip_block_ranges)) {
+ prop->skip_special_blocks_cfg.block_ranges =
+ kmalloc_array(ARRAY_SIZE(gaudi2_iterator_skip_block_ranges),
+ sizeof(gaudi2_iterator_skip_block_ranges[0]), GFP_KERNEL);
+ if (!prop->skip_special_blocks_cfg.block_ranges) {
+ rc = -ENOMEM;
+ goto free_skip_special_blocks_types;
+ }
+
+ for (i = 0 ; i < ARRAY_SIZE(gaudi2_iterator_skip_block_ranges) ; i++)
+ memcpy(&prop->skip_special_blocks_cfg.block_ranges[i],
+ &gaudi2_iterator_skip_block_ranges[i],
+ sizeof(struct range));
+
+ prop->skip_special_blocks_cfg.block_ranges_len =
+ ARRAY_SIZE(gaudi2_iterator_skip_block_ranges);
+ }
+
+ return 0;
+
+free_skip_special_blocks_types:
+ kfree(prop->skip_special_blocks_cfg.block_types);
+free_special_blocks:
+ kfree(prop->special_blocks);
+
+ return rc;
+}
+
+static int gaudi2_special_blocks_iterator_config(struct hl_device *hdev)
+{
+ return gaudi2_special_blocks_config(hdev);
+}
+
+static int gaudi2_sw_init(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct gaudi2_device *gaudi2;
+ int i, rc;
+
+ /* Allocate device structure */
+ gaudi2 = kzalloc(sizeof(*gaudi2), GFP_KERNEL);
+ if (!gaudi2)
+ return -ENOMEM;
+
+ for (i = 0 ; i < ARRAY_SIZE(gaudi2_irq_map_table) ; i++) {
+ if (gaudi2_irq_map_table[i].msg || !gaudi2_irq_map_table[i].valid)
+ continue;
+
+ if (gaudi2->num_of_valid_hw_events == GAUDI2_EVENT_SIZE) {
+ dev_err(hdev->dev, "H/W events array exceeds the limit of %u events\n",
+ GAUDI2_EVENT_SIZE);
+ rc = -EINVAL;
+ goto free_gaudi2_device;
+ }
+
+ gaudi2->hw_events[gaudi2->num_of_valid_hw_events++] = gaudi2_irq_map_table[i].fc_id;
+ }
+
+ for (i = 0 ; i < MME_NUM_OF_LFSR_SEEDS ; i++)
+ gaudi2->lfsr_rand_seeds[i] = gaudi2_get_non_zero_random_int();
+
+ gaudi2->cpucp_info_get = gaudi2_cpucp_info_get;
+
+ hdev->asic_specific = gaudi2;
+
+ /* Create DMA pool for small allocations.
+ * Use DEVICE_CACHE_LINE_SIZE for alignment since the NIC memory-mapped
+ * PI/CI registers allocated from this pool have this restriction
+ */
+ hdev->dma_pool = dma_pool_create(dev_name(hdev->dev), &hdev->pdev->dev,
+ GAUDI2_DMA_POOL_BLK_SIZE, DEVICE_CACHE_LINE_SIZE, 0);
+ if (!hdev->dma_pool) {
+ dev_err(hdev->dev, "failed to create DMA pool\n");
+ rc = -ENOMEM;
+ goto free_gaudi2_device;
+ }
+
+ rc = gaudi2_alloc_cpu_accessible_dma_mem(hdev);
+ if (rc)
+ goto free_dma_pool;
+
+ hdev->cpu_accessible_dma_pool = gen_pool_create(ilog2(32), -1);
+ if (!hdev->cpu_accessible_dma_pool) {
+ dev_err(hdev->dev, "Failed to create CPU accessible DMA pool\n");
+ rc = -ENOMEM;
+ goto free_cpu_dma_mem;
+ }
+
+ rc = gen_pool_add(hdev->cpu_accessible_dma_pool, (uintptr_t) hdev->cpu_accessible_dma_mem,
+ HL_CPU_ACCESSIBLE_MEM_SIZE, -1);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to add memory to CPU accessible DMA pool\n");
+ rc = -EFAULT;
+ goto free_cpu_accessible_dma_pool;
+ }
+
+ gaudi2->virt_msix_db_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, prop->pmmu.page_size,
+ &gaudi2->virt_msix_db_dma_addr);
+ if (!gaudi2->virt_msix_db_cpu_addr) {
+ dev_err(hdev->dev, "Failed to allocate DMA memory for virtual MSI-X doorbell\n");
+ rc = -ENOMEM;
+ goto free_cpu_accessible_dma_pool;
+ }
+
+ spin_lock_init(&gaudi2->hw_queues_lock);
+
+ gaudi2->scratchpad_kernel_address = hl_asic_dma_alloc_coherent(hdev, PAGE_SIZE,
+ &gaudi2->scratchpad_bus_address,
+ GFP_KERNEL | __GFP_ZERO);
+ if (!gaudi2->scratchpad_kernel_address) {
+ rc = -ENOMEM;
+ goto free_virt_msix_db_mem;
+ }
+
+ gaudi2_user_mapped_blocks_init(hdev);
+
+ /* Initialize user interrupts */
+ gaudi2_user_interrupt_setup(hdev);
+
+ hdev->supports_coresight = true;
+ hdev->supports_sync_stream = true;
+ hdev->supports_cb_mapping = true;
+ hdev->supports_wait_for_multi_cs = false;
+
+ prop->supports_compute_reset = true;
+
+ hdev->asic_funcs->set_pci_memory_regions(hdev);
+
+ rc = gaudi2_special_blocks_iterator_config(hdev);
+ if (rc)
+ goto free_scratchpad_mem;
+
+ return 0;
+
+free_scratchpad_mem:
+ hl_asic_dma_pool_free(hdev, gaudi2->scratchpad_kernel_address,
+ gaudi2->scratchpad_bus_address);
+free_virt_msix_db_mem:
+ hl_cpu_accessible_dma_pool_free(hdev, prop->pmmu.page_size, gaudi2->virt_msix_db_cpu_addr);
+free_cpu_accessible_dma_pool:
+ gen_pool_destroy(hdev->cpu_accessible_dma_pool);
+free_cpu_dma_mem:
+ hl_asic_dma_free_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, hdev->cpu_accessible_dma_mem,
+ hdev->cpu_accessible_dma_address);
+free_dma_pool:
+ dma_pool_destroy(hdev->dma_pool);
+free_gaudi2_device:
+ kfree(gaudi2);
+ return rc;
+}
+
+static int gaudi2_sw_fini(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+
+ gaudi2_special_blocks_iterator_free(hdev);
+
+ hl_cpu_accessible_dma_pool_free(hdev, prop->pmmu.page_size, gaudi2->virt_msix_db_cpu_addr);
+
+ gen_pool_destroy(hdev->cpu_accessible_dma_pool);
+
+ hl_asic_dma_free_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, hdev->cpu_accessible_dma_mem,
+ hdev->cpu_accessible_dma_address);
+
+ hl_asic_dma_free_coherent(hdev, PAGE_SIZE, gaudi2->scratchpad_kernel_address,
+ gaudi2->scratchpad_bus_address);
+
+ dma_pool_destroy(hdev->dma_pool);
+
+ kfree(gaudi2);
+
+ return 0;
+}
+
+static void gaudi2_stop_qman_common(struct hl_device *hdev, u32 reg_base)
+{
+ WREG32(reg_base + QM_GLBL_CFG1_OFFSET, QM_GLBL_CFG1_PQF_STOP |
+ QM_GLBL_CFG1_CQF_STOP |
+ QM_GLBL_CFG1_CP_STOP);
+
+ /* stop also the ARC */
+ WREG32(reg_base + QM_GLBL_CFG2_OFFSET, QM_GLBL_CFG2_ARC_CQF_STOP);
+}
+
+static void gaudi2_flush_qman_common(struct hl_device *hdev, u32 reg_base)
+{
+ WREG32(reg_base + QM_GLBL_CFG1_OFFSET, QM_GLBL_CFG1_PQF_FLUSH |
+ QM_GLBL_CFG1_CQF_FLUSH |
+ QM_GLBL_CFG1_CP_FLUSH);
+}
+
+static void gaudi2_flush_qman_arc_common(struct hl_device *hdev, u32 reg_base)
+{
+ WREG32(reg_base + QM_GLBL_CFG2_OFFSET, QM_GLBL_CFG2_ARC_CQF_FLUSH);
+}
+
+/**
+ * gaudi2_clear_qm_fence_counters_common - clear QM's fence counters
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @queue_id: queue to clear fence counters to
+ * @skip_fence: if true set maximum fence value to all fence counters to avoid
+ * getting stuck on any fence value. otherwise set all fence
+ * counters to 0 (standard clear of fence counters)
+ */
+static void gaudi2_clear_qm_fence_counters_common(struct hl_device *hdev, u32 queue_id,
+ bool skip_fence)
+{
+ u32 size, reg_base;
+ u32 addr, val;
+
+ reg_base = gaudi2_qm_blocks_bases[queue_id];
+
+ addr = reg_base + QM_CP_FENCE0_CNT_0_OFFSET;
+ size = mmPDMA0_QM_CP_BARRIER_CFG - mmPDMA0_QM_CP_FENCE0_CNT_0;
+
+ /*
+ * in case we want to make sure that QM that is stuck on a fence will
+ * be released we should set the fence counter to a higher value that
+ * the value the QM waiting for. to comply with any fence counter of
+ * any value we set maximum fence value to all counters
+ */
+ val = skip_fence ? U32_MAX : 0;
+ gaudi2_memset_device_lbw(hdev, addr, size, val);
+}
+
+static void gaudi2_qman_manual_flush_common(struct hl_device *hdev, u32 queue_id)
+{
+ u32 reg_base = gaudi2_qm_blocks_bases[queue_id];
+
+ gaudi2_clear_qm_fence_counters_common(hdev, queue_id, true);
+ gaudi2_flush_qman_common(hdev, reg_base);
+ gaudi2_flush_qman_arc_common(hdev, reg_base);
+}
+
+static void gaudi2_stop_dma_qmans(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ int dcore, inst;
+
+ if (!(gaudi2->hw_cap_initialized & HW_CAP_PDMA_MASK))
+ goto stop_edma_qmans;
+
+ /* Stop CPs of PDMA QMANs */
+ gaudi2_stop_qman_common(hdev, mmPDMA0_QM_BASE);
+ gaudi2_stop_qman_common(hdev, mmPDMA1_QM_BASE);
+
+stop_edma_qmans:
+ if (!(gaudi2->hw_cap_initialized & HW_CAP_EDMA_MASK))
+ return;
+
+ for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) {
+ for (inst = 0 ; inst < NUM_OF_EDMA_PER_DCORE ; inst++) {
+ u8 seq = dcore * NUM_OF_EDMA_PER_DCORE + inst;
+ u32 qm_base;
+
+ if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_EDMA_SHIFT + seq)))
+ continue;
+
+ qm_base = mmDCORE0_EDMA0_QM_BASE + dcore * DCORE_OFFSET +
+ inst * DCORE_EDMA_OFFSET;
+
+ /* Stop CPs of EDMA QMANs */
+ gaudi2_stop_qman_common(hdev, qm_base);
+ }
+ }
+}
+
+static void gaudi2_stop_mme_qmans(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u32 offset, i;
+
+ offset = mmDCORE1_MME_QM_BASE - mmDCORE0_MME_QM_BASE;
+
+ for (i = 0 ; i < NUM_OF_DCORES ; i++) {
+ if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_MME_SHIFT + i)))
+ continue;
+
+ gaudi2_stop_qman_common(hdev, mmDCORE0_MME_QM_BASE + (i * offset));
+ }
+}
+
+static void gaudi2_stop_tpc_qmans(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u32 reg_base;
+ int i;
+
+ if (!(gaudi2->tpc_hw_cap_initialized & HW_CAP_TPC_MASK))
+ return;
+
+ for (i = 0 ; i < TPC_ID_SIZE ; i++) {
+ if (!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(HW_CAP_TPC_SHIFT + i)))
+ continue;
+
+ reg_base = gaudi2_qm_blocks_bases[gaudi2_tpc_id_to_queue_id[i]];
+ gaudi2_stop_qman_common(hdev, reg_base);
+ }
+}
+
+static void gaudi2_stop_rot_qmans(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u32 reg_base;
+ int i;
+
+ if (!(gaudi2->hw_cap_initialized & HW_CAP_ROT_MASK))
+ return;
+
+ for (i = 0 ; i < ROTATOR_ID_SIZE ; i++) {
+ if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_ROT_SHIFT + i)))
+ continue;
+
+ reg_base = gaudi2_qm_blocks_bases[gaudi2_rot_id_to_queue_id[i]];
+ gaudi2_stop_qman_common(hdev, reg_base);
+ }
+}
+
+static void gaudi2_stop_nic_qmans(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u32 reg_base, queue_id;
+ int i;
+
+ if (!(gaudi2->nic_hw_cap_initialized & HW_CAP_NIC_MASK))
+ return;
+
+ queue_id = GAUDI2_QUEUE_ID_NIC_0_0;
+
+ for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++, queue_id += NUM_OF_PQ_PER_QMAN) {
+ if (!(hdev->nic_ports_mask & BIT(i)))
+ continue;
+
+ reg_base = gaudi2_qm_blocks_bases[queue_id];
+ gaudi2_stop_qman_common(hdev, reg_base);
+ }
+}
+
+static void gaudi2_stall_dma_common(struct hl_device *hdev, u32 reg_base)
+{
+ u32 reg_val;
+
+ reg_val = FIELD_PREP(PDMA0_CORE_CFG_1_HALT_MASK, 0x1);
+ WREG32(reg_base + DMA_CORE_CFG_1_OFFSET, reg_val);
+}
+
+static void gaudi2_dma_stall(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ int dcore, inst;
+
+ if (!(gaudi2->hw_cap_initialized & HW_CAP_PDMA_MASK))
+ goto stall_edma;
+
+ gaudi2_stall_dma_common(hdev, mmPDMA0_CORE_BASE);
+ gaudi2_stall_dma_common(hdev, mmPDMA1_CORE_BASE);
+
+stall_edma:
+ if (!(gaudi2->hw_cap_initialized & HW_CAP_EDMA_MASK))
+ return;
+
+ for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) {
+ for (inst = 0 ; inst < NUM_OF_EDMA_PER_DCORE ; inst++) {
+ u8 seq = dcore * NUM_OF_EDMA_PER_DCORE + inst;
+ u32 core_base;
+
+ if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_EDMA_SHIFT + seq)))
+ continue;
+
+ core_base = mmDCORE0_EDMA0_CORE_BASE + dcore * DCORE_OFFSET +
+ inst * DCORE_EDMA_OFFSET;
+
+ /* Stall CPs of EDMA QMANs */
+ gaudi2_stall_dma_common(hdev, core_base);
+ }
+ }
+}
+
+static void gaudi2_mme_stall(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u32 offset, i;
+
+ offset = mmDCORE1_MME_CTRL_LO_QM_STALL - mmDCORE0_MME_CTRL_LO_QM_STALL;
+
+ for (i = 0 ; i < NUM_OF_DCORES ; i++)
+ if (gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_MME_SHIFT + i))
+ WREG32(mmDCORE0_MME_CTRL_LO_QM_STALL + (i * offset), 1);
+}
+
+static void gaudi2_tpc_stall(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u32 reg_base;
+ int i;
+
+ if (!(gaudi2->tpc_hw_cap_initialized & HW_CAP_TPC_MASK))
+ return;
+
+ for (i = 0 ; i < TPC_ID_SIZE ; i++) {
+ if (!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(HW_CAP_TPC_SHIFT + i)))
+ continue;
+
+ reg_base = gaudi2_tpc_cfg_blocks_bases[i];
+ WREG32(reg_base + TPC_CFG_STALL_OFFSET, 1);
+ }
+}
+
+static void gaudi2_rotator_stall(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u32 reg_val;
+ int i;
+
+ if (!(gaudi2->hw_cap_initialized & HW_CAP_ROT_MASK))
+ return;
+
+ reg_val = FIELD_PREP(ROT_MSS_HALT_WBC_MASK, 0x1) |
+ FIELD_PREP(ROT_MSS_HALT_RSB_MASK, 0x1) |
+ FIELD_PREP(ROT_MSS_HALT_MRSB_MASK, 0x1);
+
+ for (i = 0 ; i < ROTATOR_ID_SIZE ; i++) {
+ if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_ROT_SHIFT + i)))
+ continue;
+
+ WREG32(mmROT0_MSS_HALT + i * ROT_OFFSET, reg_val);
+ }
+}
+
+static void gaudi2_disable_qman_common(struct hl_device *hdev, u32 reg_base)
+{
+ WREG32(reg_base + QM_GLBL_CFG0_OFFSET, 0);
+}
+
+static void gaudi2_disable_dma_qmans(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ int dcore, inst;
+
+ if (!(gaudi2->hw_cap_initialized & HW_CAP_PDMA_MASK))
+ goto stop_edma_qmans;
+
+ gaudi2_disable_qman_common(hdev, mmPDMA0_QM_BASE);
+ gaudi2_disable_qman_common(hdev, mmPDMA1_QM_BASE);
+
+stop_edma_qmans:
+ if (!(gaudi2->hw_cap_initialized & HW_CAP_EDMA_MASK))
+ return;
+
+ for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) {
+ for (inst = 0 ; inst < NUM_OF_EDMA_PER_DCORE ; inst++) {
+ u8 seq = dcore * NUM_OF_EDMA_PER_DCORE + inst;
+ u32 qm_base;
+
+ if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_EDMA_SHIFT + seq)))
+ continue;
+
+ qm_base = mmDCORE0_EDMA0_QM_BASE + dcore * DCORE_OFFSET +
+ inst * DCORE_EDMA_OFFSET;
+
+ /* Disable CPs of EDMA QMANs */
+ gaudi2_disable_qman_common(hdev, qm_base);
+ }
+ }
+}
+
+static void gaudi2_disable_mme_qmans(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u32 offset, i;
+
+ offset = mmDCORE1_MME_QM_BASE - mmDCORE0_MME_QM_BASE;
+
+ for (i = 0 ; i < NUM_OF_DCORES ; i++)
+ if (gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_MME_SHIFT + i))
+ gaudi2_disable_qman_common(hdev, mmDCORE0_MME_QM_BASE + (i * offset));
+}
+
+static void gaudi2_disable_tpc_qmans(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u32 reg_base;
+ int i;
+
+ if (!(gaudi2->tpc_hw_cap_initialized & HW_CAP_TPC_MASK))
+ return;
+
+ for (i = 0 ; i < TPC_ID_SIZE ; i++) {
+ if (!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(HW_CAP_TPC_SHIFT + i)))
+ continue;
+
+ reg_base = gaudi2_qm_blocks_bases[gaudi2_tpc_id_to_queue_id[i]];
+ gaudi2_disable_qman_common(hdev, reg_base);
+ }
+}
+
+static void gaudi2_disable_rot_qmans(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u32 reg_base;
+ int i;
+
+ if (!(gaudi2->hw_cap_initialized & HW_CAP_ROT_MASK))
+ return;
+
+ for (i = 0 ; i < ROTATOR_ID_SIZE ; i++) {
+ if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_ROT_SHIFT + i)))
+ continue;
+
+ reg_base = gaudi2_qm_blocks_bases[gaudi2_rot_id_to_queue_id[i]];
+ gaudi2_disable_qman_common(hdev, reg_base);
+ }
+}
+
+static void gaudi2_disable_nic_qmans(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u32 reg_base, queue_id;
+ int i;
+
+ if (!(gaudi2->nic_hw_cap_initialized & HW_CAP_NIC_MASK))
+ return;
+
+ queue_id = GAUDI2_QUEUE_ID_NIC_0_0;
+
+ for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++, queue_id += NUM_OF_PQ_PER_QMAN) {
+ if (!(hdev->nic_ports_mask & BIT(i)))
+ continue;
+
+ reg_base = gaudi2_qm_blocks_bases[queue_id];
+ gaudi2_disable_qman_common(hdev, reg_base);
+ }
+}
+
+static void gaudi2_enable_timestamp(struct hl_device *hdev)
+{
+ /* Disable the timestamp counter */
+ WREG32(mmPSOC_TIMESTAMP_BASE, 0);
+
+ /* Zero the lower/upper parts of the 64-bit counter */
+ WREG32(mmPSOC_TIMESTAMP_BASE + 0xC, 0);
+ WREG32(mmPSOC_TIMESTAMP_BASE + 0x8, 0);
+
+ /* Enable the counter */
+ WREG32(mmPSOC_TIMESTAMP_BASE, 1);
+}
+
+static void gaudi2_disable_timestamp(struct hl_device *hdev)
+{
+ /* Disable the timestamp counter */
+ WREG32(mmPSOC_TIMESTAMP_BASE, 0);
+}
+
+static const char *gaudi2_irq_name(u16 irq_number)
+{
+ switch (irq_number) {
+ case GAUDI2_IRQ_NUM_EVENT_QUEUE:
+ return "gaudi2 cpu eq";
+ case GAUDI2_IRQ_NUM_COMPLETION:
+ return "gaudi2 completion";
+ case GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM ... GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM:
+ return gaudi2_vdec_irq_name[irq_number - GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM];
+ case GAUDI2_IRQ_NUM_USER_FIRST ... GAUDI2_IRQ_NUM_USER_LAST:
+ return "gaudi2 user completion";
+ default:
+ return "invalid";
+ }
+}
+
+static void gaudi2_dec_disable_msix(struct hl_device *hdev, u32 max_irq_num)
+{
+ int i, irq, relative_idx;
+ struct hl_dec *dec;
+
+ for (i = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM ; i < max_irq_num ; i++) {
+ irq = pci_irq_vector(hdev->pdev, i);
+ relative_idx = i - GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM;
+
+ dec = hdev->dec + relative_idx / 2;
+
+ /* We pass different structures depending on the irq handler. For the abnormal
+ * interrupt we pass hl_dec and for the regular interrupt we pass the relevant
+ * user_interrupt entry
+ */
+ free_irq(irq, ((relative_idx % 2) ?
+ (void *) dec :
+ (void *) &hdev->user_interrupt[dec->core_id]));
+ }
+}
+
+static int gaudi2_dec_enable_msix(struct hl_device *hdev)
+{
+ int rc, i, irq_init_cnt, irq, relative_idx;
+ irq_handler_t irq_handler;
+ struct hl_dec *dec;
+
+ for (i = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM, irq_init_cnt = 0;
+ i <= GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM;
+ i++, irq_init_cnt++) {
+
+ irq = pci_irq_vector(hdev->pdev, i);
+ relative_idx = i - GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM;
+
+ irq_handler = (relative_idx % 2) ?
+ hl_irq_handler_dec_abnrm :
+ hl_irq_handler_user_interrupt;
+
+ dec = hdev->dec + relative_idx / 2;
+
+ /* We pass different structures depending on the irq handler. For the abnormal
+ * interrupt we pass hl_dec and for the regular interrupt we pass the relevant
+ * user_interrupt entry
+ */
+ rc = request_irq(irq, irq_handler, 0, gaudi2_irq_name(i),
+ ((relative_idx % 2) ?
+ (void *) dec :
+ (void *) &hdev->user_interrupt[dec->core_id]));
+ if (rc) {
+ dev_err(hdev->dev, "Failed to request IRQ %d", irq);
+ goto free_dec_irqs;
+ }
+ }
+
+ return 0;
+
+free_dec_irqs:
+ gaudi2_dec_disable_msix(hdev, (GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM + irq_init_cnt));
+ return rc;
+}
+
+static int gaudi2_enable_msix(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ int rc, irq, i, j, user_irq_init_cnt;
+ irq_handler_t irq_handler;
+ struct hl_cq *cq;
+
+ if (gaudi2->hw_cap_initialized & HW_CAP_MSIX)
+ return 0;
+
+ rc = pci_alloc_irq_vectors(hdev->pdev, GAUDI2_MSIX_ENTRIES, GAUDI2_MSIX_ENTRIES,
+ PCI_IRQ_MSIX);
+ if (rc < 0) {
+ dev_err(hdev->dev, "MSI-X: Failed to enable support -- %d/%d\n",
+ GAUDI2_MSIX_ENTRIES, rc);
+ return rc;
+ }
+
+ irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_COMPLETION);
+ cq = &hdev->completion_queue[GAUDI2_RESERVED_CQ_CS_COMPLETION];
+ rc = request_irq(irq, hl_irq_handler_cq, 0, gaudi2_irq_name(GAUDI2_IRQ_NUM_COMPLETION), cq);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to request IRQ %d", irq);
+ goto free_irq_vectors;
+ }
+
+ irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_EVENT_QUEUE);
+ rc = request_irq(irq, hl_irq_handler_eq, 0, gaudi2_irq_name(GAUDI2_IRQ_NUM_EVENT_QUEUE),
+ &hdev->event_queue);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to request IRQ %d", irq);
+ goto free_completion_irq;
+ }
+
+ rc = gaudi2_dec_enable_msix(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to enable decoder IRQ");
+ goto free_event_irq;
+ }
+
+ for (i = GAUDI2_IRQ_NUM_USER_FIRST, j = prop->user_dec_intr_count, user_irq_init_cnt = 0;
+ user_irq_init_cnt < prop->user_interrupt_count;
+ i++, j++, user_irq_init_cnt++) {
+
+ irq = pci_irq_vector(hdev->pdev, i);
+ irq_handler = hl_irq_handler_user_interrupt;
+
+ rc = request_irq(irq, irq_handler, 0, gaudi2_irq_name(i), &hdev->user_interrupt[j]);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to request IRQ %d", irq);
+ goto free_user_irq;
+ }
+ }
+
+ gaudi2->hw_cap_initialized |= HW_CAP_MSIX;
+
+ return 0;
+
+free_user_irq:
+ for (i = GAUDI2_IRQ_NUM_USER_FIRST, j = prop->user_dec_intr_count;
+ i < GAUDI2_IRQ_NUM_USER_FIRST + user_irq_init_cnt ; i++, j++) {
+
+ irq = pci_irq_vector(hdev->pdev, i);
+ free_irq(irq, &hdev->user_interrupt[j]);
+ }
+
+ gaudi2_dec_disable_msix(hdev, GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM + 1);
+
+free_event_irq:
+ irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_EVENT_QUEUE);
+ free_irq(irq, cq);
+
+free_completion_irq:
+ irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_COMPLETION);
+ free_irq(irq, cq);
+
+free_irq_vectors:
+ pci_free_irq_vectors(hdev->pdev);
+
+ return rc;
+}
+
+static void gaudi2_sync_irqs(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ int i, j;
+ int irq;
+
+ if (!(gaudi2->hw_cap_initialized & HW_CAP_MSIX))
+ return;
+
+ /* Wait for all pending IRQs to be finished */
+ synchronize_irq(pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_COMPLETION));
+
+ for (i = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM ; i <= GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM ; i++) {
+ irq = pci_irq_vector(hdev->pdev, i);
+ synchronize_irq(irq);
+ }
+
+ for (i = GAUDI2_IRQ_NUM_USER_FIRST, j = 0 ; j < hdev->asic_prop.user_interrupt_count;
+ i++, j++) {
+ irq = pci_irq_vector(hdev->pdev, i);
+ synchronize_irq(irq);
+ }
+
+ synchronize_irq(pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_EVENT_QUEUE));
+}
+
+static void gaudi2_disable_msix(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ struct hl_cq *cq;
+ int irq, i, j, k;
+
+ if (!(gaudi2->hw_cap_initialized & HW_CAP_MSIX))
+ return;
+
+ gaudi2_sync_irqs(hdev);
+
+ irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_EVENT_QUEUE);
+ free_irq(irq, &hdev->event_queue);
+
+ gaudi2_dec_disable_msix(hdev, GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM + 1);
+
+ for (i = GAUDI2_IRQ_NUM_USER_FIRST, j = prop->user_dec_intr_count, k = 0;
+ k < hdev->asic_prop.user_interrupt_count ; i++, j++, k++) {
+
+ irq = pci_irq_vector(hdev->pdev, i);
+ free_irq(irq, &hdev->user_interrupt[j]);
+ }
+
+ irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_COMPLETION);
+ cq = &hdev->completion_queue[GAUDI2_RESERVED_CQ_CS_COMPLETION];
+ free_irq(irq, cq);
+
+ pci_free_irq_vectors(hdev->pdev);
+
+ gaudi2->hw_cap_initialized &= ~HW_CAP_MSIX;
+}
+
+static void gaudi2_stop_dcore_dec(struct hl_device *hdev, int dcore_id)
+{
+ u32 reg_val = FIELD_PREP(DCORE0_VDEC0_BRDG_CTRL_GRACEFUL_STOP_MASK, 0x1);
+ u32 graceful_pend_mask = DCORE0_VDEC0_BRDG_CTRL_GRACEFUL_PEND_MASK;
+ u32 timeout_usec, dec_id, dec_bit, offset, graceful;
+ int rc;
+
+ if (hdev->pldm)
+ timeout_usec = GAUDI2_PLDM_VDEC_TIMEOUT_USEC;
+ else
+ timeout_usec = GAUDI2_VDEC_TIMEOUT_USEC;
+
+ for (dec_id = 0 ; dec_id < NUM_OF_DEC_PER_DCORE ; dec_id++) {
+ dec_bit = dcore_id * NUM_OF_DEC_PER_DCORE + dec_id;
+ if (!(hdev->asic_prop.decoder_enabled_mask & BIT(dec_bit)))
+ continue;
+
+ offset = dcore_id * DCORE_OFFSET + dec_id * DCORE_VDEC_OFFSET;
+
+ WREG32(mmDCORE0_DEC0_CMD_SWREG16 + offset, 0);
+
+ WREG32(mmDCORE0_VDEC0_BRDG_CTRL_GRACEFUL + offset, reg_val);
+
+ /* Wait till all traffic from decoder stops
+ * before apply core reset.
+ */
+ rc = hl_poll_timeout(
+ hdev,
+ mmDCORE0_VDEC0_BRDG_CTRL_GRACEFUL + offset,
+ graceful,
+ (graceful & graceful_pend_mask),
+ 100,
+ timeout_usec);
+ if (rc)
+ dev_err(hdev->dev,
+ "Failed to stop traffic from DCORE%d Decoder %d\n",
+ dcore_id, dec_id);
+ }
+}
+
+static void gaudi2_stop_pcie_dec(struct hl_device *hdev)
+{
+ u32 reg_val = FIELD_PREP(DCORE0_VDEC0_BRDG_CTRL_GRACEFUL_STOP_MASK, 0x1);
+ u32 graceful_pend_mask = PCIE_VDEC0_BRDG_CTRL_GRACEFUL_PEND_MASK;
+ u32 timeout_usec, dec_id, dec_bit, offset, graceful;
+ int rc;
+
+ if (hdev->pldm)
+ timeout_usec = GAUDI2_PLDM_VDEC_TIMEOUT_USEC;
+ else
+ timeout_usec = GAUDI2_VDEC_TIMEOUT_USEC;
+
+ for (dec_id = 0 ; dec_id < NUM_OF_DEC_PER_DCORE ; dec_id++) {
+ dec_bit = PCIE_DEC_SHIFT + dec_id;
+ if (!(hdev->asic_prop.decoder_enabled_mask & BIT(dec_bit)))
+ continue;
+
+ offset = dec_id * PCIE_VDEC_OFFSET;
+
+ WREG32(mmPCIE_DEC0_CMD_SWREG16 + offset, 0);
+
+ WREG32(mmPCIE_VDEC0_BRDG_CTRL_GRACEFUL + offset, reg_val);
+
+ /* Wait till all traffic from decoder stops
+ * before apply core reset.
+ */
+ rc = hl_poll_timeout(
+ hdev,
+ mmPCIE_VDEC0_BRDG_CTRL_GRACEFUL + offset,
+ graceful,
+ (graceful & graceful_pend_mask),
+ 100,
+ timeout_usec);
+ if (rc)
+ dev_err(hdev->dev,
+ "Failed to stop traffic from PCIe Decoder %d\n",
+ dec_id);
+ }
+}
+
+static void gaudi2_stop_dec(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ int dcore_id;
+
+ if ((gaudi2->dec_hw_cap_initialized & HW_CAP_DEC_MASK) == 0)
+ return;
+
+ for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++)
+ gaudi2_stop_dcore_dec(hdev, dcore_id);
+
+ gaudi2_stop_pcie_dec(hdev);
+}
+
+static void gaudi2_set_arc_running_mode(struct hl_device *hdev, u32 cpu_id, u32 run_mode)
+{
+ u32 reg_base, reg_val;
+
+ reg_base = gaudi2_arc_blocks_bases[cpu_id];
+ if (run_mode == HL_ENGINE_CORE_RUN)
+ reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_RUN_HALT_REQ_RUN_REQ_MASK, 1);
+ else
+ reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_RUN_HALT_REQ_HALT_REQ_MASK, 1);
+
+ WREG32(reg_base + ARC_HALT_REQ_OFFSET, reg_val);
+}
+
+static void gaudi2_halt_arcs(struct hl_device *hdev)
+{
+ u16 arc_id;
+
+ for (arc_id = CPU_ID_SCHED_ARC0; arc_id < CPU_ID_MAX; arc_id++) {
+ if (gaudi2_is_arc_enabled(hdev, arc_id))
+ gaudi2_set_arc_running_mode(hdev, arc_id, HL_ENGINE_CORE_HALT);
+ }
+}
+
+static int gaudi2_verify_arc_running_mode(struct hl_device *hdev, u32 cpu_id, u32 run_mode)
+{
+ int rc;
+ u32 reg_base, val, ack_mask, timeout_usec = 100000;
+
+ if (hdev->pldm)
+ timeout_usec *= 100;
+
+ reg_base = gaudi2_arc_blocks_bases[cpu_id];
+ if (run_mode == HL_ENGINE_CORE_RUN)
+ ack_mask = ARC_FARM_ARC0_AUX_RUN_HALT_ACK_RUN_ACK_MASK;
+ else
+ ack_mask = ARC_FARM_ARC0_AUX_RUN_HALT_ACK_HALT_ACK_MASK;
+
+ rc = hl_poll_timeout(hdev, reg_base + ARC_HALT_ACK_OFFSET,
+ val, ((val & ack_mask) == ack_mask),
+ 1000, timeout_usec);
+
+ if (!rc) {
+ /* Clear */
+ val = FIELD_PREP(ARC_FARM_ARC0_AUX_RUN_HALT_REQ_RUN_REQ_MASK, 0);
+ WREG32(reg_base + ARC_HALT_REQ_OFFSET, val);
+ }
+
+ return rc;
+}
+
+static void gaudi2_reset_arcs(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u16 arc_id;
+
+ if (!gaudi2)
+ return;
+
+ for (arc_id = CPU_ID_SCHED_ARC0; arc_id < CPU_ID_MAX; arc_id++)
+ if (gaudi2_is_arc_enabled(hdev, arc_id))
+ gaudi2_clr_arc_id_cap(hdev, arc_id);
+}
+
+static void gaudi2_nic_qmans_manual_flush(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u32 queue_id;
+ int i;
+
+ if (!(gaudi2->nic_hw_cap_initialized & HW_CAP_NIC_MASK))
+ return;
+
+ queue_id = GAUDI2_QUEUE_ID_NIC_0_0;
+
+ for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++, queue_id += NUM_OF_PQ_PER_QMAN) {
+ if (!(hdev->nic_ports_mask & BIT(i)))
+ continue;
+
+ gaudi2_qman_manual_flush_common(hdev, queue_id);
+ }
+}
+
+static int gaudi2_set_engine_cores(struct hl_device *hdev, u32 *core_ids,
+ u32 num_cores, u32 core_command)
+{
+ int i, rc;
+
+
+ for (i = 0 ; i < num_cores ; i++) {
+ if (gaudi2_is_arc_enabled(hdev, core_ids[i]))
+ gaudi2_set_arc_running_mode(hdev, core_ids[i], core_command);
+ }
+
+ for (i = 0 ; i < num_cores ; i++) {
+ if (gaudi2_is_arc_enabled(hdev, core_ids[i])) {
+ rc = gaudi2_verify_arc_running_mode(hdev, core_ids[i], core_command);
+
+ if (rc) {
+ dev_err(hdev->dev, "failed to %s arc: %d\n",
+ (core_command == HL_ENGINE_CORE_HALT) ?
+ "HALT" : "RUN", core_ids[i]);
+ return -1;
+ }
+ }
+ }
+
+ return 0;
+}
+
+static void gaudi2_halt_engines(struct hl_device *hdev, bool hard_reset, bool fw_reset)
+{
+ u32 wait_timeout_ms;
+
+ if (hdev->pldm)
+ wait_timeout_ms = GAUDI2_PLDM_RESET_WAIT_MSEC;
+ else
+ wait_timeout_ms = GAUDI2_RESET_WAIT_MSEC;
+
+ if (fw_reset)
+ goto skip_engines;
+
+ gaudi2_stop_dma_qmans(hdev);
+ gaudi2_stop_mme_qmans(hdev);
+ gaudi2_stop_tpc_qmans(hdev);
+ gaudi2_stop_rot_qmans(hdev);
+ gaudi2_stop_nic_qmans(hdev);
+ msleep(wait_timeout_ms);
+
+ gaudi2_halt_arcs(hdev);
+ gaudi2_dma_stall(hdev);
+ gaudi2_mme_stall(hdev);
+ gaudi2_tpc_stall(hdev);
+ gaudi2_rotator_stall(hdev);
+
+ msleep(wait_timeout_ms);
+
+ gaudi2_stop_dec(hdev);
+
+ /*
+ * in case of soft reset do a manual flush for QMANs (currently called
+ * only for NIC QMANs
+ */
+ if (!hard_reset)
+ gaudi2_nic_qmans_manual_flush(hdev);
+
+ gaudi2_disable_dma_qmans(hdev);
+ gaudi2_disable_mme_qmans(hdev);
+ gaudi2_disable_tpc_qmans(hdev);
+ gaudi2_disable_rot_qmans(hdev);
+ gaudi2_disable_nic_qmans(hdev);
+ gaudi2_disable_timestamp(hdev);
+
+skip_engines:
+ if (hard_reset) {
+ gaudi2_disable_msix(hdev);
+ return;
+ }
+
+ gaudi2_sync_irqs(hdev);
+}
+
+static void gaudi2_init_firmware_preload_params(struct hl_device *hdev)
+{
+ struct pre_fw_load_props *pre_fw_load = &hdev->fw_loader.pre_fw_load;
+
+ pre_fw_load->cpu_boot_status_reg = mmPSOC_GLOBAL_CONF_CPU_BOOT_STATUS;
+ pre_fw_load->sts_boot_dev_sts0_reg = mmCPU_BOOT_DEV_STS0;
+ pre_fw_load->sts_boot_dev_sts1_reg = mmCPU_BOOT_DEV_STS1;
+ pre_fw_load->boot_err0_reg = mmCPU_BOOT_ERR0;
+ pre_fw_load->boot_err1_reg = mmCPU_BOOT_ERR1;
+ pre_fw_load->wait_for_preboot_timeout = GAUDI2_PREBOOT_REQ_TIMEOUT_USEC;
+}
+
+static void gaudi2_init_firmware_loader(struct hl_device *hdev)
+{
+ struct fw_load_mgr *fw_loader = &hdev->fw_loader;
+ struct dynamic_fw_load_mgr *dynamic_loader;
+ struct cpu_dyn_regs *dyn_regs;
+
+ /* fill common fields */
+ fw_loader->fw_comp_loaded = FW_TYPE_NONE;
+ fw_loader->boot_fit_img.image_name = GAUDI2_BOOT_FIT_FILE;
+ fw_loader->linux_img.image_name = GAUDI2_LINUX_FW_FILE;
+ fw_loader->boot_fit_timeout = GAUDI2_BOOT_FIT_REQ_TIMEOUT_USEC;
+ fw_loader->skip_bmc = false;
+ fw_loader->sram_bar_id = SRAM_CFG_BAR_ID;
+ fw_loader->dram_bar_id = DRAM_BAR_ID;
+ fw_loader->cpu_timeout = GAUDI2_CPU_TIMEOUT_USEC;
+
+ /* here we update initial values for few specific dynamic regs (as
+ * before reading the first descriptor from FW those value has to be
+ * hard-coded). in later stages of the protocol those values will be
+ * updated automatically by reading the FW descriptor so data there
+ * will always be up-to-date
+ */
+ dynamic_loader = &hdev->fw_loader.dynamic_loader;
+ dyn_regs = &dynamic_loader->comm_desc.cpu_dyn_regs;
+ dyn_regs->kmd_msg_to_cpu = cpu_to_le32(mmPSOC_GLOBAL_CONF_KMD_MSG_TO_CPU);
+ dyn_regs->cpu_cmd_status_to_host = cpu_to_le32(mmCPU_CMD_STATUS_TO_HOST);
+ dynamic_loader->wait_for_bl_timeout = GAUDI2_WAIT_FOR_BL_TIMEOUT_USEC;
+}
+
+static int gaudi2_init_cpu(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ int rc;
+
+ if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU))
+ return 0;
+
+ if (gaudi2->hw_cap_initialized & HW_CAP_CPU)
+ return 0;
+
+ rc = hl_fw_init_cpu(hdev);
+ if (rc)
+ return rc;
+
+ gaudi2->hw_cap_initialized |= HW_CAP_CPU;
+
+ return 0;
+}
+
+static int gaudi2_init_cpu_queues(struct hl_device *hdev, u32 cpu_timeout)
+{
+ struct hl_hw_queue *cpu_pq = &hdev->kernel_queues[GAUDI2_QUEUE_ID_CPU_PQ];
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ struct cpu_dyn_regs *dyn_regs;
+ struct hl_eq *eq;
+ u32 status;
+ int err;
+
+ if (!hdev->cpu_queues_enable)
+ return 0;
+
+ if (gaudi2->hw_cap_initialized & HW_CAP_CPU_Q)
+ return 0;
+
+ eq = &hdev->event_queue;
+
+ dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
+
+ WREG32(mmCPU_IF_PQ_BASE_ADDR_LOW, lower_32_bits(cpu_pq->bus_address));
+ WREG32(mmCPU_IF_PQ_BASE_ADDR_HIGH, upper_32_bits(cpu_pq->bus_address));
+
+ WREG32(mmCPU_IF_EQ_BASE_ADDR_LOW, lower_32_bits(eq->bus_address));
+ WREG32(mmCPU_IF_EQ_BASE_ADDR_HIGH, upper_32_bits(eq->bus_address));
+
+ WREG32(mmCPU_IF_CQ_BASE_ADDR_LOW, lower_32_bits(hdev->cpu_accessible_dma_address));
+ WREG32(mmCPU_IF_CQ_BASE_ADDR_HIGH, upper_32_bits(hdev->cpu_accessible_dma_address));
+
+ WREG32(mmCPU_IF_PQ_LENGTH, HL_QUEUE_SIZE_IN_BYTES);
+ WREG32(mmCPU_IF_EQ_LENGTH, HL_EQ_SIZE_IN_BYTES);
+ WREG32(mmCPU_IF_CQ_LENGTH, HL_CPU_ACCESSIBLE_MEM_SIZE);
+
+ /* Used for EQ CI */
+ WREG32(mmCPU_IF_EQ_RD_OFFS, 0);
+
+ WREG32(mmCPU_IF_PF_PQ_PI, 0);
+
+ WREG32(mmCPU_IF_QUEUE_INIT, PQ_INIT_STATUS_READY_FOR_CP);
+
+ /* Let the ARC know we are ready as it is now handling those queues */
+
+ WREG32(le32_to_cpu(dyn_regs->gic_host_pi_upd_irq),
+ gaudi2_irq_map_table[GAUDI2_EVENT_CPU_PI_UPDATE].cpu_id);
+
+ err = hl_poll_timeout(
+ hdev,
+ mmCPU_IF_QUEUE_INIT,
+ status,
+ (status == PQ_INIT_STATUS_READY_FOR_HOST),
+ 1000,
+ cpu_timeout);
+
+ if (err) {
+ dev_err(hdev->dev, "Failed to communicate with device CPU (timeout)\n");
+ return -EIO;
+ }
+
+ /* update FW application security bits */
+ if (prop->fw_cpu_boot_dev_sts0_valid)
+ prop->fw_app_cpu_boot_dev_sts0 = RREG32(mmCPU_BOOT_DEV_STS0);
+
+ if (prop->fw_cpu_boot_dev_sts1_valid)
+ prop->fw_app_cpu_boot_dev_sts1 = RREG32(mmCPU_BOOT_DEV_STS1);
+
+ gaudi2->hw_cap_initialized |= HW_CAP_CPU_Q;
+ return 0;
+}
+
+static void gaudi2_init_qman_pq(struct hl_device *hdev, u32 reg_base,
+ u32 queue_id_base)
+{
+ struct hl_hw_queue *q;
+ u32 pq_id, pq_offset;
+
+ for (pq_id = 0 ; pq_id < NUM_OF_PQ_PER_QMAN ; pq_id++) {
+ q = &hdev->kernel_queues[queue_id_base + pq_id];
+ pq_offset = pq_id * 4;
+
+ WREG32(reg_base + QM_PQ_BASE_LO_0_OFFSET + pq_offset,
+ lower_32_bits(q->bus_address));
+ WREG32(reg_base + QM_PQ_BASE_HI_0_OFFSET + pq_offset,
+ upper_32_bits(q->bus_address));
+ WREG32(reg_base + QM_PQ_SIZE_0_OFFSET + pq_offset, ilog2(HL_QUEUE_LENGTH));
+ WREG32(reg_base + QM_PQ_PI_0_OFFSET + pq_offset, 0);
+ WREG32(reg_base + QM_PQ_CI_0_OFFSET + pq_offset, 0);
+ }
+}
+
+static void gaudi2_init_qman_cp(struct hl_device *hdev, u32 reg_base)
+{
+ u32 cp_id, cp_offset, mtr_base_lo, mtr_base_hi, so_base_lo, so_base_hi;
+
+ mtr_base_lo = lower_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
+ mtr_base_hi = upper_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
+ so_base_lo = lower_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0);
+ so_base_hi = upper_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0);
+
+ for (cp_id = 0 ; cp_id < NUM_OF_CP_PER_QMAN; cp_id++) {
+ cp_offset = cp_id * 4;
+
+ WREG32(reg_base + QM_CP_MSG_BASE0_ADDR_LO_0_OFFSET + cp_offset, mtr_base_lo);
+ WREG32(reg_base + QM_CP_MSG_BASE0_ADDR_HI_0_OFFSET + cp_offset, mtr_base_hi);
+ WREG32(reg_base + QM_CP_MSG_BASE1_ADDR_LO_0_OFFSET + cp_offset, so_base_lo);
+ WREG32(reg_base + QM_CP_MSG_BASE1_ADDR_HI_0_OFFSET + cp_offset, so_base_hi);
+ }
+
+ /* allow QMANs to accept work from ARC CQF */
+ WREG32(reg_base + QM_CP_CFG_OFFSET, FIELD_PREP(PDMA0_QM_CP_CFG_SWITCH_EN_MASK, 0x1));
+}
+
+static void gaudi2_init_qman_pqc(struct hl_device *hdev, u32 reg_base,
+ u32 queue_id_base)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u32 pq_id, pq_offset, so_base_lo, so_base_hi;
+
+ so_base_lo = lower_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0);
+ so_base_hi = upper_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0);
+
+ for (pq_id = 0 ; pq_id < NUM_OF_PQ_PER_QMAN ; pq_id++) {
+ pq_offset = pq_id * 4;
+
+ /* Configure QMAN HBW to scratchpad as it is not needed */
+ WREG32(reg_base + QM_PQC_HBW_BASE_LO_0_OFFSET + pq_offset,
+ lower_32_bits(gaudi2->scratchpad_bus_address));
+ WREG32(reg_base + QM_PQC_HBW_BASE_HI_0_OFFSET + pq_offset,
+ upper_32_bits(gaudi2->scratchpad_bus_address));
+ WREG32(reg_base + QM_PQC_SIZE_0_OFFSET + pq_offset,
+ ilog2(PAGE_SIZE / sizeof(struct hl_cq_entry)));
+
+ WREG32(reg_base + QM_PQC_PI_0_OFFSET + pq_offset, 0);
+ WREG32(reg_base + QM_PQC_LBW_WDATA_0_OFFSET + pq_offset, QM_PQC_LBW_WDATA);
+ WREG32(reg_base + QM_PQC_LBW_BASE_LO_0_OFFSET + pq_offset, so_base_lo);
+ WREG32(reg_base + QM_PQC_LBW_BASE_HI_0_OFFSET + pq_offset, so_base_hi);
+ }
+
+ /* Enable QMAN H/W completion */
+ WREG32(reg_base + QM_PQC_CFG_OFFSET, 1 << PDMA0_QM_PQC_CFG_EN_SHIFT);
+}
+
+static u32 gaudi2_get_dyn_sp_reg(struct hl_device *hdev, u32 queue_id_base)
+{
+ struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
+ u32 sp_reg_addr;
+
+ switch (queue_id_base) {
+ case GAUDI2_QUEUE_ID_PDMA_0_0...GAUDI2_QUEUE_ID_PDMA_1_3:
+ fallthrough;
+ case GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3:
+ fallthrough;
+ case GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3:
+ fallthrough;
+ case GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3:
+ fallthrough;
+ case GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3:
+ sp_reg_addr = le32_to_cpu(dyn_regs->gic_dma_qm_irq_ctrl);
+ break;
+ case GAUDI2_QUEUE_ID_DCORE0_MME_0_0...GAUDI2_QUEUE_ID_DCORE0_MME_0_3:
+ fallthrough;
+ case GAUDI2_QUEUE_ID_DCORE1_MME_0_0...GAUDI2_QUEUE_ID_DCORE1_MME_0_3:
+ fallthrough;
+ case GAUDI2_QUEUE_ID_DCORE2_MME_0_0...GAUDI2_QUEUE_ID_DCORE2_MME_0_3:
+ fallthrough;
+ case GAUDI2_QUEUE_ID_DCORE3_MME_0_0...GAUDI2_QUEUE_ID_DCORE3_MME_0_3:
+ sp_reg_addr = le32_to_cpu(dyn_regs->gic_mme_qm_irq_ctrl);
+ break;
+ case GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE0_TPC_6_3:
+ fallthrough;
+ case GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE1_TPC_5_3:
+ fallthrough;
+ case GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE2_TPC_5_3:
+ fallthrough;
+ case GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE3_TPC_5_3:
+ sp_reg_addr = le32_to_cpu(dyn_regs->gic_tpc_qm_irq_ctrl);
+ break;
+ case GAUDI2_QUEUE_ID_ROT_0_0...GAUDI2_QUEUE_ID_ROT_1_3:
+ sp_reg_addr = le32_to_cpu(dyn_regs->gic_rot_qm_irq_ctrl);
+ break;
+ case GAUDI2_QUEUE_ID_NIC_0_0...GAUDI2_QUEUE_ID_NIC_23_3:
+ sp_reg_addr = le32_to_cpu(dyn_regs->gic_nic_qm_irq_ctrl);
+ break;
+ default:
+ dev_err(hdev->dev, "Unexpected h/w queue %d\n", queue_id_base);
+ return 0;
+ }
+
+ return sp_reg_addr;
+}
+
+static void gaudi2_init_qman_common(struct hl_device *hdev, u32 reg_base,
+ u32 queue_id_base)
+{
+ u32 glbl_prot = QMAN_MAKE_TRUSTED, irq_handler_offset;
+ int map_table_entry;
+
+ WREG32(reg_base + QM_GLBL_PROT_OFFSET, glbl_prot);
+
+ irq_handler_offset = gaudi2_get_dyn_sp_reg(hdev, queue_id_base);
+ WREG32(reg_base + QM_GLBL_ERR_ADDR_LO_OFFSET, lower_32_bits(CFG_BASE + irq_handler_offset));
+ WREG32(reg_base + QM_GLBL_ERR_ADDR_HI_OFFSET, upper_32_bits(CFG_BASE + irq_handler_offset));
+
+ map_table_entry = gaudi2_qman_async_event_id[queue_id_base];
+ WREG32(reg_base + QM_GLBL_ERR_WDATA_OFFSET,
+ gaudi2_irq_map_table[map_table_entry].cpu_id);
+
+ WREG32(reg_base + QM_ARB_ERR_MSG_EN_OFFSET, QM_ARB_ERR_MSG_EN_MASK);
+
+ WREG32(reg_base + QM_ARB_SLV_CHOISE_WDT_OFFSET, GAUDI2_ARB_WDT_TIMEOUT);
+ WREG32(reg_base + QM_GLBL_CFG1_OFFSET, 0);
+ WREG32(reg_base + QM_GLBL_CFG2_OFFSET, 0);
+
+ /* Enable the QMAN channel.
+ * PDMA QMAN configuration is different, as we do not allow user to
+ * access some of the CPs.
+ * PDMA0: CP2/3 are reserved for the ARC usage.
+ * PDMA1: CP1/2/3 are reserved for the ARC usage.
+ */
+ if (reg_base == gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_PDMA_1_0])
+ WREG32(reg_base + QM_GLBL_CFG0_OFFSET, PDMA1_QMAN_ENABLE);
+ else if (reg_base == gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_PDMA_0_0])
+ WREG32(reg_base + QM_GLBL_CFG0_OFFSET, PDMA0_QMAN_ENABLE);
+ else
+ WREG32(reg_base + QM_GLBL_CFG0_OFFSET, QMAN_ENABLE);
+}
+
+static void gaudi2_init_qman(struct hl_device *hdev, u32 reg_base,
+ u32 queue_id_base)
+{
+ u32 pq_id;
+
+ for (pq_id = 0 ; pq_id < NUM_OF_PQ_PER_QMAN ; pq_id++)
+ hdev->kernel_queues[queue_id_base + pq_id].cq_id = GAUDI2_RESERVED_CQ_CS_COMPLETION;
+
+ gaudi2_init_qman_pq(hdev, reg_base, queue_id_base);
+ gaudi2_init_qman_cp(hdev, reg_base);
+ gaudi2_init_qman_pqc(hdev, reg_base, queue_id_base);
+ gaudi2_init_qman_common(hdev, reg_base, queue_id_base);
+}
+
+static void gaudi2_init_dma_core(struct hl_device *hdev, u32 reg_base,
+ u32 dma_core_id, bool is_secure)
+{
+ u32 prot, irq_handler_offset;
+ struct cpu_dyn_regs *dyn_regs;
+ int map_table_entry;
+
+ prot = 1 << ARC_FARM_KDMA_PROT_ERR_VAL_SHIFT;
+ if (is_secure)
+ prot |= 1 << ARC_FARM_KDMA_PROT_VAL_SHIFT;
+
+ WREG32(reg_base + DMA_CORE_PROT_OFFSET, prot);
+
+ dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
+ irq_handler_offset = le32_to_cpu(dyn_regs->gic_dma_core_irq_ctrl);
+
+ WREG32(reg_base + DMA_CORE_ERRMSG_ADDR_LO_OFFSET,
+ lower_32_bits(CFG_BASE + irq_handler_offset));
+
+ WREG32(reg_base + DMA_CORE_ERRMSG_ADDR_HI_OFFSET,
+ upper_32_bits(CFG_BASE + irq_handler_offset));
+
+ map_table_entry = gaudi2_dma_core_async_event_id[dma_core_id];
+ WREG32(reg_base + DMA_CORE_ERRMSG_WDATA_OFFSET,
+ gaudi2_irq_map_table[map_table_entry].cpu_id);
+
+ /* Enable the DMA channel */
+ WREG32(reg_base + DMA_CORE_CFG_0_OFFSET, 1 << ARC_FARM_KDMA_CFG_0_EN_SHIFT);
+}
+
+static void gaudi2_init_kdma(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u32 reg_base;
+
+ if ((gaudi2->hw_cap_initialized & HW_CAP_KDMA) == HW_CAP_KDMA)
+ return;
+
+ reg_base = gaudi2_dma_core_blocks_bases[DMA_CORE_ID_KDMA];
+
+ gaudi2_init_dma_core(hdev, reg_base, DMA_CORE_ID_KDMA, true);
+
+ gaudi2->hw_cap_initialized |= HW_CAP_KDMA;
+}
+
+static void gaudi2_init_pdma(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u32 reg_base;
+
+ if ((gaudi2->hw_cap_initialized & HW_CAP_PDMA_MASK) == HW_CAP_PDMA_MASK)
+ return;
+
+ reg_base = gaudi2_dma_core_blocks_bases[DMA_CORE_ID_PDMA0];
+ gaudi2_init_dma_core(hdev, reg_base, DMA_CORE_ID_PDMA0, false);
+
+ reg_base = gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_PDMA_0_0];
+ gaudi2_init_qman(hdev, reg_base, GAUDI2_QUEUE_ID_PDMA_0_0);
+
+ reg_base = gaudi2_dma_core_blocks_bases[DMA_CORE_ID_PDMA1];
+ gaudi2_init_dma_core(hdev, reg_base, DMA_CORE_ID_PDMA1, false);
+
+ reg_base = gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_PDMA_1_0];
+ gaudi2_init_qman(hdev, reg_base, GAUDI2_QUEUE_ID_PDMA_1_0);
+
+ gaudi2->hw_cap_initialized |= HW_CAP_PDMA_MASK;
+}
+
+static void gaudi2_init_edma_instance(struct hl_device *hdev, u8 seq)
+{
+ u32 reg_base, base_edma_core_id, base_edma_qman_id;
+
+ base_edma_core_id = DMA_CORE_ID_EDMA0 + seq;
+ base_edma_qman_id = edma_stream_base[seq];
+
+ reg_base = gaudi2_dma_core_blocks_bases[base_edma_core_id];
+ gaudi2_init_dma_core(hdev, reg_base, base_edma_core_id, false);
+
+ reg_base = gaudi2_qm_blocks_bases[base_edma_qman_id];
+ gaudi2_init_qman(hdev, reg_base, base_edma_qman_id);
+}
+
+static void gaudi2_init_edma(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ int dcore, inst;
+
+ if ((gaudi2->hw_cap_initialized & HW_CAP_EDMA_MASK) == HW_CAP_EDMA_MASK)
+ return;
+
+ for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) {
+ for (inst = 0 ; inst < NUM_OF_EDMA_PER_DCORE ; inst++) {
+ u8 seq = dcore * NUM_OF_EDMA_PER_DCORE + inst;
+
+ if (!(prop->edma_enabled_mask & BIT(seq)))
+ continue;
+
+ gaudi2_init_edma_instance(hdev, seq);
+
+ gaudi2->hw_cap_initialized |= BIT_ULL(HW_CAP_EDMA_SHIFT + seq);
+ }
+ }
+}
+
+/*
+ * gaudi2_arm_monitors_for_virt_msix_db() - Arm monitors for writing to the virtual MSI-X doorbell.
+ * @hdev: pointer to habanalabs device structure.
+ * @sob_id: sync object ID.
+ * @first_mon_id: ID of first monitor out of 3 consecutive monitors.
+ * @interrupt_id: interrupt ID.
+ *
+ * Some initiators cannot have HBW address in their completion address registers, and thus cannot
+ * write directly to the HBW host memory of the virtual MSI-X doorbell.
+ * Instead, they are configured to LBW write to a sync object, and a monitor will do the HBW write.
+ *
+ * The mechanism in the sync manager block is composed of a master monitor with 3 messages.
+ * In addition to the HBW write, the other 2 messages are for preparing the monitor to next
+ * completion, by decrementing the sync object value and re-arming the monitor.
+ */
+static void gaudi2_arm_monitors_for_virt_msix_db(struct hl_device *hdev, u32 sob_id,
+ u32 first_mon_id, u32 interrupt_id)
+{
+ u32 sob_offset, first_mon_offset, mon_offset, payload, sob_group, mode, arm, config;
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u64 addr;
+ u8 mask;
+
+ /* Reset the SOB value */
+ sob_offset = sob_id * sizeof(u32);
+ WREG32(mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset, 0);
+
+ /* Configure 3 monitors:
+ * 1. Write interrupt ID to the virtual MSI-X doorbell (master monitor)
+ * 2. Decrement SOB value by 1.
+ * 3. Re-arm the master monitor.
+ */
+
+ first_mon_offset = first_mon_id * sizeof(u32);
+
+ /* 2nd monitor: Decrement SOB value by 1 */
+ mon_offset = first_mon_offset + sizeof(u32);
+
+ addr = CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset;
+ WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + mon_offset, lower_32_bits(addr));
+ WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0 + mon_offset, upper_32_bits(addr));
+
+ payload = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_VAL_MASK, 0x7FFF) | /* "-1" */
+ FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_SIGN_MASK, 1) |
+ FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_INC_MASK, 1);
+ WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + mon_offset, payload);
+
+ /* 3rd monitor: Re-arm the master monitor */
+ mon_offset = first_mon_offset + 2 * sizeof(u32);
+
+ addr = CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_MON_ARM_0 + first_mon_offset;
+ WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + mon_offset, lower_32_bits(addr));
+ WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0 + mon_offset, upper_32_bits(addr));
+
+ sob_group = sob_id / 8;
+ mask = ~BIT(sob_id & 0x7);
+ mode = 0; /* comparison mode is "greater than or equal to" */
+ arm = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SID_MASK, sob_group) |
+ FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_MASK_MASK, mask) |
+ FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SOP_MASK, mode) |
+ FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SOD_MASK, 1);
+
+ payload = arm;
+ WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + mon_offset, payload);
+
+ /* 1st monitor (master): Write interrupt ID to the virtual MSI-X doorbell */
+ mon_offset = first_mon_offset;
+
+ config = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_CONFIG_WR_NUM_MASK, 2); /* "2": 3 writes */
+ WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + mon_offset, config);
+
+ addr = gaudi2->virt_msix_db_dma_addr;
+ WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + mon_offset, lower_32_bits(addr));
+ WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0 + mon_offset, upper_32_bits(addr));
+
+ payload = interrupt_id;
+ WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + mon_offset, payload);
+
+ WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_ARM_0 + mon_offset, arm);
+}
+
+static void gaudi2_prepare_sm_for_virt_msix_db(struct hl_device *hdev)
+{
+ u32 decoder_id, sob_id, first_mon_id, interrupt_id;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+
+ /* Decoder normal/abnormal interrupts */
+ for (decoder_id = 0 ; decoder_id < NUMBER_OF_DEC ; ++decoder_id) {
+ if (!(prop->decoder_enabled_mask & BIT(decoder_id)))
+ continue;
+
+ sob_id = GAUDI2_RESERVED_SOB_DEC_NRM_FIRST + decoder_id;
+ first_mon_id = GAUDI2_RESERVED_MON_DEC_NRM_FIRST + 3 * decoder_id;
+ interrupt_id = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM + 2 * decoder_id;
+ gaudi2_arm_monitors_for_virt_msix_db(hdev, sob_id, first_mon_id, interrupt_id);
+
+ sob_id = GAUDI2_RESERVED_SOB_DEC_ABNRM_FIRST + decoder_id;
+ first_mon_id = GAUDI2_RESERVED_MON_DEC_ABNRM_FIRST + 3 * decoder_id;
+ interrupt_id += 1;
+ gaudi2_arm_monitors_for_virt_msix_db(hdev, sob_id, first_mon_id, interrupt_id);
+ }
+}
+
+static void gaudi2_init_sm(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u64 cq_address;
+ u32 reg_val;
+ int i;
+
+ /* Enable HBW/LBW CQ for completion monitors */
+ reg_val = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_CONFIG_CQ_EN_MASK, 1);
+ reg_val |= FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_CONFIG_LBW_EN_MASK, 1);
+
+ for (i = 0 ; i < GAUDI2_MAX_PENDING_CS ; i++)
+ WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + (4 * i), reg_val);
+
+ /* Enable only HBW CQ for KDMA completion monitor */
+ reg_val = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_CONFIG_CQ_EN_MASK, 1);
+ WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + (4 * i), reg_val);
+
+ /* Init CQ0 DB - configure the monitor to trigger MSI-X interrupt */
+ WREG32(mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0, lower_32_bits(gaudi2->virt_msix_db_dma_addr));
+ WREG32(mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0, upper_32_bits(gaudi2->virt_msix_db_dma_addr));
+ WREG32(mmDCORE0_SYNC_MNGR_GLBL_LBW_DATA_0, GAUDI2_IRQ_NUM_COMPLETION);
+
+ for (i = 0 ; i < GAUDI2_RESERVED_CQ_NUMBER ; i++) {
+ cq_address =
+ hdev->completion_queue[i].bus_address;
+
+ WREG32(mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_L_0 + (4 * i),
+ lower_32_bits(cq_address));
+ WREG32(mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_H_0 + (4 * i),
+ upper_32_bits(cq_address));
+ WREG32(mmDCORE0_SYNC_MNGR_GLBL_CQ_SIZE_LOG2_0 + (4 * i),
+ ilog2(HL_CQ_SIZE_IN_BYTES));
+ }
+
+ /* Configure kernel ASID and MMU BP*/
+ WREG32(mmDCORE0_SYNC_MNGR_GLBL_ASID_SEC, 0x10000);
+ WREG32(mmDCORE0_SYNC_MNGR_GLBL_ASID_NONE_SEC_PRIV, 0);
+
+ /* Initialize sync objects and monitors which are used for the virtual MSI-X doorbell */
+ gaudi2_prepare_sm_for_virt_msix_db(hdev);
+}
+
+static void gaudi2_init_mme_acc(struct hl_device *hdev, u32 reg_base)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u32 reg_val;
+ int i;
+
+ reg_val = FIELD_PREP(MME_ACC_INTR_MASK_WBC_ERR_RESP_MASK, 0);
+ reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_SRC_POS_INF_MASK, 1);
+ reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_SRC_NEG_INF_MASK, 1);
+ reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_SRC_NAN_MASK, 1);
+ reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_RESULT_POS_INF_MASK, 1);
+ reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_RESULT_NEG_INF_MASK, 1);
+
+ WREG32(reg_base + MME_ACC_INTR_MASK_OFFSET, reg_val);
+ WREG32(reg_base + MME_ACC_AP_LFSR_POLY_OFFSET, 0x80DEADAF);
+
+ for (i = 0 ; i < MME_NUM_OF_LFSR_SEEDS ; i++) {
+ WREG32(reg_base + MME_ACC_AP_LFSR_SEED_SEL_OFFSET, i);
+ WREG32(reg_base + MME_ACC_AP_LFSR_SEED_WDATA_OFFSET, gaudi2->lfsr_rand_seeds[i]);
+ }
+}
+
+static void gaudi2_init_dcore_mme(struct hl_device *hdev, int dcore_id,
+ bool config_qman_only)
+{
+ u32 queue_id_base, reg_base;
+
+ switch (dcore_id) {
+ case 0:
+ queue_id_base = GAUDI2_QUEUE_ID_DCORE0_MME_0_0;
+ break;
+ case 1:
+ queue_id_base = GAUDI2_QUEUE_ID_DCORE1_MME_0_0;
+ break;
+ case 2:
+ queue_id_base = GAUDI2_QUEUE_ID_DCORE2_MME_0_0;
+ break;
+ case 3:
+ queue_id_base = GAUDI2_QUEUE_ID_DCORE3_MME_0_0;
+ break;
+ default:
+ dev_err(hdev->dev, "Invalid dcore id %u\n", dcore_id);
+ return;
+ }
+
+ if (!config_qman_only) {
+ reg_base = gaudi2_mme_acc_blocks_bases[dcore_id];
+ gaudi2_init_mme_acc(hdev, reg_base);
+ }
+
+ reg_base = gaudi2_qm_blocks_bases[queue_id_base];
+ gaudi2_init_qman(hdev, reg_base, queue_id_base);
+}
+
+static void gaudi2_init_mme(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ int i;
+
+ if ((gaudi2->hw_cap_initialized & HW_CAP_MME_MASK) == HW_CAP_MME_MASK)
+ return;
+
+ for (i = 0 ; i < NUM_OF_DCORES ; i++) {
+ gaudi2_init_dcore_mme(hdev, i, false);
+
+ gaudi2->hw_cap_initialized |= BIT_ULL(HW_CAP_MME_SHIFT + i);
+ }
+}
+
+static void gaudi2_init_tpc_cfg(struct hl_device *hdev, u32 reg_base)
+{
+ /* Mask arithmetic and QM interrupts in TPC */
+ WREG32(reg_base + TPC_CFG_TPC_INTR_MASK_OFFSET, 0x23FFFE);
+
+ /* Set 16 cache lines */
+ WREG32(reg_base + TPC_CFG_MSS_CONFIG_OFFSET,
+ 2 << DCORE0_TPC0_CFG_MSS_CONFIG_ICACHE_FETCH_LINE_NUM_SHIFT);
+}
+
+struct gaudi2_tpc_init_cfg_data {
+ enum gaudi2_queue_id dcore_tpc_qid_base[NUM_OF_DCORES];
+};
+
+static void gaudi2_init_tpc_config(struct hl_device *hdev, int dcore, int inst,
+ u32 offset, struct iterate_module_ctx *ctx)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ struct gaudi2_tpc_init_cfg_data *cfg_data = ctx->data;
+ u32 queue_id_base;
+ u8 seq;
+
+ queue_id_base = cfg_data->dcore_tpc_qid_base[dcore] + (inst * NUM_OF_PQ_PER_QMAN);
+
+ if (dcore == 0 && inst == (NUM_DCORE0_TPC - 1))
+ /* gets last sequence number */
+ seq = NUM_OF_DCORES * NUM_OF_TPC_PER_DCORE;
+ else
+ seq = dcore * NUM_OF_TPC_PER_DCORE + inst;
+
+ gaudi2_init_tpc_cfg(hdev, mmDCORE0_TPC0_CFG_BASE + offset);
+ gaudi2_init_qman(hdev, mmDCORE0_TPC0_QM_BASE + offset, queue_id_base);
+
+ gaudi2->tpc_hw_cap_initialized |= BIT_ULL(HW_CAP_TPC_SHIFT + seq);
+}
+
+static void gaudi2_init_tpc(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ struct gaudi2_tpc_init_cfg_data init_cfg_data;
+ struct iterate_module_ctx tpc_iter;
+
+ if (!hdev->asic_prop.tpc_enabled_mask)
+ return;
+
+ if ((gaudi2->tpc_hw_cap_initialized & HW_CAP_TPC_MASK) == HW_CAP_TPC_MASK)
+ return;
+
+ init_cfg_data.dcore_tpc_qid_base[0] = GAUDI2_QUEUE_ID_DCORE0_TPC_0_0;
+ init_cfg_data.dcore_tpc_qid_base[1] = GAUDI2_QUEUE_ID_DCORE1_TPC_0_0;
+ init_cfg_data.dcore_tpc_qid_base[2] = GAUDI2_QUEUE_ID_DCORE2_TPC_0_0;
+ init_cfg_data.dcore_tpc_qid_base[3] = GAUDI2_QUEUE_ID_DCORE3_TPC_0_0;
+ tpc_iter.fn = &gaudi2_init_tpc_config;
+ tpc_iter.data = &init_cfg_data;
+ gaudi2_iterate_tpcs(hdev, &tpc_iter);
+}
+
+static void gaudi2_init_rotator(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u32 i, reg_base, queue_id;
+
+ queue_id = GAUDI2_QUEUE_ID_ROT_0_0;
+
+ for (i = 0 ; i < NUM_OF_ROT ; i++, queue_id += NUM_OF_PQ_PER_QMAN) {
+ reg_base = gaudi2_qm_blocks_bases[queue_id];
+ gaudi2_init_qman(hdev, reg_base, queue_id);
+
+ gaudi2->hw_cap_initialized |= BIT_ULL(HW_CAP_ROT_SHIFT + i);
+ }
+}
+
+static void gaudi2_init_vdec_brdg_ctrl(struct hl_device *hdev, u64 base_addr, u32 decoder_id)
+{
+ u32 sob_id;
+
+ /* VCMD normal interrupt */
+ sob_id = GAUDI2_RESERVED_SOB_DEC_NRM_FIRST + decoder_id;
+ WREG32(base_addr + BRDG_CTRL_NRM_MSIX_LBW_AWADDR,
+ mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_id * sizeof(u32));
+ WREG32(base_addr + BRDG_CTRL_NRM_MSIX_LBW_WDATA, GAUDI2_SOB_INCREMENT_BY_ONE);
+
+ /* VCMD abnormal interrupt */
+ sob_id = GAUDI2_RESERVED_SOB_DEC_ABNRM_FIRST + decoder_id;
+ WREG32(base_addr + BRDG_CTRL_ABNRM_MSIX_LBW_AWADDR,
+ mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_id * sizeof(u32));
+ WREG32(base_addr + BRDG_CTRL_ABNRM_MSIX_LBW_WDATA, GAUDI2_SOB_INCREMENT_BY_ONE);
+}
+
+static void gaudi2_init_dec(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u32 dcore_id, dec_id, dec_bit;
+ u64 base_addr;
+
+ if (!hdev->asic_prop.decoder_enabled_mask)
+ return;
+
+ if ((gaudi2->dec_hw_cap_initialized & HW_CAP_DEC_MASK) == HW_CAP_DEC_MASK)
+ return;
+
+ for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++)
+ for (dec_id = 0 ; dec_id < NUM_OF_DEC_PER_DCORE ; dec_id++) {
+ dec_bit = dcore_id * NUM_OF_DEC_PER_DCORE + dec_id;
+
+ if (!(hdev->asic_prop.decoder_enabled_mask & BIT(dec_bit)))
+ continue;
+
+ base_addr = mmDCORE0_DEC0_CMD_BASE +
+ BRDG_CTRL_BLOCK_OFFSET +
+ dcore_id * DCORE_OFFSET +
+ dec_id * DCORE_VDEC_OFFSET;
+
+ gaudi2_init_vdec_brdg_ctrl(hdev, base_addr, dec_bit);
+
+ gaudi2->dec_hw_cap_initialized |= BIT_ULL(HW_CAP_DEC_SHIFT + dec_bit);
+ }
+
+ for (dec_id = 0 ; dec_id < NUM_OF_PCIE_VDEC ; dec_id++) {
+ dec_bit = PCIE_DEC_SHIFT + dec_id;
+ if (!(hdev->asic_prop.decoder_enabled_mask & BIT(dec_bit)))
+ continue;
+
+ base_addr = mmPCIE_DEC0_CMD_BASE + BRDG_CTRL_BLOCK_OFFSET +
+ dec_id * DCORE_VDEC_OFFSET;
+
+ gaudi2_init_vdec_brdg_ctrl(hdev, base_addr, dec_bit);
+
+ gaudi2->dec_hw_cap_initialized |= BIT_ULL(HW_CAP_DEC_SHIFT + dec_bit);
+ }
+}
+
+static int gaudi2_mmu_update_asid_hop0_addr(struct hl_device *hdev,
+ u32 stlb_base, u32 asid, u64 phys_addr)
+{
+ u32 status, timeout_usec;
+ int rc;
+
+ if (hdev->pldm || !hdev->pdev)
+ timeout_usec = GAUDI2_PLDM_MMU_TIMEOUT_USEC;
+ else
+ timeout_usec = MMU_CONFIG_TIMEOUT_USEC;
+
+ WREG32(stlb_base + STLB_ASID_OFFSET, asid);
+ WREG32(stlb_base + STLB_HOP0_PA43_12_OFFSET, phys_addr >> MMU_HOP0_PA43_12_SHIFT);
+ WREG32(stlb_base + STLB_HOP0_PA63_44_OFFSET, phys_addr >> MMU_HOP0_PA63_44_SHIFT);
+ WREG32(stlb_base + STLB_BUSY_OFFSET, 0x80000000);
+
+ rc = hl_poll_timeout(
+ hdev,
+ stlb_base + STLB_BUSY_OFFSET,
+ status,
+ !(status & 0x80000000),
+ 1000,
+ timeout_usec);
+
+ if (rc) {
+ dev_err(hdev->dev, "Timeout during MMU hop0 config of asid %d\n", asid);
+ return rc;
+ }
+
+ return 0;
+}
+
+static void gaudi2_mmu_send_invalidate_cache_cmd(struct hl_device *hdev, u32 stlb_base,
+ u32 start_offset, u32 inv_start_val,
+ u32 flags)
+{
+ /* clear PMMU mem line cache (only needed in mmu range invalidation) */
+ if (flags & MMU_OP_CLEAR_MEMCACHE)
+ WREG32(mmPMMU_HBW_STLB_MEM_CACHE_INVALIDATION, 0x1);
+
+ if (flags & MMU_OP_SKIP_LOW_CACHE_INV)
+ return;
+
+ WREG32(stlb_base + start_offset, inv_start_val);
+}
+
+static int gaudi2_mmu_invalidate_cache_status_poll(struct hl_device *hdev, u32 stlb_base,
+ struct gaudi2_cache_invld_params *inv_params)
+{
+ u32 status, timeout_usec, start_offset;
+ int rc;
+
+ timeout_usec = (hdev->pldm) ? GAUDI2_PLDM_MMU_TIMEOUT_USEC :
+ GAUDI2_MMU_CACHE_INV_TIMEOUT_USEC;
+
+ /* poll PMMU mem line cache (only needed in mmu range invalidation) */
+ if (inv_params->flags & MMU_OP_CLEAR_MEMCACHE) {
+ rc = hl_poll_timeout(
+ hdev,
+ mmPMMU_HBW_STLB_MEM_CACHE_INV_STATUS,
+ status,
+ status & 0x1,
+ 1000,
+ timeout_usec);
+
+ if (rc)
+ return rc;
+
+ /* Need to manually reset the status to 0 */
+ WREG32(mmPMMU_HBW_STLB_MEM_CACHE_INV_STATUS, 0x0);
+ }
+
+ /* Lower cache does not work with cache lines, hence we can skip its
+ * invalidation upon map and invalidate only upon unmap
+ */
+ if (inv_params->flags & MMU_OP_SKIP_LOW_CACHE_INV)
+ return 0;
+
+ start_offset = inv_params->range_invalidation ?
+ STLB_RANGE_CACHE_INVALIDATION_OFFSET : STLB_INV_ALL_START_OFFSET;
+
+ rc = hl_poll_timeout(
+ hdev,
+ stlb_base + start_offset,
+ status,
+ !(status & 0x1),
+ 1000,
+ timeout_usec);
+
+ return rc;
+}
+
+bool gaudi2_is_hmmu_enabled(struct hl_device *hdev, int dcore_id, int hmmu_id)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u32 hw_cap;
+
+ hw_cap = HW_CAP_DCORE0_DMMU0 << (NUM_OF_HMMU_PER_DCORE * dcore_id + hmmu_id);
+
+ if (gaudi2->hw_cap_initialized & hw_cap)
+ return true;
+
+ return false;
+}
+
+/* this function shall be called only for HMMUs for which capability bit is set */
+static inline u32 get_hmmu_stlb_base(int dcore_id, int hmmu_id)
+{
+ u32 offset;
+
+ offset = (u32) (dcore_id * DCORE_OFFSET + hmmu_id * DCORE_HMMU_OFFSET);
+ return (u32)(mmDCORE0_HMMU0_STLB_BASE + offset);
+}
+
+static void gaudi2_mmu_invalidate_cache_trigger(struct hl_device *hdev, u32 stlb_base,
+ struct gaudi2_cache_invld_params *inv_params)
+{
+ u32 start_offset;
+
+ if (inv_params->range_invalidation) {
+ /* Set the addresses range
+ * Note: that the start address we set in register, is not included in
+ * the range of the invalidation, by design.
+ * that's why we need to set lower address than the one we actually
+ * want to be included in the range invalidation.
+ */
+ u64 start = inv_params->start_va - 1;
+
+ start_offset = STLB_RANGE_CACHE_INVALIDATION_OFFSET;
+
+ WREG32(stlb_base + STLB_RANGE_INV_START_LSB_OFFSET,
+ start >> MMU_RANGE_INV_VA_LSB_SHIFT);
+
+ WREG32(stlb_base + STLB_RANGE_INV_START_MSB_OFFSET,
+ start >> MMU_RANGE_INV_VA_MSB_SHIFT);
+
+ WREG32(stlb_base + STLB_RANGE_INV_END_LSB_OFFSET,
+ inv_params->end_va >> MMU_RANGE_INV_VA_LSB_SHIFT);
+
+ WREG32(stlb_base + STLB_RANGE_INV_END_MSB_OFFSET,
+ inv_params->end_va >> MMU_RANGE_INV_VA_MSB_SHIFT);
+ } else {
+ start_offset = STLB_INV_ALL_START_OFFSET;
+ }
+
+ gaudi2_mmu_send_invalidate_cache_cmd(hdev, stlb_base, start_offset,
+ inv_params->inv_start_val, inv_params->flags);
+}
+
+static inline void gaudi2_hmmu_invalidate_cache_trigger(struct hl_device *hdev,
+ int dcore_id, int hmmu_id,
+ struct gaudi2_cache_invld_params *inv_params)
+{
+ u32 stlb_base = get_hmmu_stlb_base(dcore_id, hmmu_id);
+
+ gaudi2_mmu_invalidate_cache_trigger(hdev, stlb_base, inv_params);
+}
+
+static inline int gaudi2_hmmu_invalidate_cache_status_poll(struct hl_device *hdev,
+ int dcore_id, int hmmu_id,
+ struct gaudi2_cache_invld_params *inv_params)
+{
+ u32 stlb_base = get_hmmu_stlb_base(dcore_id, hmmu_id);
+
+ return gaudi2_mmu_invalidate_cache_status_poll(hdev, stlb_base, inv_params);
+}
+
+static int gaudi2_hmmus_invalidate_cache(struct hl_device *hdev,
+ struct gaudi2_cache_invld_params *inv_params)
+{
+ int dcore_id, hmmu_id;
+
+ /* first send all invalidation commands */
+ for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++) {
+ for (hmmu_id = 0 ; hmmu_id < NUM_OF_HMMU_PER_DCORE ; hmmu_id++) {
+ if (!gaudi2_is_hmmu_enabled(hdev, dcore_id, hmmu_id))
+ continue;
+
+ gaudi2_hmmu_invalidate_cache_trigger(hdev, dcore_id, hmmu_id, inv_params);
+ }
+ }
+
+ /* next, poll all invalidations status */
+ for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++) {
+ for (hmmu_id = 0 ; hmmu_id < NUM_OF_HMMU_PER_DCORE ; hmmu_id++) {
+ int rc;
+
+ if (!gaudi2_is_hmmu_enabled(hdev, dcore_id, hmmu_id))
+ continue;
+
+ rc = gaudi2_hmmu_invalidate_cache_status_poll(hdev, dcore_id, hmmu_id,
+ inv_params);
+ if (rc)
+ return rc;
+ }
+ }
+
+ return 0;
+}
+
+static int gaudi2_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ struct gaudi2_cache_invld_params invld_params;
+ int rc = 0;
+
+ if (hdev->reset_info.hard_reset_pending)
+ return rc;
+
+ invld_params.range_invalidation = false;
+ invld_params.inv_start_val = 1;
+
+ if ((flags & MMU_OP_USERPTR) && (gaudi2->hw_cap_initialized & HW_CAP_PMMU)) {
+ invld_params.flags = flags;
+ gaudi2_mmu_invalidate_cache_trigger(hdev, mmPMMU_HBW_STLB_BASE, &invld_params);
+ rc = gaudi2_mmu_invalidate_cache_status_poll(hdev, mmPMMU_HBW_STLB_BASE,
+ &invld_params);
+ } else if (flags & MMU_OP_PHYS_PACK) {
+ invld_params.flags = 0;
+ rc = gaudi2_hmmus_invalidate_cache(hdev, &invld_params);
+ }
+
+ return rc;
+}
+
+static int gaudi2_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
+ u32 flags, u32 asid, u64 va, u64 size)
+{
+ struct gaudi2_cache_invld_params invld_params = {0};
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u64 start_va, end_va;
+ u32 inv_start_val;
+ int rc = 0;
+
+ if (hdev->reset_info.hard_reset_pending)
+ return 0;
+
+ inv_start_val = (1 << MMU_RANGE_INV_EN_SHIFT |
+ 1 << MMU_RANGE_INV_ASID_EN_SHIFT |
+ asid << MMU_RANGE_INV_ASID_SHIFT);
+ start_va = va;
+ end_va = start_va + size;
+
+ if ((flags & MMU_OP_USERPTR) && (gaudi2->hw_cap_initialized & HW_CAP_PMMU)) {
+ /* As range invalidation does not support zero address we will
+ * do full invalidation in this case
+ */
+ if (start_va) {
+ invld_params.range_invalidation = true;
+ invld_params.start_va = start_va;
+ invld_params.end_va = end_va;
+ invld_params.inv_start_val = inv_start_val;
+ invld_params.flags = flags | MMU_OP_CLEAR_MEMCACHE;
+ } else {
+ invld_params.range_invalidation = false;
+ invld_params.inv_start_val = 1;
+ invld_params.flags = flags;
+ }
+
+
+ gaudi2_mmu_invalidate_cache_trigger(hdev, mmPMMU_HBW_STLB_BASE, &invld_params);
+ rc = gaudi2_mmu_invalidate_cache_status_poll(hdev, mmPMMU_HBW_STLB_BASE,
+ &invld_params);
+ if (rc)
+ return rc;
+
+ } else if (flags & MMU_OP_PHYS_PACK) {
+ invld_params.start_va = gaudi2_mmu_scramble_addr(hdev, start_va);
+ invld_params.end_va = gaudi2_mmu_scramble_addr(hdev, end_va);
+ invld_params.inv_start_val = inv_start_val;
+ invld_params.flags = flags;
+ rc = gaudi2_hmmus_invalidate_cache(hdev, &invld_params);
+ }
+
+ return rc;
+}
+
+static int gaudi2_mmu_update_hop0_addr(struct hl_device *hdev, u32 stlb_base)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 hop0_addr;
+ u32 asid, max_asid = prop->max_asid;
+ int rc;
+
+ /* it takes too much time to init all of the ASIDs on palladium */
+ if (hdev->pldm)
+ max_asid = min((u32) 8, max_asid);
+
+ for (asid = 0 ; asid < max_asid ; asid++) {
+ hop0_addr = hdev->mmu_priv.hr.mmu_asid_hop0[asid].phys_addr;
+ rc = gaudi2_mmu_update_asid_hop0_addr(hdev, stlb_base, asid, hop0_addr);
+ if (rc) {
+ dev_err(hdev->dev, "failed to set hop0 addr for asid %d\n", asid);
+ return rc;
+ }
+ }
+
+ return 0;
+}
+
+static int gaudi2_mmu_init_common(struct hl_device *hdev, u32 mmu_base, u32 stlb_base)
+{
+ u32 status, timeout_usec;
+ int rc;
+
+ if (hdev->pldm || !hdev->pdev)
+ timeout_usec = GAUDI2_PLDM_MMU_TIMEOUT_USEC;
+ else
+ timeout_usec = GAUDI2_MMU_CACHE_INV_TIMEOUT_USEC;
+
+ WREG32(stlb_base + STLB_INV_ALL_START_OFFSET, 1);
+
+ rc = hl_poll_timeout(
+ hdev,
+ stlb_base + STLB_SRAM_INIT_OFFSET,
+ status,
+ !status,
+ 1000,
+ timeout_usec);
+
+ if (rc)
+ dev_notice_ratelimited(hdev->dev, "Timeout when waiting for MMU SRAM init\n");
+
+ rc = gaudi2_mmu_update_hop0_addr(hdev, stlb_base);
+ if (rc)
+ return rc;
+
+ WREG32(mmu_base + MMU_BYPASS_OFFSET, 0);
+
+ rc = hl_poll_timeout(
+ hdev,
+ stlb_base + STLB_INV_ALL_START_OFFSET,
+ status,
+ !status,
+ 1000,
+ timeout_usec);
+
+ if (rc)
+ dev_notice_ratelimited(hdev->dev, "Timeout when waiting for MMU invalidate all\n");
+
+ WREG32(mmu_base + MMU_ENABLE_OFFSET, 1);
+
+ return rc;
+}
+
+static int gaudi2_pci_mmu_init(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u32 mmu_base, stlb_base;
+ int rc;
+
+ if (gaudi2->hw_cap_initialized & HW_CAP_PMMU)
+ return 0;
+
+ mmu_base = mmPMMU_HBW_MMU_BASE;
+ stlb_base = mmPMMU_HBW_STLB_BASE;
+
+ RMWREG32_SHIFTED(stlb_base + STLB_HOP_CONFIGURATION_OFFSET,
+ (0 << PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_HOP_SHIFT) |
+ (5 << PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_SMALL_P_SHIFT) |
+ (4 << PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_LARGE_P_SHIFT) |
+ (5 << PMMU_HBW_STLB_HOP_CONFIGURATION_LAST_HOP_SHIFT) |
+ (5 << PMMU_HBW_STLB_HOP_CONFIGURATION_FOLLOWER_HOP_SHIFT),
+ PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_HOP_MASK |
+ PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_SMALL_P_MASK |
+ PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_LARGE_P_MASK |
+ PMMU_HBW_STLB_HOP_CONFIGURATION_LAST_HOP_MASK |
+ PMMU_HBW_STLB_HOP_CONFIGURATION_FOLLOWER_HOP_MASK);
+
+ WREG32(stlb_base + STLB_LL_LOOKUP_MASK_63_32_OFFSET, 0);
+
+ if (PAGE_SIZE == SZ_64K) {
+ /* Set page sizes to 64K on hop5 and 16M on hop4 + enable 8 bit hops */
+ RMWREG32_SHIFTED(mmu_base + MMU_STATIC_MULTI_PAGE_SIZE_OFFSET,
+ FIELD_PREP(DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_HOP5_PAGE_SIZE_MASK, 4) |
+ FIELD_PREP(DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_HOP4_PAGE_SIZE_MASK, 3) |
+ FIELD_PREP(
+ DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_CFG_8_BITS_HOP_MODE_EN_MASK,
+ 1),
+ DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_HOP5_PAGE_SIZE_MASK |
+ DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_HOP4_PAGE_SIZE_MASK |
+ DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_CFG_8_BITS_HOP_MODE_EN_MASK);
+ }
+
+ WREG32(mmu_base + MMU_SPI_SEI_MASK_OFFSET, GAUDI2_PMMU_SPI_SEI_ENABLE_MASK);
+
+ rc = gaudi2_mmu_init_common(hdev, mmu_base, stlb_base);
+ if (rc)
+ return rc;
+
+ gaudi2->hw_cap_initialized |= HW_CAP_PMMU;
+
+ return 0;
+}
+
+static int gaudi2_dcore_hmmu_init(struct hl_device *hdev, int dcore_id,
+ int hmmu_id)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u32 offset, mmu_base, stlb_base, hw_cap;
+ u8 dmmu_seq;
+ int rc;
+
+ dmmu_seq = NUM_OF_HMMU_PER_DCORE * dcore_id + hmmu_id;
+ hw_cap = HW_CAP_DCORE0_DMMU0 << dmmu_seq;
+
+ /*
+ * return if DMMU is already initialized or if it's not out of
+ * isolation (due to cluster binning)
+ */
+ if ((gaudi2->hw_cap_initialized & hw_cap) || !(prop->hmmu_hif_enabled_mask & BIT(dmmu_seq)))
+ return 0;
+
+ offset = (u32) (dcore_id * DCORE_OFFSET + hmmu_id * DCORE_HMMU_OFFSET);
+ mmu_base = mmDCORE0_HMMU0_MMU_BASE + offset;
+ stlb_base = mmDCORE0_HMMU0_STLB_BASE + offset;
+
+ RMWREG32(mmu_base + MMU_STATIC_MULTI_PAGE_SIZE_OFFSET, 5 /* 64MB */,
+ MMU_STATIC_MULTI_PAGE_SIZE_HOP4_PAGE_SIZE_MASK);
+
+ RMWREG32_SHIFTED(stlb_base + STLB_HOP_CONFIGURATION_OFFSET,
+ FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_HOP_MASK, 0) |
+ FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_SMALL_P_MASK, 3) |
+ FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_LARGE_P_MASK, 3) |
+ FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_LAST_HOP_MASK, 3) |
+ FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FOLLOWER_HOP_MASK, 3),
+ DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_HOP_MASK |
+ DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_SMALL_P_MASK |
+ DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_LARGE_P_MASK |
+ DCORE0_HMMU0_STLB_HOP_CONFIGURATION_LAST_HOP_MASK |
+ DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FOLLOWER_HOP_MASK);
+
+ RMWREG32(stlb_base + STLB_HOP_CONFIGURATION_OFFSET, 1,
+ STLB_HOP_CONFIGURATION_ONLY_LARGE_PAGE_MASK);
+
+ WREG32(mmu_base + MMU_SPI_SEI_MASK_OFFSET, GAUDI2_HMMU_SPI_SEI_ENABLE_MASK);
+
+ rc = gaudi2_mmu_init_common(hdev, mmu_base, stlb_base);
+ if (rc)
+ return rc;
+
+ gaudi2->hw_cap_initialized |= hw_cap;
+
+ return 0;
+}
+
+static int gaudi2_hbm_mmu_init(struct hl_device *hdev)
+{
+ int rc, dcore_id, hmmu_id;
+
+ for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++)
+ for (hmmu_id = 0 ; hmmu_id < NUM_OF_HMMU_PER_DCORE; hmmu_id++) {
+ rc = gaudi2_dcore_hmmu_init(hdev, dcore_id, hmmu_id);
+ if (rc)
+ return rc;
+ }
+
+ return 0;
+}
+
+static int gaudi2_mmu_init(struct hl_device *hdev)
+{
+ int rc;
+
+ rc = gaudi2_pci_mmu_init(hdev);
+ if (rc)
+ return rc;
+
+ rc = gaudi2_hbm_mmu_init(hdev);
+ if (rc)
+ return rc;
+
+ return 0;
+}
+
+static int gaudi2_hw_init(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ int rc;
+
+ /* Let's mark in the H/W that we have reached this point. We check
+ * this value in the reset_before_init function to understand whether
+ * we need to reset the chip before doing H/W init. This register is
+ * cleared by the H/W upon H/W reset
+ */
+ WREG32(mmHW_STATE, HL_DEVICE_HW_STATE_DIRTY);
+
+ /* Perform read from the device to make sure device is up */
+ RREG32(mmHW_STATE);
+
+ /* If iATU is done by FW, the HBM bar ALWAYS points to DRAM_PHYS_BASE.
+ * So we set it here and if anyone tries to move it later to
+ * a different address, there will be an error
+ */
+ if (hdev->asic_prop.iatu_done_by_fw)
+ gaudi2->dram_bar_cur_addr = DRAM_PHYS_BASE;
+
+ /*
+ * Before pushing u-boot/linux to device, need to set the hbm bar to
+ * base address of dram
+ */
+ if (gaudi2_set_hbm_bar_base(hdev, DRAM_PHYS_BASE) == U64_MAX) {
+ dev_err(hdev->dev, "failed to map HBM bar to DRAM base address\n");
+ return -EIO;
+ }
+
+ rc = gaudi2_init_cpu(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "failed to initialize CPU\n");
+ return rc;
+ }
+
+ gaudi2_init_scrambler_hbm(hdev);
+ gaudi2_init_kdma(hdev);
+
+ rc = gaudi2_init_cpu_queues(hdev, GAUDI2_CPU_TIMEOUT_USEC);
+ if (rc) {
+ dev_err(hdev->dev, "failed to initialize CPU H/W queues %d\n", rc);
+ return rc;
+ }
+
+ rc = gaudi2->cpucp_info_get(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to get cpucp info\n");
+ return rc;
+ }
+
+ rc = gaudi2_mmu_init(hdev);
+ if (rc)
+ return rc;
+
+ gaudi2_init_pdma(hdev);
+ gaudi2_init_edma(hdev);
+ gaudi2_init_sm(hdev);
+ gaudi2_init_tpc(hdev);
+ gaudi2_init_mme(hdev);
+ gaudi2_init_rotator(hdev);
+ gaudi2_init_dec(hdev);
+ gaudi2_enable_timestamp(hdev);
+
+ rc = gaudi2_coresight_init(hdev);
+ if (rc)
+ goto disable_queues;
+
+ rc = gaudi2_enable_msix(hdev);
+ if (rc)
+ goto disable_queues;
+
+ /* Perform read from the device to flush all configuration */
+ RREG32(mmHW_STATE);
+
+ return 0;
+
+disable_queues:
+ gaudi2_disable_dma_qmans(hdev);
+ gaudi2_disable_mme_qmans(hdev);
+ gaudi2_disable_tpc_qmans(hdev);
+ gaudi2_disable_rot_qmans(hdev);
+ gaudi2_disable_nic_qmans(hdev);
+
+ gaudi2_disable_timestamp(hdev);
+
+ return rc;
+}
+
+/**
+ * gaudi2_send_hard_reset_cmd - common function to handle reset
+ *
+ * @hdev: pointer to the habanalabs device structure
+ *
+ * This function handles the various possible scenarios for reset.
+ * It considers if reset is handled by driver\FW and what FW components are loaded
+ */
+static void gaudi2_send_hard_reset_cmd(struct hl_device *hdev)
+{
+ struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
+ bool heartbeat_reset, preboot_only, cpu_initialized = false;
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u32 cpu_boot_status;
+
+ preboot_only = (hdev->fw_loader.fw_comp_loaded == FW_TYPE_PREBOOT_CPU);
+ heartbeat_reset = (hdev->reset_info.curr_reset_cause == HL_RESET_CAUSE_HEARTBEAT);
+
+ /*
+ * Handle corner case where failure was at cpu management app load,
+ * and driver didn't detect any failure while loading the FW,
+ * then at such scenario driver will send only HALT_MACHINE
+ * and no one will respond to this request since FW already back to preboot
+ * and it cannot handle such cmd.
+ * In this case next time the management app loads it'll check on events register
+ * which will still have the halt indication, and will reboot the device.
+ * The solution is to let preboot clear all relevant registers before next boot
+ * once driver send COMMS_RST_DEV.
+ */
+ cpu_boot_status = RREG32(mmPSOC_GLOBAL_CONF_CPU_BOOT_STATUS);
+
+ if (gaudi2 && (gaudi2->hw_cap_initialized & HW_CAP_CPU) &&
+ (cpu_boot_status == CPU_BOOT_STATUS_SRAM_AVAIL))
+ cpu_initialized = true;
+
+ /*
+ * when Linux/Bootfit exist this write to the SP can be interpreted in 2 ways:
+ * 1. FW reset: FW initiate the reset sequence
+ * 2. driver reset: FW will start HALT sequence (the preparations for the
+ * reset but not the reset itself as it is not implemented
+ * on their part) and LKD will wait to let FW complete the
+ * sequence before issuing the reset
+ */
+ if (!preboot_only && cpu_initialized) {
+ WREG32(le32_to_cpu(dyn_regs->gic_host_halt_irq),
+ gaudi2_irq_map_table[GAUDI2_EVENT_CPU_HALT_MACHINE].cpu_id);
+
+ msleep(GAUDI2_CPU_RESET_WAIT_MSEC);
+ }
+
+ /*
+ * When working with preboot (without Linux/Boot fit) we can
+ * communicate only using the COMMS commands to issue halt/reset.
+ *
+ * For the case in which we are working with Linux/Bootfit this is a hail-mary
+ * attempt to revive the card in the small chance that the f/w has
+ * experienced a watchdog event, which caused it to return back to preboot.
+ * In that case, triggering reset through GIC won't help. We need to
+ * trigger the reset as if Linux wasn't loaded.
+ *
+ * We do it only if the reset cause was HB, because that would be the
+ * indication of such an event.
+ *
+ * In case watchdog hasn't expired but we still got HB, then this won't
+ * do any damage.
+ */
+
+ if (heartbeat_reset || preboot_only || !cpu_initialized) {
+ if (hdev->asic_prop.hard_reset_done_by_fw)
+ hl_fw_ask_hard_reset_without_linux(hdev);
+ else
+ hl_fw_ask_halt_machine_without_linux(hdev);
+ }
+}
+
+/**
+ * gaudi2_execute_hard_reset - execute hard reset by driver/FW
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @reset_sleep_ms: sleep time in msec after reset
+ *
+ * This function executes hard reset based on if driver/FW should do the reset
+ */
+static void gaudi2_execute_hard_reset(struct hl_device *hdev, u32 reset_sleep_ms)
+{
+ if (hdev->asic_prop.hard_reset_done_by_fw) {
+ gaudi2_send_hard_reset_cmd(hdev);
+ return;
+ }
+
+ /* Set device to handle FLR by H/W as we will put the device
+ * CPU to halt mode
+ */
+ WREG32(mmPCIE_AUX_FLR_CTRL,
+ (PCIE_AUX_FLR_CTRL_HW_CTRL_MASK | PCIE_AUX_FLR_CTRL_INT_MASK_MASK));
+
+ gaudi2_send_hard_reset_cmd(hdev);
+
+ WREG32(mmPSOC_RESET_CONF_SW_ALL_RST, 1);
+}
+
+/**
+ * gaudi2_execute_soft_reset - execute soft reset by driver/FW
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @reset_sleep_ms: sleep time in msec after reset
+ * @driver_performs_reset: true if driver should perform reset instead of f/w.
+ *
+ * This function executes soft reset based on if driver/FW should do the reset
+ */
+static void gaudi2_execute_soft_reset(struct hl_device *hdev, u32 reset_sleep_ms,
+ bool driver_performs_reset)
+{
+ struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
+
+ if (!driver_performs_reset) {
+ /* set SP to indicate reset request sent to FW */
+ if (dyn_regs->cpu_rst_status)
+ WREG32(le32_to_cpu(dyn_regs->cpu_rst_status), CPU_RST_STATUS_NA);
+ else
+ WREG32(mmCPU_RST_STATUS_TO_HOST, CPU_RST_STATUS_NA);
+
+ WREG32(le32_to_cpu(dyn_regs->gic_host_soft_rst_irq),
+ gaudi2_irq_map_table[GAUDI2_EVENT_CPU_SOFT_RESET].cpu_id);
+ return;
+ }
+
+ /* Block access to engines, QMANs and SM during reset, these
+ * RRs will be reconfigured after soft reset.
+ * PCIE_MSIX is left unsecured to allow NIC packets processing during the reset.
+ */
+ gaudi2_write_rr_to_all_lbw_rtrs(hdev, RR_TYPE_LONG, NUM_LONG_LBW_RR - 1,
+ mmDCORE0_TPC0_QM_DCCM_BASE, mmPCIE_MSIX_BASE);
+
+ gaudi2_write_rr_to_all_lbw_rtrs(hdev, RR_TYPE_LONG, NUM_LONG_LBW_RR - 2,
+ mmPCIE_MSIX_BASE + HL_BLOCK_SIZE,
+ mmPCIE_VDEC1_MSTR_IF_RR_SHRD_HBW_BASE + HL_BLOCK_SIZE);
+
+ WREG32(mmPSOC_RESET_CONF_SOFT_RST, 1);
+}
+
+static void gaudi2_poll_btm_indication(struct hl_device *hdev, u32 reset_sleep_ms,
+ u32 poll_timeout_us)
+{
+ int i, rc = 0;
+ u32 reg_val;
+
+ /* without this sleep reset will not work */
+ msleep(reset_sleep_ms);
+
+ /* We poll the BTM done indication multiple times after reset due to
+ * a HW errata 'GAUDI2_0300'
+ */
+ for (i = 0 ; i < GAUDI2_RESET_POLL_CNT ; i++)
+ rc = hl_poll_timeout(
+ hdev,
+ mmPSOC_GLOBAL_CONF_BTM_FSM,
+ reg_val,
+ reg_val == 0,
+ 1000,
+ poll_timeout_us);
+
+ if (rc)
+ dev_err(hdev->dev, "Timeout while waiting for device to reset 0x%x\n", reg_val);
+}
+
+static void gaudi2_get_soft_rst_done_indication(struct hl_device *hdev, u32 poll_timeout_us)
+{
+ int i, rc = 0;
+ u32 reg_val;
+
+ for (i = 0 ; i < GAUDI2_RESET_POLL_CNT ; i++)
+ rc = hl_poll_timeout(
+ hdev,
+ mmCPU_RST_STATUS_TO_HOST,
+ reg_val,
+ reg_val == CPU_RST_STATUS_SOFT_RST_DONE,
+ 1000,
+ poll_timeout_us);
+
+ if (rc)
+ dev_err(hdev->dev, "Timeout while waiting for FW to complete soft reset (0x%x)\n",
+ reg_val);
+}
+
+static void gaudi2_hw_fini(struct hl_device *hdev, bool hard_reset, bool fw_reset)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u32 poll_timeout_us, reset_sleep_ms;
+ bool driver_performs_reset = false;
+
+ if (hdev->pldm) {
+ reset_sleep_ms = hard_reset ? GAUDI2_PLDM_HRESET_TIMEOUT_MSEC :
+ GAUDI2_PLDM_SRESET_TIMEOUT_MSEC;
+ poll_timeout_us = GAUDI2_PLDM_RESET_POLL_TIMEOUT_USEC;
+ } else {
+ reset_sleep_ms = GAUDI2_RESET_TIMEOUT_MSEC;
+ poll_timeout_us = GAUDI2_RESET_POLL_TIMEOUT_USEC;
+ }
+
+ if (fw_reset)
+ goto skip_reset;
+
+ gaudi2_reset_arcs(hdev);
+
+ if (hard_reset) {
+ driver_performs_reset = !hdev->asic_prop.hard_reset_done_by_fw;
+ gaudi2_execute_hard_reset(hdev, reset_sleep_ms);
+ } else {
+ /*
+ * As we have to support also work with preboot only (which does not supports
+ * soft reset) we have to make sure that security is disabled before letting driver
+ * do the reset. user shall control the BFE flags to avoid asking soft reset in
+ * secured device with preboot only.
+ */
+ driver_performs_reset = (hdev->fw_components == FW_TYPE_PREBOOT_CPU &&
+ !hdev->asic_prop.fw_security_enabled);
+ gaudi2_execute_soft_reset(hdev, reset_sleep_ms, driver_performs_reset);
+ }
+
+skip_reset:
+ if (driver_performs_reset || hard_reset)
+ /*
+ * Instead of waiting for BTM indication we should wait for preboot ready:
+ * Consider the below scenario:
+ * 1. FW update is being triggered
+ * - setting the dirty bit
+ * 2. hard reset will be triggered due to the dirty bit
+ * 3. FW initiates the reset:
+ * - dirty bit cleared
+ * - BTM indication cleared
+ * - preboot ready indication cleared
+ * 4. during hard reset:
+ * - BTM indication will be set
+ * - BIST test performed and another reset triggered
+ * 5. only after this reset the preboot will set the preboot ready
+ *
+ * when polling on BTM indication alone we can lose sync with FW while trying to
+ * communicate with FW that is during reset.
+ * to overcome this we will always wait to preboot ready indication
+ */
+ if ((hdev->fw_components & FW_TYPE_PREBOOT_CPU)) {
+ msleep(reset_sleep_ms);
+ hl_fw_wait_preboot_ready(hdev);
+ } else {
+ gaudi2_poll_btm_indication(hdev, reset_sleep_ms, poll_timeout_us);
+ }
+ else
+ gaudi2_get_soft_rst_done_indication(hdev, poll_timeout_us);
+
+ if (!gaudi2)
+ return;
+
+ gaudi2->dec_hw_cap_initialized &= ~(HW_CAP_DEC_MASK);
+ gaudi2->tpc_hw_cap_initialized &= ~(HW_CAP_TPC_MASK);
+
+ /*
+ * Clear NIC capability mask in order for driver to re-configure
+ * NIC QMANs. NIC ports will not be re-configured during soft
+ * reset as we call gaudi2_nic_init only during hard reset
+ */
+ gaudi2->nic_hw_cap_initialized &= ~(HW_CAP_NIC_MASK);
+
+ if (hard_reset) {
+ gaudi2->hw_cap_initialized &=
+ ~(HW_CAP_DRAM | HW_CAP_CLK_GATE | HW_CAP_HBM_SCRAMBLER_MASK |
+ HW_CAP_PMMU | HW_CAP_CPU | HW_CAP_CPU_Q |
+ HW_CAP_SRAM_SCRAMBLER | HW_CAP_DMMU_MASK |
+ HW_CAP_PDMA_MASK | HW_CAP_EDMA_MASK | HW_CAP_KDMA |
+ HW_CAP_MME_MASK | HW_CAP_ROT_MASK);
+
+ memset(gaudi2->events_stat, 0, sizeof(gaudi2->events_stat));
+ } else {
+ gaudi2->hw_cap_initialized &=
+ ~(HW_CAP_CLK_GATE | HW_CAP_HBM_SCRAMBLER_SW_RESET |
+ HW_CAP_PDMA_MASK | HW_CAP_EDMA_MASK | HW_CAP_MME_MASK |
+ HW_CAP_ROT_MASK);
+ }
+}
+
+static int gaudi2_suspend(struct hl_device *hdev)
+{
+ int rc;
+
+ rc = hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0);
+ if (rc)
+ dev_err(hdev->dev, "Failed to disable PCI access from CPU\n");
+
+ return rc;
+}
+
+static int gaudi2_resume(struct hl_device *hdev)
+{
+ return gaudi2_init_iatu(hdev);
+}
+
+static int gaudi2_mmap(struct hl_device *hdev, struct vm_area_struct *vma,
+ void *cpu_addr, dma_addr_t dma_addr, size_t size)
+{
+ int rc;
+
- vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP |
- VM_DONTCOPY | VM_NORESERVE;
++ vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP |
++ VM_DONTCOPY | VM_NORESERVE);
+
+#ifdef _HAS_DMA_MMAP_COHERENT
+
+ rc = dma_mmap_coherent(hdev->dev, vma, cpu_addr, dma_addr, size);
+ if (rc)
+ dev_err(hdev->dev, "dma_mmap_coherent error %d", rc);
+
+#else
+
+ rc = remap_pfn_range(vma, vma->vm_start,
+ virt_to_phys(cpu_addr) >> PAGE_SHIFT,
+ size, vma->vm_page_prot);
+ if (rc)
+ dev_err(hdev->dev, "remap_pfn_range error %d", rc);
+
+#endif
+
+ return rc;
+}
+
+static bool gaudi2_is_queue_enabled(struct hl_device *hdev, u32 hw_queue_id)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u64 hw_cap_mask = 0;
+ u64 hw_tpc_cap_bit = 0;
+ u64 hw_nic_cap_bit = 0;
+ u64 hw_test_cap_bit = 0;
+
+ switch (hw_queue_id) {
+ case GAUDI2_QUEUE_ID_PDMA_0_0:
+ case GAUDI2_QUEUE_ID_PDMA_0_1:
+ case GAUDI2_QUEUE_ID_PDMA_1_0:
+ hw_cap_mask = HW_CAP_PDMA_MASK;
+ break;
+ case GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3:
+ hw_test_cap_bit = HW_CAP_EDMA_SHIFT +
+ ((hw_queue_id - GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0) >> 2);
+ break;
+ case GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3:
+ hw_test_cap_bit = HW_CAP_EDMA_SHIFT + NUM_OF_EDMA_PER_DCORE +
+ ((hw_queue_id - GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0) >> 2);
+ break;
+ case GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3:
+ hw_test_cap_bit = HW_CAP_EDMA_SHIFT + 2 * NUM_OF_EDMA_PER_DCORE +
+ ((hw_queue_id - GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0) >> 2);
+ break;
+ case GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3:
+ hw_test_cap_bit = HW_CAP_EDMA_SHIFT + 3 * NUM_OF_EDMA_PER_DCORE +
+ ((hw_queue_id - GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0) >> 2);
+ break;
+
+ case GAUDI2_QUEUE_ID_DCORE0_MME_0_0 ... GAUDI2_QUEUE_ID_DCORE0_MME_0_3:
+ hw_test_cap_bit = HW_CAP_MME_SHIFT;
+ break;
+
+ case GAUDI2_QUEUE_ID_DCORE1_MME_0_0 ... GAUDI2_QUEUE_ID_DCORE1_MME_0_3:
+ hw_test_cap_bit = HW_CAP_MME_SHIFT + 1;
+ break;
+
+ case GAUDI2_QUEUE_ID_DCORE2_MME_0_0 ... GAUDI2_QUEUE_ID_DCORE2_MME_0_3:
+ hw_test_cap_bit = HW_CAP_MME_SHIFT + 2;
+ break;
+
+ case GAUDI2_QUEUE_ID_DCORE3_MME_0_0 ... GAUDI2_QUEUE_ID_DCORE3_MME_0_3:
+ hw_test_cap_bit = HW_CAP_MME_SHIFT + 3;
+ break;
+
+ case GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE0_TPC_5_3:
+ hw_tpc_cap_bit = HW_CAP_TPC_SHIFT +
+ ((hw_queue_id - GAUDI2_QUEUE_ID_DCORE0_TPC_0_0) >> 2);
+
+ /* special case where cap bit refers to the first queue id */
+ if (!hw_tpc_cap_bit)
+ return !!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(0));
+ break;
+
+ case GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE1_TPC_5_3:
+ hw_tpc_cap_bit = HW_CAP_TPC_SHIFT + NUM_OF_TPC_PER_DCORE +
+ ((hw_queue_id - GAUDI2_QUEUE_ID_DCORE1_TPC_0_0) >> 2);
+ break;
+
+ case GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE2_TPC_5_3:
+ hw_tpc_cap_bit = HW_CAP_TPC_SHIFT + (2 * NUM_OF_TPC_PER_DCORE) +
+ ((hw_queue_id - GAUDI2_QUEUE_ID_DCORE2_TPC_0_0) >> 2);
+ break;
+
+ case GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE3_TPC_5_3:
+ hw_tpc_cap_bit = HW_CAP_TPC_SHIFT + (3 * NUM_OF_TPC_PER_DCORE) +
+ ((hw_queue_id - GAUDI2_QUEUE_ID_DCORE3_TPC_0_0) >> 2);
+ break;
+
+ case GAUDI2_QUEUE_ID_DCORE0_TPC_6_0 ... GAUDI2_QUEUE_ID_DCORE0_TPC_6_3:
+ hw_tpc_cap_bit = HW_CAP_TPC_SHIFT + (4 * NUM_OF_TPC_PER_DCORE);
+ break;
+
+ case GAUDI2_QUEUE_ID_ROT_0_0 ... GAUDI2_QUEUE_ID_ROT_1_3:
+ hw_test_cap_bit = HW_CAP_ROT_SHIFT + ((hw_queue_id - GAUDI2_QUEUE_ID_ROT_0_0) >> 2);
+ break;
+
+ case GAUDI2_QUEUE_ID_NIC_0_0 ... GAUDI2_QUEUE_ID_NIC_23_3:
+ hw_nic_cap_bit = HW_CAP_NIC_SHIFT + ((hw_queue_id - GAUDI2_QUEUE_ID_NIC_0_0) >> 2);
+
+ /* special case where cap bit refers to the first queue id */
+ if (!hw_nic_cap_bit)
+ return !!(gaudi2->nic_hw_cap_initialized & BIT_ULL(0));
+ break;
+
+ case GAUDI2_QUEUE_ID_CPU_PQ:
+ return !!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q);
+
+ default:
+ return false;
+ }
+
+ if (hw_tpc_cap_bit)
+ return !!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(hw_tpc_cap_bit));
+
+ if (hw_nic_cap_bit)
+ return !!(gaudi2->nic_hw_cap_initialized & BIT_ULL(hw_nic_cap_bit));
+
+ if (hw_test_cap_bit)
+ hw_cap_mask = BIT_ULL(hw_test_cap_bit);
+
+ return !!(gaudi2->hw_cap_initialized & hw_cap_mask);
+}
+
+static bool gaudi2_is_arc_enabled(struct hl_device *hdev, u64 arc_id)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+
+ switch (arc_id) {
+ case CPU_ID_SCHED_ARC0 ... CPU_ID_SCHED_ARC5:
+ case CPU_ID_MME_QMAN_ARC0...CPU_ID_ROT_QMAN_ARC1:
+ return !!(gaudi2->active_hw_arc & BIT_ULL(arc_id));
+
+ case CPU_ID_TPC_QMAN_ARC0...CPU_ID_TPC_QMAN_ARC24:
+ return !!(gaudi2->active_tpc_arc & BIT_ULL(arc_id - CPU_ID_TPC_QMAN_ARC0));
+
+ case CPU_ID_NIC_QMAN_ARC0...CPU_ID_NIC_QMAN_ARC23:
+ return !!(gaudi2->active_nic_arc & BIT_ULL(arc_id - CPU_ID_NIC_QMAN_ARC0));
+
+ default:
+ return false;
+ }
+}
+
+static void gaudi2_clr_arc_id_cap(struct hl_device *hdev, u64 arc_id)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+
+ switch (arc_id) {
+ case CPU_ID_SCHED_ARC0 ... CPU_ID_SCHED_ARC5:
+ case CPU_ID_MME_QMAN_ARC0...CPU_ID_ROT_QMAN_ARC1:
+ gaudi2->active_hw_arc &= ~(BIT_ULL(arc_id));
+ break;
+
+ case CPU_ID_TPC_QMAN_ARC0...CPU_ID_TPC_QMAN_ARC24:
+ gaudi2->active_tpc_arc &= ~(BIT_ULL(arc_id - CPU_ID_TPC_QMAN_ARC0));
+ break;
+
+ case CPU_ID_NIC_QMAN_ARC0...CPU_ID_NIC_QMAN_ARC23:
+ gaudi2->active_nic_arc &= ~(BIT_ULL(arc_id - CPU_ID_NIC_QMAN_ARC0));
+ break;
+
+ default:
+ return;
+ }
+}
+
+static void gaudi2_set_arc_id_cap(struct hl_device *hdev, u64 arc_id)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+
+ switch (arc_id) {
+ case CPU_ID_SCHED_ARC0 ... CPU_ID_SCHED_ARC5:
+ case CPU_ID_MME_QMAN_ARC0...CPU_ID_ROT_QMAN_ARC1:
+ gaudi2->active_hw_arc |= BIT_ULL(arc_id);
+ break;
+
+ case CPU_ID_TPC_QMAN_ARC0...CPU_ID_TPC_QMAN_ARC24:
+ gaudi2->active_tpc_arc |= BIT_ULL(arc_id - CPU_ID_TPC_QMAN_ARC0);
+ break;
+
+ case CPU_ID_NIC_QMAN_ARC0...CPU_ID_NIC_QMAN_ARC23:
+ gaudi2->active_nic_arc |= BIT_ULL(arc_id - CPU_ID_NIC_QMAN_ARC0);
+ break;
+
+ default:
+ return;
+ }
+}
+
+static void gaudi2_ring_doorbell(struct hl_device *hdev, u32 hw_queue_id, u32 pi)
+{
+ struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
+ u32 pq_offset, reg_base, db_reg_offset, db_value;
+
+ if (hw_queue_id != GAUDI2_QUEUE_ID_CPU_PQ) {
+ /*
+ * QMAN has 4 successive PQ_PI registers, 1 for each of the QMAN PQs.
+ * Masking the H/W queue ID with 0x3 extracts the QMAN internal PQ
+ * number.
+ */
+ pq_offset = (hw_queue_id & 0x3) * 4;
+ reg_base = gaudi2_qm_blocks_bases[hw_queue_id];
+ db_reg_offset = reg_base + QM_PQ_PI_0_OFFSET + pq_offset;
+ } else {
+ db_reg_offset = mmCPU_IF_PF_PQ_PI;
+ }
+
+ db_value = pi;
+
+ /* ring the doorbell */
+ WREG32(db_reg_offset, db_value);
+
+ if (hw_queue_id == GAUDI2_QUEUE_ID_CPU_PQ) {
+ /* make sure device CPU will read latest data from host */
+ mb();
+ WREG32(le32_to_cpu(dyn_regs->gic_host_pi_upd_irq),
+ gaudi2_irq_map_table[GAUDI2_EVENT_CPU_PI_UPDATE].cpu_id);
+ }
+}
+
+static void gaudi2_pqe_write(struct hl_device *hdev, __le64 *pqe, struct hl_bd *bd)
+{
+ __le64 *pbd = (__le64 *) bd;
+
+ /* The QMANs are on the host memory so a simple copy suffice */
+ pqe[0] = pbd[0];
+ pqe[1] = pbd[1];
+}
+
+static void *gaudi2_dma_alloc_coherent(struct hl_device *hdev, size_t size,
+ dma_addr_t *dma_handle, gfp_t flags)
+{
+ return dma_alloc_coherent(&hdev->pdev->dev, size, dma_handle, flags);
+}
+
+static void gaudi2_dma_free_coherent(struct hl_device *hdev, size_t size,
+ void *cpu_addr, dma_addr_t dma_handle)
+{
+ dma_free_coherent(&hdev->pdev->dev, size, cpu_addr, dma_handle);
+}
+
+static int gaudi2_send_cpu_message(struct hl_device *hdev, u32 *msg, u16 len,
+ u32 timeout, u64 *result)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+
+ if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q)) {
+ if (result)
+ *result = 0;
+ return 0;
+ }
+
+ if (!timeout)
+ timeout = GAUDI2_MSG_TO_CPU_TIMEOUT_USEC;
+
+ return hl_fw_send_cpu_message(hdev, GAUDI2_QUEUE_ID_CPU_PQ, msg, len, timeout, result);
+}
+
+static void *gaudi2_dma_pool_zalloc(struct hl_device *hdev, size_t size,
+ gfp_t mem_flags, dma_addr_t *dma_handle)
+{
+ if (size > GAUDI2_DMA_POOL_BLK_SIZE)
+ return NULL;
+
+ return dma_pool_zalloc(hdev->dma_pool, mem_flags, dma_handle);
+}
+
+static void gaudi2_dma_pool_free(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr)
+{
+ dma_pool_free(hdev->dma_pool, vaddr, dma_addr);
+}
+
+static void *gaudi2_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
+ dma_addr_t *dma_handle)
+{
+ return hl_fw_cpu_accessible_dma_pool_alloc(hdev, size, dma_handle);
+}
+
+static void gaudi2_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr)
+{
+ hl_fw_cpu_accessible_dma_pool_free(hdev, size, vaddr);
+}
+
+static dma_addr_t gaudi2_dma_map_single(struct hl_device *hdev, void *addr, int len,
+ enum dma_data_direction dir)
+{
+ dma_addr_t dma_addr;
+
+ dma_addr = dma_map_single(&hdev->pdev->dev, addr, len, dir);
+ if (unlikely(dma_mapping_error(&hdev->pdev->dev, dma_addr)))
+ return 0;
+
+ return dma_addr;
+}
+
+static void gaudi2_dma_unmap_single(struct hl_device *hdev, dma_addr_t addr, int len,
+ enum dma_data_direction dir)
+{
+ dma_unmap_single(&hdev->pdev->dev, addr, len, dir);
+}
+
+static int gaudi2_validate_cb_address(struct hl_device *hdev, struct hl_cs_parser *parser)
+{
+ struct asic_fixed_properties *asic_prop = &hdev->asic_prop;
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+
+ if (!gaudi2_is_queue_enabled(hdev, parser->hw_queue_id)) {
+ dev_err(hdev->dev, "h/w queue %d is disabled\n", parser->hw_queue_id);
+ return -EINVAL;
+ }
+
+ /* Just check if CB address is valid */
+
+ if (hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb,
+ parser->user_cb_size,
+ asic_prop->sram_user_base_address,
+ asic_prop->sram_end_address))
+ return 0;
+
+ if (hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb,
+ parser->user_cb_size,
+ asic_prop->dram_user_base_address,
+ asic_prop->dram_end_address))
+ return 0;
+
+ if ((gaudi2->hw_cap_initialized & HW_CAP_DMMU_MASK) &&
+ hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb,
+ parser->user_cb_size,
+ asic_prop->dmmu.start_addr,
+ asic_prop->dmmu.end_addr))
+ return 0;
+
+ if (gaudi2->hw_cap_initialized & HW_CAP_PMMU) {
+ if (hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb,
+ parser->user_cb_size,
+ asic_prop->pmmu.start_addr,
+ asic_prop->pmmu.end_addr) ||
+ hl_mem_area_inside_range(
+ (u64) (uintptr_t) parser->user_cb,
+ parser->user_cb_size,
+ asic_prop->pmmu_huge.start_addr,
+ asic_prop->pmmu_huge.end_addr))
+ return 0;
+
+ } else if (gaudi2_host_phys_addr_valid((u64) (uintptr_t) parser->user_cb)) {
+ if (!hdev->pdev)
+ return 0;
+
+ if (!device_iommu_mapped(&hdev->pdev->dev))
+ return 0;
+ }
+
+ dev_err(hdev->dev, "CB address %p + 0x%x for internal QMAN is not valid\n",
+ parser->user_cb, parser->user_cb_size);
+
+ return -EFAULT;
+}
+
+static int gaudi2_cs_parser(struct hl_device *hdev, struct hl_cs_parser *parser)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+
+ if (!parser->is_kernel_allocated_cb)
+ return gaudi2_validate_cb_address(hdev, parser);
+
+ if (!(gaudi2->hw_cap_initialized & HW_CAP_PMMU)) {
+ dev_err(hdev->dev, "PMMU not initialized - Unsupported mode in Gaudi2\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int gaudi2_send_heartbeat(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+
+ if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q))
+ return 0;
+
+ return hl_fw_send_heartbeat(hdev);
+}
+
+/* This is an internal helper function, used to update the KDMA mmu props.
+ * Should be called with a proper kdma lock.
+ */
+static void gaudi2_kdma_set_mmbp_asid(struct hl_device *hdev,
+ bool mmu_bypass, u32 asid)
+{
+ u32 rw_asid, rw_mmu_bp;
+
+ rw_asid = (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_RD_SHIFT) |
+ (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_WR_SHIFT);
+
+ rw_mmu_bp = (!!mmu_bypass << ARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP_RD_SHIFT) |
+ (!!mmu_bypass << ARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP_WR_SHIFT);
+
+ WREG32(mmARC_FARM_KDMA_CTX_AXUSER_HB_ASID, rw_asid);
+ WREG32(mmARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP, rw_mmu_bp);
+}
+
+static void gaudi2_arm_cq_monitor(struct hl_device *hdev, u32 sob_id, u32 mon_id, u32 cq_id,
+ u32 mon_payload, u32 sync_value)
+{
+ u32 sob_offset, mon_offset, sync_group_id, mode, mon_arm;
+ u8 mask;
+
+ sob_offset = sob_id * 4;
+ mon_offset = mon_id * 4;
+
+ /* Reset the SOB value */
+ WREG32(mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset, 0);
+
+ /* Configure this address with CQ_ID 0 because CQ_EN is set */
+ WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + mon_offset, cq_id);
+
+ /* Configure this address with CS index because CQ_EN is set */
+ WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + mon_offset, mon_payload);
+
+ sync_group_id = sob_id / 8;
+ mask = ~(1 << (sob_id & 0x7));
+ mode = 1; /* comparison mode is "equal to" */
+
+ mon_arm = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SOD_MASK, sync_value);
+ mon_arm |= FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SOP_MASK, mode);
+ mon_arm |= FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_MASK_MASK, mask);
+ mon_arm |= FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SID_MASK, sync_group_id);
+ WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_ARM_0 + mon_offset, mon_arm);
+}
+
+/* This is an internal helper function used by gaudi2_send_job_to_kdma only */
+static int gaudi2_send_job_to_kdma(struct hl_device *hdev,
+ u64 src_addr, u64 dst_addr,
+ u32 size, bool is_memset)
+{
+ u32 comp_val, commit_mask, *polling_addr, timeout, status = 0;
+ struct hl_cq_entry *cq_base;
+ struct hl_cq *cq;
+ u64 comp_addr;
+ int rc;
+
+ gaudi2_arm_cq_monitor(hdev, GAUDI2_RESERVED_SOB_KDMA_COMPLETION,
+ GAUDI2_RESERVED_MON_KDMA_COMPLETION,
+ GAUDI2_RESERVED_CQ_KDMA_COMPLETION, 1, 1);
+
+ comp_addr = CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 +
+ (GAUDI2_RESERVED_SOB_KDMA_COMPLETION * sizeof(u32));
+
+ comp_val = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_INC_MASK, 1) |
+ FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_VAL_MASK, 1);
+
+ WREG32(mmARC_FARM_KDMA_CTX_SRC_BASE_LO, lower_32_bits(src_addr));
+ WREG32(mmARC_FARM_KDMA_CTX_SRC_BASE_HI, upper_32_bits(src_addr));
+ WREG32(mmARC_FARM_KDMA_CTX_DST_BASE_LO, lower_32_bits(dst_addr));
+ WREG32(mmARC_FARM_KDMA_CTX_DST_BASE_HI, upper_32_bits(dst_addr));
+ WREG32(mmARC_FARM_KDMA_CTX_WR_COMP_ADDR_LO, lower_32_bits(comp_addr));
+ WREG32(mmARC_FARM_KDMA_CTX_WR_COMP_ADDR_HI, upper_32_bits(comp_addr));
+ WREG32(mmARC_FARM_KDMA_CTX_WR_COMP_WDATA, comp_val);
+ WREG32(mmARC_FARM_KDMA_CTX_DST_TSIZE_0, size);
+
+ commit_mask = FIELD_PREP(ARC_FARM_KDMA_CTX_COMMIT_LIN_MASK, 1) |
+ FIELD_PREP(ARC_FARM_KDMA_CTX_COMMIT_WR_COMP_EN_MASK, 1);
+
+ if (is_memset)
+ commit_mask |= FIELD_PREP(ARC_FARM_KDMA_CTX_COMMIT_MEM_SET_MASK, 1);
+
+ WREG32(mmARC_FARM_KDMA_CTX_COMMIT, commit_mask);
+
+ /* Wait for completion */
+ cq = &hdev->completion_queue[GAUDI2_RESERVED_CQ_KDMA_COMPLETION];
+ cq_base = cq->kernel_address;
+ polling_addr = (u32 *)&cq_base[cq->ci];
+
+ if (hdev->pldm)
+ /* for each 1MB 20 second of timeout */
+ timeout = ((size / SZ_1M) + 1) * USEC_PER_SEC * 20;
+ else
+ timeout = KDMA_TIMEOUT_USEC;
+
+ /* Polling */
+ rc = hl_poll_timeout_memory(
+ hdev,
+ polling_addr,
+ status,
+ (status == 1),
+ 1000,
+ timeout,
+ true);
+
+ *polling_addr = 0;
+
+ if (rc) {
+ dev_err(hdev->dev, "Timeout while waiting for KDMA to be idle\n");
+ WREG32(mmARC_FARM_KDMA_CFG_1, 1 << ARC_FARM_KDMA_CFG_1_HALT_SHIFT);
+ return rc;
+ }
+
+ cq->ci = hl_cq_inc_ptr(cq->ci);
+
+ return 0;
+}
+
+static void gaudi2_memset_device_lbw(struct hl_device *hdev, u32 addr, u32 size, u32 val)
+{
+ u32 i;
+
+ for (i = 0 ; i < size ; i += sizeof(u32))
+ WREG32(addr + i, val);
+}
+
+static void gaudi2_qman_set_test_mode(struct hl_device *hdev, u32 hw_queue_id, bool enable)
+{
+ u32 reg_base = gaudi2_qm_blocks_bases[hw_queue_id];
+
+ if (enable) {
+ WREG32(reg_base + QM_GLBL_PROT_OFFSET, QMAN_MAKE_TRUSTED_TEST_MODE);
+ WREG32(reg_base + QM_PQC_CFG_OFFSET, 0);
+ } else {
+ WREG32(reg_base + QM_GLBL_PROT_OFFSET, QMAN_MAKE_TRUSTED);
+ WREG32(reg_base + QM_PQC_CFG_OFFSET, 1 << PDMA0_QM_PQC_CFG_EN_SHIFT);
+ }
+}
+
+static int gaudi2_test_queue(struct hl_device *hdev, u32 hw_queue_id)
+{
+ u32 sob_offset = hdev->asic_prop.first_available_user_sob[0] * 4;
+ u32 sob_addr = mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset;
+ u32 timeout_usec, tmp, sob_base = 1, sob_val = 0x5a5a;
+ struct packet_msg_short *msg_short_pkt;
+ dma_addr_t pkt_dma_addr;
+ size_t pkt_size;
+ int rc;
+
+ if (hdev->pldm)
+ timeout_usec = GAUDI2_PLDM_TEST_QUEUE_WAIT_USEC;
+ else
+ timeout_usec = GAUDI2_TEST_QUEUE_WAIT_USEC;
+
+ pkt_size = sizeof(*msg_short_pkt);
+ msg_short_pkt = hl_asic_dma_pool_zalloc(hdev, pkt_size, GFP_KERNEL, &pkt_dma_addr);
+ if (!msg_short_pkt) {
+ dev_err(hdev->dev, "Failed to allocate packet for H/W queue %d testing\n",
+ hw_queue_id);
+ return -ENOMEM;
+ }
+
+ tmp = (PACKET_MSG_SHORT << GAUDI2_PKT_CTL_OPCODE_SHIFT) |
+ (1 << GAUDI2_PKT_CTL_EB_SHIFT) |
+ (1 << GAUDI2_PKT_CTL_MB_SHIFT) |
+ (sob_base << GAUDI2_PKT_SHORT_CTL_BASE_SHIFT) |
+ (sob_offset << GAUDI2_PKT_SHORT_CTL_ADDR_SHIFT);
+
+ msg_short_pkt->value = cpu_to_le32(sob_val);
+ msg_short_pkt->ctl = cpu_to_le32(tmp);
+
+ /* Reset the SOB value */
+ WREG32(sob_addr, 0);
+
+ rc = hl_hw_queue_send_cb_no_cmpl(hdev, hw_queue_id, pkt_size, pkt_dma_addr);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to send msg_short packet to H/W queue %d\n",
+ hw_queue_id);
+ goto free_pkt;
+ }
+
+ rc = hl_poll_timeout(
+ hdev,
+ sob_addr,
+ tmp,
+ (tmp == sob_val),
+ 1000,
+ timeout_usec);
+
+ if (rc == -ETIMEDOUT) {
+ dev_err(hdev->dev, "H/W queue %d test failed (SOB_OBJ_0 == 0x%x)\n",
+ hw_queue_id, tmp);
+ rc = -EIO;
+ }
+
+ /* Reset the SOB value */
+ WREG32(sob_addr, 0);
+
+free_pkt:
+ hl_asic_dma_pool_free(hdev, (void *) msg_short_pkt, pkt_dma_addr);
+ return rc;
+}
+
+static int gaudi2_test_cpu_queue(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+
+ /*
+ * check capability here as send_cpu_message() won't update the result
+ * value if no capability
+ */
+ if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q))
+ return 0;
+
+ return hl_fw_test_cpu_queue(hdev);
+}
+
+static int gaudi2_test_queues(struct hl_device *hdev)
+{
+ int i, rc, ret_val = 0;
+
+ for (i = GAUDI2_QUEUE_ID_PDMA_0_0 ; i < GAUDI2_QUEUE_ID_CPU_PQ; i++) {
+ if (!gaudi2_is_queue_enabled(hdev, i))
+ continue;
+
+ gaudi2_qman_set_test_mode(hdev, i, true);
+ rc = gaudi2_test_queue(hdev, i);
+ gaudi2_qman_set_test_mode(hdev, i, false);
+
+ if (rc) {
+ ret_val = -EINVAL;
+ goto done;
+ }
+ }
+
+ rc = gaudi2_test_cpu_queue(hdev);
+ if (rc) {
+ ret_val = -EINVAL;
+ goto done;
+ }
+
+done:
+ return ret_val;
+}
+
+static int gaudi2_compute_reset_late_init(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ size_t irq_arr_size;
+
+ /* TODO: missing gaudi2_nic_resume.
+ * Until implemented nic_hw_cap_initialized will remain zeroed
+ */
+ gaudi2_init_arcs(hdev);
+ gaudi2_scrub_arcs_dccm(hdev);
+ gaudi2_init_security(hdev);
+
+ /* Unmask all IRQs since some could have been received during the soft reset */
+ irq_arr_size = gaudi2->num_of_valid_hw_events * sizeof(gaudi2->hw_events[0]);
+ return hl_fw_unmask_irq_arr(hdev, gaudi2->hw_events, irq_arr_size);
+}
+
+static void gaudi2_is_tpc_engine_idle(struct hl_device *hdev, int dcore, int inst, u32 offset,
+ struct iterate_module_ctx *ctx)
+{
+ struct gaudi2_tpc_idle_data *idle_data = ctx->data;
+ u32 tpc_cfg_sts, qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts;
+ bool is_eng_idle;
+ int engine_idx;
+
+ if ((dcore == 0) && (inst == (NUM_DCORE0_TPC - 1)))
+ engine_idx = GAUDI2_DCORE0_ENGINE_ID_TPC_6;
+ else
+ engine_idx = GAUDI2_DCORE0_ENGINE_ID_TPC_0 +
+ dcore * GAUDI2_ENGINE_ID_DCORE_OFFSET + inst;
+
+ tpc_cfg_sts = RREG32(mmDCORE0_TPC0_CFG_STATUS + offset);
+ qm_glbl_sts0 = RREG32(mmDCORE0_TPC0_QM_GLBL_STS0 + offset);
+ qm_glbl_sts1 = RREG32(mmDCORE0_TPC0_QM_GLBL_STS1 + offset);
+ qm_cgm_sts = RREG32(mmDCORE0_TPC0_QM_CGM_STS + offset);
+
+ is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts) &&
+ IS_TPC_IDLE(tpc_cfg_sts);
+ *(idle_data->is_idle) &= is_eng_idle;
+
+ if (idle_data->mask && !is_eng_idle)
+ set_bit(engine_idx, idle_data->mask);
+
+ if (idle_data->e)
+ hl_engine_data_sprintf(idle_data->e,
+ idle_data->tpc_fmt, dcore, inst,
+ is_eng_idle ? "Y" : "N",
+ qm_glbl_sts0, qm_cgm_sts, tpc_cfg_sts);
+}
+
+static bool gaudi2_is_device_idle(struct hl_device *hdev, u64 *mask_arr, u8 mask_len,
+ struct engines_data *e)
+{
+ u32 qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts, dma_core_idle_ind_mask,
+ mme_arch_sts, dec_swreg15, dec_enabled_bit;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ const char *rot_fmt = "%-6d%-5d%-9s%#-14x%#-12x%s\n";
+ unsigned long *mask = (unsigned long *) mask_arr;
+ const char *edma_fmt = "%-6d%-6d%-9s%#-14x%#x\n";
+ const char *mme_fmt = "%-5d%-6s%-9s%#-14x%#x\n";
+ const char *nic_fmt = "%-5d%-9s%#-14x%#-12x\n";
+ const char *pdma_fmt = "%-6d%-9s%#-14x%#x\n";
+ const char *pcie_dec_fmt = "%-10d%-9s%#x\n";
+ const char *dec_fmt = "%-6d%-5d%-9s%#x\n";
+ bool is_idle = true, is_eng_idle;
+ u64 offset;
+
+ struct gaudi2_tpc_idle_data tpc_idle_data = {
+ .tpc_fmt = "%-6d%-5d%-9s%#-14x%#-12x%#x\n",
+ .e = e,
+ .mask = mask,
+ .is_idle = &is_idle,
+ };
+ struct iterate_module_ctx tpc_iter = {
+ .fn = &gaudi2_is_tpc_engine_idle,
+ .data = &tpc_idle_data,
+ };
+
+ int engine_idx, i, j;
+
+ /* EDMA, Two engines per Dcore */
+ if (e)
+ hl_engine_data_sprintf(e,
+ "\nCORE EDMA is_idle QM_GLBL_STS0 DMA_CORE_IDLE_IND_MASK\n"
+ "---- ---- ------- ------------ ----------------------\n");
+
+ for (i = 0; i < NUM_OF_DCORES; i++) {
+ for (j = 0 ; j < NUM_OF_EDMA_PER_DCORE ; j++) {
+ int seq = i * NUM_OF_EDMA_PER_DCORE + j;
+
+ if (!(prop->edma_enabled_mask & BIT(seq)))
+ continue;
+
+ engine_idx = GAUDI2_DCORE0_ENGINE_ID_EDMA_0 +
+ i * GAUDI2_ENGINE_ID_DCORE_OFFSET + j;
+ offset = i * DCORE_OFFSET + j * DCORE_EDMA_OFFSET;
+
+ dma_core_idle_ind_mask =
+ RREG32(mmDCORE0_EDMA0_CORE_IDLE_IND_MASK + offset);
+
+ qm_glbl_sts0 = RREG32(mmDCORE0_EDMA0_QM_GLBL_STS0 + offset);
+ qm_glbl_sts1 = RREG32(mmDCORE0_EDMA0_QM_GLBL_STS1 + offset);
+ qm_cgm_sts = RREG32(mmDCORE0_EDMA0_QM_CGM_STS + offset);
+
+ is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts) &&
+ IS_DMA_IDLE(dma_core_idle_ind_mask);
+ is_idle &= is_eng_idle;
+
+ if (mask && !is_eng_idle)
+ set_bit(engine_idx, mask);
+
+ if (e)
+ hl_engine_data_sprintf(e, edma_fmt, i, j,
+ is_eng_idle ? "Y" : "N",
+ qm_glbl_sts0,
+ dma_core_idle_ind_mask);
+ }
+ }
+
+ /* PDMA, Two engines in Full chip */
+ if (e)
+ hl_engine_data_sprintf(e,
+ "\nPDMA is_idle QM_GLBL_STS0 DMA_CORE_IDLE_IND_MASK\n"
+ "---- ------- ------------ ----------------------\n");
+
+ for (i = 0 ; i < NUM_OF_PDMA ; i++) {
+ engine_idx = GAUDI2_ENGINE_ID_PDMA_0 + i;
+ offset = i * PDMA_OFFSET;
+ dma_core_idle_ind_mask = RREG32(mmPDMA0_CORE_IDLE_IND_MASK + offset);
+
+ qm_glbl_sts0 = RREG32(mmPDMA0_QM_GLBL_STS0 + offset);
+ qm_glbl_sts1 = RREG32(mmPDMA0_QM_GLBL_STS1 + offset);
+ qm_cgm_sts = RREG32(mmPDMA0_QM_CGM_STS + offset);
+
+ is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts) &&
+ IS_DMA_IDLE(dma_core_idle_ind_mask);
+ is_idle &= is_eng_idle;
+
+ if (mask && !is_eng_idle)
+ set_bit(engine_idx, mask);
+
+ if (e)
+ hl_engine_data_sprintf(e, pdma_fmt, i, is_eng_idle ? "Y" : "N",
+ qm_glbl_sts0, dma_core_idle_ind_mask);
+ }
+
+ /* NIC, twelve macros in Full chip */
+ if (e && hdev->nic_ports_mask)
+ hl_engine_data_sprintf(e,
+ "\nNIC is_idle QM_GLBL_STS0 QM_CGM_STS\n"
+ "--- ------- ------------ ----------\n");
+
+ for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++) {
+ if (!(i & 1))
+ offset = i / 2 * NIC_OFFSET;
+ else
+ offset += NIC_QM_OFFSET;
+
+ if (!(hdev->nic_ports_mask & BIT(i)))
+ continue;
+
+ engine_idx = GAUDI2_ENGINE_ID_NIC0_0 + i;
+
+
+ qm_glbl_sts0 = RREG32(mmNIC0_QM0_GLBL_STS0 + offset);
+ qm_glbl_sts1 = RREG32(mmNIC0_QM0_GLBL_STS1 + offset);
+ qm_cgm_sts = RREG32(mmNIC0_QM0_CGM_STS + offset);
+
+ is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts);
+ is_idle &= is_eng_idle;
+
+ if (mask && !is_eng_idle)
+ set_bit(engine_idx, mask);
+
+ if (e)
+ hl_engine_data_sprintf(e, nic_fmt, i, is_eng_idle ? "Y" : "N",
+ qm_glbl_sts0, qm_cgm_sts);
+ }
+
+ if (e)
+ hl_engine_data_sprintf(e,
+ "\nMME Stub is_idle QM_GLBL_STS0 MME_ARCH_STATUS\n"
+ "--- ---- ------- ------------ ---------------\n");
+ /* MME, one per Dcore */
+ for (i = 0 ; i < NUM_OF_DCORES ; i++) {
+ engine_idx = GAUDI2_DCORE0_ENGINE_ID_MME + i * GAUDI2_ENGINE_ID_DCORE_OFFSET;
+ offset = i * DCORE_OFFSET;
+
+ qm_glbl_sts0 = RREG32(mmDCORE0_MME_QM_GLBL_STS0 + offset);
+ qm_glbl_sts1 = RREG32(mmDCORE0_MME_QM_GLBL_STS1 + offset);
+ qm_cgm_sts = RREG32(mmDCORE0_MME_QM_CGM_STS + offset);
+
+ is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts);
+ is_idle &= is_eng_idle;
+
+ mme_arch_sts = RREG32(mmDCORE0_MME_CTRL_LO_ARCH_STATUS + offset);
+ is_eng_idle &= IS_MME_IDLE(mme_arch_sts);
+ is_idle &= is_eng_idle;
+
+ if (e)
+ hl_engine_data_sprintf(e, mme_fmt, i, "N",
+ is_eng_idle ? "Y" : "N",
+ qm_glbl_sts0,
+ mme_arch_sts);
+
+ if (mask && !is_eng_idle)
+ set_bit(engine_idx, mask);
+ }
+
+ /*
+ * TPC
+ */
+ if (e && prop->tpc_enabled_mask)
+ hl_engine_data_sprintf(e,
+ "\nCORE TPC is_idle QM_GLBL_STS0 QM_CGM_STS DMA_CORE_IDLE_IND_MASK\n"
+ "---- --- -------- ------------ ---------- ----------------------\n");
+
+ gaudi2_iterate_tpcs(hdev, &tpc_iter);
+
+ /* Decoders, two each Dcore and two shared PCIe decoders */
+ if (e && (prop->decoder_enabled_mask & (~PCIE_DEC_EN_MASK)))
+ hl_engine_data_sprintf(e,
+ "\nCORE DEC is_idle VSI_CMD_SWREG15\n"
+ "---- --- ------- ---------------\n");
+
+ for (i = 0 ; i < NUM_OF_DCORES ; i++) {
+ for (j = 0 ; j < NUM_OF_DEC_PER_DCORE ; j++) {
+ dec_enabled_bit = 1 << (i * NUM_OF_DEC_PER_DCORE + j);
+ if (!(prop->decoder_enabled_mask & dec_enabled_bit))
+ continue;
+
+ engine_idx = GAUDI2_DCORE0_ENGINE_ID_DEC_0 +
+ i * GAUDI2_ENGINE_ID_DCORE_OFFSET + j;
+ offset = i * DCORE_OFFSET + j * DCORE_DEC_OFFSET;
+
+ dec_swreg15 = RREG32(mmDCORE0_DEC0_CMD_SWREG15 + offset);
+ is_eng_idle = IS_DEC_IDLE(dec_swreg15);
+ is_idle &= is_eng_idle;
+
+ if (mask && !is_eng_idle)
+ set_bit(engine_idx, mask);
+
+ if (e)
+ hl_engine_data_sprintf(e, dec_fmt, i, j,
+ is_eng_idle ? "Y" : "N", dec_swreg15);
+ }
+ }
+
+ if (e && (prop->decoder_enabled_mask & PCIE_DEC_EN_MASK))
+ hl_engine_data_sprintf(e,
+ "\nPCIe DEC is_idle VSI_CMD_SWREG15\n"
+ "-------- ------- ---------------\n");
+
+ /* Check shared(PCIe) decoders */
+ for (i = 0 ; i < NUM_OF_DEC_PER_DCORE ; i++) {
+ dec_enabled_bit = PCIE_DEC_SHIFT + i;
+ if (!(prop->decoder_enabled_mask & BIT(dec_enabled_bit)))
+ continue;
+
+ engine_idx = GAUDI2_PCIE_ENGINE_ID_DEC_0 + i;
+ offset = i * DCORE_DEC_OFFSET;
+ dec_swreg15 = RREG32(mmPCIE_DEC0_CMD_SWREG15 + offset);
+ is_eng_idle = IS_DEC_IDLE(dec_swreg15);
+ is_idle &= is_eng_idle;
+
+ if (mask && !is_eng_idle)
+ set_bit(engine_idx, mask);
+
+ if (e)
+ hl_engine_data_sprintf(e, pcie_dec_fmt, i,
+ is_eng_idle ? "Y" : "N", dec_swreg15);
+ }
+
+ if (e)
+ hl_engine_data_sprintf(e,
+ "\nCORE ROT is_idle QM_GLBL_STS0 QM_CGM_STS DMA_CORE_STS0\n"
+ "---- ---- ------- ------------ ---------- -------------\n");
+
+ for (i = 0 ; i < NUM_OF_ROT ; i++) {
+ engine_idx = GAUDI2_ENGINE_ID_ROT_0 + i;
+
+ offset = i * ROT_OFFSET;
+
+ qm_glbl_sts0 = RREG32(mmROT0_QM_GLBL_STS0 + offset);
+ qm_glbl_sts1 = RREG32(mmROT0_QM_GLBL_STS1 + offset);
+ qm_cgm_sts = RREG32(mmROT0_QM_CGM_STS + offset);
+
+ is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts);
+ is_idle &= is_eng_idle;
+
+ if (mask && !is_eng_idle)
+ set_bit(engine_idx, mask);
+
+ if (e)
+ hl_engine_data_sprintf(e, rot_fmt, i, 0, is_eng_idle ? "Y" : "N",
+ qm_glbl_sts0, qm_cgm_sts, "-");
+ }
+
+ return is_idle;
+}
+
+static void gaudi2_hw_queues_lock(struct hl_device *hdev)
+ __acquires(&gaudi2->hw_queues_lock)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+
+ spin_lock(&gaudi2->hw_queues_lock);
+}
+
+static void gaudi2_hw_queues_unlock(struct hl_device *hdev)
+ __releases(&gaudi2->hw_queues_lock)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+
+ spin_unlock(&gaudi2->hw_queues_lock);
+}
+
+static u32 gaudi2_get_pci_id(struct hl_device *hdev)
+{
+ return hdev->pdev->device;
+}
+
+static int gaudi2_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+
+ if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q))
+ return 0;
+
+ return hl_fw_get_eeprom_data(hdev, data, max_size);
+}
+
+static void gaudi2_update_eq_ci(struct hl_device *hdev, u32 val)
+{
+ WREG32(mmCPU_IF_EQ_RD_OFFS, val);
+}
+
+static void *gaudi2_get_events_stat(struct hl_device *hdev, bool aggregate, u32 *size)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+
+ if (aggregate) {
+ *size = (u32) sizeof(gaudi2->events_stat_aggregate);
+ return gaudi2->events_stat_aggregate;
+ }
+
+ *size = (u32) sizeof(gaudi2->events_stat);
+ return gaudi2->events_stat;
+}
+
+static void gaudi2_mmu_vdec_dcore_prepare(struct hl_device *hdev, int dcore_id,
+ int dcore_vdec_id, u32 rw_asid, u32 rw_mmu_bp)
+{
+ u32 offset = (mmDCORE0_VDEC1_BRDG_CTRL_BASE - mmDCORE0_VDEC0_BRDG_CTRL_BASE) *
+ dcore_vdec_id + DCORE_OFFSET * dcore_id;
+
+ WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_DEC_HB_MMU_BP + offset, rw_mmu_bp);
+ WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_DEC_HB_ASID + offset, rw_asid);
+
+ WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_ABNRM_HB_MMU_BP + offset, rw_mmu_bp);
+ WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_ABNRM_HB_ASID + offset, rw_asid);
+
+ WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_L2C_HB_MMU_BP + offset, rw_mmu_bp);
+ WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_L2C_HB_ASID + offset, rw_asid);
+
+ WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_NRM_HB_MMU_BP + offset, rw_mmu_bp);
+ WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_NRM_HB_ASID + offset, rw_asid);
+
+ WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_VCD_HB_MMU_BP + offset, rw_mmu_bp);
+ WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_VCD_HB_ASID + offset, rw_asid);
+}
+
+static void gaudi2_mmu_dcore_prepare(struct hl_device *hdev, int dcore_id, u32 asid)
+{
+ u32 rw_asid = (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_RD_SHIFT) |
+ (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_WR_SHIFT);
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u32 dcore_offset = dcore_id * DCORE_OFFSET;
+ u32 vdec_id, i, ports_offset, reg_val;
+ u8 edma_seq_base;
+
+ /* EDMA */
+ edma_seq_base = dcore_id * NUM_OF_EDMA_PER_DCORE;
+ if (prop->edma_enabled_mask & BIT(edma_seq_base)) {
+ WREG32(mmDCORE0_EDMA0_QM_AXUSER_NONSECURED_HB_MMU_BP + dcore_offset, 0);
+ WREG32(mmDCORE0_EDMA0_QM_AXUSER_NONSECURED_HB_ASID + dcore_offset, rw_asid);
+ WREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_MMU_BP + dcore_offset, 0);
+ WREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_ASID + dcore_offset, rw_asid);
+ }
+
+ if (prop->edma_enabled_mask & BIT(edma_seq_base + 1)) {
+ WREG32(mmDCORE0_EDMA1_QM_AXUSER_NONSECURED_HB_MMU_BP + dcore_offset, 0);
+ WREG32(mmDCORE0_EDMA1_QM_AXUSER_NONSECURED_HB_ASID + dcore_offset, rw_asid);
+ WREG32(mmDCORE0_EDMA1_CORE_CTX_AXUSER_HB_ASID + dcore_offset, rw_asid);
+ WREG32(mmDCORE0_EDMA1_CORE_CTX_AXUSER_HB_MMU_BP + dcore_offset, 0);
+ }
+
+ /* Sync Mngr */
+ WREG32(mmDCORE0_SYNC_MNGR_GLBL_ASID_NONE_SEC_PRIV + dcore_offset, asid);
+ /*
+ * Sync Mngrs on dcores 1 - 3 are exposed to user, so must use user ASID
+ * for any access type
+ */
+ if (dcore_id > 0) {
+ reg_val = (asid << DCORE0_SYNC_MNGR_MSTR_IF_AXUSER_HB_ASID_RD_SHIFT) |
+ (asid << DCORE0_SYNC_MNGR_MSTR_IF_AXUSER_HB_ASID_WR_SHIFT);
+ WREG32(mmDCORE0_SYNC_MNGR_MSTR_IF_AXUSER_HB_ASID + dcore_offset, reg_val);
+ WREG32(mmDCORE0_SYNC_MNGR_MSTR_IF_AXUSER_HB_MMU_BP + dcore_offset, 0);
+ }
+
+ WREG32(mmDCORE0_MME_CTRL_LO_MME_AXUSER_HB_MMU_BP + dcore_offset, 0);
+ WREG32(mmDCORE0_MME_CTRL_LO_MME_AXUSER_HB_ASID + dcore_offset, rw_asid);
+
+ for (i = 0 ; i < NUM_OF_MME_SBTE_PORTS ; i++) {
+ ports_offset = i * DCORE_MME_SBTE_OFFSET;
+ WREG32(mmDCORE0_MME_SBTE0_MSTR_IF_AXUSER_HB_MMU_BP +
+ dcore_offset + ports_offset, 0);
+ WREG32(mmDCORE0_MME_SBTE0_MSTR_IF_AXUSER_HB_ASID +
+ dcore_offset + ports_offset, rw_asid);
+ }
+
+ for (i = 0 ; i < NUM_OF_MME_WB_PORTS ; i++) {
+ ports_offset = i * DCORE_MME_WB_OFFSET;
+ WREG32(mmDCORE0_MME_WB0_MSTR_IF_AXUSER_HB_MMU_BP +
+ dcore_offset + ports_offset, 0);
+ WREG32(mmDCORE0_MME_WB0_MSTR_IF_AXUSER_HB_ASID +
+ dcore_offset + ports_offset, rw_asid);
+ }
+
+ WREG32(mmDCORE0_MME_QM_AXUSER_NONSECURED_HB_MMU_BP + dcore_offset, 0);
+ WREG32(mmDCORE0_MME_QM_AXUSER_NONSECURED_HB_ASID + dcore_offset, rw_asid);
+
+ /*
+ * Decoders
+ */
+ for (vdec_id = 0 ; vdec_id < NUM_OF_DEC_PER_DCORE ; vdec_id++) {
+ if (prop->decoder_enabled_mask & BIT(dcore_id * NUM_OF_DEC_PER_DCORE + vdec_id))
+ gaudi2_mmu_vdec_dcore_prepare(hdev, dcore_id, vdec_id, rw_asid, 0);
+ }
+}
+
+static void gudi2_mmu_vdec_shared_prepare(struct hl_device *hdev,
+ int shared_vdec_id, u32 rw_asid, u32 rw_mmu_bp)
+{
+ u32 offset = (mmPCIE_VDEC1_BRDG_CTRL_BASE - mmPCIE_VDEC0_BRDG_CTRL_BASE) * shared_vdec_id;
+
+ WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_DEC_HB_MMU_BP + offset, rw_mmu_bp);
+ WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_DEC_HB_ASID + offset, rw_asid);
+
+ WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_ABNRM_HB_MMU_BP + offset, rw_mmu_bp);
+ WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_ABNRM_HB_ASID + offset, rw_asid);
+
+ WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_L2C_HB_MMU_BP + offset, rw_mmu_bp);
+ WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_L2C_HB_ASID + offset, rw_asid);
+
+ WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_NRM_HB_MMU_BP + offset, rw_mmu_bp);
+ WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_NRM_HB_ASID + offset, rw_asid);
+
+ WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_VCD_HB_MMU_BP + offset, rw_mmu_bp);
+ WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_VCD_HB_ASID + offset, rw_asid);
+}
+
+static void gudi2_mmu_arc_farm_arc_dup_eng_prepare(struct hl_device *hdev, int arc_farm_id,
+ u32 rw_asid, u32 rw_mmu_bp)
+{
+ u32 offset = (mmARC_FARM_ARC1_DUP_ENG_BASE - mmARC_FARM_ARC0_DUP_ENG_BASE) * arc_farm_id;
+
+ WREG32(mmARC_FARM_ARC0_DUP_ENG_AXUSER_HB_MMU_BP + offset, rw_mmu_bp);
+ WREG32(mmARC_FARM_ARC0_DUP_ENG_AXUSER_HB_ASID + offset, rw_asid);
+}
+
+static void gaudi2_arc_mmu_prepare(struct hl_device *hdev, u32 cpu_id, u32 asid)
+{
+ u32 reg_base, reg_offset, reg_val = 0;
+
+ reg_base = gaudi2_arc_blocks_bases[cpu_id];
+
+ /* Enable MMU and configure asid for all relevant ARC regions */
+ reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_ARC_REGION_CFG_MMU_BP_MASK, 0);
+ reg_val |= FIELD_PREP(ARC_FARM_ARC0_AUX_ARC_REGION_CFG_0_ASID_MASK, asid);
+
+ reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION3_GENERAL);
+ WREG32(reg_base + reg_offset, reg_val);
+
+ reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION4_HBM0_FW);
+ WREG32(reg_base + reg_offset, reg_val);
+
+ reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION5_HBM1_GC_DATA);
+ WREG32(reg_base + reg_offset, reg_val);
+
+ reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION6_HBM2_GC_DATA);
+ WREG32(reg_base + reg_offset, reg_val);
+
+ reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION7_HBM3_GC_DATA);
+ WREG32(reg_base + reg_offset, reg_val);
+
+ reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION9_PCIE);
+ WREG32(reg_base + reg_offset, reg_val);
+
+ reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION10_GENERAL);
+ WREG32(reg_base + reg_offset, reg_val);
+
+ reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION11_GENERAL);
+ WREG32(reg_base + reg_offset, reg_val);
+
+ reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION12_GENERAL);
+ WREG32(reg_base + reg_offset, reg_val);
+
+ reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION13_GENERAL);
+ WREG32(reg_base + reg_offset, reg_val);
+
+ reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION14_GENERAL);
+ WREG32(reg_base + reg_offset, reg_val);
+}
+
+static int gaudi2_arc_mmu_prepare_all(struct hl_device *hdev, u32 asid)
+{
+ int i;
+
+ if (hdev->fw_components & FW_TYPE_BOOT_CPU)
+ return hl_fw_cpucp_engine_core_asid_set(hdev, asid);
+
+ for (i = CPU_ID_SCHED_ARC0 ; i < NUM_OF_ARC_FARMS_ARC ; i++)
+ gaudi2_arc_mmu_prepare(hdev, i, asid);
+
+ for (i = GAUDI2_QUEUE_ID_PDMA_0_0 ; i < GAUDI2_QUEUE_ID_CPU_PQ ; i += 4) {
+ if (!gaudi2_is_queue_enabled(hdev, i))
+ continue;
+
+ gaudi2_arc_mmu_prepare(hdev, gaudi2_queue_id_to_arc_id[i], asid);
+ }
+
+ return 0;
+}
+
+static int gaudi2_mmu_shared_prepare(struct hl_device *hdev, u32 asid)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u32 rw_asid, offset;
+ int rc, i;
+
+ rw_asid = FIELD_PREP(ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_RD_MASK, asid) |
+ FIELD_PREP(ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_WR_MASK, asid);
+
+ WREG32(mmPDMA0_QM_AXUSER_NONSECURED_HB_ASID, rw_asid);
+ WREG32(mmPDMA0_QM_AXUSER_NONSECURED_HB_MMU_BP, 0);
+ WREG32(mmPDMA0_CORE_CTX_AXUSER_HB_ASID, rw_asid);
+ WREG32(mmPDMA0_CORE_CTX_AXUSER_HB_MMU_BP, 0);
+
+ WREG32(mmPDMA1_QM_AXUSER_NONSECURED_HB_ASID, rw_asid);
+ WREG32(mmPDMA1_QM_AXUSER_NONSECURED_HB_MMU_BP, 0);
+ WREG32(mmPDMA1_CORE_CTX_AXUSER_HB_ASID, rw_asid);
+ WREG32(mmPDMA1_CORE_CTX_AXUSER_HB_MMU_BP, 0);
+
+ /* ROT */
+ for (i = 0 ; i < NUM_OF_ROT ; i++) {
+ offset = i * ROT_OFFSET;
+ WREG32(mmROT0_QM_AXUSER_NONSECURED_HB_ASID + offset, rw_asid);
+ WREG32(mmROT0_QM_AXUSER_NONSECURED_HB_MMU_BP + offset, 0);
+ RMWREG32(mmROT0_CPL_QUEUE_AWUSER + offset, asid, MMUBP_ASID_MASK);
+ RMWREG32(mmROT0_DESC_HBW_ARUSER_LO + offset, asid, MMUBP_ASID_MASK);
+ RMWREG32(mmROT0_DESC_HBW_AWUSER_LO + offset, asid, MMUBP_ASID_MASK);
+ }
+
+ /* Shared Decoders are the last bits in the decoders mask */
+ if (prop->decoder_enabled_mask & BIT(NUM_OF_DCORES * NUM_OF_DEC_PER_DCORE + 0))
+ gudi2_mmu_vdec_shared_prepare(hdev, 0, rw_asid, 0);
+
+ if (prop->decoder_enabled_mask & BIT(NUM_OF_DCORES * NUM_OF_DEC_PER_DCORE + 1))
+ gudi2_mmu_vdec_shared_prepare(hdev, 1, rw_asid, 0);
+
+ /* arc farm arc dup eng */
+ for (i = 0 ; i < NUM_OF_ARC_FARMS_ARC ; i++)
+ gudi2_mmu_arc_farm_arc_dup_eng_prepare(hdev, i, rw_asid, 0);
+
+ rc = gaudi2_arc_mmu_prepare_all(hdev, asid);
+ if (rc)
+ return rc;
+
+ return 0;
+}
+
+static void gaudi2_tpc_mmu_prepare(struct hl_device *hdev, int dcore, int inst, u32 offset,
+ struct iterate_module_ctx *ctx)
+{
+ struct gaudi2_tpc_mmu_data *mmu_data = ctx->data;
+
+ WREG32(mmDCORE0_TPC0_CFG_AXUSER_HB_MMU_BP + offset, 0);
+ WREG32(mmDCORE0_TPC0_CFG_AXUSER_HB_ASID + offset, mmu_data->rw_asid);
+ WREG32(mmDCORE0_TPC0_QM_AXUSER_NONSECURED_HB_MMU_BP + offset, 0);
+ WREG32(mmDCORE0_TPC0_QM_AXUSER_NONSECURED_HB_ASID + offset, mmu_data->rw_asid);
+}
+
+/* zero the MMUBP and set the ASID */
+static int gaudi2_mmu_prepare(struct hl_device *hdev, u32 asid)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ struct gaudi2_tpc_mmu_data tpc_mmu_data;
+ struct iterate_module_ctx tpc_iter = {
+ .fn = &gaudi2_tpc_mmu_prepare,
+ .data = &tpc_mmu_data,
+ };
+ int rc, i;
+
+ if (asid & ~DCORE0_HMMU0_STLB_ASID_ASID_MASK) {
+ dev_crit(hdev->dev, "asid %u is too big\n", asid);
+ return -EINVAL;
+ }
+
+ if (!(gaudi2->hw_cap_initialized & HW_CAP_MMU_MASK))
+ return 0;
+
+ rc = gaudi2_mmu_shared_prepare(hdev, asid);
+ if (rc)
+ return rc;
+
+ /* configure DCORE MMUs */
+ tpc_mmu_data.rw_asid = (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_RD_SHIFT) |
+ (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_WR_SHIFT);
+ gaudi2_iterate_tpcs(hdev, &tpc_iter);
+ for (i = 0 ; i < NUM_OF_DCORES ; i++)
+ gaudi2_mmu_dcore_prepare(hdev, i, asid);
+
+ return 0;
+}
+
+static inline bool is_info_event(u32 event)
+{
+ switch (event) {
+ case GAUDI2_EVENT_CPU_CPLD_SHUTDOWN_CAUSE:
+ case GAUDI2_EVENT_CPU_FIX_POWER_ENV_S ... GAUDI2_EVENT_CPU_FIX_THERMAL_ENV_E:
+
+ /* return in case of NIC status event - these events are received periodically and not as
+ * an indication to an error.
+ */
+ case GAUDI2_EVENT_CPU0_STATUS_NIC0_ENG0 ... GAUDI2_EVENT_CPU11_STATUS_NIC11_ENG1:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static void gaudi2_print_event(struct hl_device *hdev, u16 event_type,
+ bool ratelimited, const char *fmt, ...)
+{
+ struct va_format vaf;
+ va_list args;
+
+ va_start(args, fmt);
+ vaf.fmt = fmt;
+ vaf.va = &args;
+
+ if (ratelimited)
+ dev_err_ratelimited(hdev->dev, "%s: %pV\n",
+ gaudi2_irq_map_table[event_type].valid ?
+ gaudi2_irq_map_table[event_type].name : "N/A Event", &vaf);
+ else
+ dev_err(hdev->dev, "%s: %pV\n",
+ gaudi2_irq_map_table[event_type].valid ?
+ gaudi2_irq_map_table[event_type].name : "N/A Event", &vaf);
+
+ va_end(args);
+}
+
+static bool gaudi2_handle_ecc_event(struct hl_device *hdev, u16 event_type,
+ struct hl_eq_ecc_data *ecc_data)
+{
+ u64 ecc_address = 0, ecc_syndrom = 0;
+ u8 memory_wrapper_idx = 0;
+
+ ecc_address = le64_to_cpu(ecc_data->ecc_address);
+ ecc_syndrom = le64_to_cpu(ecc_data->ecc_syndrom);
+ memory_wrapper_idx = ecc_data->memory_wrapper_idx;
+
+ gaudi2_print_event(hdev, event_type, !ecc_data->is_critical,
+ "ECC error detected. address: %#llx. Syndrom: %#llx. block id %u. critical %u.\n",
+ ecc_address, ecc_syndrom, memory_wrapper_idx, ecc_data->is_critical);
+
+ return !!ecc_data->is_critical;
+}
+
+/*
+ * gaudi2_queue_idx_dec - decrement queue index (pi/ci) and handle wrap
+ *
+ * @idx: the current pi/ci value
+ * @q_len: the queue length (power of 2)
+ *
+ * @return the cyclically decremented index
+ */
+static inline u32 gaudi2_queue_idx_dec(u32 idx, u32 q_len)
+{
+ u32 mask = q_len - 1;
+
+ /*
+ * modular decrement is equivalent to adding (queue_size -1)
+ * later we take LSBs to make sure the value is in the
+ * range [0, queue_len - 1]
+ */
+ return (idx + q_len - 1) & mask;
+}
+
+/**
+ * gaudi2_print_sw_config_stream_data - print SW config stream data
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @stream: the QMAN's stream
+ * @qman_base: base address of QMAN registers block
+ */
+static void gaudi2_print_sw_config_stream_data(struct hl_device *hdev,
+ u32 stream, u64 qman_base)
+{
+ u64 cq_ptr_lo, cq_ptr_hi, cq_tsize, cq_ptr;
+ u32 cq_ptr_lo_off, size;
+
+ cq_ptr_lo_off = mmDCORE0_TPC0_QM_CQ_PTR_LO_1 - mmDCORE0_TPC0_QM_CQ_PTR_LO_0;
+
+ cq_ptr_lo = qman_base + (mmDCORE0_TPC0_QM_CQ_PTR_LO_0 - mmDCORE0_TPC0_QM_BASE) +
+ stream * cq_ptr_lo_off;
+
+ cq_ptr_hi = cq_ptr_lo + (mmDCORE0_TPC0_QM_CQ_PTR_HI_0 - mmDCORE0_TPC0_QM_CQ_PTR_LO_0);
+
+ cq_tsize = cq_ptr_lo + (mmDCORE0_TPC0_QM_CQ_TSIZE_0 - mmDCORE0_TPC0_QM_CQ_PTR_LO_0);
+
+ cq_ptr = (((u64) RREG32(cq_ptr_hi)) << 32) | RREG32(cq_ptr_lo);
+ size = RREG32(cq_tsize);
+ dev_info(hdev->dev, "stop on err: stream: %u, addr: %#llx, size: %x\n",
+ stream, cq_ptr, size);
+}
+
+/**
+ * gaudi2_print_last_pqes_on_err - print last PQEs on error
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @qid_base: first QID of the QMAN (out of 4 streams)
+ * @stream: the QMAN's stream
+ * @qman_base: base address of QMAN registers block
+ * @pr_sw_conf: if true print the SW config stream data (CQ PTR and SIZE)
+ */
+static void gaudi2_print_last_pqes_on_err(struct hl_device *hdev, u32 qid_base, u32 stream,
+ u64 qman_base, bool pr_sw_conf)
+{
+ u32 ci, qm_ci_stream_off;
+ struct hl_hw_queue *q;
+ u64 pq_ci;
+ int i;
+
+ q = &hdev->kernel_queues[qid_base + stream];
+
+ qm_ci_stream_off = mmDCORE0_TPC0_QM_PQ_CI_1 - mmDCORE0_TPC0_QM_PQ_CI_0;
+ pq_ci = qman_base + (mmDCORE0_TPC0_QM_PQ_CI_0 - mmDCORE0_TPC0_QM_BASE) +
+ stream * qm_ci_stream_off;
+
+ hdev->asic_funcs->hw_queues_lock(hdev);
+
+ if (pr_sw_conf)
+ gaudi2_print_sw_config_stream_data(hdev, stream, qman_base);
+
+ ci = RREG32(pq_ci);
+
+ /* we should start printing form ci -1 */
+ ci = gaudi2_queue_idx_dec(ci, HL_QUEUE_LENGTH);
+
+ for (i = 0; i < PQ_FETCHER_CACHE_SIZE; i++) {
+ struct hl_bd *bd;
+ u64 addr;
+ u32 len;
+
+ bd = q->kernel_address;
+ bd += ci;
+
+ len = le32_to_cpu(bd->len);
+ /* len 0 means uninitialized entry- break */
+ if (!len)
+ break;
+
+ addr = le64_to_cpu(bd->ptr);
+
+ dev_info(hdev->dev, "stop on err PQE(stream %u): ci: %u, addr: %#llx, size: %x\n",
+ stream, ci, addr, len);
+
+ /* get previous ci, wrap if needed */
+ ci = gaudi2_queue_idx_dec(ci, HL_QUEUE_LENGTH);
+ }
+
+ hdev->asic_funcs->hw_queues_unlock(hdev);
+}
+
+/**
+ * print_qman_data_on_err - extract QMAN data on error
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @qid_base: first QID of the QMAN (out of 4 streams)
+ * @stream: the QMAN's stream
+ * @qman_base: base address of QMAN registers block
+ *
+ * This function attempt to extract as much data as possible on QMAN error.
+ * On upper CP print the SW config stream data and last 8 PQEs.
+ * On lower CP print SW config data and last PQEs of ALL 4 upper CPs
+ */
+static void print_qman_data_on_err(struct hl_device *hdev, u32 qid_base, u32 stream, u64 qman_base)
+{
+ u32 i;
+
+ if (stream != QMAN_STREAMS) {
+ gaudi2_print_last_pqes_on_err(hdev, qid_base, stream, qman_base, true);
+ return;
+ }
+
+ gaudi2_print_sw_config_stream_data(hdev, stream, qman_base);
+
+ for (i = 0 ; i < QMAN_STREAMS ; i++)
+ gaudi2_print_last_pqes_on_err(hdev, qid_base, i, qman_base, false);
+}
+
+static int gaudi2_handle_qman_err_generic(struct hl_device *hdev, u16 event_type,
+ u64 qman_base, u32 qid_base)
+{
+ u32 i, j, glbl_sts_val, arb_err_val, num_error_causes, error_count = 0;
+ u64 glbl_sts_addr, arb_err_addr;
+ char reg_desc[32];
+
+ glbl_sts_addr = qman_base + (mmDCORE0_TPC0_QM_GLBL_ERR_STS_0 - mmDCORE0_TPC0_QM_BASE);
+ arb_err_addr = qman_base + (mmDCORE0_TPC0_QM_ARB_ERR_CAUSE - mmDCORE0_TPC0_QM_BASE);
+
+ /* Iterate through all stream GLBL_ERR_STS registers + Lower CP */
+ for (i = 0 ; i < QMAN_STREAMS + 1 ; i++) {
+ glbl_sts_val = RREG32(glbl_sts_addr + 4 * i);
+
+ if (!glbl_sts_val)
+ continue;
+
+ if (i == QMAN_STREAMS) {
+ snprintf(reg_desc, ARRAY_SIZE(reg_desc), "LowerCP");
+ num_error_causes = GAUDI2_NUM_OF_QM_LCP_ERR_CAUSE;
+ } else {
+ snprintf(reg_desc, ARRAY_SIZE(reg_desc), "stream%u", i);
+ num_error_causes = GAUDI2_NUM_OF_QM_ERR_CAUSE;
+ }
+
+ for (j = 0 ; j < num_error_causes ; j++)
+ if (glbl_sts_val & BIT(j)) {
+ gaudi2_print_event(hdev, event_type, true,
+ "%s. err cause: %s", reg_desc,
+ i == QMAN_STREAMS ?
+ gaudi2_qman_lower_cp_error_cause[j] :
+ gaudi2_qman_error_cause[j]);
+ error_count++;
+ }
+
+ print_qman_data_on_err(hdev, qid_base, i, qman_base);
+ }
+
+ arb_err_val = RREG32(arb_err_addr);
+
+ if (!arb_err_val)
+ goto out;
+
+ for (j = 0 ; j < GAUDI2_NUM_OF_QM_ARB_ERR_CAUSE ; j++) {
+ if (arb_err_val & BIT(j)) {
+ gaudi2_print_event(hdev, event_type, true,
+ "ARB_ERR. err cause: %s",
+ gaudi2_qman_arb_error_cause[j]);
+ error_count++;
+ }
+ }
+
+out:
+ return error_count;
+}
+
+static void gaudi2_razwi_rr_hbw_shared_printf_info(struct hl_device *hdev,
+ u64 rtr_mstr_if_base_addr, bool is_write, char *name,
+ enum gaudi2_engine_id id, u64 *event_mask)
+{
+ u32 razwi_hi, razwi_lo, razwi_xy;
+ u16 eng_id = id;
+ u8 rd_wr_flag;
+
+ if (is_write) {
+ razwi_hi = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_HI);
+ razwi_lo = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_LO);
+ razwi_xy = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_XY);
+ rd_wr_flag = HL_RAZWI_WRITE;
+ } else {
+ razwi_hi = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_HI);
+ razwi_lo = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_LO);
+ razwi_xy = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_XY);
+ rd_wr_flag = HL_RAZWI_READ;
+ }
+
+ hl_handle_razwi(hdev, (u64)razwi_hi << 32 | razwi_lo, &eng_id, 1,
+ rd_wr_flag | HL_RAZWI_HBW, event_mask);
+
+ dev_err_ratelimited(hdev->dev,
+ "%s-RAZWI SHARED RR HBW %s error, address %#llx, Initiator coordinates 0x%x\n",
+ name, is_write ? "WR" : "RD", (u64)razwi_hi << 32 | razwi_lo, razwi_xy);
+}
+
+static void gaudi2_razwi_rr_lbw_shared_printf_info(struct hl_device *hdev,
+ u64 rtr_mstr_if_base_addr, bool is_write, char *name,
+ enum gaudi2_engine_id id, u64 *event_mask)
+{
+ u64 razwi_addr = CFG_BASE;
+ u32 razwi_xy;
+ u16 eng_id = id;
+ u8 rd_wr_flag;
+
+ if (is_write) {
+ razwi_addr += RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI);
+ razwi_xy = RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI_XY);
+ rd_wr_flag = HL_RAZWI_WRITE;
+ } else {
+ razwi_addr += RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI);
+ razwi_xy = RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI_XY);
+ rd_wr_flag = HL_RAZWI_READ;
+ }
+
+ hl_handle_razwi(hdev, razwi_addr, &eng_id, 1, rd_wr_flag | HL_RAZWI_LBW, event_mask);
+ dev_err_ratelimited(hdev->dev,
+ "%s-RAZWI SHARED RR LBW %s error, mstr_if 0x%llx, captured address 0x%llX Initiator coordinates 0x%x\n",
+ name, is_write ? "WR" : "RD", rtr_mstr_if_base_addr, razwi_addr,
+ razwi_xy);
+}
+
+static enum gaudi2_engine_id gaudi2_razwi_calc_engine_id(struct hl_device *hdev,
+ enum razwi_event_sources module, u8 module_idx)
+{
+ switch (module) {
+ case RAZWI_TPC:
+ if (module_idx == (NUM_OF_TPC_PER_DCORE * NUM_OF_DCORES))
+ return GAUDI2_DCORE0_ENGINE_ID_TPC_6;
+ return (((module_idx / NUM_OF_TPC_PER_DCORE) * ENGINE_ID_DCORE_OFFSET) +
+ (module_idx % NUM_OF_TPC_PER_DCORE) +
+ (GAUDI2_DCORE0_ENGINE_ID_TPC_0 - GAUDI2_DCORE0_ENGINE_ID_EDMA_0));
+
+ case RAZWI_MME:
+ return ((GAUDI2_DCORE0_ENGINE_ID_MME - GAUDI2_DCORE0_ENGINE_ID_EDMA_0) +
+ (module_idx * ENGINE_ID_DCORE_OFFSET));
+
+ case RAZWI_EDMA:
+ return (((module_idx / NUM_OF_EDMA_PER_DCORE) * ENGINE_ID_DCORE_OFFSET) +
+ (module_idx % NUM_OF_EDMA_PER_DCORE));
+
+ case RAZWI_PDMA:
+ return (GAUDI2_ENGINE_ID_PDMA_0 + module_idx);
+
+ case RAZWI_NIC:
+ return (GAUDI2_ENGINE_ID_NIC0_0 + (NIC_NUMBER_OF_QM_PER_MACRO * module_idx));
+
+ case RAZWI_DEC:
+ if (module_idx == 8)
+ return GAUDI2_PCIE_ENGINE_ID_DEC_0;
+
+ if (module_idx == 9)
+ return GAUDI2_PCIE_ENGINE_ID_DEC_1;
+ ;
+ return (((module_idx / NUM_OF_DEC_PER_DCORE) * ENGINE_ID_DCORE_OFFSET) +
+ (module_idx % NUM_OF_DEC_PER_DCORE) +
+ (GAUDI2_DCORE0_ENGINE_ID_DEC_0 - GAUDI2_DCORE0_ENGINE_ID_EDMA_0));
+
+ case RAZWI_ROT:
+ return GAUDI2_ENGINE_ID_ROT_0 + module_idx;
+
+ default:
+ return GAUDI2_ENGINE_ID_SIZE;
+ }
+}
+
+/*
+ * This function handles RR(Range register) hit events.
+ * raised be initiators not PSOC RAZWI.
+ */
+static void gaudi2_ack_module_razwi_event_handler(struct hl_device *hdev,
+ enum razwi_event_sources module, u8 module_idx,
+ u8 module_sub_idx, u64 *event_mask)
+{
+ bool via_sft = false;
+ u32 hbw_rtr_id, lbw_rtr_id, dcore_id, dcore_rtr_id, eng_id;
+ u64 hbw_rtr_mstr_if_base_addr, lbw_rtr_mstr_if_base_addr;
+ u32 hbw_shrd_aw = 0, hbw_shrd_ar = 0;
+ u32 lbw_shrd_aw = 0, lbw_shrd_ar = 0;
+ char initiator_name[64];
+
+ switch (module) {
+ case RAZWI_TPC:
+ hbw_rtr_id = gaudi2_tpc_initiator_hbw_rtr_id[module_idx];
+
+ /* TODO : remove this check and depend only on tpc routers table
+ * when SW-118828 is resolved
+ */
+ if (!hdev->asic_prop.fw_security_enabled &&
+ ((module_idx == 0) || (module_idx == 1)))
+ lbw_rtr_id = DCORE0_RTR0;
+ else
+ lbw_rtr_id = gaudi2_tpc_initiator_lbw_rtr_id[module_idx];
+ sprintf(initiator_name, "TPC_%u", module_idx);
+ break;
+ case RAZWI_MME:
+ sprintf(initiator_name, "MME_%u", module_idx);
+ switch (module_sub_idx) {
+ case MME_WAP0:
+ hbw_rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].wap0;
+ break;
+ case MME_WAP1:
+ hbw_rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].wap1;
+ break;
+ case MME_WRITE:
+ hbw_rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].write;
+ break;
+ case MME_READ:
+ hbw_rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].read;
+ break;
+ case MME_SBTE0:
+ hbw_rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte0;
+ break;
+ case MME_SBTE1:
+ hbw_rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte1;
+ break;
+ case MME_SBTE2:
+ hbw_rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte2;
+ break;
+ case MME_SBTE3:
+ hbw_rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte3;
+ break;
+ case MME_SBTE4:
+ hbw_rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte4;
+ break;
+ default:
+ return;
+ }
+ lbw_rtr_id = hbw_rtr_id;
+ break;
+ case RAZWI_EDMA:
+ hbw_rtr_mstr_if_base_addr = gaudi2_edma_initiator_hbw_sft[module_idx];
+ dcore_id = module_idx / NUM_OF_EDMA_PER_DCORE;
+ /* SFT has separate MSTR_IF for LBW, only there we can
+ * read the LBW razwi related registers
+ */
+ lbw_rtr_mstr_if_base_addr = mmSFT0_LBW_RTR_IF_MSTR_IF_RR_SHRD_HBW_BASE +
+ dcore_id * SFT_DCORE_OFFSET;
+ via_sft = true;
+ sprintf(initiator_name, "EDMA_%u", module_idx);
+ break;
+ case RAZWI_PDMA:
+ hbw_rtr_id = gaudi2_pdma_initiator_hbw_rtr_id[module_idx];
+ lbw_rtr_id = gaudi2_pdma_initiator_lbw_rtr_id[module_idx];
+ sprintf(initiator_name, "PDMA_%u", module_idx);
+ break;
+ case RAZWI_NIC:
+ hbw_rtr_id = gaudi2_nic_initiator_hbw_rtr_id[module_idx];
+ lbw_rtr_id = gaudi2_nic_initiator_lbw_rtr_id[module_idx];
+ sprintf(initiator_name, "NIC_%u", module_idx);
+ break;
+ case RAZWI_DEC:
+ hbw_rtr_id = gaudi2_dec_initiator_hbw_rtr_id[module_idx];
+ lbw_rtr_id = gaudi2_dec_initiator_lbw_rtr_id[module_idx];
+ sprintf(initiator_name, "DEC_%u", module_idx);
+ break;
+ case RAZWI_ROT:
+ hbw_rtr_id = gaudi2_rot_initiator_hbw_rtr_id[module_idx];
+ lbw_rtr_id = gaudi2_rot_initiator_lbw_rtr_id[module_idx];
+ sprintf(initiator_name, "ROT_%u", module_idx);
+ break;
+ default:
+ return;
+ }
+
+ /* Find router mstr_if register base */
+ if (!via_sft) {
+ dcore_id = hbw_rtr_id / NUM_OF_RTR_PER_DCORE;
+ dcore_rtr_id = hbw_rtr_id % NUM_OF_RTR_PER_DCORE;
+ hbw_rtr_mstr_if_base_addr = mmDCORE0_RTR0_CTRL_BASE +
+ dcore_id * DCORE_OFFSET +
+ dcore_rtr_id * DCORE_RTR_OFFSET +
+ RTR_MSTR_IF_OFFSET;
+ lbw_rtr_mstr_if_base_addr = hbw_rtr_mstr_if_base_addr +
+ (((s32)lbw_rtr_id - hbw_rtr_id) * DCORE_RTR_OFFSET);
+ }
+
+ /* Find out event cause by reading "RAZWI_HAPPENED" registers */
+ hbw_shrd_aw = RREG32(hbw_rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_HAPPENED);
+ hbw_shrd_ar = RREG32(hbw_rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_HAPPENED);
+ lbw_shrd_aw = RREG32(lbw_rtr_mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI_HAPPENED);
+ lbw_shrd_ar = RREG32(lbw_rtr_mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI_HAPPENED);
+
+ eng_id = gaudi2_razwi_calc_engine_id(hdev, module, module_idx);
+ if (hbw_shrd_aw) {
+ gaudi2_razwi_rr_hbw_shared_printf_info(hdev, hbw_rtr_mstr_if_base_addr, true,
+ initiator_name, eng_id, event_mask);
+
+ /* Clear event indication */
+ WREG32(hbw_rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_HAPPENED, hbw_shrd_aw);
+ }
+
+ if (hbw_shrd_ar) {
+ gaudi2_razwi_rr_hbw_shared_printf_info(hdev, hbw_rtr_mstr_if_base_addr, false,
+ initiator_name, eng_id, event_mask);
+
+ /* Clear event indication */
+ WREG32(hbw_rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_HAPPENED, hbw_shrd_ar);
+ }
+
+ if (lbw_shrd_aw) {
+ gaudi2_razwi_rr_lbw_shared_printf_info(hdev, lbw_rtr_mstr_if_base_addr, true,
+ initiator_name, eng_id, event_mask);
+
+ /* Clear event indication */
+ WREG32(lbw_rtr_mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI_HAPPENED, lbw_shrd_aw);
+ }
+
+ if (lbw_shrd_ar) {
+ gaudi2_razwi_rr_lbw_shared_printf_info(hdev, lbw_rtr_mstr_if_base_addr, false,
+ initiator_name, eng_id, event_mask);
+
+ /* Clear event indication */
+ WREG32(lbw_rtr_mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI_HAPPENED, lbw_shrd_ar);
+ }
+}
+
+static void gaudi2_check_if_razwi_happened(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u8 mod_idx, sub_mod;
+
+ /* check all TPCs */
+ for (mod_idx = 0 ; mod_idx < (NUM_OF_TPC_PER_DCORE * NUM_OF_DCORES + 1) ; mod_idx++) {
+ if (prop->tpc_enabled_mask & BIT(mod_idx))
+ gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_TPC, mod_idx, 0, NULL);
+ }
+
+ /* check all MMEs */
+ for (mod_idx = 0 ; mod_idx < (NUM_OF_MME_PER_DCORE * NUM_OF_DCORES) ; mod_idx++)
+ for (sub_mod = MME_WAP0 ; sub_mod < MME_INITIATORS_MAX ; sub_mod++)
+ gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_MME, mod_idx,
+ sub_mod, NULL);
+
+ /* check all EDMAs */
+ for (mod_idx = 0 ; mod_idx < (NUM_OF_EDMA_PER_DCORE * NUM_OF_DCORES) ; mod_idx++)
+ if (prop->edma_enabled_mask & BIT(mod_idx))
+ gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_EDMA, mod_idx, 0, NULL);
+
+ /* check all PDMAs */
+ for (mod_idx = 0 ; mod_idx < NUM_OF_PDMA ; mod_idx++)
+ gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_PDMA, mod_idx, 0, NULL);
+
+ /* check all NICs */
+ for (mod_idx = 0 ; mod_idx < NIC_NUMBER_OF_PORTS ; mod_idx++)
+ if (hdev->nic_ports_mask & BIT(mod_idx))
+ gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_NIC, mod_idx >> 1, 0,
+ NULL);
+
+ /* check all DECs */
+ for (mod_idx = 0 ; mod_idx < NUMBER_OF_DEC ; mod_idx++)
+ if (prop->decoder_enabled_mask & BIT(mod_idx))
+ gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_DEC, mod_idx, 0, NULL);
+
+ /* check all ROTs */
+ for (mod_idx = 0 ; mod_idx < NUM_OF_ROT ; mod_idx++)
+ gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_ROT, mod_idx, 0, NULL);
+}
+
+static const char *gaudi2_get_initiators_name(u32 rtr_id)
+{
+ switch (rtr_id) {
+ case DCORE0_RTR0:
+ return "DEC0/1/8/9, TPC24, PDMA0/1, PMMU, PCIE_IF, EDMA0/2, HMMU0/2/4/6, CPU";
+ case DCORE0_RTR1:
+ return "TPC0/1";
+ case DCORE0_RTR2:
+ return "TPC2/3";
+ case DCORE0_RTR3:
+ return "TPC4/5";
+ case DCORE0_RTR4:
+ return "MME0_SBTE0/1";
+ case DCORE0_RTR5:
+ return "MME0_WAP0/SBTE2";
+ case DCORE0_RTR6:
+ return "MME0_CTRL_WR/SBTE3";
+ case DCORE0_RTR7:
+ return "MME0_WAP1/CTRL_RD/SBTE4";
+ case DCORE1_RTR0:
+ return "MME1_WAP1/CTRL_RD/SBTE4";
+ case DCORE1_RTR1:
+ return "MME1_CTRL_WR/SBTE3";
+ case DCORE1_RTR2:
+ return "MME1_WAP0/SBTE2";
+ case DCORE1_RTR3:
+ return "MME1_SBTE0/1";
+ case DCORE1_RTR4:
+ return "TPC10/11";
+ case DCORE1_RTR5:
+ return "TPC8/9";
+ case DCORE1_RTR6:
+ return "TPC6/7";
+ case DCORE1_RTR7:
+ return "DEC2/3, NIC0/1/2/3/4, ARC_FARM, KDMA, EDMA1/3, HMMU1/3/5/7";
+ case DCORE2_RTR0:
+ return "DEC4/5, NIC5/6/7/8, EDMA4/6, HMMU8/10/12/14, ROT0";
+ case DCORE2_RTR1:
+ return "TPC16/17";
+ case DCORE2_RTR2:
+ return "TPC14/15";
+ case DCORE2_RTR3:
+ return "TPC12/13";
+ case DCORE2_RTR4:
+ return "MME2_SBTE0/1";
+ case DCORE2_RTR5:
+ return "MME2_WAP0/SBTE2";
+ case DCORE2_RTR6:
+ return "MME2_CTRL_WR/SBTE3";
+ case DCORE2_RTR7:
+ return "MME2_WAP1/CTRL_RD/SBTE4";
+ case DCORE3_RTR0:
+ return "MME3_WAP1/CTRL_RD/SBTE4";
+ case DCORE3_RTR1:
+ return "MME3_CTRL_WR/SBTE3";
+ case DCORE3_RTR2:
+ return "MME3_WAP0/SBTE2";
+ case DCORE3_RTR3:
+ return "MME3_SBTE0/1";
+ case DCORE3_RTR4:
+ return "TPC18/19";
+ case DCORE3_RTR5:
+ return "TPC20/21";
+ case DCORE3_RTR6:
+ return "TPC22/23";
+ case DCORE3_RTR7:
+ return "DEC6/7, NIC9/10/11, EDMA5/7, HMMU9/11/13/15, ROT1, PSOC";
+ default:
+ return "N/A";
+ }
+}
+
+static u16 gaudi2_get_razwi_initiators(u32 rtr_id, u16 *engines)
+{
+ switch (rtr_id) {
+ case DCORE0_RTR0:
+ engines[0] = GAUDI2_DCORE0_ENGINE_ID_DEC_0;
+ engines[1] = GAUDI2_DCORE0_ENGINE_ID_DEC_1;
+ engines[2] = GAUDI2_PCIE_ENGINE_ID_DEC_0;
+ engines[3] = GAUDI2_PCIE_ENGINE_ID_DEC_1;
+ engines[4] = GAUDI2_DCORE0_ENGINE_ID_TPC_6;
+ engines[5] = GAUDI2_ENGINE_ID_PDMA_0;
+ engines[6] = GAUDI2_ENGINE_ID_PDMA_1;
+ engines[7] = GAUDI2_ENGINE_ID_PCIE;
+ engines[8] = GAUDI2_DCORE0_ENGINE_ID_EDMA_0;
+ engines[9] = GAUDI2_DCORE1_ENGINE_ID_EDMA_0;
+ engines[10] = GAUDI2_ENGINE_ID_PSOC;
+ return 11;
+
+ case DCORE0_RTR1:
+ engines[0] = GAUDI2_DCORE0_ENGINE_ID_TPC_0;
+ engines[1] = GAUDI2_DCORE0_ENGINE_ID_TPC_1;
+ return 2;
+
+ case DCORE0_RTR2:
+ engines[0] = GAUDI2_DCORE0_ENGINE_ID_TPC_2;
+ engines[1] = GAUDI2_DCORE0_ENGINE_ID_TPC_3;
+ return 2;
+
+ case DCORE0_RTR3:
+ engines[0] = GAUDI2_DCORE0_ENGINE_ID_TPC_4;
+ engines[1] = GAUDI2_DCORE0_ENGINE_ID_TPC_5;
+ return 2;
+
+ case DCORE0_RTR4:
+ case DCORE0_RTR5:
+ case DCORE0_RTR6:
+ case DCORE0_RTR7:
+ engines[0] = GAUDI2_DCORE0_ENGINE_ID_MME;
+ return 1;
+
+ case DCORE1_RTR0:
+ case DCORE1_RTR1:
+ case DCORE1_RTR2:
+ case DCORE1_RTR3:
+ engines[0] = GAUDI2_DCORE1_ENGINE_ID_MME;
+ return 1;
+
+ case DCORE1_RTR4:
+ engines[0] = GAUDI2_DCORE1_ENGINE_ID_TPC_4;
+ engines[1] = GAUDI2_DCORE1_ENGINE_ID_TPC_5;
+ return 2;
+
+ case DCORE1_RTR5:
+ engines[0] = GAUDI2_DCORE1_ENGINE_ID_TPC_2;
+ engines[1] = GAUDI2_DCORE1_ENGINE_ID_TPC_3;
+ return 2;
+
+ case DCORE1_RTR6:
+ engines[0] = GAUDI2_DCORE1_ENGINE_ID_TPC_0;
+ engines[1] = GAUDI2_DCORE1_ENGINE_ID_TPC_1;
+ return 2;
+
+ case DCORE1_RTR7:
+ engines[0] = GAUDI2_DCORE1_ENGINE_ID_DEC_0;
+ engines[1] = GAUDI2_DCORE1_ENGINE_ID_DEC_1;
+ engines[2] = GAUDI2_ENGINE_ID_NIC0_0;
+ engines[3] = GAUDI2_ENGINE_ID_NIC1_0;
+ engines[4] = GAUDI2_ENGINE_ID_NIC2_0;
+ engines[5] = GAUDI2_ENGINE_ID_NIC3_0;
+ engines[6] = GAUDI2_ENGINE_ID_NIC4_0;
+ engines[7] = GAUDI2_ENGINE_ID_ARC_FARM;
+ engines[8] = GAUDI2_ENGINE_ID_KDMA;
+ engines[9] = GAUDI2_DCORE0_ENGINE_ID_EDMA_1;
+ engines[10] = GAUDI2_DCORE1_ENGINE_ID_EDMA_1;
+ return 11;
+
+ case DCORE2_RTR0:
+ engines[0] = GAUDI2_DCORE2_ENGINE_ID_DEC_0;
+ engines[1] = GAUDI2_DCORE2_ENGINE_ID_DEC_1;
+ engines[2] = GAUDI2_ENGINE_ID_NIC5_0;
+ engines[3] = GAUDI2_ENGINE_ID_NIC6_0;
+ engines[4] = GAUDI2_ENGINE_ID_NIC7_0;
+ engines[5] = GAUDI2_ENGINE_ID_NIC8_0;
+ engines[6] = GAUDI2_DCORE2_ENGINE_ID_EDMA_0;
+ engines[7] = GAUDI2_DCORE3_ENGINE_ID_EDMA_0;
+ engines[8] = GAUDI2_ENGINE_ID_ROT_0;
+ return 9;
+
+ case DCORE2_RTR1:
+ engines[0] = GAUDI2_DCORE2_ENGINE_ID_TPC_4;
+ engines[1] = GAUDI2_DCORE2_ENGINE_ID_TPC_5;
+ return 2;
+
+ case DCORE2_RTR2:
+ engines[0] = GAUDI2_DCORE2_ENGINE_ID_TPC_2;
+ engines[1] = GAUDI2_DCORE2_ENGINE_ID_TPC_3;
+ return 2;
+
+ case DCORE2_RTR3:
+ engines[0] = GAUDI2_DCORE2_ENGINE_ID_TPC_0;
+ engines[1] = GAUDI2_DCORE2_ENGINE_ID_TPC_1;
+ return 2;
+
+ case DCORE2_RTR4:
+ case DCORE2_RTR5:
+ case DCORE2_RTR6:
+ case DCORE2_RTR7:
+ engines[0] = GAUDI2_DCORE2_ENGINE_ID_MME;
+ return 1;
+ case DCORE3_RTR0:
+ case DCORE3_RTR1:
+ case DCORE3_RTR2:
+ case DCORE3_RTR3:
+ engines[0] = GAUDI2_DCORE3_ENGINE_ID_MME;
+ return 1;
+ case DCORE3_RTR4:
+ engines[0] = GAUDI2_DCORE3_ENGINE_ID_TPC_0;
+ engines[1] = GAUDI2_DCORE3_ENGINE_ID_TPC_1;
+ return 2;
+ case DCORE3_RTR5:
+ engines[0] = GAUDI2_DCORE3_ENGINE_ID_TPC_2;
+ engines[1] = GAUDI2_DCORE3_ENGINE_ID_TPC_3;
+ return 2;
+ case DCORE3_RTR6:
+ engines[0] = GAUDI2_DCORE3_ENGINE_ID_TPC_4;
+ engines[1] = GAUDI2_DCORE3_ENGINE_ID_TPC_5;
+ return 2;
+ case DCORE3_RTR7:
+ engines[0] = GAUDI2_DCORE3_ENGINE_ID_DEC_0;
+ engines[1] = GAUDI2_DCORE3_ENGINE_ID_DEC_1;
+ engines[2] = GAUDI2_ENGINE_ID_NIC9_0;
+ engines[3] = GAUDI2_ENGINE_ID_NIC10_0;
+ engines[4] = GAUDI2_ENGINE_ID_NIC11_0;
+ engines[5] = GAUDI2_DCORE2_ENGINE_ID_EDMA_1;
+ engines[6] = GAUDI2_DCORE3_ENGINE_ID_EDMA_1;
+ engines[7] = GAUDI2_ENGINE_ID_ROT_1;
+ engines[8] = GAUDI2_ENGINE_ID_ROT_0;
+ return 9;
+ default:
+ return 0;
+ }
+}
+
+static void gaudi2_razwi_unmapped_addr_hbw_printf_info(struct hl_device *hdev, u32 rtr_id,
+ u64 rtr_ctrl_base_addr, bool is_write,
+ u64 *event_mask)
+{
+ u16 engines[HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR], num_of_eng;
+ u32 razwi_hi, razwi_lo;
+ u8 rd_wr_flag;
+
+ num_of_eng = gaudi2_get_razwi_initiators(rtr_id, &engines[0]);
+
+ if (is_write) {
+ razwi_hi = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AW_ADDR_HI);
+ razwi_lo = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AW_ADDR_LO);
+ rd_wr_flag = HL_RAZWI_WRITE;
+
+ /* Clear set indication */
+ WREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AW_SET, 0x1);
+ } else {
+ razwi_hi = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AR_ADDR_HI);
+ razwi_lo = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AR_ADDR_LO);
+ rd_wr_flag = HL_RAZWI_READ;
+
+ /* Clear set indication */
+ WREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AR_SET, 0x1);
+ }
+
+ hl_handle_razwi(hdev, (u64)razwi_hi << 32 | razwi_lo, &engines[0], num_of_eng,
+ rd_wr_flag | HL_RAZWI_HBW, event_mask);
+ dev_err_ratelimited(hdev->dev,
+ "RAZWI PSOC unmapped HBW %s error, rtr id %u, address %#llx\n",
+ is_write ? "WR" : "RD", rtr_id, (u64)razwi_hi << 32 | razwi_lo);
+
+ dev_err_ratelimited(hdev->dev,
+ "Initiators: %s\n", gaudi2_get_initiators_name(rtr_id));
+}
+
+static void gaudi2_razwi_unmapped_addr_lbw_printf_info(struct hl_device *hdev, u32 rtr_id,
+ u64 rtr_ctrl_base_addr, bool is_write,
+ u64 *event_mask)
+{
+ u16 engines[HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR], num_of_eng;
+ u64 razwi_addr = CFG_BASE;
+ u8 rd_wr_flag;
+
+ num_of_eng = gaudi2_get_razwi_initiators(rtr_id, &engines[0]);
+
+ if (is_write) {
+ razwi_addr += RREG32(rtr_ctrl_base_addr + DEC_RAZWI_LBW_AW_ADDR);
+ rd_wr_flag = HL_RAZWI_WRITE;
+
+ /* Clear set indication */
+ WREG32(rtr_ctrl_base_addr + DEC_RAZWI_LBW_AW_SET, 0x1);
+ } else {
+ razwi_addr += RREG32(rtr_ctrl_base_addr + DEC_RAZWI_LBW_AR_ADDR);
+ rd_wr_flag = HL_RAZWI_READ;
+
+ /* Clear set indication */
+ WREG32(rtr_ctrl_base_addr + DEC_RAZWI_LBW_AR_SET, 0x1);
+ }
+
+ hl_handle_razwi(hdev, razwi_addr, &engines[0], num_of_eng, rd_wr_flag | HL_RAZWI_LBW,
+ event_mask);
+ dev_err_ratelimited(hdev->dev,
+ "RAZWI PSOC unmapped LBW %s error, rtr id %u, address 0x%llX\n",
+ is_write ? "WR" : "RD", rtr_id, razwi_addr);
+
+ dev_err_ratelimited(hdev->dev,
+ "Initiators: %s\n", gaudi2_get_initiators_name(rtr_id));
+}
+
+/* PSOC RAZWI interrupt occurs only when trying to access a bad address */
+static int gaudi2_ack_psoc_razwi_event_handler(struct hl_device *hdev, u64 *event_mask)
+{
+ u32 hbw_aw_set, hbw_ar_set, lbw_aw_set, lbw_ar_set, rtr_id, dcore_id, dcore_rtr_id, xy,
+ razwi_mask_info, razwi_intr = 0, error_count = 0;
+ int rtr_map_arr_len = NUM_OF_RTR_PER_DCORE * NUM_OF_DCORES;
+ u64 rtr_ctrl_base_addr;
+
+ if (hdev->pldm || !(hdev->fw_components & FW_TYPE_LINUX)) {
+ razwi_intr = RREG32(mmPSOC_GLOBAL_CONF_RAZWI_INTERRUPT);
+ if (!razwi_intr)
+ return 0;
+ }
+
+ razwi_mask_info = RREG32(mmPSOC_GLOBAL_CONF_RAZWI_MASK_INFO);
+ xy = FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_AXUSER_L_MASK, razwi_mask_info);
+
+ dev_err_ratelimited(hdev->dev,
+ "PSOC RAZWI interrupt: Mask %d, AR %d, AW %d, AXUSER_L 0x%x AXUSER_H 0x%x\n",
+ FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_MASK_MASK, razwi_mask_info),
+ FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_WAS_AR_MASK, razwi_mask_info),
+ FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_WAS_AW_MASK, razwi_mask_info),
+ xy,
+ FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_AXUSER_H_MASK, razwi_mask_info));
+
+ if (xy == 0) {
+ dev_err_ratelimited(hdev->dev,
+ "PSOC RAZWI interrupt: received event from 0 rtr coordinates\n");
+ goto clear;
+ }
+
+ /* Find router id by router coordinates */
+ for (rtr_id = 0 ; rtr_id < rtr_map_arr_len ; rtr_id++)
+ if (rtr_coordinates_to_rtr_id[rtr_id] == xy)
+ break;
+
+ if (rtr_id == rtr_map_arr_len) {
+ dev_err_ratelimited(hdev->dev,
+ "PSOC RAZWI interrupt: invalid rtr coordinates (0x%x)\n", xy);
+ goto clear;
+ }
+
+ /* Find router mstr_if register base */
+ dcore_id = rtr_id / NUM_OF_RTR_PER_DCORE;
+ dcore_rtr_id = rtr_id % NUM_OF_RTR_PER_DCORE;
+ rtr_ctrl_base_addr = mmDCORE0_RTR0_CTRL_BASE + dcore_id * DCORE_OFFSET +
+ dcore_rtr_id * DCORE_RTR_OFFSET;
+
+ hbw_aw_set = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AW_SET);
+ hbw_ar_set = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AR_SET);
+ lbw_aw_set = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_LBW_AW_SET);
+ lbw_ar_set = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_LBW_AR_SET);
+
+ if (hbw_aw_set)
+ gaudi2_razwi_unmapped_addr_hbw_printf_info(hdev, rtr_id,
+ rtr_ctrl_base_addr, true, event_mask);
+
+ if (hbw_ar_set)
+ gaudi2_razwi_unmapped_addr_hbw_printf_info(hdev, rtr_id,
+ rtr_ctrl_base_addr, false, event_mask);
+
+ if (lbw_aw_set)
+ gaudi2_razwi_unmapped_addr_lbw_printf_info(hdev, rtr_id,
+ rtr_ctrl_base_addr, true, event_mask);
+
+ if (lbw_ar_set)
+ gaudi2_razwi_unmapped_addr_lbw_printf_info(hdev, rtr_id,
+ rtr_ctrl_base_addr, false, event_mask);
+
+ error_count++;
+
+clear:
+ /* Clear Interrupts only on pldm or if f/w doesn't handle interrupts */
+ if (hdev->pldm || !(hdev->fw_components & FW_TYPE_LINUX))
+ WREG32(mmPSOC_GLOBAL_CONF_RAZWI_INTERRUPT, razwi_intr);
+
+ return error_count;
+}
+
+static int _gaudi2_handle_qm_sei_err(struct hl_device *hdev, u64 qman_base, u16 event_type)
+{
+ u32 i, sts_val, sts_clr_val = 0, error_count = 0;
+
+ sts_val = RREG32(qman_base + QM_SEI_STATUS_OFFSET);
+
+ for (i = 0 ; i < GAUDI2_NUM_OF_QM_SEI_ERR_CAUSE ; i++) {
+ if (sts_val & BIT(i)) {
+ gaudi2_print_event(hdev, event_type, true,
+ "err cause: %s", gaudi2_qm_sei_error_cause[i]);
+ sts_clr_val |= BIT(i);
+ error_count++;
+ }
+ }
+
+ WREG32(qman_base + QM_SEI_STATUS_OFFSET, sts_clr_val);
+
+ return error_count;
+}
+
+static int gaudi2_handle_qm_sei_err(struct hl_device *hdev, u16 event_type,
+ bool extended_err_check, u64 *event_mask)
+{
+ enum razwi_event_sources module;
+ u32 error_count = 0;
+ u64 qman_base;
+ u8 index;
+
+ switch (event_type) {
+ case GAUDI2_EVENT_TPC0_AXI_ERR_RSP ... GAUDI2_EVENT_TPC23_AXI_ERR_RSP:
+ index = event_type - GAUDI2_EVENT_TPC0_AXI_ERR_RSP;
+ qman_base = mmDCORE0_TPC0_QM_BASE +
+ (index / NUM_OF_TPC_PER_DCORE) * DCORE_OFFSET +
+ (index % NUM_OF_TPC_PER_DCORE) * DCORE_TPC_OFFSET;
+ module = RAZWI_TPC;
+ break;
+ case GAUDI2_EVENT_TPC24_AXI_ERR_RSP:
+ qman_base = mmDCORE0_TPC6_QM_BASE;
+ module = RAZWI_TPC;
+ break;
+ case GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE:
+ case GAUDI2_EVENT_MME1_CTRL_AXI_ERROR_RESPONSE:
+ case GAUDI2_EVENT_MME2_CTRL_AXI_ERROR_RESPONSE:
+ case GAUDI2_EVENT_MME3_CTRL_AXI_ERROR_RESPONSE:
+ index = (event_type - GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE) /
+ (GAUDI2_EVENT_MME1_CTRL_AXI_ERROR_RESPONSE -
+ GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE);
+ qman_base = mmDCORE0_MME_QM_BASE + index * DCORE_OFFSET;
+ module = RAZWI_MME;
+ break;
+ case GAUDI2_EVENT_PDMA_CH0_AXI_ERR_RSP:
+ case GAUDI2_EVENT_PDMA_CH1_AXI_ERR_RSP:
+ index = event_type - GAUDI2_EVENT_PDMA_CH0_AXI_ERR_RSP;
+ qman_base = mmPDMA0_QM_BASE + index * PDMA_OFFSET;
+ module = RAZWI_PDMA;
+ break;
+ case GAUDI2_EVENT_ROTATOR0_AXI_ERROR_RESPONSE:
+ case GAUDI2_EVENT_ROTATOR1_AXI_ERROR_RESPONSE:
+ index = event_type - GAUDI2_EVENT_ROTATOR0_AXI_ERROR_RESPONSE;
+ qman_base = mmROT0_QM_BASE + index * ROT_OFFSET;
+ module = RAZWI_ROT;
+ break;
+ default:
+ return 0;
+ }
+
+ error_count = _gaudi2_handle_qm_sei_err(hdev, qman_base, event_type);
+
+ /* There is a single event per NIC macro, so should check its both QMAN blocks */
+ if (event_type >= GAUDI2_EVENT_NIC0_AXI_ERROR_RESPONSE &&
+ event_type <= GAUDI2_EVENT_NIC11_AXI_ERROR_RESPONSE)
+ error_count += _gaudi2_handle_qm_sei_err(hdev,
+ qman_base + NIC_QM_OFFSET, event_type);
+
+ if (extended_err_check) {
+ /* check if RAZWI happened */
+ gaudi2_ack_module_razwi_event_handler(hdev, module, 0, 0, event_mask);
+ hl_check_for_glbl_errors(hdev);
+ }
+
+ return error_count;
+}
+
+static int gaudi2_handle_qman_err(struct hl_device *hdev, u16 event_type, u64 *event_mask)
+{
+ u32 qid_base, error_count = 0;
+ u64 qman_base;
+ u8 index;
+
+ switch (event_type) {
+ case GAUDI2_EVENT_TPC0_QM ... GAUDI2_EVENT_TPC5_QM:
+ index = event_type - GAUDI2_EVENT_TPC0_QM;
+ qid_base = GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 + index * QMAN_STREAMS;
+ qman_base = mmDCORE0_TPC0_QM_BASE + index * DCORE_TPC_OFFSET;
+ break;
+ case GAUDI2_EVENT_TPC6_QM ... GAUDI2_EVENT_TPC11_QM:
+ index = event_type - GAUDI2_EVENT_TPC6_QM;
+ qid_base = GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 + index * QMAN_STREAMS;
+ qman_base = mmDCORE1_TPC0_QM_BASE + index * DCORE_TPC_OFFSET;
+ break;
+ case GAUDI2_EVENT_TPC12_QM ... GAUDI2_EVENT_TPC17_QM:
+ index = event_type - GAUDI2_EVENT_TPC12_QM;
+ qid_base = GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 + index * QMAN_STREAMS;
+ qman_base = mmDCORE2_TPC0_QM_BASE + index * DCORE_TPC_OFFSET;
+ break;
+ case GAUDI2_EVENT_TPC18_QM ... GAUDI2_EVENT_TPC23_QM:
+ index = event_type - GAUDI2_EVENT_TPC18_QM;
+ qid_base = GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 + index * QMAN_STREAMS;
+ qman_base = mmDCORE3_TPC0_QM_BASE + index * DCORE_TPC_OFFSET;
+ break;
+ case GAUDI2_EVENT_TPC24_QM:
+ qid_base = GAUDI2_QUEUE_ID_DCORE0_TPC_6_0;
+ qman_base = mmDCORE0_TPC6_QM_BASE;
+ break;
+ case GAUDI2_EVENT_MME0_QM:
+ qid_base = GAUDI2_QUEUE_ID_DCORE0_MME_0_0;
+ qman_base = mmDCORE0_MME_QM_BASE;
+ break;
+ case GAUDI2_EVENT_MME1_QM:
+ qid_base = GAUDI2_QUEUE_ID_DCORE1_MME_0_0;
+ qman_base = mmDCORE1_MME_QM_BASE;
+ break;
+ case GAUDI2_EVENT_MME2_QM:
+ qid_base = GAUDI2_QUEUE_ID_DCORE2_MME_0_0;
+ qman_base = mmDCORE2_MME_QM_BASE;
+ break;
+ case GAUDI2_EVENT_MME3_QM:
+ qid_base = GAUDI2_QUEUE_ID_DCORE3_MME_0_0;
+ qman_base = mmDCORE3_MME_QM_BASE;
+ break;
+ case GAUDI2_EVENT_HDMA0_QM:
+ index = 0;
+ qid_base = GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0;
+ qman_base = mmDCORE0_EDMA0_QM_BASE;
+ break;
+ case GAUDI2_EVENT_HDMA1_QM:
+ index = 1;
+ qid_base = GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0;
+ qman_base = mmDCORE0_EDMA1_QM_BASE;
+ break;
+ case GAUDI2_EVENT_HDMA2_QM:
+ index = 2;
+ qid_base = GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0;
+ qman_base = mmDCORE1_EDMA0_QM_BASE;
+ break;
+ case GAUDI2_EVENT_HDMA3_QM:
+ index = 3;
+ qid_base = GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0;
+ qman_base = mmDCORE1_EDMA1_QM_BASE;
+ break;
+ case GAUDI2_EVENT_HDMA4_QM:
+ index = 4;
+ qid_base = GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0;
+ qman_base = mmDCORE2_EDMA0_QM_BASE;
+ break;
+ case GAUDI2_EVENT_HDMA5_QM:
+ index = 5;
+ qid_base = GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0;
+ qman_base = mmDCORE2_EDMA1_QM_BASE;
+ break;
+ case GAUDI2_EVENT_HDMA6_QM:
+ index = 6;
+ qid_base = GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0;
+ qman_base = mmDCORE3_EDMA0_QM_BASE;
+ break;
+ case GAUDI2_EVENT_HDMA7_QM:
+ index = 7;
+ qid_base = GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0;
+ qman_base = mmDCORE3_EDMA1_QM_BASE;
+ break;
+ case GAUDI2_EVENT_PDMA0_QM:
+ qid_base = GAUDI2_QUEUE_ID_PDMA_0_0;
+ qman_base = mmPDMA0_QM_BASE;
+ break;
+ case GAUDI2_EVENT_PDMA1_QM:
+ qid_base = GAUDI2_QUEUE_ID_PDMA_1_0;
+ qman_base = mmPDMA1_QM_BASE;
+ break;
+ case GAUDI2_EVENT_ROTATOR0_ROT0_QM:
+ qid_base = GAUDI2_QUEUE_ID_ROT_0_0;
+ qman_base = mmROT0_QM_BASE;
+ break;
+ case GAUDI2_EVENT_ROTATOR1_ROT1_QM:
+ qid_base = GAUDI2_QUEUE_ID_ROT_1_0;
+ qman_base = mmROT1_QM_BASE;
+ break;
+ default:
+ return 0;
+ }
+
+ error_count = gaudi2_handle_qman_err_generic(hdev, event_type, qman_base, qid_base);
+
+ /* Handle EDMA QM SEI here because there is no AXI error response event for EDMA */
+ if (event_type >= GAUDI2_EVENT_HDMA2_QM && event_type <= GAUDI2_EVENT_HDMA5_QM) {
+ error_count += _gaudi2_handle_qm_sei_err(hdev, qman_base, event_type);
+ gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_EDMA, index, 0, event_mask);
+ }
+
+ hl_check_for_glbl_errors(hdev);
+
+ return error_count;
+}
+
+static int gaudi2_handle_arc_farm_sei_err(struct hl_device *hdev, u16 event_type)
+{
+ u32 i, sts_val, sts_clr_val = 0, error_count = 0;
+
+ sts_val = RREG32(mmARC_FARM_ARC0_AUX_ARC_SEI_INTR_STS);
+
+ for (i = 0 ; i < GAUDI2_NUM_OF_ARC_SEI_ERR_CAUSE ; i++) {
+ if (sts_val & BIT(i)) {
+ gaudi2_print_event(hdev, event_type, true,
+ "err cause: %s", gaudi2_arc_sei_error_cause[i]);
+ sts_clr_val |= BIT(i);
+ error_count++;
+ }
+ }
+
+ hl_check_for_glbl_errors(hdev);
+
+ WREG32(mmARC_FARM_ARC0_AUX_ARC_SEI_INTR_CLR, sts_clr_val);
+
+ return error_count;
+}
+
+static int gaudi2_handle_cpu_sei_err(struct hl_device *hdev, u16 event_type)
+{
+ u32 i, sts_val, sts_clr_val = 0, error_count = 0;
+
+ sts_val = RREG32(mmCPU_IF_CPU_SEI_INTR_STS);
+
+ for (i = 0 ; i < GAUDI2_NUM_OF_CPU_SEI_ERR_CAUSE ; i++) {
+ if (sts_val & BIT(i)) {
+ gaudi2_print_event(hdev, event_type, true,
+ "err cause: %s", gaudi2_cpu_sei_error_cause[i]);
+ sts_clr_val |= BIT(i);
+ error_count++;
+ }
+ }
+
+ hl_check_for_glbl_errors(hdev);
+
+ WREG32(mmCPU_IF_CPU_SEI_INTR_CLR, sts_clr_val);
+
+ return error_count;
+}
+
+static int gaudi2_handle_rot_err(struct hl_device *hdev, u8 rot_index, u16 event_type,
+ struct hl_eq_razwi_with_intr_cause *razwi_with_intr_cause,
+ u64 *event_mask)
+{
+ u64 intr_cause_data = le64_to_cpu(razwi_with_intr_cause->intr_cause.intr_cause_data);
+ u32 error_count = 0;
+ int i;
+
+ for (i = 0 ; i < GAUDI2_NUM_OF_ROT_ERR_CAUSE ; i++)
+ if (intr_cause_data & BIT(i)) {
+ gaudi2_print_event(hdev, event_type, true,
+ "err cause: %s", guadi2_rot_error_cause[i]);
+ error_count++;
+ }
+
+ /* check if RAZWI happened */
+ gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_ROT, rot_index, 0, event_mask);
+ hl_check_for_glbl_errors(hdev);
+
+ return error_count;
+}
+
+static int gaudi2_tpc_ack_interrupts(struct hl_device *hdev, u8 tpc_index, u16 event_type,
+ struct hl_eq_razwi_with_intr_cause *razwi_with_intr_cause,
+ u64 *event_mask)
+{
+ u64 intr_cause_data = le64_to_cpu(razwi_with_intr_cause->intr_cause.intr_cause_data);
+ u32 error_count = 0;
+ int i;
+
+ for (i = 0 ; i < GAUDI2_NUM_OF_TPC_INTR_CAUSE ; i++)
+ if (intr_cause_data & BIT(i)) {
+ gaudi2_print_event(hdev, event_type, true,
+ "interrupt cause: %s", gaudi2_tpc_interrupts_cause[i]);
+ error_count++;
+ }
+
+ /* check if RAZWI happened */
+ gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_TPC, tpc_index, 0, event_mask);
+ hl_check_for_glbl_errors(hdev);
+
+ return error_count;
+}
+
+static int gaudi2_handle_dec_err(struct hl_device *hdev, u8 dec_index, u16 event_type,
+ u64 *event_mask)
+{
+ u32 sts_addr, sts_val, sts_clr_val = 0, error_count = 0;
+ int i;
+
+ if (dec_index < NUM_OF_VDEC_PER_DCORE * NUM_OF_DCORES)
+ /* DCORE DEC */
+ sts_addr = mmDCORE0_VDEC0_BRDG_CTRL_CAUSE_INTR +
+ DCORE_OFFSET * (dec_index / NUM_OF_DEC_PER_DCORE) +
+ DCORE_VDEC_OFFSET * (dec_index % NUM_OF_DEC_PER_DCORE);
+ else
+ /* PCIE DEC */
+ sts_addr = mmPCIE_VDEC0_BRDG_CTRL_CAUSE_INTR + PCIE_VDEC_OFFSET *
+ (dec_index - NUM_OF_VDEC_PER_DCORE * NUM_OF_DCORES);
+
+ sts_val = RREG32(sts_addr);
+
+ for (i = 0 ; i < GAUDI2_NUM_OF_DEC_ERR_CAUSE ; i++) {
+ if (sts_val & BIT(i)) {
+ gaudi2_print_event(hdev, event_type, true,
+ "err cause: %s", gaudi2_dec_error_cause[i]);
+ sts_clr_val |= BIT(i);
+ error_count++;
+ }
+ }
+
+ /* check if RAZWI happened */
+ gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_DEC, dec_index, 0, event_mask);
+ hl_check_for_glbl_errors(hdev);
+
+ /* Write 1 clear errors */
+ WREG32(sts_addr, sts_clr_val);
+
+ return error_count;
+}
+
+static int gaudi2_handle_mme_err(struct hl_device *hdev, u8 mme_index, u16 event_type,
+ u64 *event_mask)
+{
+ u32 sts_addr, sts_val, sts_clr_addr, sts_clr_val = 0, error_count = 0;
+ int i;
+
+ sts_addr = mmDCORE0_MME_CTRL_LO_INTR_CAUSE + DCORE_OFFSET * mme_index;
+ sts_clr_addr = mmDCORE0_MME_CTRL_LO_INTR_CLEAR + DCORE_OFFSET * mme_index;
+
+ sts_val = RREG32(sts_addr);
+
+ for (i = 0 ; i < GAUDI2_NUM_OF_MME_ERR_CAUSE ; i++) {
+ if (sts_val & BIT(i)) {
+ gaudi2_print_event(hdev, event_type, true,
+ "err cause: %s", guadi2_mme_error_cause[i]);
+ sts_clr_val |= BIT(i);
+ error_count++;
+ }
+ }
+
+ /* check if RAZWI happened */
+ for (i = MME_WRITE ; i < MME_INITIATORS_MAX ; i++)
+ gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_MME, mme_index, i, event_mask);
+
+ hl_check_for_glbl_errors(hdev);
+
+ WREG32(sts_clr_addr, sts_clr_val);
+
+ return error_count;
+}
+
+static int gaudi2_handle_mme_sbte_err(struct hl_device *hdev, u16 event_type,
+ u64 intr_cause_data)
+{
+ int i, error_count = 0;
+
+ for (i = 0 ; i < GAUDI2_NUM_OF_MME_SBTE_ERR_CAUSE ; i++)
+ if (intr_cause_data & BIT(i)) {
+ gaudi2_print_event(hdev, event_type, true,
+ "err cause: %s", guadi2_mme_sbte_error_cause[i]);
+ error_count++;
+ }
+
+ hl_check_for_glbl_errors(hdev);
+
+ return error_count;
+}
+
+static int gaudi2_handle_mme_wap_err(struct hl_device *hdev, u8 mme_index, u16 event_type,
+ u64 *event_mask)
+{
+ u32 sts_addr, sts_val, sts_clr_addr, sts_clr_val = 0, error_count = 0;
+ int i;
+
+ sts_addr = mmDCORE0_MME_ACC_INTR_CAUSE + DCORE_OFFSET * mme_index;
+ sts_clr_addr = mmDCORE0_MME_ACC_INTR_CLEAR + DCORE_OFFSET * mme_index;
+
+ sts_val = RREG32(sts_addr);
+
+ for (i = 0 ; i < GAUDI2_NUM_OF_MME_WAP_ERR_CAUSE ; i++) {
+ if (sts_val & BIT(i)) {
+ gaudi2_print_event(hdev, event_type, true,
+ "err cause: %s", guadi2_mme_wap_error_cause[i]);
+ sts_clr_val |= BIT(i);
+ error_count++;
+ }
+ }
+
+ /* check if RAZWI happened on WAP0/1 */
+ gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_MME, mme_index, MME_WAP0, event_mask);
+ gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_MME, mme_index, MME_WAP1, event_mask);
+ hl_check_for_glbl_errors(hdev);
+
+ WREG32(sts_clr_addr, sts_clr_val);
+
+ return error_count;
+}
+
+static int gaudi2_handle_kdma_core_event(struct hl_device *hdev, u16 event_type,
+ u64 intr_cause_data)
+{
+ u32 error_count = 0;
+ int i;
+
+ /* If an AXI read or write error is received, an error is reported and
+ * interrupt message is sent. Due to an HW errata, when reading the cause
+ * register of the KDMA engine, the reported error is always HBW even if
+ * the actual error caused by a LBW KDMA transaction.
+ */
+ for (i = 0 ; i < GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE ; i++)
+ if (intr_cause_data & BIT(i)) {
+ gaudi2_print_event(hdev, event_type, true,
+ "err cause: %s", gaudi2_kdma_core_interrupts_cause[i]);
+ error_count++;
+ }
+
+ hl_check_for_glbl_errors(hdev);
+
+ return error_count;
+}
+
+static int gaudi2_handle_dma_core_event(struct hl_device *hdev, u16 event_type,
+ u64 intr_cause_data)
+{
+ u32 error_count = 0;
+ int i;
+
+ for (i = 0 ; i < GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE ; i++)
+ if (intr_cause_data & BIT(i)) {
+ gaudi2_print_event(hdev, event_type, true,
+ "err cause: %s", gaudi2_dma_core_interrupts_cause[i]);
+ error_count++;
+ }
+
+ hl_check_for_glbl_errors(hdev);
+
+ return error_count;
+}
+
+static void gaudi2_print_pcie_mstr_rr_mstr_if_razwi_info(struct hl_device *hdev, u64 *event_mask)
+{
+ u32 mstr_if_base_addr = mmPCIE_MSTR_RR_MSTR_IF_RR_SHRD_HBW_BASE, razwi_happened_addr;
+
+ razwi_happened_addr = mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_HAPPENED;
+ if (RREG32(razwi_happened_addr)) {
+ gaudi2_razwi_rr_hbw_shared_printf_info(hdev, mstr_if_base_addr, true, "PCIE",
+ GAUDI2_ENGINE_ID_PCIE, event_mask);
+ WREG32(razwi_happened_addr, 0x1);
+ }
+
+ razwi_happened_addr = mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_HAPPENED;
+ if (RREG32(razwi_happened_addr)) {
+ gaudi2_razwi_rr_hbw_shared_printf_info(hdev, mstr_if_base_addr, false, "PCIE",
+ GAUDI2_ENGINE_ID_PCIE, event_mask);
+ WREG32(razwi_happened_addr, 0x1);
+ }
+
+ razwi_happened_addr = mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI_HAPPENED;
+ if (RREG32(razwi_happened_addr)) {
+ gaudi2_razwi_rr_lbw_shared_printf_info(hdev, mstr_if_base_addr, true, "PCIE",
+ GAUDI2_ENGINE_ID_PCIE, event_mask);
+ WREG32(razwi_happened_addr, 0x1);
+ }
+
+ razwi_happened_addr = mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI_HAPPENED;
+ if (RREG32(razwi_happened_addr)) {
+ gaudi2_razwi_rr_lbw_shared_printf_info(hdev, mstr_if_base_addr, false, "PCIE",
+ GAUDI2_ENGINE_ID_PCIE, event_mask);
+ WREG32(razwi_happened_addr, 0x1);
+ }
+}
+
+static int gaudi2_print_pcie_addr_dec_info(struct hl_device *hdev, u16 event_type,
+ u64 intr_cause_data, u64 *event_mask)
+{
+ u32 error_count = 0;
+ int i;
+
+ for (i = 0 ; i < GAUDI2_NUM_OF_PCIE_ADDR_DEC_ERR_CAUSE ; i++) {
+ if (!(intr_cause_data & BIT_ULL(i)))
+ continue;
+
+ gaudi2_print_event(hdev, event_type, true,
+ "err cause: %s", gaudi2_pcie_addr_dec_error_cause[i]);
+ error_count++;
+
+ switch (intr_cause_data & BIT_ULL(i)) {
+ case PCIE_WRAP_PCIE_IC_SEI_INTR_IND_AXI_LBW_ERR_INTR_MASK:
+ hl_check_for_glbl_errors(hdev);
+ break;
+ case PCIE_WRAP_PCIE_IC_SEI_INTR_IND_BAD_ACCESS_INTR_MASK:
+ gaudi2_print_pcie_mstr_rr_mstr_if_razwi_info(hdev, event_mask);
+ break;
+ }
+ }
+
+ return error_count;
+}
+
+static int gaudi2_handle_pif_fatal(struct hl_device *hdev, u16 event_type,
+ u64 intr_cause_data)
+
+{
+ u32 error_count = 0;
+ int i;
+
+ for (i = 0 ; i < GAUDI2_NUM_OF_PMMU_FATAL_ERR_CAUSE ; i++) {
+ if (intr_cause_data & BIT_ULL(i)) {
+ gaudi2_print_event(hdev, event_type, true,
+ "err cause: %s", gaudi2_pmmu_fatal_interrupts_cause[i]);
+ error_count++;
+ }
+ }
+
+ return error_count;
+}
+
+static int gaudi2_handle_hif_fatal(struct hl_device *hdev, u16 event_type, u64 intr_cause_data)
+{
+ u32 error_count = 0;
+ int i;
+
+ for (i = 0 ; i < GAUDI2_NUM_OF_HIF_FATAL_ERR_CAUSE ; i++) {
+ if (intr_cause_data & BIT_ULL(i)) {
+ gaudi2_print_event(hdev, event_type, true,
+ "err cause: %s", gaudi2_hif_fatal_interrupts_cause[i]);
+ error_count++;
+ }
+ }
+
+ return error_count;
+}
+
+static void gaudi2_handle_page_error(struct hl_device *hdev, u64 mmu_base, bool is_pmmu,
+ u64 *event_mask)
+{
+ u32 valid, val, axid_l, axid_h;
+ u64 addr;
+
+ valid = RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_PAGE_ERROR_VALID));
+
+ if (!(valid & DCORE0_HMMU0_MMU_ACCESS_PAGE_ERROR_VALID_PAGE_ERR_VALID_ENTRY_MASK))
+ return;
+
+ val = RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_PAGE_ERROR_CAPTURE));
+ addr = val & DCORE0_HMMU0_MMU_PAGE_ERROR_CAPTURE_VA_63_32_MASK;
+ addr <<= 32;
+ addr |= RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_PAGE_ERROR_CAPTURE_VA));
+
+ axid_l = RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_PAGE_FAULT_ID_LSB));
+ axid_h = RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_PAGE_FAULT_ID_MSB));
+
+ dev_err_ratelimited(hdev->dev, "%s page fault on va 0x%llx, transaction id 0x%llX\n",
+ is_pmmu ? "PMMU" : "HMMU", addr, ((u64)axid_h << 32) + axid_l);
+ hl_handle_page_fault(hdev, addr, 0, is_pmmu, event_mask);
+
+ WREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_PAGE_ERROR_CAPTURE), 0);
+}
+
+static void gaudi2_handle_access_error(struct hl_device *hdev, u64 mmu_base, bool is_pmmu)
+{
+ u32 valid, val;
+ u64 addr;
+
+ valid = RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_PAGE_ERROR_VALID));
+
+ if (!(valid & DCORE0_HMMU0_MMU_ACCESS_PAGE_ERROR_VALID_ACCESS_ERR_VALID_ENTRY_MASK))
+ return;
+
+ val = RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_ERROR_CAPTURE));
+ addr = val & DCORE0_HMMU0_MMU_ACCESS_ERROR_CAPTURE_VA_63_32_MASK;
+ addr <<= 32;
+ addr |= RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_ERROR_CAPTURE_VA));
+
+ dev_err_ratelimited(hdev->dev, "%s access error on va 0x%llx\n",
+ is_pmmu ? "PMMU" : "HMMU", addr);
+ WREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_ERROR_CAPTURE), 0);
+}
+
+static int gaudi2_handle_mmu_spi_sei_generic(struct hl_device *hdev, u16 event_type,
+ u64 mmu_base, bool is_pmmu, u64 *event_mask)
+{
+ u32 spi_sei_cause, interrupt_clr = 0x0, error_count = 0;
+ int i;
+
+ spi_sei_cause = RREG32(mmu_base + MMU_SPI_SEI_CAUSE_OFFSET);
+
+ for (i = 0 ; i < GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE ; i++) {
+ if (spi_sei_cause & BIT(i)) {
+ gaudi2_print_event(hdev, event_type, true,
+ "err cause: %s", gaudi2_mmu_spi_sei[i].cause);
+
+ if (i == 0)
+ gaudi2_handle_page_error(hdev, mmu_base, is_pmmu, event_mask);
+ else if (i == 1)
+ gaudi2_handle_access_error(hdev, mmu_base, is_pmmu);
+
+ if (gaudi2_mmu_spi_sei[i].clear_bit >= 0)
+ interrupt_clr |= BIT(gaudi2_mmu_spi_sei[i].clear_bit);
+
+ error_count++;
+ }
+ }
+
+ /* Clear cause */
+ WREG32_AND(mmu_base + MMU_SPI_SEI_CAUSE_OFFSET, ~spi_sei_cause);
+
+ /* Clear interrupt */
+ WREG32(mmu_base + MMU_INTERRUPT_CLR_OFFSET, interrupt_clr);
+
+ return error_count;
+}
+
+static int gaudi2_handle_sm_err(struct hl_device *hdev, u16 event_type, u8 sm_index)
+{
+ u32 sei_cause_addr, sei_cause_val, sei_cause_cause, sei_cause_log,
+ cq_intr_addr, cq_intr_val, cq_intr_queue_index, error_count = 0;
+ int i;
+
+ sei_cause_addr = mmDCORE0_SYNC_MNGR_GLBL_SM_SEI_CAUSE + DCORE_OFFSET * sm_index;
+ cq_intr_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_INTR + DCORE_OFFSET * sm_index;
+
+ sei_cause_val = RREG32(sei_cause_addr);
+ sei_cause_cause = FIELD_GET(DCORE0_SYNC_MNGR_GLBL_SM_SEI_CAUSE_CAUSE_MASK, sei_cause_val);
+ cq_intr_val = RREG32(cq_intr_addr);
+
+ /* SEI interrupt */
+ if (sei_cause_cause) {
+ /* There are corresponding SEI_CAUSE_log bits for every SEI_CAUSE_cause bit */
+ sei_cause_log = FIELD_GET(DCORE0_SYNC_MNGR_GLBL_SM_SEI_CAUSE_LOG_MASK,
+ sei_cause_val);
+
+ for (i = 0 ; i < GAUDI2_NUM_OF_SM_SEI_ERR_CAUSE ; i++) {
+ if (!(sei_cause_cause & BIT(i)))
+ continue;
+
+ gaudi2_print_event(hdev, event_type, true,
+ "err cause: %s. %s: 0x%X\n",
+ gaudi2_sm_sei_cause[i].cause_name,
+ gaudi2_sm_sei_cause[i].log_name,
+ sei_cause_log);
+ error_count++;
+ break;
+ }
+
+ /* Clear SM_SEI_CAUSE */
+ WREG32(sei_cause_addr, 0);
+ }
+
+ /* CQ interrupt */
+ if (cq_intr_val & DCORE0_SYNC_MNGR_GLBL_CQ_INTR_CQ_SEC_INTR_MASK) {
+ cq_intr_queue_index =
+ FIELD_GET(DCORE0_SYNC_MNGR_GLBL_CQ_INTR_CQ_INTR_QUEUE_INDEX_MASK,
+ cq_intr_val);
+
+ dev_err_ratelimited(hdev->dev, "SM%u err. err cause: CQ_INTR. queue index: %u\n",
+ sm_index, cq_intr_queue_index);
+ error_count++;
+
+ /* Clear CQ_INTR */
+ WREG32(cq_intr_addr, 0);
+ }
+
+ hl_check_for_glbl_errors(hdev);
+
+ return error_count;
+}
+
+static int gaudi2_handle_mmu_spi_sei_err(struct hl_device *hdev, u16 event_type, u64 *event_mask)
+{
+ bool is_pmmu = false;
+ u32 error_count = 0;
+ u64 mmu_base;
+ u8 index;
+
+ switch (event_type) {
+ case GAUDI2_EVENT_HMMU0_PAGE_FAULT_OR_WR_PERM ... GAUDI2_EVENT_HMMU3_SECURITY_ERROR:
+ index = (event_type - GAUDI2_EVENT_HMMU0_PAGE_FAULT_OR_WR_PERM) / 3;
+ mmu_base = mmDCORE0_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET;
+ break;
+ case GAUDI2_EVENT_HMMU_0_AXI_ERR_RSP ... GAUDI2_EVENT_HMMU_3_AXI_ERR_RSP:
+ index = (event_type - GAUDI2_EVENT_HMMU_0_AXI_ERR_RSP);
+ mmu_base = mmDCORE0_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET;
+ break;
+ case GAUDI2_EVENT_HMMU8_PAGE_FAULT_WR_PERM ... GAUDI2_EVENT_HMMU11_SECURITY_ERROR:
+ index = (event_type - GAUDI2_EVENT_HMMU8_PAGE_FAULT_WR_PERM) / 3;
+ mmu_base = mmDCORE1_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET;
+ break;
+ case GAUDI2_EVENT_HMMU_8_AXI_ERR_RSP ... GAUDI2_EVENT_HMMU_11_AXI_ERR_RSP:
+ index = (event_type - GAUDI2_EVENT_HMMU_8_AXI_ERR_RSP);
+ mmu_base = mmDCORE1_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET;
+ break;
+ case GAUDI2_EVENT_HMMU7_PAGE_FAULT_WR_PERM ... GAUDI2_EVENT_HMMU4_SECURITY_ERROR:
+ index = (event_type - GAUDI2_EVENT_HMMU7_PAGE_FAULT_WR_PERM) / 3;
+ mmu_base = mmDCORE2_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET;
+ break;
+ case GAUDI2_EVENT_HMMU_7_AXI_ERR_RSP ... GAUDI2_EVENT_HMMU_4_AXI_ERR_RSP:
+ index = (event_type - GAUDI2_EVENT_HMMU_7_AXI_ERR_RSP);
+ mmu_base = mmDCORE2_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET;
+ break;
+ case GAUDI2_EVENT_HMMU15_PAGE_FAULT_WR_PERM ... GAUDI2_EVENT_HMMU12_SECURITY_ERROR:
+ index = (event_type - GAUDI2_EVENT_HMMU15_PAGE_FAULT_WR_PERM) / 3;
+ mmu_base = mmDCORE3_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET;
+ break;
+ case GAUDI2_EVENT_HMMU_15_AXI_ERR_RSP ... GAUDI2_EVENT_HMMU_12_AXI_ERR_RSP:
+ index = (event_type - GAUDI2_EVENT_HMMU_15_AXI_ERR_RSP);
+ mmu_base = mmDCORE3_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET;
+ break;
+ case GAUDI2_EVENT_PMMU0_PAGE_FAULT_WR_PERM ... GAUDI2_EVENT_PMMU0_SECURITY_ERROR:
+ case GAUDI2_EVENT_PMMU_AXI_ERR_RSP_0:
+ is_pmmu = true;
+ mmu_base = mmPMMU_HBW_MMU_BASE;
+ break;
+ default:
+ return 0;
+ }
+
+ error_count = gaudi2_handle_mmu_spi_sei_generic(hdev, event_type, mmu_base,
+ is_pmmu, event_mask);
+ hl_check_for_glbl_errors(hdev);
+
+ return error_count;
+}
+
+
+/* returns true if hard reset is required (ECC DERR or Read parity), false otherwise (ECC SERR) */
+static bool gaudi2_hbm_sei_handle_read_err(struct hl_device *hdev,
+ struct hl_eq_hbm_sei_read_err_intr_info *rd_err_data, u32 err_cnt)
+{
+ u32 addr, beat, beat_shift;
+ bool rc = false;
+
+ dev_err_ratelimited(hdev->dev,
+ "READ ERROR count: ECC SERR: %d, ECC DERR: %d, RD_PARITY: %d\n",
+ FIELD_GET(HBM_ECC_SERR_CNTR_MASK, err_cnt),
+ FIELD_GET(HBM_ECC_DERR_CNTR_MASK, err_cnt),
+ FIELD_GET(HBM_RD_PARITY_CNTR_MASK, err_cnt));
+
+ addr = le32_to_cpu(rd_err_data->dbg_rd_err_addr.rd_addr_val);
+ dev_err_ratelimited(hdev->dev,
+ "READ ERROR address: sid(%u), bg(%u), ba(%u), col(%u), row(%u)\n",
+ FIELD_GET(HBM_RD_ADDR_SID_MASK, addr),
+ FIELD_GET(HBM_RD_ADDR_BG_MASK, addr),
+ FIELD_GET(HBM_RD_ADDR_BA_MASK, addr),
+ FIELD_GET(HBM_RD_ADDR_COL_MASK, addr),
+ FIELD_GET(HBM_RD_ADDR_ROW_MASK, addr));
+
+ /* For each beat (RDQS edge), look for possible errors and print relevant info */
+ for (beat = 0 ; beat < 4 ; beat++) {
+ if (le32_to_cpu(rd_err_data->dbg_rd_err_misc) &
+ (HBM_RD_ERR_SERR_BEAT0_MASK << beat))
+ dev_err_ratelimited(hdev->dev, "Beat%d ECC SERR: DM: %#x, Syndrome: %#x\n",
+ beat,
+ le32_to_cpu(rd_err_data->dbg_rd_err_dm),
+ le32_to_cpu(rd_err_data->dbg_rd_err_syndrome));
+
+ if (le32_to_cpu(rd_err_data->dbg_rd_err_misc) &
+ (HBM_RD_ERR_DERR_BEAT0_MASK << beat)) {
+ dev_err_ratelimited(hdev->dev, "Beat%d ECC DERR: DM: %#x, Syndrome: %#x\n",
+ beat,
+ le32_to_cpu(rd_err_data->dbg_rd_err_dm),
+ le32_to_cpu(rd_err_data->dbg_rd_err_syndrome));
+ rc |= true;
+ }
+
+ beat_shift = beat * HBM_RD_ERR_BEAT_SHIFT;
+ if (le32_to_cpu(rd_err_data->dbg_rd_err_misc) &
+ (HBM_RD_ERR_PAR_ERR_BEAT0_MASK << beat_shift)) {
+ dev_err_ratelimited(hdev->dev,
+ "Beat%d read PARITY: DM: %#x, PAR data: %#x\n",
+ beat,
+ le32_to_cpu(rd_err_data->dbg_rd_err_dm),
+ (le32_to_cpu(rd_err_data->dbg_rd_err_misc) &
+ (HBM_RD_ERR_PAR_DATA_BEAT0_MASK << beat_shift)) >>
+ (HBM_RD_ERR_PAR_DATA_BEAT0_SHIFT + beat_shift));
+ rc |= true;
+ }
+
+ dev_err_ratelimited(hdev->dev, "Beat%d DQ data:\n", beat);
+ dev_err_ratelimited(hdev->dev, "\t0x%08x\n",
+ le32_to_cpu(rd_err_data->dbg_rd_err_data[beat * 2]));
+ dev_err_ratelimited(hdev->dev, "\t0x%08x\n",
+ le32_to_cpu(rd_err_data->dbg_rd_err_data[beat * 2 + 1]));
+ }
+
+ return rc;
+}
+
+static void gaudi2_hbm_sei_print_wr_par_info(struct hl_device *hdev,
+ struct hl_eq_hbm_sei_wr_par_intr_info *wr_par_err_data, u32 err_cnt)
+{
+ struct hbm_sei_wr_cmd_address *wr_cmd_addr = wr_par_err_data->dbg_last_wr_cmds;
+ u32 i, curr_addr, derr = wr_par_err_data->dbg_derr;
+
+ dev_err_ratelimited(hdev->dev, "WRITE PARITY ERROR count: %d\n", err_cnt);
+
+ dev_err_ratelimited(hdev->dev, "CK-0 DERR: 0x%02x, CK-1 DERR: 0x%02x\n",
+ derr & 0x3, derr & 0xc);
+
+ /* JIRA H6-3286 - the following prints may not be valid */
+ dev_err_ratelimited(hdev->dev, "Last latched write commands addresses:\n");
+ for (i = 0 ; i < HBM_WR_PAR_CMD_LIFO_LEN ; i++) {
+ curr_addr = le32_to_cpu(wr_cmd_addr[i].dbg_wr_cmd_addr);
+ dev_err_ratelimited(hdev->dev,
+ "\twrite cmd[%u]: Address: SID(%u) BG(%u) BA(%u) COL(%u).\n",
+ i,
+ FIELD_GET(WR_PAR_LAST_CMD_SID_MASK, curr_addr),
+ FIELD_GET(WR_PAR_LAST_CMD_BG_MASK, curr_addr),
+ FIELD_GET(WR_PAR_LAST_CMD_BA_MASK, curr_addr),
+ FIELD_GET(WR_PAR_LAST_CMD_COL_MASK, curr_addr));
+ }
+}
+
+static void gaudi2_hbm_sei_print_ca_par_info(struct hl_device *hdev,
+ struct hl_eq_hbm_sei_ca_par_intr_info *ca_par_err_data, u32 err_cnt)
+{
+ __le32 *col_cmd = ca_par_err_data->dbg_col;
+ __le16 *row_cmd = ca_par_err_data->dbg_row;
+ u32 i;
+
+ dev_err_ratelimited(hdev->dev, "CA ERROR count: %d\n", err_cnt);
+
+ dev_err_ratelimited(hdev->dev, "Last latched C&R bus commands:\n");
+ for (i = 0 ; i < HBM_CA_ERR_CMD_LIFO_LEN ; i++)
+ dev_err_ratelimited(hdev->dev, "cmd%u: ROW(0x%04x) COL(0x%05x)\n", i,
+ le16_to_cpu(row_cmd[i]) & (u16)GENMASK(13, 0),
+ le32_to_cpu(col_cmd[i]) & (u32)GENMASK(17, 0));
+}
+
+/* Returns true if hard reset is needed or false otherwise */
+static bool gaudi2_handle_hbm_mc_sei_err(struct hl_device *hdev, u16 event_type,
+ struct hl_eq_hbm_sei_data *sei_data)
+{
+ bool require_hard_reset = false;
+ u32 hbm_id, mc_id, cause_idx;
+
+ hbm_id = (event_type - GAUDI2_EVENT_HBM0_MC0_SEI_SEVERE) / 4;
+ mc_id = ((event_type - GAUDI2_EVENT_HBM0_MC0_SEI_SEVERE) / 2) % 2;
+
+ cause_idx = sei_data->hdr.sei_cause;
+ if (cause_idx > GAUDI2_NUM_OF_HBM_SEI_CAUSE - 1) {
+ gaudi2_print_event(hdev, event_type, true,
+ "err cause: %s",
+ "Invalid HBM SEI event cause (%d) provided by FW\n", cause_idx);
+ return true;
+ }
+
+ gaudi2_print_event(hdev, event_type, !sei_data->hdr.is_critical,
+ "System %s Error Interrupt - HBM(%u) MC(%u) MC_CH(%u) MC_PC(%u). Error cause: %s\n",
+ sei_data->hdr.is_critical ? "Critical" : "Non-critical",
+ hbm_id, mc_id, sei_data->hdr.mc_channel, sei_data->hdr.mc_pseudo_channel,
+ hbm_mc_sei_cause[cause_idx]);
+
+ /* Print error-specific info */
+ switch (cause_idx) {
+ case HBM_SEI_CATTRIP:
+ require_hard_reset = true;
+ break;
+
+ case HBM_SEI_CMD_PARITY_EVEN:
+ gaudi2_hbm_sei_print_ca_par_info(hdev, &sei_data->ca_parity_even_info,
+ le32_to_cpu(sei_data->hdr.cnt));
+ require_hard_reset = true;
+ break;
+
+ case HBM_SEI_CMD_PARITY_ODD:
+ gaudi2_hbm_sei_print_ca_par_info(hdev, &sei_data->ca_parity_odd_info,
+ le32_to_cpu(sei_data->hdr.cnt));
+ require_hard_reset = true;
+ break;
+
+ case HBM_SEI_WRITE_DATA_PARITY_ERR:
+ gaudi2_hbm_sei_print_wr_par_info(hdev, &sei_data->wr_parity_info,
+ le32_to_cpu(sei_data->hdr.cnt));
+ require_hard_reset = true;
+ break;
+
+ case HBM_SEI_READ_ERR:
+ /* Unlike other SEI events, read error requires further processing of the
+ * raw data in order to determine the root cause.
+ */
+ require_hard_reset = gaudi2_hbm_sei_handle_read_err(hdev,
+ &sei_data->read_err_info,
+ le32_to_cpu(sei_data->hdr.cnt));
+ break;
+
+ default:
+ break;
+ }
+
+ require_hard_reset |= !!sei_data->hdr.is_critical;
+
+ return require_hard_reset;
+}
+
+static int gaudi2_handle_hbm_cattrip(struct hl_device *hdev, u16 event_type,
+ u64 intr_cause_data)
+{
+ if (intr_cause_data) {
+ gaudi2_print_event(hdev, event_type, true,
+ "temperature error cause: %#llx", intr_cause_data);
+ return 1;
+ }
+
+ return 0;
+}
+
+static int gaudi2_handle_hbm_mc_spi(struct hl_device *hdev, u64 intr_cause_data)
+{
+ u32 i, error_count = 0;
+
+ for (i = 0 ; i < GAUDI2_NUM_OF_HBM_MC_SPI_CAUSE ; i++)
+ if (intr_cause_data & hbm_mc_spi[i].mask) {
+ dev_dbg(hdev->dev, "HBM spi event: notification cause(%s)\n",
+ hbm_mc_spi[i].cause);
+ error_count++;
+ }
+
+ return error_count;
+}
+
+static void gaudi2_print_clk_change_info(struct hl_device *hdev, u16 event_type, u64 *event_mask)
+{
+ ktime_t zero_time = ktime_set(0, 0);
+
+ mutex_lock(&hdev->clk_throttling.lock);
+
+ switch (event_type) {
+ case GAUDI2_EVENT_CPU_FIX_POWER_ENV_S:
+ hdev->clk_throttling.current_reason |= HL_CLK_THROTTLE_POWER;
+ hdev->clk_throttling.aggregated_reason |= HL_CLK_THROTTLE_POWER;
+ hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_POWER].start = ktime_get();
+ hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_POWER].end = zero_time;
+ dev_dbg_ratelimited(hdev->dev, "Clock throttling due to power consumption\n");
+ break;
+
+ case GAUDI2_EVENT_CPU_FIX_POWER_ENV_E:
+ hdev->clk_throttling.current_reason &= ~HL_CLK_THROTTLE_POWER;
+ hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_POWER].end = ktime_get();
+ dev_dbg_ratelimited(hdev->dev, "Power envelop is safe, back to optimal clock\n");
+ break;
+
+ case GAUDI2_EVENT_CPU_FIX_THERMAL_ENV_S:
+ hdev->clk_throttling.current_reason |= HL_CLK_THROTTLE_THERMAL;
+ hdev->clk_throttling.aggregated_reason |= HL_CLK_THROTTLE_THERMAL;
+ hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].start = ktime_get();
+ hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].end = zero_time;
+ *event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ dev_info_ratelimited(hdev->dev, "Clock throttling due to overheating\n");
+ break;
+
+ case GAUDI2_EVENT_CPU_FIX_THERMAL_ENV_E:
+ hdev->clk_throttling.current_reason &= ~HL_CLK_THROTTLE_THERMAL;
+ hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].end = ktime_get();
+ *event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ dev_info_ratelimited(hdev->dev, "Thermal envelop is safe, back to optimal clock\n");
+ break;
+
+ default:
+ dev_err(hdev->dev, "Received invalid clock change event %d\n", event_type);
+ break;
+ }
+
+ mutex_unlock(&hdev->clk_throttling.lock);
+}
+
+static void gaudi2_print_out_of_sync_info(struct hl_device *hdev, u16 event_type,
+ struct cpucp_pkt_sync_err *sync_err)
+{
+ struct hl_hw_queue *q = &hdev->kernel_queues[GAUDI2_QUEUE_ID_CPU_PQ];
+
+ gaudi2_print_event(hdev, event_type, false,
+ "FW: pi=%u, ci=%u, LKD: pi=%u, ci=%d\n",
+ le32_to_cpu(sync_err->pi), le32_to_cpu(sync_err->ci),
+ q->pi, atomic_read(&q->ci));
+}
+
+static int gaudi2_handle_pcie_p2p_msix(struct hl_device *hdev, u16 event_type)
+{
+ u32 p2p_intr, msix_gw_intr, error_count = 0;
+
+ p2p_intr = RREG32(mmPCIE_WRAP_P2P_INTR);
+ msix_gw_intr = RREG32(mmPCIE_WRAP_MSIX_GW_INTR);
+
+ if (p2p_intr) {
+ gaudi2_print_event(hdev, event_type, true,
+ "pcie p2p transaction terminated due to security, req_id(0x%x)\n",
+ RREG32(mmPCIE_WRAP_P2P_REQ_ID));
+
+ WREG32(mmPCIE_WRAP_P2P_INTR, 0x1);
+ error_count++;
+ }
+
+ if (msix_gw_intr) {
+ gaudi2_print_event(hdev, event_type, true,
+ "pcie msi-x gen denied due to vector num check failure, vec(0x%X)\n",
+ RREG32(mmPCIE_WRAP_MSIX_GW_VEC));
+
+ WREG32(mmPCIE_WRAP_MSIX_GW_INTR, 0x1);
+ error_count++;
+ }
+
+ return error_count;
+}
+
+static int gaudi2_handle_pcie_drain(struct hl_device *hdev,
+ struct hl_eq_pcie_drain_ind_data *drain_data)
+{
+ u64 lbw_rd, lbw_wr, hbw_rd, hbw_wr, cause, error_count = 0;
+
+ cause = le64_to_cpu(drain_data->intr_cause.intr_cause_data);
+ lbw_rd = le64_to_cpu(drain_data->drain_rd_addr_lbw);
+ lbw_wr = le64_to_cpu(drain_data->drain_wr_addr_lbw);
+ hbw_rd = le64_to_cpu(drain_data->drain_rd_addr_hbw);
+ hbw_wr = le64_to_cpu(drain_data->drain_wr_addr_hbw);
+
+ if (cause & BIT_ULL(0)) {
+ dev_err_ratelimited(hdev->dev,
+ "PCIE AXI drain LBW completed, read_err %u, write_err %u\n",
+ !!lbw_rd, !!lbw_wr);
+ error_count++;
+ }
+
+ if (cause & BIT_ULL(1)) {
+ dev_err_ratelimited(hdev->dev,
+ "PCIE AXI drain HBW completed, raddr %#llx, waddr %#llx\n",
+ hbw_rd, hbw_wr);
+ error_count++;
+ }
+
+ return error_count;
+}
+
+static int gaudi2_handle_psoc_drain(struct hl_device *hdev, u64 intr_cause_data)
+{
+ u32 error_count = 0;
+ int i;
+
+ for (i = 0 ; i < GAUDI2_NUM_OF_AXI_DRAIN_ERR_CAUSE ; i++) {
+ if (intr_cause_data & BIT_ULL(i)) {
+ dev_err_ratelimited(hdev->dev, "PSOC %s completed\n",
+ gaudi2_psoc_axi_drain_interrupts_cause[i]);
+ error_count++;
+ }
+ }
+
+ hl_check_for_glbl_errors(hdev);
+
+ return error_count;
+}
+
+static void gaudi2_print_cpu_pkt_failure_info(struct hl_device *hdev, u16 event_type,
+ struct cpucp_pkt_sync_err *sync_err)
+{
+ struct hl_hw_queue *q = &hdev->kernel_queues[GAUDI2_QUEUE_ID_CPU_PQ];
+
+ gaudi2_print_event(hdev, event_type, false,
+ "FW reported sanity check failure, FW: pi=%u, ci=%u, LKD: pi=%u, ci=%d\n",
+ le32_to_cpu(sync_err->pi), le32_to_cpu(sync_err->ci), q->pi, atomic_read(&q->ci));
+}
+
+static int hl_arc_event_handle(struct hl_device *hdev, u16 event_type,
+ struct hl_eq_engine_arc_intr_data *data)
+{
+ struct hl_engine_arc_dccm_queue_full_irq *q;
+ u32 intr_type, engine_id;
+ u64 payload;
+
+ intr_type = le32_to_cpu(data->intr_type);
+ engine_id = le32_to_cpu(data->engine_id);
+ payload = le64_to_cpu(data->payload);
+
+ switch (intr_type) {
+ case ENGINE_ARC_DCCM_QUEUE_FULL_IRQ:
+ q = (struct hl_engine_arc_dccm_queue_full_irq *) &payload;
+
+ gaudi2_print_event(hdev, event_type, true,
+ "ARC DCCM Full event: EngId: %u, Intr_type: %u, Qidx: %u\n",
+ engine_id, intr_type, q->queue_index);
+ return 1;
+ default:
+ gaudi2_print_event(hdev, event_type, true, "Unknown ARC event type\n");
+ return 0;
+ }
+}
+
+static void gaudi2_handle_eqe(struct hl_device *hdev, struct hl_eq_entry *eq_entry)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ bool reset_required = false, is_critical = false;
+ u32 index, ctl, reset_flags = HL_DRV_RESET_HARD, error_count = 0;
+ u64 event_mask = 0;
+ u16 event_type;
+
+ ctl = le32_to_cpu(eq_entry->hdr.ctl);
+ event_type = ((ctl & EQ_CTL_EVENT_TYPE_MASK) >> EQ_CTL_EVENT_TYPE_SHIFT);
+
+ if (event_type >= GAUDI2_EVENT_SIZE) {
+ dev_err(hdev->dev, "Event type %u exceeds maximum of %u",
+ event_type, GAUDI2_EVENT_SIZE - 1);
+ return;
+ }
+
+ gaudi2->events_stat[event_type]++;
+ gaudi2->events_stat_aggregate[event_type]++;
+
+ switch (event_type) {
+ case GAUDI2_EVENT_PCIE_CORE_SERR ... GAUDI2_EVENT_ARC0_ECC_DERR:
+ fallthrough;
+ case GAUDI2_EVENT_ROTATOR0_SERR ... GAUDI2_EVENT_ROTATOR1_DERR:
+ reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ reset_required = gaudi2_handle_ecc_event(hdev, event_type, &eq_entry->ecc_data);
+ is_critical = eq_entry->ecc_data.is_critical;
+ error_count++;
+ break;
+
+ case GAUDI2_EVENT_TPC0_QM ... GAUDI2_EVENT_PDMA1_QM:
+ fallthrough;
+ case GAUDI2_EVENT_ROTATOR0_ROT0_QM ... GAUDI2_EVENT_ROTATOR1_ROT1_QM:
+ fallthrough;
+ case GAUDI2_EVENT_NIC0_QM0 ... GAUDI2_EVENT_NIC11_QM1:
+ error_count = gaudi2_handle_qman_err(hdev, event_type, &event_mask);
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ break;
+
+ case GAUDI2_EVENT_ARC_AXI_ERROR_RESPONSE_0:
+ reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
+ error_count = gaudi2_handle_arc_farm_sei_err(hdev, event_type);
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+
+ case GAUDI2_EVENT_CPU_AXI_ERR_RSP:
+ error_count = gaudi2_handle_cpu_sei_err(hdev, event_type);
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+
+ case GAUDI2_EVENT_PDMA_CH0_AXI_ERR_RSP:
+ case GAUDI2_EVENT_PDMA_CH1_AXI_ERR_RSP:
+ reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
+ error_count = gaudi2_handle_qm_sei_err(hdev, event_type, true, &event_mask);
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ break;
+
+ case GAUDI2_EVENT_ROTATOR0_AXI_ERROR_RESPONSE:
+ case GAUDI2_EVENT_ROTATOR1_AXI_ERROR_RESPONSE:
+ index = event_type - GAUDI2_EVENT_ROTATOR0_AXI_ERROR_RESPONSE;
+ error_count = gaudi2_handle_rot_err(hdev, index, event_type,
+ &eq_entry->razwi_with_intr_cause, &event_mask);
+ error_count += gaudi2_handle_qm_sei_err(hdev, event_type, false, &event_mask);
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ break;
+
+ case GAUDI2_EVENT_TPC0_AXI_ERR_RSP ... GAUDI2_EVENT_TPC24_AXI_ERR_RSP:
+ index = event_type - GAUDI2_EVENT_TPC0_AXI_ERR_RSP;
+ error_count = gaudi2_tpc_ack_interrupts(hdev, index, event_type,
+ &eq_entry->razwi_with_intr_cause, &event_mask);
+ error_count += gaudi2_handle_qm_sei_err(hdev, event_type, false, &event_mask);
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ break;
+
+ case GAUDI2_EVENT_DEC0_AXI_ERR_RSPONSE ... GAUDI2_EVENT_DEC9_AXI_ERR_RSPONSE:
+ index = event_type - GAUDI2_EVENT_DEC0_AXI_ERR_RSPONSE;
+ error_count = gaudi2_handle_dec_err(hdev, index, event_type, &event_mask);
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ break;
+
+ case GAUDI2_EVENT_TPC0_KERNEL_ERR:
+ case GAUDI2_EVENT_TPC1_KERNEL_ERR:
+ case GAUDI2_EVENT_TPC2_KERNEL_ERR:
+ case GAUDI2_EVENT_TPC3_KERNEL_ERR:
+ case GAUDI2_EVENT_TPC4_KERNEL_ERR:
+ case GAUDI2_EVENT_TPC5_KERNEL_ERR:
+ case GAUDI2_EVENT_TPC6_KERNEL_ERR:
+ case GAUDI2_EVENT_TPC7_KERNEL_ERR:
+ case GAUDI2_EVENT_TPC8_KERNEL_ERR:
+ case GAUDI2_EVENT_TPC9_KERNEL_ERR:
+ case GAUDI2_EVENT_TPC10_KERNEL_ERR:
+ case GAUDI2_EVENT_TPC11_KERNEL_ERR:
+ case GAUDI2_EVENT_TPC12_KERNEL_ERR:
+ case GAUDI2_EVENT_TPC13_KERNEL_ERR:
+ case GAUDI2_EVENT_TPC14_KERNEL_ERR:
+ case GAUDI2_EVENT_TPC15_KERNEL_ERR:
+ case GAUDI2_EVENT_TPC16_KERNEL_ERR:
+ case GAUDI2_EVENT_TPC17_KERNEL_ERR:
+ case GAUDI2_EVENT_TPC18_KERNEL_ERR:
+ case GAUDI2_EVENT_TPC19_KERNEL_ERR:
+ case GAUDI2_EVENT_TPC20_KERNEL_ERR:
+ case GAUDI2_EVENT_TPC21_KERNEL_ERR:
+ case GAUDI2_EVENT_TPC22_KERNEL_ERR:
+ case GAUDI2_EVENT_TPC23_KERNEL_ERR:
+ case GAUDI2_EVENT_TPC24_KERNEL_ERR:
+ index = (event_type - GAUDI2_EVENT_TPC0_KERNEL_ERR) /
+ (GAUDI2_EVENT_TPC1_KERNEL_ERR - GAUDI2_EVENT_TPC0_KERNEL_ERR);
+ error_count = gaudi2_tpc_ack_interrupts(hdev, index, event_type,
+ &eq_entry->razwi_with_intr_cause, &event_mask);
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ break;
+
+ case GAUDI2_EVENT_DEC0_SPI:
+ case GAUDI2_EVENT_DEC1_SPI:
+ case GAUDI2_EVENT_DEC2_SPI:
+ case GAUDI2_EVENT_DEC3_SPI:
+ case GAUDI2_EVENT_DEC4_SPI:
+ case GAUDI2_EVENT_DEC5_SPI:
+ case GAUDI2_EVENT_DEC6_SPI:
+ case GAUDI2_EVENT_DEC7_SPI:
+ case GAUDI2_EVENT_DEC8_SPI:
+ case GAUDI2_EVENT_DEC9_SPI:
+ index = (event_type - GAUDI2_EVENT_DEC0_SPI) /
+ (GAUDI2_EVENT_DEC1_SPI - GAUDI2_EVENT_DEC0_SPI);
+ error_count = gaudi2_handle_dec_err(hdev, index, event_type, &event_mask);
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ break;
+
+ case GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE:
+ case GAUDI2_EVENT_MME1_CTRL_AXI_ERROR_RESPONSE:
+ case GAUDI2_EVENT_MME2_CTRL_AXI_ERROR_RESPONSE:
+ case GAUDI2_EVENT_MME3_CTRL_AXI_ERROR_RESPONSE:
+ index = (event_type - GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE) /
+ (GAUDI2_EVENT_MME1_CTRL_AXI_ERROR_RESPONSE -
+ GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE);
+ error_count = gaudi2_handle_mme_err(hdev, index, event_type, &event_mask);
+ error_count += gaudi2_handle_qm_sei_err(hdev, event_type, false, &event_mask);
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ break;
+
+ case GAUDI2_EVENT_MME0_QMAN_SW_ERROR:
+ case GAUDI2_EVENT_MME1_QMAN_SW_ERROR:
+ case GAUDI2_EVENT_MME2_QMAN_SW_ERROR:
+ case GAUDI2_EVENT_MME3_QMAN_SW_ERROR:
+ index = (event_type - GAUDI2_EVENT_MME0_QMAN_SW_ERROR) /
+ (GAUDI2_EVENT_MME1_QMAN_SW_ERROR -
+ GAUDI2_EVENT_MME0_QMAN_SW_ERROR);
+ error_count = gaudi2_handle_mme_err(hdev, index, event_type, &event_mask);
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ break;
+
+ case GAUDI2_EVENT_MME0_WAP_SOURCE_RESULT_INVALID:
+ case GAUDI2_EVENT_MME1_WAP_SOURCE_RESULT_INVALID:
+ case GAUDI2_EVENT_MME2_WAP_SOURCE_RESULT_INVALID:
+ case GAUDI2_EVENT_MME3_WAP_SOURCE_RESULT_INVALID:
+ index = (event_type - GAUDI2_EVENT_MME0_WAP_SOURCE_RESULT_INVALID) /
+ (GAUDI2_EVENT_MME1_WAP_SOURCE_RESULT_INVALID -
+ GAUDI2_EVENT_MME0_WAP_SOURCE_RESULT_INVALID);
+ error_count = gaudi2_handle_mme_wap_err(hdev, index, event_type, &event_mask);
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ break;
+
+ case GAUDI2_EVENT_KDMA_CH0_AXI_ERR_RSP:
+ case GAUDI2_EVENT_KDMA0_CORE:
+ error_count = gaudi2_handle_kdma_core_event(hdev, event_type,
+ le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+
+ case GAUDI2_EVENT_HDMA2_CORE ... GAUDI2_EVENT_PDMA1_CORE:
+ error_count = gaudi2_handle_dma_core_event(hdev, event_type,
+ le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ break;
+
+ case GAUDI2_EVENT_PCIE_ADDR_DEC_ERR:
+ error_count = gaudi2_print_pcie_addr_dec_info(hdev, event_type,
+ le64_to_cpu(eq_entry->intr_cause.intr_cause_data), &event_mask);
+ reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+
+ case GAUDI2_EVENT_HMMU0_PAGE_FAULT_OR_WR_PERM ... GAUDI2_EVENT_HMMU12_SECURITY_ERROR:
+ case GAUDI2_EVENT_HMMU_0_AXI_ERR_RSP ... GAUDI2_EVENT_HMMU_12_AXI_ERR_RSP:
+ case GAUDI2_EVENT_PMMU0_PAGE_FAULT_WR_PERM ... GAUDI2_EVENT_PMMU0_SECURITY_ERROR:
+ case GAUDI2_EVENT_PMMU_AXI_ERR_RSP_0:
+ error_count = gaudi2_handle_mmu_spi_sei_err(hdev, event_type, &event_mask);
+ reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ break;
+
+ case GAUDI2_EVENT_HIF0_FATAL ... GAUDI2_EVENT_HIF12_FATAL:
+ error_count = gaudi2_handle_hif_fatal(hdev, event_type,
+ le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
+ reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+
+ case GAUDI2_EVENT_PMMU_FATAL_0:
+ error_count = gaudi2_handle_pif_fatal(hdev, event_type,
+ le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
+ reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+
+ case GAUDI2_EVENT_PSOC63_RAZWI_OR_PID_MIN_MAX_INTERRUPT:
+ error_count = gaudi2_ack_psoc_razwi_event_handler(hdev, &event_mask);
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ break;
+
+ case GAUDI2_EVENT_HBM0_MC0_SEI_SEVERE ... GAUDI2_EVENT_HBM5_MC1_SEI_NON_SEVERE:
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ if (gaudi2_handle_hbm_mc_sei_err(hdev, event_type, &eq_entry->sei_data)) {
+ reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
+ reset_required = true;
+ }
+ error_count++;
+ break;
+
+ case GAUDI2_EVENT_HBM_CATTRIP_0 ... GAUDI2_EVENT_HBM_CATTRIP_5:
+ error_count = gaudi2_handle_hbm_cattrip(hdev, event_type,
+ le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+
+ case GAUDI2_EVENT_HBM0_MC0_SPI ... GAUDI2_EVENT_HBM5_MC1_SPI:
+ error_count = gaudi2_handle_hbm_mc_spi(hdev,
+ le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+
+ case GAUDI2_EVENT_PCIE_DRAIN_COMPLETE:
+ error_count = gaudi2_handle_pcie_drain(hdev, &eq_entry->pcie_drain_ind_data);
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+
+ case GAUDI2_EVENT_PSOC59_RPM_ERROR_OR_DRAIN:
+ error_count = gaudi2_handle_psoc_drain(hdev,
+ le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+
+ case GAUDI2_EVENT_CPU_AXI_ECC:
+ error_count = GAUDI2_NA_EVENT_CAUSE;
+ reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+ case GAUDI2_EVENT_CPU_L2_RAM_ECC:
+ error_count = GAUDI2_NA_EVENT_CAUSE;
+ reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+ case GAUDI2_EVENT_MME0_SBTE0_AXI_ERR_RSP ... GAUDI2_EVENT_MME0_SBTE4_AXI_ERR_RSP:
+ case GAUDI2_EVENT_MME1_SBTE0_AXI_ERR_RSP ... GAUDI2_EVENT_MME1_SBTE4_AXI_ERR_RSP:
+ case GAUDI2_EVENT_MME2_SBTE0_AXI_ERR_RSP ... GAUDI2_EVENT_MME2_SBTE4_AXI_ERR_RSP:
+ case GAUDI2_EVENT_MME3_SBTE0_AXI_ERR_RSP ... GAUDI2_EVENT_MME3_SBTE4_AXI_ERR_RSP:
+ error_count = gaudi2_handle_mme_sbte_err(hdev, event_type,
+ le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ break;
+ case GAUDI2_EVENT_VM0_ALARM_A ... GAUDI2_EVENT_VM3_ALARM_B:
+ error_count = GAUDI2_NA_EVENT_CAUSE;
+ reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+ case GAUDI2_EVENT_PSOC_AXI_ERR_RSP:
+ error_count = GAUDI2_NA_EVENT_CAUSE;
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+ case GAUDI2_EVENT_PSOC_PRSTN_FALL:
+ error_count = GAUDI2_NA_EVENT_CAUSE;
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+ case GAUDI2_EVENT_PCIE_APB_TIMEOUT:
+ error_count = GAUDI2_NA_EVENT_CAUSE;
+ reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+ case GAUDI2_EVENT_PCIE_FATAL_ERR:
+ error_count = GAUDI2_NA_EVENT_CAUSE;
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+ case GAUDI2_EVENT_TPC0_BMON_SPMU:
+ case GAUDI2_EVENT_TPC1_BMON_SPMU:
+ case GAUDI2_EVENT_TPC2_BMON_SPMU:
+ case GAUDI2_EVENT_TPC3_BMON_SPMU:
+ case GAUDI2_EVENT_TPC4_BMON_SPMU:
+ case GAUDI2_EVENT_TPC5_BMON_SPMU:
+ case GAUDI2_EVENT_TPC6_BMON_SPMU:
+ case GAUDI2_EVENT_TPC7_BMON_SPMU:
+ case GAUDI2_EVENT_TPC8_BMON_SPMU:
+ case GAUDI2_EVENT_TPC9_BMON_SPMU:
+ case GAUDI2_EVENT_TPC10_BMON_SPMU:
+ case GAUDI2_EVENT_TPC11_BMON_SPMU:
+ case GAUDI2_EVENT_TPC12_BMON_SPMU:
+ case GAUDI2_EVENT_TPC13_BMON_SPMU:
+ case GAUDI2_EVENT_TPC14_BMON_SPMU:
+ case GAUDI2_EVENT_TPC15_BMON_SPMU:
+ case GAUDI2_EVENT_TPC16_BMON_SPMU:
+ case GAUDI2_EVENT_TPC17_BMON_SPMU:
+ case GAUDI2_EVENT_TPC18_BMON_SPMU:
+ case GAUDI2_EVENT_TPC19_BMON_SPMU:
+ case GAUDI2_EVENT_TPC20_BMON_SPMU:
+ case GAUDI2_EVENT_TPC21_BMON_SPMU:
+ case GAUDI2_EVENT_TPC22_BMON_SPMU:
+ case GAUDI2_EVENT_TPC23_BMON_SPMU:
+ case GAUDI2_EVENT_TPC24_BMON_SPMU:
+ case GAUDI2_EVENT_MME0_CTRL_BMON_SPMU:
+ case GAUDI2_EVENT_MME0_SBTE_BMON_SPMU:
+ case GAUDI2_EVENT_MME0_WAP_BMON_SPMU:
+ case GAUDI2_EVENT_MME1_CTRL_BMON_SPMU:
+ case GAUDI2_EVENT_MME1_SBTE_BMON_SPMU:
+ case GAUDI2_EVENT_MME1_WAP_BMON_SPMU:
+ case GAUDI2_EVENT_MME2_CTRL_BMON_SPMU:
+ case GAUDI2_EVENT_MME2_SBTE_BMON_SPMU:
+ case GAUDI2_EVENT_MME2_WAP_BMON_SPMU:
+ case GAUDI2_EVENT_MME3_CTRL_BMON_SPMU:
+ case GAUDI2_EVENT_MME3_SBTE_BMON_SPMU:
+ case GAUDI2_EVENT_MME3_WAP_BMON_SPMU:
+ case GAUDI2_EVENT_HDMA2_BM_SPMU ... GAUDI2_EVENT_PDMA1_BM_SPMU:
+ fallthrough;
+ case GAUDI2_EVENT_DEC0_BMON_SPMU:
+ case GAUDI2_EVENT_DEC1_BMON_SPMU:
+ case GAUDI2_EVENT_DEC2_BMON_SPMU:
+ case GAUDI2_EVENT_DEC3_BMON_SPMU:
+ case GAUDI2_EVENT_DEC4_BMON_SPMU:
+ case GAUDI2_EVENT_DEC5_BMON_SPMU:
+ case GAUDI2_EVENT_DEC6_BMON_SPMU:
+ case GAUDI2_EVENT_DEC7_BMON_SPMU:
+ case GAUDI2_EVENT_DEC8_BMON_SPMU:
+ case GAUDI2_EVENT_DEC9_BMON_SPMU:
+ case GAUDI2_EVENT_ROTATOR0_BMON_SPMU ... GAUDI2_EVENT_SM3_BMON_SPMU:
+ error_count = GAUDI2_NA_EVENT_CAUSE;
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ break;
+
+ case GAUDI2_EVENT_CPU_FIX_POWER_ENV_S:
+ case GAUDI2_EVENT_CPU_FIX_POWER_ENV_E:
+ case GAUDI2_EVENT_CPU_FIX_THERMAL_ENV_S:
+ case GAUDI2_EVENT_CPU_FIX_THERMAL_ENV_E:
+ gaudi2_print_clk_change_info(hdev, event_type, &event_mask);
+ error_count = GAUDI2_NA_EVENT_CAUSE;
+ break;
+
+ case GAUDI2_EVENT_CPU_PKT_QUEUE_OUT_SYNC:
+ gaudi2_print_out_of_sync_info(hdev, event_type, &eq_entry->pkt_sync_err);
+ error_count = GAUDI2_NA_EVENT_CAUSE;
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+
+ case GAUDI2_EVENT_PCIE_FLR_REQUESTED:
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ error_count = GAUDI2_NA_EVENT_CAUSE;
+ /* Do nothing- FW will handle it */
+ break;
+
+ case GAUDI2_EVENT_PCIE_P2P_MSIX:
+ error_count = gaudi2_handle_pcie_p2p_msix(hdev, event_type);
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ break;
+
+ case GAUDI2_EVENT_SM0_AXI_ERROR_RESPONSE ... GAUDI2_EVENT_SM3_AXI_ERROR_RESPONSE:
+ index = event_type - GAUDI2_EVENT_SM0_AXI_ERROR_RESPONSE;
+ error_count = gaudi2_handle_sm_err(hdev, event_type, index);
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ break;
+
+ case GAUDI2_EVENT_PSOC_MME_PLL_LOCK_ERR ... GAUDI2_EVENT_DCORE2_HBM_PLL_LOCK_ERR:
+ error_count = GAUDI2_NA_EVENT_CAUSE;
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+
+ case GAUDI2_EVENT_CPU_CPLD_SHUTDOWN_CAUSE:
+ dev_info(hdev->dev, "CPLD shutdown cause, reset reason: 0x%llx\n",
+ le64_to_cpu(eq_entry->data[0]));
+ error_count = GAUDI2_NA_EVENT_CAUSE;
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+ case GAUDI2_EVENT_CPU_CPLD_SHUTDOWN_EVENT:
+ dev_err(hdev->dev, "CPLD shutdown event, reset reason: 0x%llx\n",
+ le64_to_cpu(eq_entry->data[0]));
+ error_count = GAUDI2_NA_EVENT_CAUSE;
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+
+ case GAUDI2_EVENT_CPU_PKT_SANITY_FAILED:
+ gaudi2_print_cpu_pkt_failure_info(hdev, event_type, &eq_entry->pkt_sync_err);
+ error_count = GAUDI2_NA_EVENT_CAUSE;
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ break;
+
+ case GAUDI2_EVENT_ARC_DCCM_FULL:
+ error_count = hl_arc_event_handle(hdev, event_type, &eq_entry->arc_data);
+ event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
+ break;
+
+ case GAUDI2_EVENT_CPU_FP32_NOT_SUPPORTED:
+ case GAUDI2_EVENT_DEV_RESET_REQ:
+ event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
+ error_count = GAUDI2_NA_EVENT_CAUSE;
+ is_critical = true;
+ break;
+
+ default:
+ if (gaudi2_irq_map_table[event_type].valid) {
+ dev_err_ratelimited(hdev->dev, "Cannot find handler for event %d\n",
+ event_type);
+ error_count = GAUDI2_NA_EVENT_CAUSE;
+ }
+ }
+
+ /* Make sure to dump an error in case no error cause was printed so far.
+ * Note that although we have counted the errors, we use this number as
+ * a boolean.
+ */
+ if (error_count == GAUDI2_NA_EVENT_CAUSE && !is_info_event(event_type))
+ gaudi2_print_event(hdev, event_type, true, "%d", event_type);
+ else if (error_count == 0)
+ gaudi2_print_event(hdev, event_type, true,
+ "No error cause for H/W event %u\n", event_type);
+
+ if ((gaudi2_irq_map_table[event_type].reset || reset_required) &&
+ (hdev->hard_reset_on_fw_events ||
+ (hdev->asic_prop.fw_security_enabled && is_critical)))
+ goto reset_device;
+
+ /* Send unmask irq only for interrupts not classified as MSG */
+ if (!gaudi2_irq_map_table[event_type].msg)
+ hl_fw_unmask_irq(hdev, event_type);
+
+ if (event_mask)
+ hl_notifier_event_send_all(hdev, event_mask);
+
+ return;
+
+reset_device:
+ if (hdev->asic_prop.fw_security_enabled && is_critical) {
+ reset_flags |= HL_DRV_RESET_BYPASS_REQ_TO_FW;
+ event_mask |= HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE;
+ } else {
+ reset_flags |= HL_DRV_RESET_DELAY;
+ }
+ event_mask |= HL_NOTIFIER_EVENT_DEVICE_RESET;
+ hl_device_cond_reset(hdev, reset_flags, event_mask);
+}
+
+static int gaudi2_memset_memory_chunk_using_edma_qm(struct hl_device *hdev,
+ struct packet_lin_dma *lin_dma_pkt, dma_addr_t pkt_dma_addr,
+ u32 hw_queue_id, u32 size, u64 addr, u32 val)
+{
+ u32 ctl, pkt_size;
+ int rc = 0;
+
+ ctl = FIELD_PREP(GAUDI2_PKT_CTL_OPCODE_MASK, PACKET_LIN_DMA);
+ ctl |= FIELD_PREP(GAUDI2_PKT_LIN_DMA_CTL_MEMSET_MASK, 1);
+ ctl |= FIELD_PREP(GAUDI2_PKT_LIN_DMA_CTL_WRCOMP_MASK, 1);
+ ctl |= FIELD_PREP(GAUDI2_PKT_CTL_EB_MASK, 1);
+
+ lin_dma_pkt->ctl = cpu_to_le32(ctl);
+ lin_dma_pkt->src_addr = cpu_to_le64(val);
+ lin_dma_pkt->dst_addr = cpu_to_le64(addr);
+ lin_dma_pkt->tsize = cpu_to_le32(size);
+
+ pkt_size = sizeof(struct packet_lin_dma);
+
+ rc = hl_hw_queue_send_cb_no_cmpl(hdev, hw_queue_id, pkt_size, pkt_dma_addr);
+ if (rc)
+ dev_err(hdev->dev, "Failed to send lin dma packet to H/W queue %d\n",
+ hw_queue_id);
+
+ return rc;
+}
+
+static int gaudi2_memset_device_memory(struct hl_device *hdev, u64 addr, u64 size, u64 val)
+{
+ u32 edma_queues_id[] = {GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0,
+ GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0,
+ GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0,
+ GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0};
+ u32 chunk_size, dcore, edma_idx, sob_offset, sob_addr, comp_val,
+ old_mmubp, mmubp, num_of_pkts, busy, pkt_size;
+ u64 comp_addr, cur_addr = addr, end_addr = addr + size;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ void *lin_dma_pkts_arr;
+ dma_addr_t pkt_dma_addr;
+ int rc = 0, dma_num = 0;
+
+ if (prop->edma_enabled_mask == 0) {
+ dev_info(hdev->dev, "non of the EDMA engines is enabled - skip dram scrubbing\n");
+ return -EIO;
+ }
+
+ sob_offset = hdev->asic_prop.first_available_user_sob[0] * 4;
+ sob_addr = mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset;
+ comp_addr = CFG_BASE + sob_addr;
+ comp_val = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_INC_MASK, 1) |
+ FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_VAL_MASK, 1);
+ mmubp = FIELD_PREP(ARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP_WR_MASK, 1) |
+ FIELD_PREP(ARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP_RD_MASK, 1);
+
+ /* Calculate how many lin dma pkts we'll need */
+ num_of_pkts = div64_u64(round_up(size, SZ_2G), SZ_2G);
+ pkt_size = sizeof(struct packet_lin_dma);
+
+ lin_dma_pkts_arr = hl_asic_dma_alloc_coherent(hdev, pkt_size * num_of_pkts,
+ &pkt_dma_addr, GFP_KERNEL);
+ if (!lin_dma_pkts_arr)
+ return -ENOMEM;
+
+ /*
+ * set mmu bypass for the scrubbing - all ddmas are configured the same so save
+ * only the first one to restore later
+ * also set the sob addr for all edma cores for completion.
+ * set QM as trusted to allow it to access physical address with MMU bp.
+ */
+ old_mmubp = RREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_MMU_BP);
+ for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) {
+ for (edma_idx = 0 ; edma_idx < NUM_OF_EDMA_PER_DCORE ; edma_idx++) {
+ u32 edma_offset = dcore * DCORE_OFFSET + edma_idx * DCORE_EDMA_OFFSET;
+ u32 edma_bit = dcore * NUM_OF_EDMA_PER_DCORE + edma_idx;
+
+ if (!(prop->edma_enabled_mask & BIT(edma_bit)))
+ continue;
+
+ WREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_MMU_BP +
+ edma_offset, mmubp);
+ WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_ADDR_LO + edma_offset,
+ lower_32_bits(comp_addr));
+ WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_ADDR_HI + edma_offset,
+ upper_32_bits(comp_addr));
+ WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_WDATA + edma_offset,
+ comp_val);
+ gaudi2_qman_set_test_mode(hdev,
+ edma_queues_id[dcore] + 4 * edma_idx, true);
+ }
+ }
+
+ WREG32(sob_addr, 0);
+
+ while (cur_addr < end_addr) {
+ for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) {
+ for (edma_idx = 0 ; edma_idx < NUM_OF_EDMA_PER_DCORE ; edma_idx++) {
+ u32 edma_bit = dcore * NUM_OF_EDMA_PER_DCORE + edma_idx;
+
+ if (!(prop->edma_enabled_mask & BIT(edma_bit)))
+ continue;
+
+ chunk_size = min_t(u64, SZ_2G, end_addr - cur_addr);
+
+ rc = gaudi2_memset_memory_chunk_using_edma_qm(hdev,
+ (struct packet_lin_dma *)lin_dma_pkts_arr + dma_num,
+ pkt_dma_addr + dma_num * pkt_size,
+ edma_queues_id[dcore] + edma_idx * 4,
+ chunk_size, cur_addr, val);
+ if (rc)
+ goto end;
+
+ dma_num++;
+ cur_addr += chunk_size;
+ if (cur_addr == end_addr)
+ break;
+ }
+ }
+ }
+
+ rc = hl_poll_timeout(hdev, sob_addr, busy, (busy == dma_num), 1000, 1000000);
+ if (rc) {
+ dev_err(hdev->dev, "DMA Timeout during HBM scrubbing\n");
+ goto end;
+ }
+end:
+ for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) {
+ for (edma_idx = 0 ; edma_idx < NUM_OF_EDMA_PER_DCORE ; edma_idx++) {
+ u32 edma_offset = dcore * DCORE_OFFSET + edma_idx * DCORE_EDMA_OFFSET;
+ u32 edma_bit = dcore * NUM_OF_EDMA_PER_DCORE + edma_idx;
+
+ if (!(prop->edma_enabled_mask & BIT(edma_bit)))
+ continue;
+
+ WREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_MMU_BP + edma_offset, old_mmubp);
+ WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_ADDR_LO + edma_offset, 0);
+ WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_ADDR_HI + edma_offset, 0);
+ WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_WDATA + edma_offset, 0);
+ gaudi2_qman_set_test_mode(hdev,
+ edma_queues_id[dcore] + 4 * edma_idx, false);
+ }
+ }
+
+ WREG32(sob_addr, 0);
+ hl_asic_dma_free_coherent(hdev, pkt_size * num_of_pkts, lin_dma_pkts_arr, pkt_dma_addr);
+
+ return rc;
+}
+
+static int gaudi2_scrub_device_dram(struct hl_device *hdev, u64 val)
+{
+ int rc;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 size = prop->dram_end_address - prop->dram_user_base_address;
+
+ rc = gaudi2_memset_device_memory(hdev, prop->dram_user_base_address, size, val);
+
+ if (rc)
+ dev_err(hdev->dev, "Failed to scrub dram, address: 0x%llx size: %llu\n",
+ prop->dram_user_base_address, size);
+ return rc;
+}
+
+static int gaudi2_scrub_device_mem(struct hl_device *hdev)
+{
+ int rc;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 val = hdev->memory_scrub_val;
+ u64 addr, size;
+
+ if (!hdev->memory_scrub)
+ return 0;
+
+ /* scrub SRAM */
+ addr = prop->sram_user_base_address;
+ size = hdev->pldm ? 0x10000 : (prop->sram_size - SRAM_USER_BASE_OFFSET);
+ dev_dbg(hdev->dev, "Scrubbing SRAM: 0x%09llx - 0x%09llx, val: 0x%llx\n",
+ addr, addr + size, val);
+ rc = gaudi2_memset_device_memory(hdev, addr, size, val);
+ if (rc) {
+ dev_err(hdev->dev, "scrubbing SRAM failed (%d)\n", rc);
+ return rc;
+ }
+
+ /* scrub DRAM */
+ rc = gaudi2_scrub_device_dram(hdev, val);
+ if (rc) {
+ dev_err(hdev->dev, "scrubbing DRAM failed (%d)\n", rc);
+ return rc;
+ }
+ return 0;
+}
+
+static void gaudi2_restore_user_sm_registers(struct hl_device *hdev)
+{
+ u64 addr, mon_sts_addr, mon_cfg_addr, cq_lbw_l_addr, cq_lbw_h_addr,
+ cq_lbw_data_addr, cq_base_l_addr, cq_base_h_addr, cq_size_addr;
+ u32 val, size, offset;
+ int dcore_id;
+
+ offset = hdev->asic_prop.first_available_cq[0] * 4;
+ cq_lbw_l_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0 + offset;
+ cq_lbw_h_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0 + offset;
+ cq_lbw_data_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_DATA_0 + offset;
+ cq_base_l_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_L_0 + offset;
+ cq_base_h_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_H_0 + offset;
+ cq_size_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_SIZE_LOG2_0 + offset;
+ size = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0 -
+ (mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0 + offset);
+
+ /* memset dcore0 CQ registers */
+ gaudi2_memset_device_lbw(hdev, cq_lbw_l_addr, size, 0);
+ gaudi2_memset_device_lbw(hdev, cq_lbw_h_addr, size, 0);
+ gaudi2_memset_device_lbw(hdev, cq_lbw_data_addr, size, 0);
+ gaudi2_memset_device_lbw(hdev, cq_base_l_addr, size, 0);
+ gaudi2_memset_device_lbw(hdev, cq_base_h_addr, size, 0);
+ gaudi2_memset_device_lbw(hdev, cq_size_addr, size, 0);
+
+ cq_lbw_l_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0 + DCORE_OFFSET;
+ cq_lbw_h_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0 + DCORE_OFFSET;
+ cq_lbw_data_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_DATA_0 + DCORE_OFFSET;
+ cq_base_l_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_L_0 + DCORE_OFFSET;
+ cq_base_h_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_H_0 + DCORE_OFFSET;
+ cq_size_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_SIZE_LOG2_0 + DCORE_OFFSET;
+ size = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0 - mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0;
+
+ for (dcore_id = 1 ; dcore_id < NUM_OF_DCORES ; dcore_id++) {
+ gaudi2_memset_device_lbw(hdev, cq_lbw_l_addr, size, 0);
+ gaudi2_memset_device_lbw(hdev, cq_lbw_h_addr, size, 0);
+ gaudi2_memset_device_lbw(hdev, cq_lbw_data_addr, size, 0);
+ gaudi2_memset_device_lbw(hdev, cq_base_l_addr, size, 0);
+ gaudi2_memset_device_lbw(hdev, cq_base_h_addr, size, 0);
+ gaudi2_memset_device_lbw(hdev, cq_size_addr, size, 0);
+
+ cq_lbw_l_addr += DCORE_OFFSET;
+ cq_lbw_h_addr += DCORE_OFFSET;
+ cq_lbw_data_addr += DCORE_OFFSET;
+ cq_base_l_addr += DCORE_OFFSET;
+ cq_base_h_addr += DCORE_OFFSET;
+ cq_size_addr += DCORE_OFFSET;
+ }
+
+ offset = hdev->asic_prop.first_available_user_mon[0] * 4;
+ addr = mmDCORE0_SYNC_MNGR_OBJS_MON_STATUS_0 + offset;
+ val = 1 << DCORE0_SYNC_MNGR_OBJS_MON_STATUS_PROT_SHIFT;
+ size = mmDCORE0_SYNC_MNGR_OBJS_SM_SEC_0 - (mmDCORE0_SYNC_MNGR_OBJS_MON_STATUS_0 + offset);
+
+ /* memset dcore0 monitors */
+ gaudi2_memset_device_lbw(hdev, addr, size, val);
+
+ addr = mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + offset;
+ gaudi2_memset_device_lbw(hdev, addr, size, 0);
+
+ mon_sts_addr = mmDCORE0_SYNC_MNGR_OBJS_MON_STATUS_0 + DCORE_OFFSET;
+ mon_cfg_addr = mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + DCORE_OFFSET;
+ size = mmDCORE0_SYNC_MNGR_OBJS_SM_SEC_0 - mmDCORE0_SYNC_MNGR_OBJS_MON_STATUS_0;
+
+ for (dcore_id = 1 ; dcore_id < NUM_OF_DCORES ; dcore_id++) {
+ gaudi2_memset_device_lbw(hdev, mon_sts_addr, size, val);
+ gaudi2_memset_device_lbw(hdev, mon_cfg_addr, size, 0);
+ mon_sts_addr += DCORE_OFFSET;
+ mon_cfg_addr += DCORE_OFFSET;
+ }
+
+ offset = hdev->asic_prop.first_available_user_sob[0] * 4;
+ addr = mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + offset;
+ val = 0;
+ size = mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 -
+ (mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + offset);
+
+ /* memset dcore0 sobs */
+ gaudi2_memset_device_lbw(hdev, addr, size, val);
+
+ addr = mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + DCORE_OFFSET;
+ size = mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 - mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0;
+
+ for (dcore_id = 1 ; dcore_id < NUM_OF_DCORES ; dcore_id++) {
+ gaudi2_memset_device_lbw(hdev, addr, size, val);
+ addr += DCORE_OFFSET;
+ }
+
+ /* Flush all WREG to prevent race */
+ val = RREG32(mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + offset);
+}
+
+static void gaudi2_restore_user_qm_registers(struct hl_device *hdev)
+{
+ u32 reg_base, hw_queue_id;
+
+ for (hw_queue_id = GAUDI2_QUEUE_ID_PDMA_0_0 ; hw_queue_id <= GAUDI2_QUEUE_ID_ROT_1_0;
+ hw_queue_id += NUM_OF_PQ_PER_QMAN) {
+ if (!gaudi2_is_queue_enabled(hdev, hw_queue_id))
+ continue;
+
+ gaudi2_clear_qm_fence_counters_common(hdev, hw_queue_id, false);
+
+ reg_base = gaudi2_qm_blocks_bases[hw_queue_id];
+ WREG32(reg_base + QM_ARB_CFG_0_OFFSET, 0);
+ }
+
+ /* Flush all WREG to prevent race */
+ RREG32(mmPDMA0_QM_ARB_CFG_0);
+}
+
+static void gaudi2_restore_nic_qm_registers(struct hl_device *hdev)
+{
+ u32 reg_base, hw_queue_id;
+
+ for (hw_queue_id = GAUDI2_QUEUE_ID_NIC_0_0 ; hw_queue_id <= GAUDI2_QUEUE_ID_NIC_23_3;
+ hw_queue_id += NUM_OF_PQ_PER_QMAN) {
+ if (!gaudi2_is_queue_enabled(hdev, hw_queue_id))
+ continue;
+
+ gaudi2_clear_qm_fence_counters_common(hdev, hw_queue_id, false);
+
+ reg_base = gaudi2_qm_blocks_bases[hw_queue_id];
+ WREG32(reg_base + QM_ARB_CFG_0_OFFSET, 0);
+ }
+
+ /* Flush all WREG to prevent race */
+ RREG32(mmPDMA0_QM_ARB_CFG_0);
+}
+
+static int gaudi2_context_switch(struct hl_device *hdev, u32 asid)
+{
+ return 0;
+}
+
+static void gaudi2_restore_phase_topology(struct hl_device *hdev)
+{
+}
+
+static void gaudi2_init_block_instances(struct hl_device *hdev, u32 block_idx,
+ struct dup_block_ctx *cfg_ctx)
+{
+ u64 block_base = cfg_ctx->base + block_idx * cfg_ctx->block_off;
+ u8 seq;
+ int i;
+
+ for (i = 0 ; i < cfg_ctx->instances ; i++) {
+ seq = block_idx * cfg_ctx->instances + i;
+
+ /* skip disabled instance */
+ if (!(cfg_ctx->enabled_mask & BIT_ULL(seq)))
+ continue;
+
+ cfg_ctx->instance_cfg_fn(hdev, block_base + i * cfg_ctx->instance_off,
+ cfg_ctx->data);
+ }
+}
+
+static void gaudi2_init_blocks_with_mask(struct hl_device *hdev, struct dup_block_ctx *cfg_ctx,
+ u64 mask)
+{
+ int i;
+
+ cfg_ctx->enabled_mask = mask;
+
+ for (i = 0 ; i < cfg_ctx->blocks ; i++)
+ gaudi2_init_block_instances(hdev, i, cfg_ctx);
+}
+
+void gaudi2_init_blocks(struct hl_device *hdev, struct dup_block_ctx *cfg_ctx)
+{
+ gaudi2_init_blocks_with_mask(hdev, cfg_ctx, U64_MAX);
+}
+
+static int gaudi2_debugfs_read_dma(struct hl_device *hdev, u64 addr, u32 size, void *blob_addr)
+{
+ void *host_mem_virtual_addr;
+ dma_addr_t host_mem_dma_addr;
+ u64 reserved_va_base;
+ u32 pos, size_left, size_to_dma;
+ struct hl_ctx *ctx;
+ int rc = 0;
+
+ /* Fetch the ctx */
+ ctx = hl_get_compute_ctx(hdev);
+ if (!ctx) {
+ dev_err(hdev->dev, "No ctx available\n");
+ return -EINVAL;
+ }
+
+ /* Allocate buffers for read and for poll */
+ host_mem_virtual_addr = hl_asic_dma_alloc_coherent(hdev, SZ_2M, &host_mem_dma_addr,
+ GFP_KERNEL | __GFP_ZERO);
+ if (host_mem_virtual_addr == NULL) {
+ dev_err(hdev->dev, "Failed to allocate memory for KDMA read\n");
+ rc = -ENOMEM;
+ goto put_ctx;
+ }
+
+ /* Reserve VM region on asic side */
+ reserved_va_base = hl_reserve_va_block(hdev, ctx, HL_VA_RANGE_TYPE_HOST, SZ_2M,
+ HL_MMU_VA_ALIGNMENT_NOT_NEEDED);
+ if (!reserved_va_base) {
+ dev_err(hdev->dev, "Failed to reserve vmem on asic\n");
+ rc = -ENOMEM;
+ goto free_data_buffer;
+ }
+
+ /* Create mapping on asic side */
+ mutex_lock(&hdev->mmu_lock);
+ rc = hl_mmu_map_contiguous(ctx, reserved_va_base, host_mem_dma_addr, SZ_2M);
+ hl_mmu_invalidate_cache_range(hdev, false,
+ MMU_OP_USERPTR | MMU_OP_SKIP_LOW_CACHE_INV,
+ ctx->asid, reserved_va_base, SZ_2M);
+ mutex_unlock(&hdev->mmu_lock);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to create mapping on asic mmu\n");
+ goto unreserve_va;
+ }
+
+ /* Enable MMU on KDMA */
+ gaudi2_kdma_set_mmbp_asid(hdev, false, ctx->asid);
+
+ pos = 0;
+ size_left = size;
+ size_to_dma = SZ_2M;
+
+ while (size_left > 0) {
+ if (size_left < SZ_2M)
+ size_to_dma = size_left;
+
+ rc = gaudi2_send_job_to_kdma(hdev, addr, reserved_va_base, size_to_dma, false);
+ if (rc)
+ break;
+
+ memcpy(blob_addr + pos, host_mem_virtual_addr, size_to_dma);
+
+ if (size_left <= SZ_2M)
+ break;
+
+ pos += SZ_2M;
+ addr += SZ_2M;
+ size_left -= SZ_2M;
+ }
+
+ gaudi2_kdma_set_mmbp_asid(hdev, true, HL_KERNEL_ASID_ID);
+
+ mutex_lock(&hdev->mmu_lock);
+ hl_mmu_unmap_contiguous(ctx, reserved_va_base, SZ_2M);
+ hl_mmu_invalidate_cache_range(hdev, false, MMU_OP_USERPTR,
+ ctx->asid, reserved_va_base, SZ_2M);
+ mutex_unlock(&hdev->mmu_lock);
+unreserve_va:
+ hl_unreserve_va_block(hdev, ctx, reserved_va_base, SZ_2M);
+free_data_buffer:
+ hl_asic_dma_free_coherent(hdev, SZ_2M, host_mem_virtual_addr, host_mem_dma_addr);
+put_ctx:
+ hl_ctx_put(ctx);
+
+ return rc;
+}
+
+static int gaudi2_internal_cb_pool_init(struct hl_device *hdev, struct hl_ctx *ctx)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ int min_alloc_order, rc;
+
+ if (!(gaudi2->hw_cap_initialized & HW_CAP_PMMU))
+ return 0;
+
+ hdev->internal_cb_pool_virt_addr = hl_asic_dma_alloc_coherent(hdev,
+ HOST_SPACE_INTERNAL_CB_SZ,
+ &hdev->internal_cb_pool_dma_addr,
+ GFP_KERNEL | __GFP_ZERO);
+
+ if (!hdev->internal_cb_pool_virt_addr)
+ return -ENOMEM;
+
+ min_alloc_order = ilog2(min(gaudi2_get_signal_cb_size(hdev),
+ gaudi2_get_wait_cb_size(hdev)));
+
+ hdev->internal_cb_pool = gen_pool_create(min_alloc_order, -1);
+ if (!hdev->internal_cb_pool) {
+ dev_err(hdev->dev, "Failed to create internal CB pool\n");
+ rc = -ENOMEM;
+ goto free_internal_cb_pool;
+ }
+
+ rc = gen_pool_add(hdev->internal_cb_pool, (uintptr_t) hdev->internal_cb_pool_virt_addr,
+ HOST_SPACE_INTERNAL_CB_SZ, -1);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to add memory to internal CB pool\n");
+ rc = -EFAULT;
+ goto destroy_internal_cb_pool;
+ }
+
+ hdev->internal_cb_va_base = hl_reserve_va_block(hdev, ctx, HL_VA_RANGE_TYPE_HOST,
+ HOST_SPACE_INTERNAL_CB_SZ, HL_MMU_VA_ALIGNMENT_NOT_NEEDED);
+
+ if (!hdev->internal_cb_va_base) {
+ rc = -ENOMEM;
+ goto destroy_internal_cb_pool;
+ }
+
+ mutex_lock(&hdev->mmu_lock);
+ rc = hl_mmu_map_contiguous(ctx, hdev->internal_cb_va_base, hdev->internal_cb_pool_dma_addr,
+ HOST_SPACE_INTERNAL_CB_SZ);
+ hl_mmu_invalidate_cache(hdev, false, MMU_OP_USERPTR);
+ mutex_unlock(&hdev->mmu_lock);
+
+ if (rc)
+ goto unreserve_internal_cb_pool;
+
+ return 0;
+
+unreserve_internal_cb_pool:
+ hl_unreserve_va_block(hdev, ctx, hdev->internal_cb_va_base, HOST_SPACE_INTERNAL_CB_SZ);
+destroy_internal_cb_pool:
+ gen_pool_destroy(hdev->internal_cb_pool);
+free_internal_cb_pool:
+ hl_asic_dma_free_coherent(hdev, HOST_SPACE_INTERNAL_CB_SZ, hdev->internal_cb_pool_virt_addr,
+ hdev->internal_cb_pool_dma_addr);
+
+ return rc;
+}
+
+static void gaudi2_internal_cb_pool_fini(struct hl_device *hdev, struct hl_ctx *ctx)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+
+ if (!(gaudi2->hw_cap_initialized & HW_CAP_PMMU))
+ return;
+
+ mutex_lock(&hdev->mmu_lock);
+ hl_mmu_unmap_contiguous(ctx, hdev->internal_cb_va_base, HOST_SPACE_INTERNAL_CB_SZ);
+ hl_unreserve_va_block(hdev, ctx, hdev->internal_cb_va_base, HOST_SPACE_INTERNAL_CB_SZ);
+ hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR);
+ mutex_unlock(&hdev->mmu_lock);
+
+ gen_pool_destroy(hdev->internal_cb_pool);
+
+ hl_asic_dma_free_coherent(hdev, HOST_SPACE_INTERNAL_CB_SZ, hdev->internal_cb_pool_virt_addr,
+ hdev->internal_cb_pool_dma_addr);
+}
+
+static void gaudi2_restore_user_registers(struct hl_device *hdev)
+{
+ gaudi2_restore_user_sm_registers(hdev);
+ gaudi2_restore_user_qm_registers(hdev);
+}
+
+static int gaudi2_map_virtual_msix_doorbell_memory(struct hl_ctx *ctx)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ int rc;
+
+ rc = hl_mmu_map_page(ctx, RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START,
+ gaudi2->virt_msix_db_dma_addr, prop->pmmu.page_size, true);
+ if (rc)
+ dev_err(hdev->dev, "Failed to map VA %#llx for virtual MSI-X doorbell memory\n",
+ RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START);
+
+ return rc;
+}
+
+static void gaudi2_unmap_virtual_msix_doorbell_memory(struct hl_ctx *ctx)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ int rc;
+
+ rc = hl_mmu_unmap_page(ctx, RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START,
+ prop->pmmu.page_size, true);
+ if (rc)
+ dev_err(hdev->dev, "Failed to unmap VA %#llx of virtual MSI-X doorbell memory\n",
+ RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START);
+}
+
+static int gaudi2_ctx_init(struct hl_ctx *ctx)
+{
+ int rc;
+
+ rc = gaudi2_mmu_prepare(ctx->hdev, ctx->asid);
+ if (rc)
+ return rc;
+
+ /* No need to clear user registers if the device has just
+ * performed reset, we restore only nic qm registers
+ */
+ if (ctx->hdev->reset_upon_device_release)
+ gaudi2_restore_nic_qm_registers(ctx->hdev);
+ else
+ gaudi2_restore_user_registers(ctx->hdev);
+
+ rc = gaudi2_internal_cb_pool_init(ctx->hdev, ctx);
+ if (rc)
+ return rc;
+
+ rc = gaudi2_map_virtual_msix_doorbell_memory(ctx);
+ if (rc)
+ gaudi2_internal_cb_pool_fini(ctx->hdev, ctx);
+
+ return rc;
+}
+
+static void gaudi2_ctx_fini(struct hl_ctx *ctx)
+{
+ if (ctx->asid == HL_KERNEL_ASID_ID)
+ return;
+
+ gaudi2_internal_cb_pool_fini(ctx->hdev, ctx);
+
+ gaudi2_unmap_virtual_msix_doorbell_memory(ctx);
+}
+
+static int gaudi2_pre_schedule_cs(struct hl_cs *cs)
+{
+ struct hl_device *hdev = cs->ctx->hdev;
+ int index = cs->sequence & (hdev->asic_prop.max_pending_cs - 1);
+ u32 mon_payload, sob_id, mon_id;
+
+ if (!cs_needs_completion(cs))
+ return 0;
+
+ /*
+ * First 64 SOB/MON are reserved for driver for QMAN auto completion
+ * mechanism. Each SOB/MON pair are used for a pending CS with the same
+ * cyclic index. The SOB value is increased when each of the CS jobs is
+ * completed. When the SOB reaches the number of CS jobs, the monitor
+ * generates MSI-X interrupt.
+ */
+
+ sob_id = mon_id = index;
+ mon_payload = (1 << CQ_ENTRY_SHADOW_INDEX_VALID_SHIFT) |
+ (1 << CQ_ENTRY_READY_SHIFT) | index;
+
+ gaudi2_arm_cq_monitor(hdev, sob_id, mon_id, GAUDI2_RESERVED_CQ_CS_COMPLETION, mon_payload,
+ cs->jobs_cnt);
+
+ return 0;
+}
+
+static u32 gaudi2_get_queue_id_for_cq(struct hl_device *hdev, u32 cq_idx)
+{
+ return HL_INVALID_QUEUE;
+}
+
+static u32 gaudi2_gen_signal_cb(struct hl_device *hdev, void *data, u16 sob_id, u32 size, bool eb)
+{
+ struct hl_cb *cb = data;
+ struct packet_msg_short *pkt;
+ u32 value, ctl, pkt_size = sizeof(*pkt);
+
+ pkt = (struct packet_msg_short *) (uintptr_t) (cb->kernel_address + size);
+ memset(pkt, 0, pkt_size);
+
+ /* Inc by 1, Mode ADD */
+ value = FIELD_PREP(GAUDI2_PKT_SHORT_VAL_SOB_SYNC_VAL_MASK, 1);
+ value |= FIELD_PREP(GAUDI2_PKT_SHORT_VAL_SOB_MOD_MASK, 1);
+
+ ctl = FIELD_PREP(GAUDI2_PKT_SHORT_CTL_ADDR_MASK, sob_id * 4);
+ ctl |= FIELD_PREP(GAUDI2_PKT_SHORT_CTL_BASE_MASK, 1); /* SOB base */
+ ctl |= FIELD_PREP(GAUDI2_PKT_CTL_OPCODE_MASK, PACKET_MSG_SHORT);
+ ctl |= FIELD_PREP(GAUDI2_PKT_CTL_EB_MASK, eb);
+ ctl |= FIELD_PREP(GAUDI2_PKT_CTL_MB_MASK, 1);
+
+ pkt->value = cpu_to_le32(value);
+ pkt->ctl = cpu_to_le32(ctl);
+
+ return size + pkt_size;
+}
+
+static u32 gaudi2_add_mon_msg_short(struct packet_msg_short *pkt, u32 value, u16 addr)
+{
+ u32 ctl, pkt_size = sizeof(*pkt);
+
+ memset(pkt, 0, pkt_size);
+
+ ctl = FIELD_PREP(GAUDI2_PKT_SHORT_CTL_ADDR_MASK, addr);
+ ctl |= FIELD_PREP(GAUDI2_PKT_SHORT_CTL_BASE_MASK, 0); /* MON base */
+ ctl |= FIELD_PREP(GAUDI2_PKT_CTL_OPCODE_MASK, PACKET_MSG_SHORT);
+ ctl |= FIELD_PREP(GAUDI2_PKT_CTL_EB_MASK, 0);
+ ctl |= FIELD_PREP(GAUDI2_PKT_CTL_MB_MASK, 0);
+
+ pkt->value = cpu_to_le32(value);
+ pkt->ctl = cpu_to_le32(ctl);
+
+ return pkt_size;
+}
+
+static u32 gaudi2_add_arm_monitor_pkt(struct hl_device *hdev, struct packet_msg_short *pkt,
+ u16 sob_base, u8 sob_mask, u16 sob_val, u16 addr)
+{
+ u32 ctl, value, pkt_size = sizeof(*pkt);
+ u8 mask;
+
+ if (hl_gen_sob_mask(sob_base, sob_mask, &mask)) {
+ dev_err(hdev->dev, "sob_base %u (mask %#x) is not valid\n", sob_base, sob_mask);
+ return 0;
+ }
+
+ memset(pkt, 0, pkt_size);
+
+ value = FIELD_PREP(GAUDI2_PKT_SHORT_VAL_MON_SYNC_GID_MASK, sob_base / 8);
+ value |= FIELD_PREP(GAUDI2_PKT_SHORT_VAL_MON_SYNC_VAL_MASK, sob_val);
+ value |= FIELD_PREP(GAUDI2_PKT_SHORT_VAL_MON_MODE_MASK, 0); /* GREATER OR EQUAL*/
+ value |= FIELD_PREP(GAUDI2_PKT_SHORT_VAL_MON_MASK_MASK, mask);
+
+ ctl = FIELD_PREP(GAUDI2_PKT_SHORT_CTL_ADDR_MASK, addr);
+ ctl |= FIELD_PREP(GAUDI2_PKT_SHORT_CTL_BASE_MASK, 0); /* MON base */
+ ctl |= FIELD_PREP(GAUDI2_PKT_CTL_OPCODE_MASK, PACKET_MSG_SHORT);
+ ctl |= FIELD_PREP(GAUDI2_PKT_CTL_EB_MASK, 0);
+ ctl |= FIELD_PREP(GAUDI2_PKT_CTL_MB_MASK, 1);
+
+ pkt->value = cpu_to_le32(value);
+ pkt->ctl = cpu_to_le32(ctl);
+
+ return pkt_size;
+}
+
+static u32 gaudi2_add_fence_pkt(struct packet_fence *pkt)
+{
+ u32 ctl, cfg, pkt_size = sizeof(*pkt);
+
+ memset(pkt, 0, pkt_size);
+
+ cfg = FIELD_PREP(GAUDI2_PKT_FENCE_CFG_DEC_VAL_MASK, 1);
+ cfg |= FIELD_PREP(GAUDI2_PKT_FENCE_CFG_TARGET_VAL_MASK, 1);
+ cfg |= FIELD_PREP(GAUDI2_PKT_FENCE_CFG_ID_MASK, 2);
+
+ ctl = FIELD_PREP(GAUDI2_PKT_CTL_OPCODE_MASK, PACKET_FENCE);
+ ctl |= FIELD_PREP(GAUDI2_PKT_CTL_EB_MASK, 0);
+ ctl |= FIELD_PREP(GAUDI2_PKT_CTL_MB_MASK, 1);
+
+ pkt->cfg = cpu_to_le32(cfg);
+ pkt->ctl = cpu_to_le32(ctl);
+
+ return pkt_size;
+}
+
+static u32 gaudi2_gen_wait_cb(struct hl_device *hdev, struct hl_gen_wait_properties *prop)
+{
+ struct hl_cb *cb = prop->data;
+ void *buf = (void *) (uintptr_t) (cb->kernel_address);
+
+ u64 monitor_base, fence_addr = 0;
+ u32 stream_index, size = prop->size;
+ u16 msg_addr_offset;
+
+ stream_index = prop->q_idx % 4;
+ fence_addr = CFG_BASE + gaudi2_qm_blocks_bases[prop->q_idx] +
+ QM_FENCE2_OFFSET + stream_index * 4;
+
+ /*
+ * monitor_base should be the content of the base0 address registers,
+ * so it will be added to the msg short offsets
+ */
+ monitor_base = mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0;
+
+ /* First monitor config packet: low address of the sync */
+ msg_addr_offset = (mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + prop->mon_id * 4) -
+ monitor_base;
+
+ size += gaudi2_add_mon_msg_short(buf + size, (u32) fence_addr, msg_addr_offset);
+
+ /* Second monitor config packet: high address of the sync */
+ msg_addr_offset = (mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0 + prop->mon_id * 4) -
+ monitor_base;
+
+ size += gaudi2_add_mon_msg_short(buf + size, (u32) (fence_addr >> 32), msg_addr_offset);
+
+ /*
+ * Third monitor config packet: the payload, i.e. what to write when the
+ * sync triggers
+ */
+ msg_addr_offset = (mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + prop->mon_id * 4) -
+ monitor_base;
+
+ size += gaudi2_add_mon_msg_short(buf + size, 1, msg_addr_offset);
+
+ /* Fourth monitor config packet: bind the monitor to a sync object */
+ msg_addr_offset = (mmDCORE0_SYNC_MNGR_OBJS_MON_ARM_0 + prop->mon_id * 4) - monitor_base;
+
+ size += gaudi2_add_arm_monitor_pkt(hdev, buf + size, prop->sob_base, prop->sob_mask,
+ prop->sob_val, msg_addr_offset);
+
+ /* Fence packet */
+ size += gaudi2_add_fence_pkt(buf + size);
+
+ return size;
+}
+
+static void gaudi2_reset_sob(struct hl_device *hdev, void *data)
+{
+ struct hl_hw_sob *hw_sob = data;
+
+ dev_dbg(hdev->dev, "reset SOB, q_idx: %d, sob_id: %d\n", hw_sob->q_idx, hw_sob->sob_id);
+
+ WREG32(mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + hw_sob->sob_id * 4, 0);
+
+ kref_init(&hw_sob->kref);
+}
+
+static void gaudi2_reset_sob_group(struct hl_device *hdev, u16 sob_group)
+{
+}
+
+static u64 gaudi2_get_device_time(struct hl_device *hdev)
+{
+ u64 device_time = ((u64) RREG32(mmPSOC_TIMESTAMP_CNTCVU)) << 32;
+
+ return device_time | RREG32(mmPSOC_TIMESTAMP_CNTCVL);
+}
+
+static int gaudi2_collective_wait_init_cs(struct hl_cs *cs)
+{
+ return 0;
+}
+
+static int gaudi2_collective_wait_create_jobs(struct hl_device *hdev, struct hl_ctx *ctx,
+ struct hl_cs *cs, u32 wait_queue_id,
+ u32 collective_engine_id, u32 encaps_signal_offset)
+{
+ return -EINVAL;
+}
+
+/*
+ * hl_mmu_scramble - converts a dram (non power of 2) page-size aligned address
+ * to DMMU page-size address (64MB) before mapping it in
+ * the MMU.
+ * The operation is performed on both the virtual and physical addresses.
+ * for device with 6 HBMs the scramble is:
+ * (addr[47:0] / 48M) * 64M + addr % 48M + addr[63:48]
+ *
+ * Example:
+ * =============================================================================
+ * Allocated DRAM Reserved VA scrambled VA for MMU mapping Scrambled PA
+ * Phys address in MMU last
+ * HOP
+ * =============================================================================
+ * PA1 0x3000000 VA1 0x9C000000 SVA1= (VA1/48M)*64M 0xD0000000 <- PA1/48M 0x1
+ * PA2 0x9000000 VA2 0x9F000000 SVA2= (VA2/48M)*64M 0xD4000000 <- PA2/48M 0x3
+ * =============================================================================
+ */
+static u64 gaudi2_mmu_scramble_addr(struct hl_device *hdev, u64 raw_addr)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u32 divisor, mod_va;
+ u64 div_va;
+
+ /* accept any address in the DRAM address space */
+ if (hl_mem_area_inside_range(raw_addr, sizeof(raw_addr), DRAM_PHYS_BASE,
+ VA_HBM_SPACE_END)) {
+
+ divisor = prop->num_functional_hbms * GAUDI2_HBM_MMU_SCRM_MEM_SIZE;
+ div_va = div_u64_rem(raw_addr & GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK, divisor, &mod_va);
+ return (raw_addr & ~GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK) |
+ (div_va << GAUDI2_HBM_MMU_SCRM_DIV_SHIFT) |
+ (mod_va << GAUDI2_HBM_MMU_SCRM_MOD_SHIFT);
+ }
+
+ return raw_addr;
+}
+
+static u64 gaudi2_mmu_descramble_addr(struct hl_device *hdev, u64 scrambled_addr)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u32 divisor, mod_va;
+ u64 div_va;
+
+ /* accept any address in the DRAM address space */
+ if (hl_mem_area_inside_range(scrambled_addr, sizeof(scrambled_addr), DRAM_PHYS_BASE,
+ VA_HBM_SPACE_END)) {
+
+ divisor = prop->num_functional_hbms * GAUDI2_HBM_MMU_SCRM_MEM_SIZE;
+ div_va = div_u64_rem(scrambled_addr & GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK,
+ PAGE_SIZE_64MB, &mod_va);
+
+ return ((scrambled_addr & ~GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK) +
+ (div_va * divisor + mod_va));
+ }
+
+ return scrambled_addr;
+}
+
+static u32 gaudi2_get_dec_base_addr(struct hl_device *hdev, u32 core_id)
+{
+ u32 base = 0, dcore_id, dec_id;
+
+ if (core_id >= NUMBER_OF_DEC) {
+ dev_err(hdev->dev, "Unexpected core number %d for DEC\n", core_id);
+ goto out;
+ }
+
+ if (core_id < 8) {
+ dcore_id = core_id / NUM_OF_DEC_PER_DCORE;
+ dec_id = core_id % NUM_OF_DEC_PER_DCORE;
+
+ base = mmDCORE0_DEC0_CMD_BASE + dcore_id * DCORE_OFFSET +
+ dec_id * DCORE_VDEC_OFFSET;
+ } else {
+ /* PCIe Shared Decoder */
+ base = mmPCIE_DEC0_CMD_BASE + ((core_id % 8) * PCIE_VDEC_OFFSET);
+ }
+out:
+ return base;
+}
+
+static int gaudi2_get_hw_block_id(struct hl_device *hdev, u64 block_addr,
+ u32 *block_size, u32 *block_id)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ int i;
+
+ for (i = 0 ; i < NUM_USER_MAPPED_BLOCKS ; i++) {
+ if (block_addr == CFG_BASE + gaudi2->mapped_blocks[i].address) {
+ *block_id = i;
+ if (block_size)
+ *block_size = gaudi2->mapped_blocks[i].size;
+ return 0;
+ }
+ }
+
+ dev_err(hdev->dev, "Invalid block address %#llx", block_addr);
+
+ return -EINVAL;
+}
+
+static int gaudi2_block_mmap(struct hl_device *hdev, struct vm_area_struct *vma,
+ u32 block_id, u32 block_size)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u64 offset_in_bar;
+ u64 address;
+ int rc;
+
+ if (block_id >= NUM_USER_MAPPED_BLOCKS) {
+ dev_err(hdev->dev, "Invalid block id %u", block_id);
+ return -EINVAL;
+ }
+
+ /* we allow mapping only an entire block */
+ if (block_size != gaudi2->mapped_blocks[block_id].size) {
+ dev_err(hdev->dev, "Invalid block size %u", block_size);
+ return -EINVAL;
+ }
+
+ offset_in_bar = CFG_BASE + gaudi2->mapped_blocks[block_id].address - STM_FLASH_BASE_ADDR;
+
+ address = pci_resource_start(hdev->pdev, SRAM_CFG_BAR_ID) + offset_in_bar;
+
++ vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP |
++ VM_DONTCOPY | VM_NORESERVE);
+
+ rc = remap_pfn_range(vma, vma->vm_start, address >> PAGE_SHIFT,
+ block_size, vma->vm_page_prot);
+ if (rc)
+ dev_err(hdev->dev, "remap_pfn_range error %d", rc);
+
+ return rc;
+}
+
+static void gaudi2_enable_events_from_fw(struct hl_device *hdev)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+
+ struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
+ u32 irq_handler_offset = le32_to_cpu(dyn_regs->gic_host_ints_irq);
+
+ if (gaudi2->hw_cap_initialized & HW_CAP_CPU_Q)
+ WREG32(irq_handler_offset,
+ gaudi2_irq_map_table[GAUDI2_EVENT_CPU_INTS_REGISTER].cpu_id);
+}
+
+static int gaudi2_get_mmu_base(struct hl_device *hdev, u64 mmu_id, u32 *mmu_base)
+{
+ switch (mmu_id) {
+ case HW_CAP_DCORE0_DMMU0:
+ *mmu_base = mmDCORE0_HMMU0_MMU_BASE;
+ break;
+ case HW_CAP_DCORE0_DMMU1:
+ *mmu_base = mmDCORE0_HMMU1_MMU_BASE;
+ break;
+ case HW_CAP_DCORE0_DMMU2:
+ *mmu_base = mmDCORE0_HMMU2_MMU_BASE;
+ break;
+ case HW_CAP_DCORE0_DMMU3:
+ *mmu_base = mmDCORE0_HMMU3_MMU_BASE;
+ break;
+ case HW_CAP_DCORE1_DMMU0:
+ *mmu_base = mmDCORE1_HMMU0_MMU_BASE;
+ break;
+ case HW_CAP_DCORE1_DMMU1:
+ *mmu_base = mmDCORE1_HMMU1_MMU_BASE;
+ break;
+ case HW_CAP_DCORE1_DMMU2:
+ *mmu_base = mmDCORE1_HMMU2_MMU_BASE;
+ break;
+ case HW_CAP_DCORE1_DMMU3:
+ *mmu_base = mmDCORE1_HMMU3_MMU_BASE;
+ break;
+ case HW_CAP_DCORE2_DMMU0:
+ *mmu_base = mmDCORE2_HMMU0_MMU_BASE;
+ break;
+ case HW_CAP_DCORE2_DMMU1:
+ *mmu_base = mmDCORE2_HMMU1_MMU_BASE;
+ break;
+ case HW_CAP_DCORE2_DMMU2:
+ *mmu_base = mmDCORE2_HMMU2_MMU_BASE;
+ break;
+ case HW_CAP_DCORE2_DMMU3:
+ *mmu_base = mmDCORE2_HMMU3_MMU_BASE;
+ break;
+ case HW_CAP_DCORE3_DMMU0:
+ *mmu_base = mmDCORE3_HMMU0_MMU_BASE;
+ break;
+ case HW_CAP_DCORE3_DMMU1:
+ *mmu_base = mmDCORE3_HMMU1_MMU_BASE;
+ break;
+ case HW_CAP_DCORE3_DMMU2:
+ *mmu_base = mmDCORE3_HMMU2_MMU_BASE;
+ break;
+ case HW_CAP_DCORE3_DMMU3:
+ *mmu_base = mmDCORE3_HMMU3_MMU_BASE;
+ break;
+ case HW_CAP_PMMU:
+ *mmu_base = mmPMMU_HBW_MMU_BASE;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static void gaudi2_ack_mmu_error(struct hl_device *hdev, u64 mmu_id)
+{
+ bool is_pmmu = (mmu_id == HW_CAP_PMMU);
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+ u32 mmu_base;
+
+ if (!(gaudi2->hw_cap_initialized & mmu_id))
+ return;
+
+ if (gaudi2_get_mmu_base(hdev, mmu_id, &mmu_base))
+ return;
+
+ gaudi2_handle_page_error(hdev, mmu_base, is_pmmu, NULL);
+ gaudi2_handle_access_error(hdev, mmu_base, is_pmmu);
+}
+
+static int gaudi2_ack_mmu_page_fault_or_access_error(struct hl_device *hdev, u64 mmu_cap_mask)
+{
+ u32 i, mmu_id, num_of_hmmus = NUM_OF_HMMU_PER_DCORE * NUM_OF_DCORES;
+
+ /* check all HMMUs */
+ for (i = 0 ; i < num_of_hmmus ; i++) {
+ mmu_id = HW_CAP_DCORE0_DMMU0 << i;
+
+ if (mmu_cap_mask & mmu_id)
+ gaudi2_ack_mmu_error(hdev, mmu_id);
+ }
+
+ /* check PMMU */
+ if (mmu_cap_mask & HW_CAP_PMMU)
+ gaudi2_ack_mmu_error(hdev, HW_CAP_PMMU);
+
+ return 0;
+}
+
+static void gaudi2_get_msi_info(__le32 *table)
+{
+ table[CPUCP_EVENT_QUEUE_MSI_TYPE] = cpu_to_le32(GAUDI2_EVENT_QUEUE_MSIX_IDX);
+}
+
+static int gaudi2_map_pll_idx_to_fw_idx(u32 pll_idx)
+{
+ switch (pll_idx) {
+ case HL_GAUDI2_CPU_PLL: return CPU_PLL;
+ case HL_GAUDI2_PCI_PLL: return PCI_PLL;
+ case HL_GAUDI2_NIC_PLL: return NIC_PLL;
+ case HL_GAUDI2_DMA_PLL: return DMA_PLL;
+ case HL_GAUDI2_MESH_PLL: return MESH_PLL;
+ case HL_GAUDI2_MME_PLL: return MME_PLL;
+ case HL_GAUDI2_TPC_PLL: return TPC_PLL;
+ case HL_GAUDI2_IF_PLL: return IF_PLL;
+ case HL_GAUDI2_SRAM_PLL: return SRAM_PLL;
+ case HL_GAUDI2_HBM_PLL: return HBM_PLL;
+ case HL_GAUDI2_VID_PLL: return VID_PLL;
+ case HL_GAUDI2_MSS_PLL: return MSS_PLL;
+ default: return -EINVAL;
+ }
+}
+
+static int gaudi2_gen_sync_to_engine_map(struct hl_device *hdev, struct hl_sync_to_engine_map *map)
+{
+ /* Not implemented */
+ return 0;
+}
+
+static int gaudi2_monitor_valid(struct hl_mon_state_dump *mon)
+{
+ /* Not implemented */
+ return 0;
+}
+
+static int gaudi2_print_single_monitor(char **buf, size_t *size, size_t *offset,
+ struct hl_device *hdev, struct hl_mon_state_dump *mon)
+{
+ /* Not implemented */
+ return 0;
+}
+
+
+static int gaudi2_print_fences_single_engine(struct hl_device *hdev, u64 base_offset,
+ u64 status_base_offset, enum hl_sync_engine_type engine_type,
+ u32 engine_id, char **buf, size_t *size, size_t *offset)
+{
+ /* Not implemented */
+ return 0;
+}
+
+
+static struct hl_state_dump_specs_funcs gaudi2_state_dump_funcs = {
+ .monitor_valid = gaudi2_monitor_valid,
+ .print_single_monitor = gaudi2_print_single_monitor,
+ .gen_sync_to_engine_map = gaudi2_gen_sync_to_engine_map,
+ .print_fences_single_engine = gaudi2_print_fences_single_engine,
+};
+
+static void gaudi2_state_dump_init(struct hl_device *hdev)
+{
+ /* Not implemented */
+ hdev->state_dump_specs.props = gaudi2_state_dump_specs_props;
+ hdev->state_dump_specs.funcs = gaudi2_state_dump_funcs;
+}
+
+static u32 gaudi2_get_sob_addr(struct hl_device *hdev, u32 sob_id)
+{
+ return 0;
+}
+
+static u32 *gaudi2_get_stream_master_qid_arr(void)
+{
+ return NULL;
+}
+
+static void gaudi2_add_device_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp,
+ struct attribute_group *dev_vrm_attr_grp)
+{
+ hl_sysfs_add_dev_clk_attr(hdev, dev_clk_attr_grp);
+ hl_sysfs_add_dev_vrm_attr(hdev, dev_vrm_attr_grp);
+}
+
+static int gaudi2_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
+ u32 page_size, u32 *real_page_size, bool is_dram_addr)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+
+ /* for host pages the page size must be */
+ if (!is_dram_addr) {
+ if (page_size % mmu_prop->page_size)
+ goto page_size_err;
+
+ *real_page_size = mmu_prop->page_size;
+ return 0;
+ }
+
+ if ((page_size % prop->dram_page_size) || (prop->dram_page_size > mmu_prop->page_size))
+ goto page_size_err;
+
+ /*
+ * MMU page size is different from DRAM page size (more precisely, DMMU page is greater
+ * than DRAM page size).
+ * for this reason work with the DRAM page size and let the MMU scrambling routine handle
+ * this mismatch when calculating the address to place in the MMU page table.
+ * (in that case also make sure that the dram_page_size is not greater than the
+ * mmu page size)
+ */
+ *real_page_size = prop->dram_page_size;
+
+ return 0;
+
+page_size_err:
+ dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't map\n",
+ page_size, mmu_prop->page_size >> 10);
+ return -EFAULT;
+}
+
+static int gaudi2_get_monitor_dump(struct hl_device *hdev, void *data)
+{
+ return -EOPNOTSUPP;
+}
+
+int gaudi2_send_device_activity(struct hl_device *hdev, bool open)
+{
+ struct gaudi2_device *gaudi2 = hdev->asic_specific;
+
+ if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q))
+ return 0;
+
+ return hl_fw_send_device_activity(hdev, open);
+}
+
+static const struct hl_asic_funcs gaudi2_funcs = {
+ .early_init = gaudi2_early_init,
+ .early_fini = gaudi2_early_fini,
+ .late_init = gaudi2_late_init,
+ .late_fini = gaudi2_late_fini,
+ .sw_init = gaudi2_sw_init,
+ .sw_fini = gaudi2_sw_fini,
+ .hw_init = gaudi2_hw_init,
+ .hw_fini = gaudi2_hw_fini,
+ .halt_engines = gaudi2_halt_engines,
+ .suspend = gaudi2_suspend,
+ .resume = gaudi2_resume,
+ .mmap = gaudi2_mmap,
+ .ring_doorbell = gaudi2_ring_doorbell,
+ .pqe_write = gaudi2_pqe_write,
+ .asic_dma_alloc_coherent = gaudi2_dma_alloc_coherent,
+ .asic_dma_free_coherent = gaudi2_dma_free_coherent,
+ .scrub_device_mem = gaudi2_scrub_device_mem,
+ .scrub_device_dram = gaudi2_scrub_device_dram,
+ .get_int_queue_base = NULL,
+ .test_queues = gaudi2_test_queues,
+ .asic_dma_pool_zalloc = gaudi2_dma_pool_zalloc,
+ .asic_dma_pool_free = gaudi2_dma_pool_free,
+ .cpu_accessible_dma_pool_alloc = gaudi2_cpu_accessible_dma_pool_alloc,
+ .cpu_accessible_dma_pool_free = gaudi2_cpu_accessible_dma_pool_free,
+ .asic_dma_unmap_single = gaudi2_dma_unmap_single,
+ .asic_dma_map_single = gaudi2_dma_map_single,
+ .hl_dma_unmap_sgtable = hl_dma_unmap_sgtable,
+ .cs_parser = gaudi2_cs_parser,
+ .asic_dma_map_sgtable = hl_dma_map_sgtable,
+ .add_end_of_cb_packets = NULL,
+ .update_eq_ci = gaudi2_update_eq_ci,
+ .context_switch = gaudi2_context_switch,
+ .restore_phase_topology = gaudi2_restore_phase_topology,
+ .debugfs_read_dma = gaudi2_debugfs_read_dma,
+ .add_device_attr = gaudi2_add_device_attr,
+ .handle_eqe = gaudi2_handle_eqe,
+ .get_events_stat = gaudi2_get_events_stat,
+ .read_pte = NULL,
+ .write_pte = NULL,
+ .mmu_invalidate_cache = gaudi2_mmu_invalidate_cache,
+ .mmu_invalidate_cache_range = gaudi2_mmu_invalidate_cache_range,
+ .mmu_prefetch_cache_range = NULL,
+ .send_heartbeat = gaudi2_send_heartbeat,
+ .debug_coresight = gaudi2_debug_coresight,
+ .is_device_idle = gaudi2_is_device_idle,
+ .compute_reset_late_init = gaudi2_compute_reset_late_init,
+ .hw_queues_lock = gaudi2_hw_queues_lock,
+ .hw_queues_unlock = gaudi2_hw_queues_unlock,
+ .get_pci_id = gaudi2_get_pci_id,
+ .get_eeprom_data = gaudi2_get_eeprom_data,
+ .get_monitor_dump = gaudi2_get_monitor_dump,
+ .send_cpu_message = gaudi2_send_cpu_message,
+ .pci_bars_map = gaudi2_pci_bars_map,
+ .init_iatu = gaudi2_init_iatu,
+ .rreg = hl_rreg,
+ .wreg = hl_wreg,
+ .halt_coresight = gaudi2_halt_coresight,
+ .ctx_init = gaudi2_ctx_init,
+ .ctx_fini = gaudi2_ctx_fini,
+ .pre_schedule_cs = gaudi2_pre_schedule_cs,
+ .get_queue_id_for_cq = gaudi2_get_queue_id_for_cq,
+ .load_firmware_to_device = NULL,
+ .load_boot_fit_to_device = NULL,
+ .get_signal_cb_size = gaudi2_get_signal_cb_size,
+ .get_wait_cb_size = gaudi2_get_wait_cb_size,
+ .gen_signal_cb = gaudi2_gen_signal_cb,
+ .gen_wait_cb = gaudi2_gen_wait_cb,
+ .reset_sob = gaudi2_reset_sob,
+ .reset_sob_group = gaudi2_reset_sob_group,
+ .get_device_time = gaudi2_get_device_time,
+ .pb_print_security_errors = gaudi2_pb_print_security_errors,
+ .collective_wait_init_cs = gaudi2_collective_wait_init_cs,
+ .collective_wait_create_jobs = gaudi2_collective_wait_create_jobs,
+ .get_dec_base_addr = gaudi2_get_dec_base_addr,
+ .scramble_addr = gaudi2_mmu_scramble_addr,
+ .descramble_addr = gaudi2_mmu_descramble_addr,
+ .ack_protection_bits_errors = gaudi2_ack_protection_bits_errors,
+ .get_hw_block_id = gaudi2_get_hw_block_id,
+ .hw_block_mmap = gaudi2_block_mmap,
+ .enable_events_from_fw = gaudi2_enable_events_from_fw,
+ .ack_mmu_errors = gaudi2_ack_mmu_page_fault_or_access_error,
+ .get_msi_info = gaudi2_get_msi_info,
+ .map_pll_idx_to_fw_idx = gaudi2_map_pll_idx_to_fw_idx,
+ .init_firmware_preload_params = gaudi2_init_firmware_preload_params,
+ .init_firmware_loader = gaudi2_init_firmware_loader,
+ .init_cpu_scrambler_dram = gaudi2_init_scrambler_hbm,
+ .state_dump_init = gaudi2_state_dump_init,
+ .get_sob_addr = &gaudi2_get_sob_addr,
+ .set_pci_memory_regions = gaudi2_set_pci_memory_regions,
+ .get_stream_master_qid_arr = gaudi2_get_stream_master_qid_arr,
+ .check_if_razwi_happened = gaudi2_check_if_razwi_happened,
+ .mmu_get_real_page_size = gaudi2_mmu_get_real_page_size,
+ .access_dev_mem = hl_access_dev_mem,
+ .set_dram_bar_base = gaudi2_set_hbm_bar_base,
+ .set_engine_cores = gaudi2_set_engine_cores,
+ .send_device_activity = gaudi2_send_device_activity,
+ .set_dram_properties = gaudi2_set_dram_properties,
+ .set_binning_masks = gaudi2_set_binning_masks,
+};
+
+void gaudi2_set_asic_funcs(struct hl_device *hdev)
+{
+ hdev->asic_funcs = &gaudi2_funcs;
+}
--- /dev/null
- vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP |
- VM_DONTCOPY | VM_NORESERVE;
+// SPDX-License-Identifier: GPL-2.0
+
+/*
+ * Copyright 2016-2022 HabanaLabs, Ltd.
+ * All Rights Reserved.
+ */
+
+#include "goyaP.h"
+#include "../include/hw_ip/mmu/mmu_general.h"
+#include "../include/hw_ip/mmu/mmu_v1_0.h"
+#include "../include/goya/asic_reg/goya_masks.h"
+#include "../include/goya/goya_reg_map.h"
+
+#include <linux/pci.h>
+#include <linux/hwmon.h>
+#include <linux/iommu.h>
+#include <linux/seq_file.h>
+
+/*
+ * GOYA security scheme:
+ *
+ * 1. Host is protected by:
+ * - Range registers (When MMU is enabled, DMA RR does NOT protect host)
+ * - MMU
+ *
+ * 2. DRAM is protected by:
+ * - Range registers (protect the first 512MB)
+ * - MMU (isolation between users)
+ *
+ * 3. Configuration is protected by:
+ * - Range registers
+ * - Protection bits
+ *
+ * When MMU is disabled:
+ *
+ * QMAN DMA: PQ, CQ, CP, DMA are secured.
+ * PQ, CB and the data are on the host.
+ *
+ * QMAN TPC/MME:
+ * PQ, CQ and CP are not secured.
+ * PQ, CB and the data are on the SRAM/DRAM.
+ *
+ * Since QMAN DMA is secured, the driver is parsing the DMA CB:
+ * - checks DMA pointer
+ * - WREG, MSG_PROT are not allowed.
+ * - MSG_LONG/SHORT are allowed.
+ *
+ * A read/write transaction by the QMAN to a protected area will succeed if
+ * and only if the QMAN's CP is secured and MSG_PROT is used
+ *
+ *
+ * When MMU is enabled:
+ *
+ * QMAN DMA: PQ, CQ and CP are secured.
+ * MMU is set to bypass on the Secure props register of the QMAN.
+ * The reasons we don't enable MMU for PQ, CQ and CP are:
+ * - PQ entry is in kernel address space and the driver doesn't map it.
+ * - CP writes to MSIX register and to kernel address space (completion
+ * queue).
+ *
+ * DMA is not secured but because CP is secured, the driver still needs to parse
+ * the CB, but doesn't need to check the DMA addresses.
+ *
+ * For QMAN DMA 0, DMA is also secured because only the driver uses this DMA and
+ * the driver doesn't map memory in MMU.
+ *
+ * QMAN TPC/MME: PQ, CQ and CP aren't secured (no change from MMU disabled mode)
+ *
+ * DMA RR does NOT protect host because DMA is not secured
+ *
+ */
+
+#define GOYA_BOOT_FIT_FILE "habanalabs/goya/goya-boot-fit.itb"
+#define GOYA_LINUX_FW_FILE "habanalabs/goya/goya-fit.itb"
+
+#define GOYA_MMU_REGS_NUM 63
+
+#define GOYA_DMA_POOL_BLK_SIZE 0x100 /* 256 bytes */
+
+#define GOYA_RESET_TIMEOUT_MSEC 500 /* 500ms */
+#define GOYA_PLDM_RESET_TIMEOUT_MSEC 20000 /* 20s */
+#define GOYA_RESET_WAIT_MSEC 1 /* 1ms */
+#define GOYA_CPU_RESET_WAIT_MSEC 100 /* 100ms */
+#define GOYA_PLDM_RESET_WAIT_MSEC 1000 /* 1s */
+#define GOYA_TEST_QUEUE_WAIT_USEC 100000 /* 100ms */
+#define GOYA_PLDM_MMU_TIMEOUT_USEC (MMU_CONFIG_TIMEOUT_USEC * 100)
+#define GOYA_PLDM_QMAN0_TIMEOUT_USEC (HL_DEVICE_TIMEOUT_USEC * 30)
+#define GOYA_BOOT_FIT_REQ_TIMEOUT_USEC 1000000 /* 1s */
+#define GOYA_MSG_TO_CPU_TIMEOUT_USEC 4000000 /* 4s */
+#define GOYA_WAIT_FOR_BL_TIMEOUT_USEC 15000000 /* 15s */
+
+#define GOYA_QMAN0_FENCE_VAL 0xD169B243
+
+#define GOYA_MAX_STRING_LEN 20
+
+#define GOYA_CB_POOL_CB_CNT 512
+#define GOYA_CB_POOL_CB_SIZE 0x20000 /* 128KB */
+
+#define IS_QM_IDLE(engine, qm_glbl_sts0) \
+ (((qm_glbl_sts0) & engine##_QM_IDLE_MASK) == engine##_QM_IDLE_MASK)
+#define IS_DMA_QM_IDLE(qm_glbl_sts0) IS_QM_IDLE(DMA, qm_glbl_sts0)
+#define IS_TPC_QM_IDLE(qm_glbl_sts0) IS_QM_IDLE(TPC, qm_glbl_sts0)
+#define IS_MME_QM_IDLE(qm_glbl_sts0) IS_QM_IDLE(MME, qm_glbl_sts0)
+
+#define IS_CMDQ_IDLE(engine, cmdq_glbl_sts0) \
+ (((cmdq_glbl_sts0) & engine##_CMDQ_IDLE_MASK) == \
+ engine##_CMDQ_IDLE_MASK)
+#define IS_TPC_CMDQ_IDLE(cmdq_glbl_sts0) \
+ IS_CMDQ_IDLE(TPC, cmdq_glbl_sts0)
+#define IS_MME_CMDQ_IDLE(cmdq_glbl_sts0) \
+ IS_CMDQ_IDLE(MME, cmdq_glbl_sts0)
+
+#define IS_DMA_IDLE(dma_core_sts0) \
+ !((dma_core_sts0) & DMA_CH_0_STS0_DMA_BUSY_MASK)
+
+#define IS_TPC_IDLE(tpc_cfg_sts) \
+ (((tpc_cfg_sts) & TPC_CFG_IDLE_MASK) == TPC_CFG_IDLE_MASK)
+
+#define IS_MME_IDLE(mme_arch_sts) \
+ (((mme_arch_sts) & MME_ARCH_IDLE_MASK) == MME_ARCH_IDLE_MASK)
+
+static const char goya_irq_name[GOYA_MSIX_ENTRIES][GOYA_MAX_STRING_LEN] = {
+ "goya cq 0", "goya cq 1", "goya cq 2", "goya cq 3",
+ "goya cq 4", "goya cpu eq"
+};
+
+static u16 goya_packet_sizes[MAX_PACKET_ID] = {
+ [PACKET_WREG_32] = sizeof(struct packet_wreg32),
+ [PACKET_WREG_BULK] = sizeof(struct packet_wreg_bulk),
+ [PACKET_MSG_LONG] = sizeof(struct packet_msg_long),
+ [PACKET_MSG_SHORT] = sizeof(struct packet_msg_short),
+ [PACKET_CP_DMA] = sizeof(struct packet_cp_dma),
+ [PACKET_MSG_PROT] = sizeof(struct packet_msg_prot),
+ [PACKET_FENCE] = sizeof(struct packet_fence),
+ [PACKET_LIN_DMA] = sizeof(struct packet_lin_dma),
+ [PACKET_NOP] = sizeof(struct packet_nop),
+ [PACKET_STOP] = sizeof(struct packet_stop)
+};
+
+static inline bool validate_packet_id(enum packet_id id)
+{
+ switch (id) {
+ case PACKET_WREG_32:
+ case PACKET_WREG_BULK:
+ case PACKET_MSG_LONG:
+ case PACKET_MSG_SHORT:
+ case PACKET_CP_DMA:
+ case PACKET_MSG_PROT:
+ case PACKET_FENCE:
+ case PACKET_LIN_DMA:
+ case PACKET_NOP:
+ case PACKET_STOP:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static u64 goya_mmu_regs[GOYA_MMU_REGS_NUM] = {
+ mmDMA_QM_0_GLBL_NON_SECURE_PROPS,
+ mmDMA_QM_1_GLBL_NON_SECURE_PROPS,
+ mmDMA_QM_2_GLBL_NON_SECURE_PROPS,
+ mmDMA_QM_3_GLBL_NON_SECURE_PROPS,
+ mmDMA_QM_4_GLBL_NON_SECURE_PROPS,
+ mmTPC0_QM_GLBL_SECURE_PROPS,
+ mmTPC0_QM_GLBL_NON_SECURE_PROPS,
+ mmTPC0_CMDQ_GLBL_SECURE_PROPS,
+ mmTPC0_CMDQ_GLBL_NON_SECURE_PROPS,
+ mmTPC0_CFG_ARUSER,
+ mmTPC0_CFG_AWUSER,
+ mmTPC1_QM_GLBL_SECURE_PROPS,
+ mmTPC1_QM_GLBL_NON_SECURE_PROPS,
+ mmTPC1_CMDQ_GLBL_SECURE_PROPS,
+ mmTPC1_CMDQ_GLBL_NON_SECURE_PROPS,
+ mmTPC1_CFG_ARUSER,
+ mmTPC1_CFG_AWUSER,
+ mmTPC2_QM_GLBL_SECURE_PROPS,
+ mmTPC2_QM_GLBL_NON_SECURE_PROPS,
+ mmTPC2_CMDQ_GLBL_SECURE_PROPS,
+ mmTPC2_CMDQ_GLBL_NON_SECURE_PROPS,
+ mmTPC2_CFG_ARUSER,
+ mmTPC2_CFG_AWUSER,
+ mmTPC3_QM_GLBL_SECURE_PROPS,
+ mmTPC3_QM_GLBL_NON_SECURE_PROPS,
+ mmTPC3_CMDQ_GLBL_SECURE_PROPS,
+ mmTPC3_CMDQ_GLBL_NON_SECURE_PROPS,
+ mmTPC3_CFG_ARUSER,
+ mmTPC3_CFG_AWUSER,
+ mmTPC4_QM_GLBL_SECURE_PROPS,
+ mmTPC4_QM_GLBL_NON_SECURE_PROPS,
+ mmTPC4_CMDQ_GLBL_SECURE_PROPS,
+ mmTPC4_CMDQ_GLBL_NON_SECURE_PROPS,
+ mmTPC4_CFG_ARUSER,
+ mmTPC4_CFG_AWUSER,
+ mmTPC5_QM_GLBL_SECURE_PROPS,
+ mmTPC5_QM_GLBL_NON_SECURE_PROPS,
+ mmTPC5_CMDQ_GLBL_SECURE_PROPS,
+ mmTPC5_CMDQ_GLBL_NON_SECURE_PROPS,
+ mmTPC5_CFG_ARUSER,
+ mmTPC5_CFG_AWUSER,
+ mmTPC6_QM_GLBL_SECURE_PROPS,
+ mmTPC6_QM_GLBL_NON_SECURE_PROPS,
+ mmTPC6_CMDQ_GLBL_SECURE_PROPS,
+ mmTPC6_CMDQ_GLBL_NON_SECURE_PROPS,
+ mmTPC6_CFG_ARUSER,
+ mmTPC6_CFG_AWUSER,
+ mmTPC7_QM_GLBL_SECURE_PROPS,
+ mmTPC7_QM_GLBL_NON_SECURE_PROPS,
+ mmTPC7_CMDQ_GLBL_SECURE_PROPS,
+ mmTPC7_CMDQ_GLBL_NON_SECURE_PROPS,
+ mmTPC7_CFG_ARUSER,
+ mmTPC7_CFG_AWUSER,
+ mmMME_QM_GLBL_SECURE_PROPS,
+ mmMME_QM_GLBL_NON_SECURE_PROPS,
+ mmMME_CMDQ_GLBL_SECURE_PROPS,
+ mmMME_CMDQ_GLBL_NON_SECURE_PROPS,
+ mmMME_SBA_CONTROL_DATA,
+ mmMME_SBB_CONTROL_DATA,
+ mmMME_SBC_CONTROL_DATA,
+ mmMME_WBC_CONTROL_DATA,
+ mmPCIE_WRAP_PSOC_ARUSER,
+ mmPCIE_WRAP_PSOC_AWUSER
+};
+
+static u32 goya_all_events[] = {
+ GOYA_ASYNC_EVENT_ID_PCIE_IF,
+ GOYA_ASYNC_EVENT_ID_TPC0_ECC,
+ GOYA_ASYNC_EVENT_ID_TPC1_ECC,
+ GOYA_ASYNC_EVENT_ID_TPC2_ECC,
+ GOYA_ASYNC_EVENT_ID_TPC3_ECC,
+ GOYA_ASYNC_EVENT_ID_TPC4_ECC,
+ GOYA_ASYNC_EVENT_ID_TPC5_ECC,
+ GOYA_ASYNC_EVENT_ID_TPC6_ECC,
+ GOYA_ASYNC_EVENT_ID_TPC7_ECC,
+ GOYA_ASYNC_EVENT_ID_MME_ECC,
+ GOYA_ASYNC_EVENT_ID_MME_ECC_EXT,
+ GOYA_ASYNC_EVENT_ID_MMU_ECC,
+ GOYA_ASYNC_EVENT_ID_DMA_MACRO,
+ GOYA_ASYNC_EVENT_ID_DMA_ECC,
+ GOYA_ASYNC_EVENT_ID_CPU_IF_ECC,
+ GOYA_ASYNC_EVENT_ID_PSOC_MEM,
+ GOYA_ASYNC_EVENT_ID_PSOC_CORESIGHT,
+ GOYA_ASYNC_EVENT_ID_SRAM0,
+ GOYA_ASYNC_EVENT_ID_SRAM1,
+ GOYA_ASYNC_EVENT_ID_SRAM2,
+ GOYA_ASYNC_EVENT_ID_SRAM3,
+ GOYA_ASYNC_EVENT_ID_SRAM4,
+ GOYA_ASYNC_EVENT_ID_SRAM5,
+ GOYA_ASYNC_EVENT_ID_SRAM6,
+ GOYA_ASYNC_EVENT_ID_SRAM7,
+ GOYA_ASYNC_EVENT_ID_SRAM8,
+ GOYA_ASYNC_EVENT_ID_SRAM9,
+ GOYA_ASYNC_EVENT_ID_SRAM10,
+ GOYA_ASYNC_EVENT_ID_SRAM11,
+ GOYA_ASYNC_EVENT_ID_SRAM12,
+ GOYA_ASYNC_EVENT_ID_SRAM13,
+ GOYA_ASYNC_EVENT_ID_SRAM14,
+ GOYA_ASYNC_EVENT_ID_SRAM15,
+ GOYA_ASYNC_EVENT_ID_SRAM16,
+ GOYA_ASYNC_EVENT_ID_SRAM17,
+ GOYA_ASYNC_EVENT_ID_SRAM18,
+ GOYA_ASYNC_EVENT_ID_SRAM19,
+ GOYA_ASYNC_EVENT_ID_SRAM20,
+ GOYA_ASYNC_EVENT_ID_SRAM21,
+ GOYA_ASYNC_EVENT_ID_SRAM22,
+ GOYA_ASYNC_EVENT_ID_SRAM23,
+ GOYA_ASYNC_EVENT_ID_SRAM24,
+ GOYA_ASYNC_EVENT_ID_SRAM25,
+ GOYA_ASYNC_EVENT_ID_SRAM26,
+ GOYA_ASYNC_EVENT_ID_SRAM27,
+ GOYA_ASYNC_EVENT_ID_SRAM28,
+ GOYA_ASYNC_EVENT_ID_SRAM29,
+ GOYA_ASYNC_EVENT_ID_GIC500,
+ GOYA_ASYNC_EVENT_ID_PLL0,
+ GOYA_ASYNC_EVENT_ID_PLL1,
+ GOYA_ASYNC_EVENT_ID_PLL3,
+ GOYA_ASYNC_EVENT_ID_PLL4,
+ GOYA_ASYNC_EVENT_ID_PLL5,
+ GOYA_ASYNC_EVENT_ID_PLL6,
+ GOYA_ASYNC_EVENT_ID_AXI_ECC,
+ GOYA_ASYNC_EVENT_ID_L2_RAM_ECC,
+ GOYA_ASYNC_EVENT_ID_PSOC_GPIO_05_SW_RESET,
+ GOYA_ASYNC_EVENT_ID_PSOC_GPIO_10_VRHOT_ICRIT,
+ GOYA_ASYNC_EVENT_ID_PCIE_DEC,
+ GOYA_ASYNC_EVENT_ID_TPC0_DEC,
+ GOYA_ASYNC_EVENT_ID_TPC1_DEC,
+ GOYA_ASYNC_EVENT_ID_TPC2_DEC,
+ GOYA_ASYNC_EVENT_ID_TPC3_DEC,
+ GOYA_ASYNC_EVENT_ID_TPC4_DEC,
+ GOYA_ASYNC_EVENT_ID_TPC5_DEC,
+ GOYA_ASYNC_EVENT_ID_TPC6_DEC,
+ GOYA_ASYNC_EVENT_ID_TPC7_DEC,
+ GOYA_ASYNC_EVENT_ID_MME_WACS,
+ GOYA_ASYNC_EVENT_ID_MME_WACSD,
+ GOYA_ASYNC_EVENT_ID_CPU_AXI_SPLITTER,
+ GOYA_ASYNC_EVENT_ID_PSOC_AXI_DEC,
+ GOYA_ASYNC_EVENT_ID_PSOC,
+ GOYA_ASYNC_EVENT_ID_TPC0_KRN_ERR,
+ GOYA_ASYNC_EVENT_ID_TPC1_KRN_ERR,
+ GOYA_ASYNC_EVENT_ID_TPC2_KRN_ERR,
+ GOYA_ASYNC_EVENT_ID_TPC3_KRN_ERR,
+ GOYA_ASYNC_EVENT_ID_TPC4_KRN_ERR,
+ GOYA_ASYNC_EVENT_ID_TPC5_KRN_ERR,
+ GOYA_ASYNC_EVENT_ID_TPC6_KRN_ERR,
+ GOYA_ASYNC_EVENT_ID_TPC7_KRN_ERR,
+ GOYA_ASYNC_EVENT_ID_TPC0_CMDQ,
+ GOYA_ASYNC_EVENT_ID_TPC1_CMDQ,
+ GOYA_ASYNC_EVENT_ID_TPC2_CMDQ,
+ GOYA_ASYNC_EVENT_ID_TPC3_CMDQ,
+ GOYA_ASYNC_EVENT_ID_TPC4_CMDQ,
+ GOYA_ASYNC_EVENT_ID_TPC5_CMDQ,
+ GOYA_ASYNC_EVENT_ID_TPC6_CMDQ,
+ GOYA_ASYNC_EVENT_ID_TPC7_CMDQ,
+ GOYA_ASYNC_EVENT_ID_TPC0_QM,
+ GOYA_ASYNC_EVENT_ID_TPC1_QM,
+ GOYA_ASYNC_EVENT_ID_TPC2_QM,
+ GOYA_ASYNC_EVENT_ID_TPC3_QM,
+ GOYA_ASYNC_EVENT_ID_TPC4_QM,
+ GOYA_ASYNC_EVENT_ID_TPC5_QM,
+ GOYA_ASYNC_EVENT_ID_TPC6_QM,
+ GOYA_ASYNC_EVENT_ID_TPC7_QM,
+ GOYA_ASYNC_EVENT_ID_MME_QM,
+ GOYA_ASYNC_EVENT_ID_MME_CMDQ,
+ GOYA_ASYNC_EVENT_ID_DMA0_QM,
+ GOYA_ASYNC_EVENT_ID_DMA1_QM,
+ GOYA_ASYNC_EVENT_ID_DMA2_QM,
+ GOYA_ASYNC_EVENT_ID_DMA3_QM,
+ GOYA_ASYNC_EVENT_ID_DMA4_QM,
+ GOYA_ASYNC_EVENT_ID_DMA0_CH,
+ GOYA_ASYNC_EVENT_ID_DMA1_CH,
+ GOYA_ASYNC_EVENT_ID_DMA2_CH,
+ GOYA_ASYNC_EVENT_ID_DMA3_CH,
+ GOYA_ASYNC_EVENT_ID_DMA4_CH,
+ GOYA_ASYNC_EVENT_ID_TPC0_BMON_SPMU,
+ GOYA_ASYNC_EVENT_ID_TPC1_BMON_SPMU,
+ GOYA_ASYNC_EVENT_ID_TPC2_BMON_SPMU,
+ GOYA_ASYNC_EVENT_ID_TPC3_BMON_SPMU,
+ GOYA_ASYNC_EVENT_ID_TPC4_BMON_SPMU,
+ GOYA_ASYNC_EVENT_ID_TPC5_BMON_SPMU,
+ GOYA_ASYNC_EVENT_ID_TPC6_BMON_SPMU,
+ GOYA_ASYNC_EVENT_ID_TPC7_BMON_SPMU,
+ GOYA_ASYNC_EVENT_ID_DMA_BM_CH0,
+ GOYA_ASYNC_EVENT_ID_DMA_BM_CH1,
+ GOYA_ASYNC_EVENT_ID_DMA_BM_CH2,
+ GOYA_ASYNC_EVENT_ID_DMA_BM_CH3,
+ GOYA_ASYNC_EVENT_ID_DMA_BM_CH4,
+ GOYA_ASYNC_EVENT_ID_FIX_POWER_ENV_S,
+ GOYA_ASYNC_EVENT_ID_FIX_POWER_ENV_E,
+ GOYA_ASYNC_EVENT_ID_FIX_THERMAL_ENV_S,
+ GOYA_ASYNC_EVENT_ID_FIX_THERMAL_ENV_E
+};
+
+static s64 goya_state_dump_specs_props[SP_MAX] = {0};
+
+static int goya_mmu_clear_pgt_range(struct hl_device *hdev);
+static int goya_mmu_set_dram_default_page(struct hl_device *hdev);
+static int goya_mmu_add_mappings_for_device_cpu(struct hl_device *hdev);
+static void goya_mmu_prepare(struct hl_device *hdev, u32 asid);
+
+int goya_set_fixed_properties(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ int i;
+
+ prop->max_queues = GOYA_QUEUE_ID_SIZE;
+ prop->hw_queues_props = kcalloc(prop->max_queues,
+ sizeof(struct hw_queue_properties),
+ GFP_KERNEL);
+
+ if (!prop->hw_queues_props)
+ return -ENOMEM;
+
+ for (i = 0 ; i < NUMBER_OF_EXT_HW_QUEUES ; i++) {
+ prop->hw_queues_props[i].type = QUEUE_TYPE_EXT;
+ prop->hw_queues_props[i].driver_only = 0;
+ prop->hw_queues_props[i].cb_alloc_flags = CB_ALLOC_KERNEL;
+ }
+
+ for (; i < NUMBER_OF_EXT_HW_QUEUES + NUMBER_OF_CPU_HW_QUEUES ; i++) {
+ prop->hw_queues_props[i].type = QUEUE_TYPE_CPU;
+ prop->hw_queues_props[i].driver_only = 1;
+ prop->hw_queues_props[i].cb_alloc_flags = CB_ALLOC_KERNEL;
+ }
+
+ for (; i < NUMBER_OF_EXT_HW_QUEUES + NUMBER_OF_CPU_HW_QUEUES +
+ NUMBER_OF_INT_HW_QUEUES; i++) {
+ prop->hw_queues_props[i].type = QUEUE_TYPE_INT;
+ prop->hw_queues_props[i].driver_only = 0;
+ prop->hw_queues_props[i].cb_alloc_flags = CB_ALLOC_USER;
+ }
+
+ prop->cfg_base_address = CFG_BASE;
+ prop->device_dma_offset_for_host_access = HOST_PHYS_BASE;
+ prop->host_base_address = HOST_PHYS_BASE;
+ prop->host_end_address = prop->host_base_address + HOST_PHYS_SIZE;
+ prop->completion_queues_count = NUMBER_OF_CMPLT_QUEUES;
+ prop->completion_mode = HL_COMPLETION_MODE_JOB;
+ prop->dram_base_address = DRAM_PHYS_BASE;
+ prop->dram_size = DRAM_PHYS_DEFAULT_SIZE;
+ prop->dram_end_address = prop->dram_base_address + prop->dram_size;
+ prop->dram_user_base_address = DRAM_BASE_ADDR_USER;
+
+ prop->sram_base_address = SRAM_BASE_ADDR;
+ prop->sram_size = SRAM_SIZE;
+ prop->sram_end_address = prop->sram_base_address + prop->sram_size;
+ prop->sram_user_base_address = prop->sram_base_address +
+ SRAM_USER_BASE_OFFSET;
+
+ prop->mmu_pgt_addr = MMU_PAGE_TABLES_ADDR;
+ prop->mmu_dram_default_page_addr = MMU_DRAM_DEFAULT_PAGE_ADDR;
+ if (hdev->pldm)
+ prop->mmu_pgt_size = 0x800000; /* 8MB */
+ else
+ prop->mmu_pgt_size = MMU_PAGE_TABLES_SIZE;
+ prop->mmu_pte_size = HL_PTE_SIZE;
+ prop->mmu_hop_table_size = HOP_TABLE_SIZE_512_PTE;
+ prop->mmu_hop0_tables_total_size = HOP0_512_PTE_TABLES_TOTAL_SIZE;
+ prop->dram_page_size = PAGE_SIZE_2MB;
+ prop->device_mem_alloc_default_page_size = prop->dram_page_size;
+ prop->dram_supports_virtual_memory = true;
+
+ prop->dmmu.hop_shifts[MMU_HOP0] = MMU_V1_0_HOP0_SHIFT;
+ prop->dmmu.hop_shifts[MMU_HOP1] = MMU_V1_0_HOP1_SHIFT;
+ prop->dmmu.hop_shifts[MMU_HOP2] = MMU_V1_0_HOP2_SHIFT;
+ prop->dmmu.hop_shifts[MMU_HOP3] = MMU_V1_0_HOP3_SHIFT;
+ prop->dmmu.hop_shifts[MMU_HOP4] = MMU_V1_0_HOP4_SHIFT;
+ prop->dmmu.hop_masks[MMU_HOP0] = MMU_V1_0_HOP0_MASK;
+ prop->dmmu.hop_masks[MMU_HOP1] = MMU_V1_0_HOP1_MASK;
+ prop->dmmu.hop_masks[MMU_HOP2] = MMU_V1_0_HOP2_MASK;
+ prop->dmmu.hop_masks[MMU_HOP3] = MMU_V1_0_HOP3_MASK;
+ prop->dmmu.hop_masks[MMU_HOP4] = MMU_V1_0_HOP4_MASK;
+ prop->dmmu.start_addr = VA_DDR_SPACE_START;
+ prop->dmmu.end_addr = VA_DDR_SPACE_END;
+ prop->dmmu.page_size = PAGE_SIZE_2MB;
+ prop->dmmu.num_hops = MMU_ARCH_5_HOPS;
+ prop->dmmu.last_mask = LAST_MASK;
+ /* TODO: will be duplicated until implementing per-MMU props */
+ prop->dmmu.hop_table_size = prop->mmu_hop_table_size;
+ prop->dmmu.hop0_tables_total_size = prop->mmu_hop0_tables_total_size;
+
+ /* shifts and masks are the same in PMMU and DMMU */
+ memcpy(&prop->pmmu, &prop->dmmu, sizeof(prop->dmmu));
+ prop->pmmu.start_addr = VA_HOST_SPACE_START;
+ prop->pmmu.end_addr = VA_HOST_SPACE_END;
+ prop->pmmu.page_size = PAGE_SIZE_4KB;
+ prop->pmmu.num_hops = MMU_ARCH_5_HOPS;
+ prop->pmmu.last_mask = LAST_MASK;
+ /* TODO: will be duplicated until implementing per-MMU props */
+ prop->pmmu.hop_table_size = prop->mmu_hop_table_size;
+ prop->pmmu.hop0_tables_total_size = prop->mmu_hop0_tables_total_size;
+
+ /* PMMU and HPMMU are the same except of page size */
+ memcpy(&prop->pmmu_huge, &prop->pmmu, sizeof(prop->pmmu));
+ prop->pmmu_huge.page_size = PAGE_SIZE_2MB;
+
+ prop->dram_size_for_default_page_mapping = VA_DDR_SPACE_END;
+ prop->cfg_size = CFG_SIZE;
+ prop->max_asid = MAX_ASID;
+ prop->num_of_events = GOYA_ASYNC_EVENT_ID_SIZE;
+ prop->high_pll = PLL_HIGH_DEFAULT;
+ prop->cb_pool_cb_cnt = GOYA_CB_POOL_CB_CNT;
+ prop->cb_pool_cb_size = GOYA_CB_POOL_CB_SIZE;
+ prop->max_power_default = MAX_POWER_DEFAULT;
+ prop->dc_power_default = DC_POWER_DEFAULT;
+ prop->tpc_enabled_mask = TPC_ENABLED_MASK;
+ prop->pcie_dbi_base_address = mmPCIE_DBI_BASE;
+ prop->pcie_aux_dbi_reg_addr = CFG_BASE + mmPCIE_AUX_DBI;
+
+ strncpy(prop->cpucp_info.card_name, GOYA_DEFAULT_CARD_NAME,
+ CARD_NAME_MAX_LEN);
+
+ prop->max_pending_cs = GOYA_MAX_PENDING_CS;
+
+ prop->first_available_user_interrupt = USHRT_MAX;
+
+ for (i = 0 ; i < HL_MAX_DCORES ; i++)
+ prop->first_available_cq[i] = USHRT_MAX;
+
+ prop->fw_cpu_boot_dev_sts0_valid = false;
+ prop->fw_cpu_boot_dev_sts1_valid = false;
+ prop->hard_reset_done_by_fw = false;
+ prop->gic_interrupts_enable = true;
+
+ prop->server_type = HL_SERVER_TYPE_UNKNOWN;
+
+ prop->clk_pll_index = HL_GOYA_MME_PLL;
+
+ prop->use_get_power_for_reset_history = true;
+
+ prop->configurable_stop_on_err = true;
+
+ prop->set_max_power_on_device_init = true;
+
+ prop->dma_mask = 48;
+
+ return 0;
+}
+
+/*
+ * goya_pci_bars_map - Map PCI BARS of Goya device
+ *
+ * @hdev: pointer to hl_device structure
+ *
+ * Request PCI regions and map them to kernel virtual addresses.
+ * Returns 0 on success
+ *
+ */
+static int goya_pci_bars_map(struct hl_device *hdev)
+{
+ static const char * const name[] = {"SRAM_CFG", "MSIX", "DDR"};
+ bool is_wc[3] = {false, false, true};
+ int rc;
+
+ rc = hl_pci_bars_map(hdev, name, is_wc);
+ if (rc)
+ return rc;
+
+ hdev->rmmio = hdev->pcie_bar[SRAM_CFG_BAR_ID] +
+ (CFG_BASE - SRAM_BASE_ADDR);
+
+ return 0;
+}
+
+static u64 goya_set_ddr_bar_base(struct hl_device *hdev, u64 addr)
+{
+ struct goya_device *goya = hdev->asic_specific;
+ struct hl_inbound_pci_region pci_region;
+ u64 old_addr = addr;
+ int rc;
+
+ if ((goya) && (goya->ddr_bar_cur_addr == addr))
+ return old_addr;
+
+ /* Inbound Region 1 - Bar 4 - Point to DDR */
+ pci_region.mode = PCI_BAR_MATCH_MODE;
+ pci_region.bar = DDR_BAR_ID;
+ pci_region.addr = addr;
+ rc = hl_pci_set_inbound_region(hdev, 1, &pci_region);
+ if (rc)
+ return U64_MAX;
+
+ if (goya) {
+ old_addr = goya->ddr_bar_cur_addr;
+ goya->ddr_bar_cur_addr = addr;
+ }
+
+ return old_addr;
+}
+
+/*
+ * goya_init_iatu - Initialize the iATU unit inside the PCI controller
+ *
+ * @hdev: pointer to hl_device structure
+ *
+ * This is needed in case the firmware doesn't initialize the iATU
+ *
+ */
+static int goya_init_iatu(struct hl_device *hdev)
+{
+ struct hl_inbound_pci_region inbound_region;
+ struct hl_outbound_pci_region outbound_region;
+ int rc;
+
+ if (hdev->asic_prop.iatu_done_by_fw)
+ return 0;
+
+ /* Inbound Region 0 - Bar 0 - Point to SRAM and CFG */
+ inbound_region.mode = PCI_BAR_MATCH_MODE;
+ inbound_region.bar = SRAM_CFG_BAR_ID;
+ inbound_region.addr = SRAM_BASE_ADDR;
+ rc = hl_pci_set_inbound_region(hdev, 0, &inbound_region);
+ if (rc)
+ goto done;
+
+ /* Inbound Region 1 - Bar 4 - Point to DDR */
+ inbound_region.mode = PCI_BAR_MATCH_MODE;
+ inbound_region.bar = DDR_BAR_ID;
+ inbound_region.addr = DRAM_PHYS_BASE;
+ rc = hl_pci_set_inbound_region(hdev, 1, &inbound_region);
+ if (rc)
+ goto done;
+
+ /* Outbound Region 0 - Point to Host */
+ outbound_region.addr = HOST_PHYS_BASE;
+ outbound_region.size = HOST_PHYS_SIZE;
+ rc = hl_pci_set_outbound_region(hdev, &outbound_region);
+
+done:
+ return rc;
+}
+
+static enum hl_device_hw_state goya_get_hw_state(struct hl_device *hdev)
+{
+ return RREG32(mmHW_STATE);
+}
+
+/*
+ * goya_early_init - GOYA early initialization code
+ *
+ * @hdev: pointer to hl_device structure
+ *
+ * Verify PCI bars
+ * Set DMA masks
+ * PCI controller initialization
+ * Map PCI bars
+ *
+ */
+static int goya_early_init(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct pci_dev *pdev = hdev->pdev;
+ resource_size_t pci_bar_size;
+ u32 fw_boot_status, val;
+ int rc;
+
+ rc = goya_set_fixed_properties(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to get fixed properties\n");
+ return rc;
+ }
+
+ /* Check BAR sizes */
+ pci_bar_size = pci_resource_len(pdev, SRAM_CFG_BAR_ID);
+
+ if (pci_bar_size != CFG_BAR_SIZE) {
+ dev_err(hdev->dev, "Not " HL_NAME "? BAR %d size %pa, expecting %llu\n",
+ SRAM_CFG_BAR_ID, &pci_bar_size, CFG_BAR_SIZE);
+ rc = -ENODEV;
+ goto free_queue_props;
+ }
+
+ pci_bar_size = pci_resource_len(pdev, MSIX_BAR_ID);
+
+ if (pci_bar_size != MSIX_BAR_SIZE) {
+ dev_err(hdev->dev, "Not " HL_NAME "? BAR %d size %pa, expecting %llu\n",
+ MSIX_BAR_ID, &pci_bar_size, MSIX_BAR_SIZE);
+ rc = -ENODEV;
+ goto free_queue_props;
+ }
+
+ prop->dram_pci_bar_size = pci_resource_len(pdev, DDR_BAR_ID);
+ hdev->dram_pci_bar_start = pci_resource_start(pdev, DDR_BAR_ID);
+
+ /* If FW security is enabled at this point it means no access to ELBI */
+ if (hdev->asic_prop.fw_security_enabled) {
+ hdev->asic_prop.iatu_done_by_fw = true;
+ goto pci_init;
+ }
+
+ rc = hl_pci_elbi_read(hdev, CFG_BASE + mmCPU_BOOT_DEV_STS0,
+ &fw_boot_status);
+ if (rc)
+ goto free_queue_props;
+
+ /* Check whether FW is configuring iATU */
+ if ((fw_boot_status & CPU_BOOT_DEV_STS0_ENABLED) &&
+ (fw_boot_status & CPU_BOOT_DEV_STS0_FW_IATU_CONF_EN))
+ hdev->asic_prop.iatu_done_by_fw = true;
+
+pci_init:
+ rc = hl_pci_init(hdev);
+ if (rc)
+ goto free_queue_props;
+
+ /* Before continuing in the initialization, we need to read the preboot
+ * version to determine whether we run with a security-enabled firmware
+ */
+ rc = hl_fw_read_preboot_status(hdev);
+ if (rc) {
+ if (hdev->reset_on_preboot_fail)
+ hdev->asic_funcs->hw_fini(hdev, true, false);
+ goto pci_fini;
+ }
+
+ if (goya_get_hw_state(hdev) == HL_DEVICE_HW_STATE_DIRTY) {
+ dev_dbg(hdev->dev, "H/W state is dirty, must reset before initializing\n");
+ hdev->asic_funcs->hw_fini(hdev, true, false);
+ }
+
+ if (!hdev->pldm) {
+ val = RREG32(mmPSOC_GLOBAL_CONF_BOOT_STRAP_PINS);
+ if (val & PSOC_GLOBAL_CONF_BOOT_STRAP_PINS_SRIOV_EN_MASK)
+ dev_warn(hdev->dev,
+ "PCI strap is not configured correctly, PCI bus errors may occur\n");
+ }
+
+ return 0;
+
+pci_fini:
+ hl_pci_fini(hdev);
+free_queue_props:
+ kfree(hdev->asic_prop.hw_queues_props);
+ return rc;
+}
+
+/*
+ * goya_early_fini - GOYA early finalization code
+ *
+ * @hdev: pointer to hl_device structure
+ *
+ * Unmap PCI bars
+ *
+ */
+static int goya_early_fini(struct hl_device *hdev)
+{
+ kfree(hdev->asic_prop.hw_queues_props);
+ hl_pci_fini(hdev);
+
+ return 0;
+}
+
+static void goya_mmu_prepare_reg(struct hl_device *hdev, u64 reg, u32 asid)
+{
+ /* mask to zero the MMBP and ASID bits */
+ WREG32_AND(reg, ~0x7FF);
+ WREG32_OR(reg, asid);
+}
+
+static void goya_qman0_set_security(struct hl_device *hdev, bool secure)
+{
+ struct goya_device *goya = hdev->asic_specific;
+
+ if (!(goya->hw_cap_initialized & HW_CAP_MMU))
+ return;
+
+ if (secure)
+ WREG32(mmDMA_QM_0_GLBL_PROT, QMAN_DMA_FULLY_TRUSTED);
+ else
+ WREG32(mmDMA_QM_0_GLBL_PROT, QMAN_DMA_PARTLY_TRUSTED);
+
+ RREG32(mmDMA_QM_0_GLBL_PROT);
+}
+
+/*
+ * goya_fetch_psoc_frequency - Fetch PSOC frequency values
+ *
+ * @hdev: pointer to hl_device structure
+ *
+ */
+static void goya_fetch_psoc_frequency(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u32 nr = 0, nf = 0, od = 0, div_fctr = 0, pll_clk, div_sel;
+ u16 pll_freq_arr[HL_PLL_NUM_OUTPUTS], freq;
+ int rc;
+
+ if (hdev->asic_prop.fw_security_enabled) {
+ struct goya_device *goya = hdev->asic_specific;
+
+ if (!(goya->hw_cap_initialized & HW_CAP_CPU_Q))
+ return;
+
+ rc = hl_fw_cpucp_pll_info_get(hdev, HL_GOYA_PCI_PLL,
+ pll_freq_arr);
+
+ if (rc)
+ return;
+
+ freq = pll_freq_arr[1];
+ } else {
+ div_fctr = RREG32(mmPSOC_PCI_PLL_DIV_FACTOR_1);
+ div_sel = RREG32(mmPSOC_PCI_PLL_DIV_SEL_1);
+ nr = RREG32(mmPSOC_PCI_PLL_NR);
+ nf = RREG32(mmPSOC_PCI_PLL_NF);
+ od = RREG32(mmPSOC_PCI_PLL_OD);
+
+ if (div_sel == DIV_SEL_REF_CLK ||
+ div_sel == DIV_SEL_DIVIDED_REF) {
+ if (div_sel == DIV_SEL_REF_CLK)
+ freq = PLL_REF_CLK;
+ else
+ freq = PLL_REF_CLK / (div_fctr + 1);
+ } else if (div_sel == DIV_SEL_PLL_CLK ||
+ div_sel == DIV_SEL_DIVIDED_PLL) {
+ pll_clk = PLL_REF_CLK * (nf + 1) /
+ ((nr + 1) * (od + 1));
+ if (div_sel == DIV_SEL_PLL_CLK)
+ freq = pll_clk;
+ else
+ freq = pll_clk / (div_fctr + 1);
+ } else {
+ dev_warn(hdev->dev,
+ "Received invalid div select value: %d",
+ div_sel);
+ freq = 0;
+ }
+ }
+
+ prop->psoc_timestamp_frequency = freq;
+ prop->psoc_pci_pll_nr = nr;
+ prop->psoc_pci_pll_nf = nf;
+ prop->psoc_pci_pll_od = od;
+ prop->psoc_pci_pll_div_factor = div_fctr;
+}
+
+/*
+ * goya_set_frequency - set the frequency of the device
+ *
+ * @hdev: pointer to habanalabs device structure
+ * @freq: the new frequency value
+ *
+ * Change the frequency if needed. This function has no protection against
+ * concurrency, therefore it is assumed that the calling function has protected
+ * itself against the case of calling this function from multiple threads with
+ * different values
+ *
+ * Returns 0 if no change was done, otherwise returns 1
+ */
+int goya_set_frequency(struct hl_device *hdev, enum hl_pll_frequency freq)
+{
+ struct goya_device *goya = hdev->asic_specific;
+
+ if ((goya->pm_mng_profile == PM_MANUAL) ||
+ (goya->curr_pll_profile == freq))
+ return 0;
+
+ dev_dbg(hdev->dev, "Changing device frequency to %s\n",
+ freq == PLL_HIGH ? "high" : "low");
+
+ goya_set_pll_profile(hdev, freq);
+
+ goya->curr_pll_profile = freq;
+
+ return 1;
+}
+
+static void goya_set_freq_to_low_job(struct work_struct *work)
+{
+ struct goya_work_freq *goya_work = container_of(work,
+ struct goya_work_freq,
+ work_freq.work);
+ struct hl_device *hdev = goya_work->hdev;
+
+ mutex_lock(&hdev->fpriv_list_lock);
+
+ if (!hdev->is_compute_ctx_active)
+ goya_set_frequency(hdev, PLL_LOW);
+
+ mutex_unlock(&hdev->fpriv_list_lock);
+
+ schedule_delayed_work(&goya_work->work_freq,
+ usecs_to_jiffies(HL_PLL_LOW_JOB_FREQ_USEC));
+}
+
+int goya_late_init(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct goya_device *goya = hdev->asic_specific;
+ int rc;
+
+ goya_fetch_psoc_frequency(hdev);
+
+ rc = goya_mmu_clear_pgt_range(hdev);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to clear MMU page tables range %d\n", rc);
+ return rc;
+ }
+
+ rc = goya_mmu_set_dram_default_page(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to set DRAM default page %d\n", rc);
+ return rc;
+ }
+
+ rc = goya_mmu_add_mappings_for_device_cpu(hdev);
+ if (rc)
+ return rc;
+
+ rc = goya_init_cpu_queues(hdev);
+ if (rc)
+ return rc;
+
+ rc = goya_test_cpu_queue(hdev);
+ if (rc)
+ return rc;
+
+ rc = goya_cpucp_info_get(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to get cpucp info %d\n", rc);
+ return rc;
+ }
+
+ /* Now that we have the DRAM size in ASIC prop, we need to check
+ * its size and configure the DMA_IF DDR wrap protection (which is in
+ * the MMU block) accordingly. The value is the log2 of the DRAM size
+ */
+ WREG32(mmMMU_LOG2_DDR_SIZE, ilog2(prop->dram_size));
+
+ rc = hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_ENABLE_PCI_ACCESS, 0x0);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to enable PCI access from CPU %d\n", rc);
+ return rc;
+ }
+
+ /* force setting to low frequency */
+ goya->curr_pll_profile = PLL_LOW;
+
+ goya->pm_mng_profile = PM_AUTO;
+
+ goya_set_pll_profile(hdev, PLL_LOW);
+
+ schedule_delayed_work(&goya->goya_work->work_freq,
+ usecs_to_jiffies(HL_PLL_LOW_JOB_FREQ_USEC));
+
+ return 0;
+}
+
+/*
+ * goya_late_fini - GOYA late tear-down code
+ *
+ * @hdev: pointer to hl_device structure
+ *
+ * Free sensors allocated structures
+ */
+void goya_late_fini(struct hl_device *hdev)
+{
+ struct goya_device *goya = hdev->asic_specific;
+
+ cancel_delayed_work_sync(&goya->goya_work->work_freq);
+
+ hl_hwmon_release_resources(hdev);
+}
+
+static void goya_set_pci_memory_regions(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct pci_mem_region *region;
+
+ /* CFG */
+ region = &hdev->pci_mem_region[PCI_REGION_CFG];
+ region->region_base = CFG_BASE;
+ region->region_size = CFG_SIZE;
+ region->offset_in_bar = CFG_BASE - SRAM_BASE_ADDR;
+ region->bar_size = CFG_BAR_SIZE;
+ region->bar_id = SRAM_CFG_BAR_ID;
+ region->used = 1;
+
+ /* SRAM */
+ region = &hdev->pci_mem_region[PCI_REGION_SRAM];
+ region->region_base = SRAM_BASE_ADDR;
+ region->region_size = SRAM_SIZE;
+ region->offset_in_bar = 0;
+ region->bar_size = CFG_BAR_SIZE;
+ region->bar_id = SRAM_CFG_BAR_ID;
+ region->used = 1;
+
+ /* DRAM */
+ region = &hdev->pci_mem_region[PCI_REGION_DRAM];
+ region->region_base = DRAM_PHYS_BASE;
+ region->region_size = hdev->asic_prop.dram_size;
+ region->offset_in_bar = 0;
+ region->bar_size = prop->dram_pci_bar_size;
+ region->bar_id = DDR_BAR_ID;
+ region->used = 1;
+}
+
+/*
+ * goya_sw_init - Goya software initialization code
+ *
+ * @hdev: pointer to hl_device structure
+ *
+ */
+static int goya_sw_init(struct hl_device *hdev)
+{
+ struct goya_device *goya;
+ int rc;
+
+ /* Allocate device structure */
+ goya = kzalloc(sizeof(*goya), GFP_KERNEL);
+ if (!goya)
+ return -ENOMEM;
+
+ /* according to goya_init_iatu */
+ goya->ddr_bar_cur_addr = DRAM_PHYS_BASE;
+
+ goya->mme_clk = GOYA_PLL_FREQ_LOW;
+ goya->tpc_clk = GOYA_PLL_FREQ_LOW;
+ goya->ic_clk = GOYA_PLL_FREQ_LOW;
+
+ hdev->asic_specific = goya;
+
+ /* Create DMA pool for small allocations */
+ hdev->dma_pool = dma_pool_create(dev_name(hdev->dev),
+ &hdev->pdev->dev, GOYA_DMA_POOL_BLK_SIZE, 8, 0);
+ if (!hdev->dma_pool) {
+ dev_err(hdev->dev, "failed to create DMA pool\n");
+ rc = -ENOMEM;
+ goto free_goya_device;
+ }
+
+ hdev->cpu_accessible_dma_mem = hl_asic_dma_alloc_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE,
+ &hdev->cpu_accessible_dma_address,
+ GFP_KERNEL | __GFP_ZERO);
+
+ if (!hdev->cpu_accessible_dma_mem) {
+ rc = -ENOMEM;
+ goto free_dma_pool;
+ }
+
+ dev_dbg(hdev->dev, "cpu accessible memory at bus address %pad\n",
+ &hdev->cpu_accessible_dma_address);
+
+ hdev->cpu_accessible_dma_pool = gen_pool_create(ilog2(32), -1);
+ if (!hdev->cpu_accessible_dma_pool) {
+ dev_err(hdev->dev,
+ "Failed to create CPU accessible DMA pool\n");
+ rc = -ENOMEM;
+ goto free_cpu_dma_mem;
+ }
+
+ rc = gen_pool_add(hdev->cpu_accessible_dma_pool,
+ (uintptr_t) hdev->cpu_accessible_dma_mem,
+ HL_CPU_ACCESSIBLE_MEM_SIZE, -1);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to add memory to CPU accessible DMA pool\n");
+ rc = -EFAULT;
+ goto free_cpu_accessible_dma_pool;
+ }
+
+ spin_lock_init(&goya->hw_queues_lock);
+ hdev->supports_coresight = true;
+ hdev->asic_prop.supports_compute_reset = true;
+ hdev->asic_prop.allow_inference_soft_reset = true;
+ hdev->supports_wait_for_multi_cs = false;
+ hdev->supports_ctx_switch = true;
+
+ hdev->asic_funcs->set_pci_memory_regions(hdev);
+
+ goya->goya_work = kmalloc(sizeof(struct goya_work_freq), GFP_KERNEL);
+ if (!goya->goya_work) {
+ rc = -ENOMEM;
+ goto free_cpu_accessible_dma_pool;
+ }
+
+ goya->goya_work->hdev = hdev;
+ INIT_DELAYED_WORK(&goya->goya_work->work_freq, goya_set_freq_to_low_job);
+
+ return 0;
+
+free_cpu_accessible_dma_pool:
+ gen_pool_destroy(hdev->cpu_accessible_dma_pool);
+free_cpu_dma_mem:
+ hl_asic_dma_free_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, hdev->cpu_accessible_dma_mem,
+ hdev->cpu_accessible_dma_address);
+free_dma_pool:
+ dma_pool_destroy(hdev->dma_pool);
+free_goya_device:
+ kfree(goya);
+
+ return rc;
+}
+
+/*
+ * goya_sw_fini - Goya software tear-down code
+ *
+ * @hdev: pointer to hl_device structure
+ *
+ */
+static int goya_sw_fini(struct hl_device *hdev)
+{
+ struct goya_device *goya = hdev->asic_specific;
+
+ gen_pool_destroy(hdev->cpu_accessible_dma_pool);
+
+ hl_asic_dma_free_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, hdev->cpu_accessible_dma_mem,
+ hdev->cpu_accessible_dma_address);
+
+ dma_pool_destroy(hdev->dma_pool);
+
+ kfree(goya->goya_work);
+ kfree(goya);
+
+ return 0;
+}
+
+static void goya_init_dma_qman(struct hl_device *hdev, int dma_id,
+ dma_addr_t bus_address)
+{
+ struct goya_device *goya = hdev->asic_specific;
+ u32 mtr_base_lo, mtr_base_hi;
+ u32 so_base_lo, so_base_hi;
+ u32 gic_base_lo, gic_base_hi;
+ u32 reg_off = dma_id * (mmDMA_QM_1_PQ_PI - mmDMA_QM_0_PQ_PI);
+ u32 dma_err_cfg = QMAN_DMA_ERR_MSG_EN;
+
+ mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
+ mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
+ so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
+ so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
+
+ gic_base_lo =
+ lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
+ gic_base_hi =
+ upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
+
+ WREG32(mmDMA_QM_0_PQ_BASE_LO + reg_off, lower_32_bits(bus_address));
+ WREG32(mmDMA_QM_0_PQ_BASE_HI + reg_off, upper_32_bits(bus_address));
+
+ WREG32(mmDMA_QM_0_PQ_SIZE + reg_off, ilog2(HL_QUEUE_LENGTH));
+ WREG32(mmDMA_QM_0_PQ_PI + reg_off, 0);
+ WREG32(mmDMA_QM_0_PQ_CI + reg_off, 0);
+
+ WREG32(mmDMA_QM_0_CP_MSG_BASE0_ADDR_LO + reg_off, mtr_base_lo);
+ WREG32(mmDMA_QM_0_CP_MSG_BASE0_ADDR_HI + reg_off, mtr_base_hi);
+ WREG32(mmDMA_QM_0_CP_MSG_BASE1_ADDR_LO + reg_off, so_base_lo);
+ WREG32(mmDMA_QM_0_CP_MSG_BASE1_ADDR_HI + reg_off, so_base_hi);
+ WREG32(mmDMA_QM_0_GLBL_ERR_ADDR_LO + reg_off, gic_base_lo);
+ WREG32(mmDMA_QM_0_GLBL_ERR_ADDR_HI + reg_off, gic_base_hi);
+ WREG32(mmDMA_QM_0_GLBL_ERR_WDATA + reg_off,
+ GOYA_ASYNC_EVENT_ID_DMA0_QM + dma_id);
+
+ /* PQ has buffer of 2 cache lines, while CQ has 8 lines */
+ WREG32(mmDMA_QM_0_PQ_CFG1 + reg_off, 0x00020002);
+ WREG32(mmDMA_QM_0_CQ_CFG1 + reg_off, 0x00080008);
+
+ if (goya->hw_cap_initialized & HW_CAP_MMU)
+ WREG32(mmDMA_QM_0_GLBL_PROT + reg_off, QMAN_DMA_PARTLY_TRUSTED);
+ else
+ WREG32(mmDMA_QM_0_GLBL_PROT + reg_off, QMAN_DMA_FULLY_TRUSTED);
+
+ if (hdev->stop_on_err)
+ dma_err_cfg |= 1 << DMA_QM_0_GLBL_ERR_CFG_DMA_STOP_ON_ERR_SHIFT;
+
+ WREG32(mmDMA_QM_0_GLBL_ERR_CFG + reg_off, dma_err_cfg);
+ WREG32(mmDMA_QM_0_GLBL_CFG0 + reg_off, QMAN_DMA_ENABLE);
+}
+
+static void goya_init_dma_ch(struct hl_device *hdev, int dma_id)
+{
+ u32 gic_base_lo, gic_base_hi;
+ u64 sob_addr;
+ u32 reg_off = dma_id * (mmDMA_CH_1_CFG1 - mmDMA_CH_0_CFG1);
+
+ gic_base_lo =
+ lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
+ gic_base_hi =
+ upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
+
+ WREG32(mmDMA_CH_0_ERRMSG_ADDR_LO + reg_off, gic_base_lo);
+ WREG32(mmDMA_CH_0_ERRMSG_ADDR_HI + reg_off, gic_base_hi);
+ WREG32(mmDMA_CH_0_ERRMSG_WDATA + reg_off,
+ GOYA_ASYNC_EVENT_ID_DMA0_CH + dma_id);
+
+ if (dma_id)
+ sob_addr = CFG_BASE + mmSYNC_MNGR_SOB_OBJ_1000 +
+ (dma_id - 1) * 4;
+ else
+ sob_addr = CFG_BASE + mmSYNC_MNGR_SOB_OBJ_1007;
+
+ WREG32(mmDMA_CH_0_WR_COMP_ADDR_HI + reg_off, upper_32_bits(sob_addr));
+ WREG32(mmDMA_CH_0_WR_COMP_WDATA + reg_off, 0x80000001);
+}
+
+/*
+ * goya_init_dma_qmans - Initialize QMAN DMA registers
+ *
+ * @hdev: pointer to hl_device structure
+ *
+ * Initialize the H/W registers of the QMAN DMA channels
+ *
+ */
+void goya_init_dma_qmans(struct hl_device *hdev)
+{
+ struct goya_device *goya = hdev->asic_specific;
+ struct hl_hw_queue *q;
+ int i;
+
+ if (goya->hw_cap_initialized & HW_CAP_DMA)
+ return;
+
+ q = &hdev->kernel_queues[0];
+
+ for (i = 0 ; i < NUMBER_OF_EXT_HW_QUEUES ; i++, q++) {
+ q->cq_id = q->msi_vec = i;
+ goya_init_dma_qman(hdev, i, q->bus_address);
+ goya_init_dma_ch(hdev, i);
+ }
+
+ goya->hw_cap_initialized |= HW_CAP_DMA;
+}
+
+/*
+ * goya_disable_external_queues - Disable external queues
+ *
+ * @hdev: pointer to hl_device structure
+ *
+ */
+static void goya_disable_external_queues(struct hl_device *hdev)
+{
+ struct goya_device *goya = hdev->asic_specific;
+
+ if (!(goya->hw_cap_initialized & HW_CAP_DMA))
+ return;
+
+ WREG32(mmDMA_QM_0_GLBL_CFG0, 0);
+ WREG32(mmDMA_QM_1_GLBL_CFG0, 0);
+ WREG32(mmDMA_QM_2_GLBL_CFG0, 0);
+ WREG32(mmDMA_QM_3_GLBL_CFG0, 0);
+ WREG32(mmDMA_QM_4_GLBL_CFG0, 0);
+}
+
+static int goya_stop_queue(struct hl_device *hdev, u32 cfg_reg,
+ u32 cp_sts_reg, u32 glbl_sts0_reg)
+{
+ int rc;
+ u32 status;
+
+ /* use the values of TPC0 as they are all the same*/
+
+ WREG32(cfg_reg, 1 << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT);
+
+ status = RREG32(cp_sts_reg);
+ if (status & TPC0_QM_CP_STS_FENCE_IN_PROGRESS_MASK) {
+ rc = hl_poll_timeout(
+ hdev,
+ cp_sts_reg,
+ status,
+ !(status & TPC0_QM_CP_STS_FENCE_IN_PROGRESS_MASK),
+ 1000,
+ QMAN_FENCE_TIMEOUT_USEC);
+
+ /* if QMAN is stuck in fence no need to check for stop */
+ if (rc)
+ return 0;
+ }
+
+ rc = hl_poll_timeout(
+ hdev,
+ glbl_sts0_reg,
+ status,
+ (status & TPC0_QM_GLBL_STS0_CP_IS_STOP_MASK),
+ 1000,
+ QMAN_STOP_TIMEOUT_USEC);
+
+ if (rc) {
+ dev_err(hdev->dev,
+ "Timeout while waiting for QMAN to stop\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/*
+ * goya_stop_external_queues - Stop external queues
+ *
+ * @hdev: pointer to hl_device structure
+ *
+ * Returns 0 on success
+ *
+ */
+static int goya_stop_external_queues(struct hl_device *hdev)
+{
+ int rc, retval = 0;
+
+ struct goya_device *goya = hdev->asic_specific;
+
+ if (!(goya->hw_cap_initialized & HW_CAP_DMA))
+ return retval;
+
+ rc = goya_stop_queue(hdev,
+ mmDMA_QM_0_GLBL_CFG1,
+ mmDMA_QM_0_CP_STS,
+ mmDMA_QM_0_GLBL_STS0);
+
+ if (rc) {
+ dev_err(hdev->dev, "failed to stop DMA QMAN 0\n");
+ retval = -EIO;
+ }
+
+ rc = goya_stop_queue(hdev,
+ mmDMA_QM_1_GLBL_CFG1,
+ mmDMA_QM_1_CP_STS,
+ mmDMA_QM_1_GLBL_STS0);
+
+ if (rc) {
+ dev_err(hdev->dev, "failed to stop DMA QMAN 1\n");
+ retval = -EIO;
+ }
+
+ rc = goya_stop_queue(hdev,
+ mmDMA_QM_2_GLBL_CFG1,
+ mmDMA_QM_2_CP_STS,
+ mmDMA_QM_2_GLBL_STS0);
+
+ if (rc) {
+ dev_err(hdev->dev, "failed to stop DMA QMAN 2\n");
+ retval = -EIO;
+ }
+
+ rc = goya_stop_queue(hdev,
+ mmDMA_QM_3_GLBL_CFG1,
+ mmDMA_QM_3_CP_STS,
+ mmDMA_QM_3_GLBL_STS0);
+
+ if (rc) {
+ dev_err(hdev->dev, "failed to stop DMA QMAN 3\n");
+ retval = -EIO;
+ }
+
+ rc = goya_stop_queue(hdev,
+ mmDMA_QM_4_GLBL_CFG1,
+ mmDMA_QM_4_CP_STS,
+ mmDMA_QM_4_GLBL_STS0);
+
+ if (rc) {
+ dev_err(hdev->dev, "failed to stop DMA QMAN 4\n");
+ retval = -EIO;
+ }
+
+ return retval;
+}
+
+/*
+ * goya_init_cpu_queues - Initialize PQ/CQ/EQ of CPU
+ *
+ * @hdev: pointer to hl_device structure
+ *
+ * Returns 0 on success
+ *
+ */
+int goya_init_cpu_queues(struct hl_device *hdev)
+{
+ struct goya_device *goya = hdev->asic_specific;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct hl_eq *eq;
+ u32 status;
+ struct hl_hw_queue *cpu_pq = &hdev->kernel_queues[GOYA_QUEUE_ID_CPU_PQ];
+ int err;
+
+ if (!hdev->cpu_queues_enable)
+ return 0;
+
+ if (goya->hw_cap_initialized & HW_CAP_CPU_Q)
+ return 0;
+
+ eq = &hdev->event_queue;
+
+ WREG32(mmCPU_PQ_BASE_ADDR_LOW, lower_32_bits(cpu_pq->bus_address));
+ WREG32(mmCPU_PQ_BASE_ADDR_HIGH, upper_32_bits(cpu_pq->bus_address));
+
+ WREG32(mmCPU_EQ_BASE_ADDR_LOW, lower_32_bits(eq->bus_address));
+ WREG32(mmCPU_EQ_BASE_ADDR_HIGH, upper_32_bits(eq->bus_address));
+
+ WREG32(mmCPU_CQ_BASE_ADDR_LOW,
+ lower_32_bits(VA_CPU_ACCESSIBLE_MEM_ADDR));
+ WREG32(mmCPU_CQ_BASE_ADDR_HIGH,
+ upper_32_bits(VA_CPU_ACCESSIBLE_MEM_ADDR));
+
+ WREG32(mmCPU_PQ_LENGTH, HL_QUEUE_SIZE_IN_BYTES);
+ WREG32(mmCPU_EQ_LENGTH, HL_EQ_SIZE_IN_BYTES);
+ WREG32(mmCPU_CQ_LENGTH, HL_CPU_ACCESSIBLE_MEM_SIZE);
+
+ /* Used for EQ CI */
+ WREG32(mmCPU_EQ_CI, 0);
+
+ WREG32(mmCPU_IF_PF_PQ_PI, 0);
+
+ WREG32(mmCPU_PQ_INIT_STATUS, PQ_INIT_STATUS_READY_FOR_CP);
+
+ WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR,
+ GOYA_ASYNC_EVENT_ID_PI_UPDATE);
+
+ err = hl_poll_timeout(
+ hdev,
+ mmCPU_PQ_INIT_STATUS,
+ status,
+ (status == PQ_INIT_STATUS_READY_FOR_HOST),
+ 1000,
+ GOYA_CPU_TIMEOUT_USEC);
+
+ if (err) {
+ dev_err(hdev->dev,
+ "Failed to setup communication with device CPU\n");
+ return -EIO;
+ }
+
+ /* update FW application security bits */
+ if (prop->fw_cpu_boot_dev_sts0_valid)
+ prop->fw_app_cpu_boot_dev_sts0 = RREG32(mmCPU_BOOT_DEV_STS0);
+
+ if (prop->fw_cpu_boot_dev_sts1_valid)
+ prop->fw_app_cpu_boot_dev_sts1 = RREG32(mmCPU_BOOT_DEV_STS1);
+
+ goya->hw_cap_initialized |= HW_CAP_CPU_Q;
+ return 0;
+}
+
+static void goya_set_pll_refclk(struct hl_device *hdev)
+{
+ WREG32(mmCPU_PLL_DIV_SEL_0, 0x0);
+ WREG32(mmCPU_PLL_DIV_SEL_1, 0x0);
+ WREG32(mmCPU_PLL_DIV_SEL_2, 0x0);
+ WREG32(mmCPU_PLL_DIV_SEL_3, 0x0);
+
+ WREG32(mmIC_PLL_DIV_SEL_0, 0x0);
+ WREG32(mmIC_PLL_DIV_SEL_1, 0x0);
+ WREG32(mmIC_PLL_DIV_SEL_2, 0x0);
+ WREG32(mmIC_PLL_DIV_SEL_3, 0x0);
+
+ WREG32(mmMC_PLL_DIV_SEL_0, 0x0);
+ WREG32(mmMC_PLL_DIV_SEL_1, 0x0);
+ WREG32(mmMC_PLL_DIV_SEL_2, 0x0);
+ WREG32(mmMC_PLL_DIV_SEL_3, 0x0);
+
+ WREG32(mmPSOC_MME_PLL_DIV_SEL_0, 0x0);
+ WREG32(mmPSOC_MME_PLL_DIV_SEL_1, 0x0);
+ WREG32(mmPSOC_MME_PLL_DIV_SEL_2, 0x0);
+ WREG32(mmPSOC_MME_PLL_DIV_SEL_3, 0x0);
+
+ WREG32(mmPSOC_PCI_PLL_DIV_SEL_0, 0x0);
+ WREG32(mmPSOC_PCI_PLL_DIV_SEL_1, 0x0);
+ WREG32(mmPSOC_PCI_PLL_DIV_SEL_2, 0x0);
+ WREG32(mmPSOC_PCI_PLL_DIV_SEL_3, 0x0);
+
+ WREG32(mmPSOC_EMMC_PLL_DIV_SEL_0, 0x0);
+ WREG32(mmPSOC_EMMC_PLL_DIV_SEL_1, 0x0);
+ WREG32(mmPSOC_EMMC_PLL_DIV_SEL_2, 0x0);
+ WREG32(mmPSOC_EMMC_PLL_DIV_SEL_3, 0x0);
+
+ WREG32(mmTPC_PLL_DIV_SEL_0, 0x0);
+ WREG32(mmTPC_PLL_DIV_SEL_1, 0x0);
+ WREG32(mmTPC_PLL_DIV_SEL_2, 0x0);
+ WREG32(mmTPC_PLL_DIV_SEL_3, 0x0);
+}
+
+static void goya_disable_clk_rlx(struct hl_device *hdev)
+{
+ WREG32(mmPSOC_MME_PLL_CLK_RLX_0, 0x100010);
+ WREG32(mmIC_PLL_CLK_RLX_0, 0x100010);
+}
+
+static void _goya_tpc_mbist_workaround(struct hl_device *hdev, u8 tpc_id)
+{
+ u64 tpc_eml_address;
+ u32 val, tpc_offset, tpc_eml_offset, tpc_slm_offset;
+ int err, slm_index;
+
+ tpc_offset = tpc_id * 0x40000;
+ tpc_eml_offset = tpc_id * 0x200000;
+ tpc_eml_address = (mmTPC0_EML_CFG_BASE + tpc_eml_offset - CFG_BASE);
+ tpc_slm_offset = tpc_eml_address + 0x100000;
+
+ /*
+ * Workaround for Bug H2 #2443 :
+ * "TPC SB is not initialized on chip reset"
+ */
+
+ val = RREG32(mmTPC0_CFG_FUNC_MBIST_CNTRL + tpc_offset);
+ if (val & TPC0_CFG_FUNC_MBIST_CNTRL_MBIST_ACTIVE_MASK)
+ dev_warn(hdev->dev, "TPC%d MBIST ACTIVE is not cleared\n",
+ tpc_id);
+
+ WREG32(mmTPC0_CFG_FUNC_MBIST_PAT + tpc_offset, val & 0xFFFFF000);
+
+ WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_0 + tpc_offset, 0x37FF);
+ WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_1 + tpc_offset, 0x303F);
+ WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_2 + tpc_offset, 0x71FF);
+ WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_3 + tpc_offset, 0x71FF);
+ WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_4 + tpc_offset, 0x70FF);
+ WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_5 + tpc_offset, 0x70FF);
+ WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_6 + tpc_offset, 0x70FF);
+ WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_7 + tpc_offset, 0x70FF);
+ WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_8 + tpc_offset, 0x70FF);
+ WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_9 + tpc_offset, 0x70FF);
+
+ WREG32_OR(mmTPC0_CFG_FUNC_MBIST_CNTRL + tpc_offset,
+ 1 << TPC0_CFG_FUNC_MBIST_CNTRL_MBIST_START_SHIFT);
+
+ err = hl_poll_timeout(
+ hdev,
+ mmTPC0_CFG_FUNC_MBIST_CNTRL + tpc_offset,
+ val,
+ (val & TPC0_CFG_FUNC_MBIST_CNTRL_MBIST_DONE_MASK),
+ 1000,
+ HL_DEVICE_TIMEOUT_USEC);
+
+ if (err)
+ dev_err(hdev->dev,
+ "Timeout while waiting for TPC%d MBIST DONE\n", tpc_id);
+
+ WREG32_OR(mmTPC0_EML_CFG_DBG_CNT + tpc_eml_offset,
+ 1 << TPC0_EML_CFG_DBG_CNT_CORE_RST_SHIFT);
+
+ msleep(GOYA_RESET_WAIT_MSEC);
+
+ WREG32_AND(mmTPC0_EML_CFG_DBG_CNT + tpc_eml_offset,
+ ~(1 << TPC0_EML_CFG_DBG_CNT_CORE_RST_SHIFT));
+
+ msleep(GOYA_RESET_WAIT_MSEC);
+
+ for (slm_index = 0 ; slm_index < 256 ; slm_index++)
+ WREG32(tpc_slm_offset + (slm_index << 2), 0);
+
+ val = RREG32(tpc_slm_offset);
+}
+
+static void goya_tpc_mbist_workaround(struct hl_device *hdev)
+{
+ struct goya_device *goya = hdev->asic_specific;
+ int i;
+
+ if (hdev->pldm)
+ return;
+
+ if (goya->hw_cap_initialized & HW_CAP_TPC_MBIST)
+ return;
+
+ /* Workaround for H2 #2443 */
+
+ for (i = 0 ; i < TPC_MAX_NUM ; i++)
+ _goya_tpc_mbist_workaround(hdev, i);
+
+ goya->hw_cap_initialized |= HW_CAP_TPC_MBIST;
+}
+
+/*
+ * goya_init_golden_registers - Initialize golden registers
+ *
+ * @hdev: pointer to hl_device structure
+ *
+ * Initialize the H/W registers of the device
+ *
+ */
+static void goya_init_golden_registers(struct hl_device *hdev)
+{
+ struct goya_device *goya = hdev->asic_specific;
+ u32 polynom[10], tpc_intr_mask, offset;
+ int i;
+
+ if (goya->hw_cap_initialized & HW_CAP_GOLDEN)
+ return;
+
+ polynom[0] = 0x00020080;
+ polynom[1] = 0x00401000;
+ polynom[2] = 0x00200800;
+ polynom[3] = 0x00002000;
+ polynom[4] = 0x00080200;
+ polynom[5] = 0x00040100;
+ polynom[6] = 0x00100400;
+ polynom[7] = 0x00004000;
+ polynom[8] = 0x00010000;
+ polynom[9] = 0x00008000;
+
+ /* Mask all arithmetic interrupts from TPC */
+ tpc_intr_mask = 0x7FFF;
+
+ for (i = 0, offset = 0 ; i < 6 ; i++, offset += 0x20000) {
+ WREG32(mmSRAM_Y0_X0_RTR_HBW_RD_RQ_L_ARB + offset, 0x302);
+ WREG32(mmSRAM_Y0_X1_RTR_HBW_RD_RQ_L_ARB + offset, 0x302);
+ WREG32(mmSRAM_Y0_X2_RTR_HBW_RD_RQ_L_ARB + offset, 0x302);
+ WREG32(mmSRAM_Y0_X3_RTR_HBW_RD_RQ_L_ARB + offset, 0x302);
+ WREG32(mmSRAM_Y0_X4_RTR_HBW_RD_RQ_L_ARB + offset, 0x302);
+
+ WREG32(mmSRAM_Y0_X0_RTR_HBW_DATA_L_ARB + offset, 0x204);
+ WREG32(mmSRAM_Y0_X1_RTR_HBW_DATA_L_ARB + offset, 0x204);
+ WREG32(mmSRAM_Y0_X2_RTR_HBW_DATA_L_ARB + offset, 0x204);
+ WREG32(mmSRAM_Y0_X3_RTR_HBW_DATA_L_ARB + offset, 0x204);
+ WREG32(mmSRAM_Y0_X4_RTR_HBW_DATA_L_ARB + offset, 0x204);
+
+
+ WREG32(mmSRAM_Y0_X0_RTR_HBW_DATA_E_ARB + offset, 0x206);
+ WREG32(mmSRAM_Y0_X1_RTR_HBW_DATA_E_ARB + offset, 0x206);
+ WREG32(mmSRAM_Y0_X2_RTR_HBW_DATA_E_ARB + offset, 0x206);
+ WREG32(mmSRAM_Y0_X3_RTR_HBW_DATA_E_ARB + offset, 0x207);
+ WREG32(mmSRAM_Y0_X4_RTR_HBW_DATA_E_ARB + offset, 0x207);
+
+ WREG32(mmSRAM_Y0_X0_RTR_HBW_DATA_W_ARB + offset, 0x207);
+ WREG32(mmSRAM_Y0_X1_RTR_HBW_DATA_W_ARB + offset, 0x207);
+ WREG32(mmSRAM_Y0_X2_RTR_HBW_DATA_W_ARB + offset, 0x206);
+ WREG32(mmSRAM_Y0_X3_RTR_HBW_DATA_W_ARB + offset, 0x206);
+ WREG32(mmSRAM_Y0_X4_RTR_HBW_DATA_W_ARB + offset, 0x206);
+
+ WREG32(mmSRAM_Y0_X0_RTR_HBW_WR_RS_E_ARB + offset, 0x101);
+ WREG32(mmSRAM_Y0_X1_RTR_HBW_WR_RS_E_ARB + offset, 0x102);
+ WREG32(mmSRAM_Y0_X2_RTR_HBW_WR_RS_E_ARB + offset, 0x103);
+ WREG32(mmSRAM_Y0_X3_RTR_HBW_WR_RS_E_ARB + offset, 0x104);
+ WREG32(mmSRAM_Y0_X4_RTR_HBW_WR_RS_E_ARB + offset, 0x105);
+
+ WREG32(mmSRAM_Y0_X0_RTR_HBW_WR_RS_W_ARB + offset, 0x105);
+ WREG32(mmSRAM_Y0_X1_RTR_HBW_WR_RS_W_ARB + offset, 0x104);
+ WREG32(mmSRAM_Y0_X2_RTR_HBW_WR_RS_W_ARB + offset, 0x103);
+ WREG32(mmSRAM_Y0_X3_RTR_HBW_WR_RS_W_ARB + offset, 0x102);
+ WREG32(mmSRAM_Y0_X4_RTR_HBW_WR_RS_W_ARB + offset, 0x101);
+ }
+
+ WREG32(mmMME_STORE_MAX_CREDIT, 0x21);
+ WREG32(mmMME_AGU, 0x0f0f0f10);
+ WREG32(mmMME_SEI_MASK, ~0x0);
+
+ WREG32(mmMME6_RTR_HBW_RD_RQ_N_ARB, 0x01010101);
+ WREG32(mmMME5_RTR_HBW_RD_RQ_N_ARB, 0x01040101);
+ WREG32(mmMME4_RTR_HBW_RD_RQ_N_ARB, 0x01030101);
+ WREG32(mmMME3_RTR_HBW_RD_RQ_N_ARB, 0x01020101);
+ WREG32(mmMME2_RTR_HBW_RD_RQ_N_ARB, 0x01010101);
+ WREG32(mmMME1_RTR_HBW_RD_RQ_N_ARB, 0x07010701);
+ WREG32(mmMME6_RTR_HBW_RD_RQ_S_ARB, 0x04010401);
+ WREG32(mmMME5_RTR_HBW_RD_RQ_S_ARB, 0x04050401);
+ WREG32(mmMME4_RTR_HBW_RD_RQ_S_ARB, 0x03070301);
+ WREG32(mmMME3_RTR_HBW_RD_RQ_S_ARB, 0x01030101);
+ WREG32(mmMME2_RTR_HBW_RD_RQ_S_ARB, 0x01040101);
+ WREG32(mmMME1_RTR_HBW_RD_RQ_S_ARB, 0x01050105);
+ WREG32(mmMME6_RTR_HBW_RD_RQ_W_ARB, 0x01010501);
+ WREG32(mmMME5_RTR_HBW_RD_RQ_W_ARB, 0x01010501);
+ WREG32(mmMME4_RTR_HBW_RD_RQ_W_ARB, 0x01040301);
+ WREG32(mmMME3_RTR_HBW_RD_RQ_W_ARB, 0x01030401);
+ WREG32(mmMME2_RTR_HBW_RD_RQ_W_ARB, 0x01040101);
+ WREG32(mmMME1_RTR_HBW_RD_RQ_W_ARB, 0x01050101);
+ WREG32(mmMME6_RTR_HBW_WR_RQ_N_ARB, 0x02020202);
+ WREG32(mmMME5_RTR_HBW_WR_RQ_N_ARB, 0x01070101);
+ WREG32(mmMME4_RTR_HBW_WR_RQ_N_ARB, 0x02020201);
+ WREG32(mmMME3_RTR_HBW_WR_RQ_N_ARB, 0x07020701);
+ WREG32(mmMME2_RTR_HBW_WR_RQ_N_ARB, 0x01020101);
+ WREG32(mmMME1_RTR_HBW_WR_RQ_S_ARB, 0x01010101);
+ WREG32(mmMME6_RTR_HBW_WR_RQ_S_ARB, 0x01070101);
+ WREG32(mmMME5_RTR_HBW_WR_RQ_S_ARB, 0x01070101);
+ WREG32(mmMME4_RTR_HBW_WR_RQ_S_ARB, 0x07020701);
+ WREG32(mmMME3_RTR_HBW_WR_RQ_S_ARB, 0x02020201);
+ WREG32(mmMME2_RTR_HBW_WR_RQ_S_ARB, 0x01070101);
+ WREG32(mmMME1_RTR_HBW_WR_RQ_S_ARB, 0x01020102);
+ WREG32(mmMME6_RTR_HBW_WR_RQ_W_ARB, 0x01020701);
+ WREG32(mmMME5_RTR_HBW_WR_RQ_W_ARB, 0x01020701);
+ WREG32(mmMME4_RTR_HBW_WR_RQ_W_ARB, 0x07020707);
+ WREG32(mmMME3_RTR_HBW_WR_RQ_W_ARB, 0x01020201);
+ WREG32(mmMME2_RTR_HBW_WR_RQ_W_ARB, 0x01070201);
+ WREG32(mmMME1_RTR_HBW_WR_RQ_W_ARB, 0x01070201);
+ WREG32(mmMME6_RTR_HBW_RD_RS_N_ARB, 0x01070102);
+ WREG32(mmMME5_RTR_HBW_RD_RS_N_ARB, 0x01070102);
+ WREG32(mmMME4_RTR_HBW_RD_RS_N_ARB, 0x01060102);
+ WREG32(mmMME3_RTR_HBW_RD_RS_N_ARB, 0x01040102);
+ WREG32(mmMME2_RTR_HBW_RD_RS_N_ARB, 0x01020102);
+ WREG32(mmMME1_RTR_HBW_RD_RS_N_ARB, 0x01020107);
+ WREG32(mmMME6_RTR_HBW_RD_RS_S_ARB, 0x01020106);
+ WREG32(mmMME5_RTR_HBW_RD_RS_S_ARB, 0x01020102);
+ WREG32(mmMME4_RTR_HBW_RD_RS_S_ARB, 0x01040102);
+ WREG32(mmMME3_RTR_HBW_RD_RS_S_ARB, 0x01060102);
+ WREG32(mmMME2_RTR_HBW_RD_RS_S_ARB, 0x01070102);
+ WREG32(mmMME1_RTR_HBW_RD_RS_S_ARB, 0x01070102);
+ WREG32(mmMME6_RTR_HBW_RD_RS_E_ARB, 0x01020702);
+ WREG32(mmMME5_RTR_HBW_RD_RS_E_ARB, 0x01020702);
+ WREG32(mmMME4_RTR_HBW_RD_RS_E_ARB, 0x01040602);
+ WREG32(mmMME3_RTR_HBW_RD_RS_E_ARB, 0x01060402);
+ WREG32(mmMME2_RTR_HBW_RD_RS_E_ARB, 0x01070202);
+ WREG32(mmMME1_RTR_HBW_RD_RS_E_ARB, 0x01070102);
+ WREG32(mmMME6_RTR_HBW_RD_RS_W_ARB, 0x01060401);
+ WREG32(mmMME5_RTR_HBW_RD_RS_W_ARB, 0x01060401);
+ WREG32(mmMME4_RTR_HBW_RD_RS_W_ARB, 0x01060401);
+ WREG32(mmMME3_RTR_HBW_RD_RS_W_ARB, 0x01060401);
+ WREG32(mmMME2_RTR_HBW_RD_RS_W_ARB, 0x01060401);
+ WREG32(mmMME1_RTR_HBW_RD_RS_W_ARB, 0x01060401);
+ WREG32(mmMME6_RTR_HBW_WR_RS_N_ARB, 0x01050101);
+ WREG32(mmMME5_RTR_HBW_WR_RS_N_ARB, 0x01040101);
+ WREG32(mmMME4_RTR_HBW_WR_RS_N_ARB, 0x01030101);
+ WREG32(mmMME3_RTR_HBW_WR_RS_N_ARB, 0x01020101);
+ WREG32(mmMME2_RTR_HBW_WR_RS_N_ARB, 0x01010101);
+ WREG32(mmMME1_RTR_HBW_WR_RS_N_ARB, 0x01010107);
+ WREG32(mmMME6_RTR_HBW_WR_RS_S_ARB, 0x01010107);
+ WREG32(mmMME5_RTR_HBW_WR_RS_S_ARB, 0x01010101);
+ WREG32(mmMME4_RTR_HBW_WR_RS_S_ARB, 0x01020101);
+ WREG32(mmMME3_RTR_HBW_WR_RS_S_ARB, 0x01030101);
+ WREG32(mmMME2_RTR_HBW_WR_RS_S_ARB, 0x01040101);
+ WREG32(mmMME1_RTR_HBW_WR_RS_S_ARB, 0x01050101);
+ WREG32(mmMME6_RTR_HBW_WR_RS_E_ARB, 0x01010501);
+ WREG32(mmMME5_RTR_HBW_WR_RS_E_ARB, 0x01010501);
+ WREG32(mmMME4_RTR_HBW_WR_RS_E_ARB, 0x01040301);
+ WREG32(mmMME3_RTR_HBW_WR_RS_E_ARB, 0x01030401);
+ WREG32(mmMME2_RTR_HBW_WR_RS_E_ARB, 0x01040101);
+ WREG32(mmMME1_RTR_HBW_WR_RS_E_ARB, 0x01050101);
+ WREG32(mmMME6_RTR_HBW_WR_RS_W_ARB, 0x01010101);
+ WREG32(mmMME5_RTR_HBW_WR_RS_W_ARB, 0x01010101);
+ WREG32(mmMME4_RTR_HBW_WR_RS_W_ARB, 0x01010101);
+ WREG32(mmMME3_RTR_HBW_WR_RS_W_ARB, 0x01010101);
+ WREG32(mmMME2_RTR_HBW_WR_RS_W_ARB, 0x01010101);
+ WREG32(mmMME1_RTR_HBW_WR_RS_W_ARB, 0x01010101);
+
+ WREG32(mmTPC1_RTR_HBW_RD_RQ_N_ARB, 0x01010101);
+ WREG32(mmTPC1_RTR_HBW_RD_RQ_S_ARB, 0x01010101);
+ WREG32(mmTPC1_RTR_HBW_RD_RQ_E_ARB, 0x01060101);
+ WREG32(mmTPC1_RTR_HBW_WR_RQ_N_ARB, 0x02020102);
+ WREG32(mmTPC1_RTR_HBW_WR_RQ_S_ARB, 0x01010101);
+ WREG32(mmTPC1_RTR_HBW_WR_RQ_E_ARB, 0x02070202);
+ WREG32(mmTPC1_RTR_HBW_RD_RS_N_ARB, 0x01020201);
+ WREG32(mmTPC1_RTR_HBW_RD_RS_S_ARB, 0x01070201);
+ WREG32(mmTPC1_RTR_HBW_RD_RS_W_ARB, 0x01070202);
+ WREG32(mmTPC1_RTR_HBW_WR_RS_N_ARB, 0x01010101);
+ WREG32(mmTPC1_RTR_HBW_WR_RS_S_ARB, 0x01050101);
+ WREG32(mmTPC1_RTR_HBW_WR_RS_W_ARB, 0x01050101);
+
+ WREG32(mmTPC2_RTR_HBW_RD_RQ_N_ARB, 0x01020101);
+ WREG32(mmTPC2_RTR_HBW_RD_RQ_S_ARB, 0x01050101);
+ WREG32(mmTPC2_RTR_HBW_RD_RQ_E_ARB, 0x01010201);
+ WREG32(mmTPC2_RTR_HBW_WR_RQ_N_ARB, 0x02040102);
+ WREG32(mmTPC2_RTR_HBW_WR_RQ_S_ARB, 0x01050101);
+ WREG32(mmTPC2_RTR_HBW_WR_RQ_E_ARB, 0x02060202);
+ WREG32(mmTPC2_RTR_HBW_RD_RS_N_ARB, 0x01020201);
+ WREG32(mmTPC2_RTR_HBW_RD_RS_S_ARB, 0x01070201);
+ WREG32(mmTPC2_RTR_HBW_RD_RS_W_ARB, 0x01070202);
+ WREG32(mmTPC2_RTR_HBW_WR_RS_N_ARB, 0x01010101);
+ WREG32(mmTPC2_RTR_HBW_WR_RS_S_ARB, 0x01040101);
+ WREG32(mmTPC2_RTR_HBW_WR_RS_W_ARB, 0x01040101);
+
+ WREG32(mmTPC3_RTR_HBW_RD_RQ_N_ARB, 0x01030101);
+ WREG32(mmTPC3_RTR_HBW_RD_RQ_S_ARB, 0x01040101);
+ WREG32(mmTPC3_RTR_HBW_RD_RQ_E_ARB, 0x01040301);
+ WREG32(mmTPC3_RTR_HBW_WR_RQ_N_ARB, 0x02060102);
+ WREG32(mmTPC3_RTR_HBW_WR_RQ_S_ARB, 0x01040101);
+ WREG32(mmTPC3_RTR_HBW_WR_RQ_E_ARB, 0x01040301);
+ WREG32(mmTPC3_RTR_HBW_RD_RS_N_ARB, 0x01040201);
+ WREG32(mmTPC3_RTR_HBW_RD_RS_S_ARB, 0x01060201);
+ WREG32(mmTPC3_RTR_HBW_RD_RS_W_ARB, 0x01060402);
+ WREG32(mmTPC3_RTR_HBW_WR_RS_N_ARB, 0x01020101);
+ WREG32(mmTPC3_RTR_HBW_WR_RS_S_ARB, 0x01030101);
+ WREG32(mmTPC3_RTR_HBW_WR_RS_W_ARB, 0x01030401);
+
+ WREG32(mmTPC4_RTR_HBW_RD_RQ_N_ARB, 0x01040101);
+ WREG32(mmTPC4_RTR_HBW_RD_RQ_S_ARB, 0x01030101);
+ WREG32(mmTPC4_RTR_HBW_RD_RQ_E_ARB, 0x01030401);
+ WREG32(mmTPC4_RTR_HBW_WR_RQ_N_ARB, 0x02070102);
+ WREG32(mmTPC4_RTR_HBW_WR_RQ_S_ARB, 0x01030101);
+ WREG32(mmTPC4_RTR_HBW_WR_RQ_E_ARB, 0x02060702);
+ WREG32(mmTPC4_RTR_HBW_RD_RS_N_ARB, 0x01060201);
+ WREG32(mmTPC4_RTR_HBW_RD_RS_S_ARB, 0x01040201);
+ WREG32(mmTPC4_RTR_HBW_RD_RS_W_ARB, 0x01040602);
+ WREG32(mmTPC4_RTR_HBW_WR_RS_N_ARB, 0x01030101);
+ WREG32(mmTPC4_RTR_HBW_WR_RS_S_ARB, 0x01020101);
+ WREG32(mmTPC4_RTR_HBW_WR_RS_W_ARB, 0x01040301);
+
+ WREG32(mmTPC5_RTR_HBW_RD_RQ_N_ARB, 0x01050101);
+ WREG32(mmTPC5_RTR_HBW_RD_RQ_S_ARB, 0x01020101);
+ WREG32(mmTPC5_RTR_HBW_RD_RQ_E_ARB, 0x01200501);
+ WREG32(mmTPC5_RTR_HBW_WR_RQ_N_ARB, 0x02070102);
+ WREG32(mmTPC5_RTR_HBW_WR_RQ_S_ARB, 0x01020101);
+ WREG32(mmTPC5_RTR_HBW_WR_RQ_E_ARB, 0x02020602);
+ WREG32(mmTPC5_RTR_HBW_RD_RS_N_ARB, 0x01070201);
+ WREG32(mmTPC5_RTR_HBW_RD_RS_S_ARB, 0x01020201);
+ WREG32(mmTPC5_RTR_HBW_RD_RS_W_ARB, 0x01020702);
+ WREG32(mmTPC5_RTR_HBW_WR_RS_N_ARB, 0x01040101);
+ WREG32(mmTPC5_RTR_HBW_WR_RS_S_ARB, 0x01010101);
+ WREG32(mmTPC5_RTR_HBW_WR_RS_W_ARB, 0x01010501);
+
+ WREG32(mmTPC6_RTR_HBW_RD_RQ_N_ARB, 0x01010101);
+ WREG32(mmTPC6_RTR_HBW_RD_RQ_S_ARB, 0x01010101);
+ WREG32(mmTPC6_RTR_HBW_RD_RQ_E_ARB, 0x01010601);
+ WREG32(mmTPC6_RTR_HBW_WR_RQ_N_ARB, 0x01010101);
+ WREG32(mmTPC6_RTR_HBW_WR_RQ_S_ARB, 0x01010101);
+ WREG32(mmTPC6_RTR_HBW_WR_RQ_E_ARB, 0x02020702);
+ WREG32(mmTPC6_RTR_HBW_RD_RS_N_ARB, 0x01010101);
+ WREG32(mmTPC6_RTR_HBW_RD_RS_S_ARB, 0x01010101);
+ WREG32(mmTPC6_RTR_HBW_RD_RS_W_ARB, 0x01020702);
+ WREG32(mmTPC6_RTR_HBW_WR_RS_N_ARB, 0x01050101);
+ WREG32(mmTPC6_RTR_HBW_WR_RS_S_ARB, 0x01010101);
+ WREG32(mmTPC6_RTR_HBW_WR_RS_W_ARB, 0x01010501);
+
+ for (i = 0, offset = 0 ; i < 10 ; i++, offset += 4) {
+ WREG32(mmMME1_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
+ WREG32(mmMME2_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
+ WREG32(mmMME3_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
+ WREG32(mmMME4_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
+ WREG32(mmMME5_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
+ WREG32(mmMME6_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
+
+ WREG32(mmTPC0_NRTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
+ WREG32(mmTPC1_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
+ WREG32(mmTPC2_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
+ WREG32(mmTPC3_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
+ WREG32(mmTPC4_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
+ WREG32(mmTPC5_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
+ WREG32(mmTPC6_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
+ WREG32(mmTPC7_NRTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
+
+ WREG32(mmPCI_NRTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
+ WREG32(mmDMA_NRTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
+ }
+
+ for (i = 0, offset = 0 ; i < 6 ; i++, offset += 0x40000) {
+ WREG32(mmMME1_RTR_SCRAMB_EN + offset,
+ 1 << MME1_RTR_SCRAMB_EN_VAL_SHIFT);
+ WREG32(mmMME1_RTR_NON_LIN_SCRAMB + offset,
+ 1 << MME1_RTR_NON_LIN_SCRAMB_EN_SHIFT);
+ }
+
+ for (i = 0, offset = 0 ; i < 8 ; i++, offset += 0x40000) {
+ /*
+ * Workaround for Bug H2 #2441 :
+ * "ST.NOP set trace event illegal opcode"
+ */
+ WREG32(mmTPC0_CFG_TPC_INTR_MASK + offset, tpc_intr_mask);
+
+ WREG32(mmTPC0_NRTR_SCRAMB_EN + offset,
+ 1 << TPC0_NRTR_SCRAMB_EN_VAL_SHIFT);
+ WREG32(mmTPC0_NRTR_NON_LIN_SCRAMB + offset,
+ 1 << TPC0_NRTR_NON_LIN_SCRAMB_EN_SHIFT);
+
+ WREG32_FIELD(TPC0_CFG_MSS_CONFIG, offset,
+ ICACHE_FETCH_LINE_NUM, 2);
+ }
+
+ WREG32(mmDMA_NRTR_SCRAMB_EN, 1 << DMA_NRTR_SCRAMB_EN_VAL_SHIFT);
+ WREG32(mmDMA_NRTR_NON_LIN_SCRAMB,
+ 1 << DMA_NRTR_NON_LIN_SCRAMB_EN_SHIFT);
+
+ WREG32(mmPCI_NRTR_SCRAMB_EN, 1 << PCI_NRTR_SCRAMB_EN_VAL_SHIFT);
+ WREG32(mmPCI_NRTR_NON_LIN_SCRAMB,
+ 1 << PCI_NRTR_NON_LIN_SCRAMB_EN_SHIFT);
+
+ /*
+ * Workaround for H2 #HW-23 bug
+ * Set DMA max outstanding read requests to 240 on DMA CH 1.
+ * This limitation is still large enough to not affect Gen4 bandwidth.
+ * We need to only limit that DMA channel because the user can only read
+ * from Host using DMA CH 1
+ */
+ WREG32(mmDMA_CH_1_CFG0, 0x0fff00F0);
+
+ WREG32(mmTPC_PLL_CLK_RLX_0, 0x200020);
+
+ goya->hw_cap_initialized |= HW_CAP_GOLDEN;
+}
+
+static void goya_init_mme_qman(struct hl_device *hdev)
+{
+ u32 mtr_base_lo, mtr_base_hi;
+ u32 so_base_lo, so_base_hi;
+ u32 gic_base_lo, gic_base_hi;
+ u64 qman_base_addr;
+
+ mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
+ mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
+ so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
+ so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
+
+ gic_base_lo =
+ lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
+ gic_base_hi =
+ upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
+
+ qman_base_addr = hdev->asic_prop.sram_base_address +
+ MME_QMAN_BASE_OFFSET;
+
+ WREG32(mmMME_QM_PQ_BASE_LO, lower_32_bits(qman_base_addr));
+ WREG32(mmMME_QM_PQ_BASE_HI, upper_32_bits(qman_base_addr));
+ WREG32(mmMME_QM_PQ_SIZE, ilog2(MME_QMAN_LENGTH));
+ WREG32(mmMME_QM_PQ_PI, 0);
+ WREG32(mmMME_QM_PQ_CI, 0);
+ WREG32(mmMME_QM_CP_LDMA_SRC_BASE_LO_OFFSET, 0x10C0);
+ WREG32(mmMME_QM_CP_LDMA_SRC_BASE_HI_OFFSET, 0x10C4);
+ WREG32(mmMME_QM_CP_LDMA_TSIZE_OFFSET, 0x10C8);
+ WREG32(mmMME_QM_CP_LDMA_COMMIT_OFFSET, 0x10CC);
+
+ WREG32(mmMME_QM_CP_MSG_BASE0_ADDR_LO, mtr_base_lo);
+ WREG32(mmMME_QM_CP_MSG_BASE0_ADDR_HI, mtr_base_hi);
+ WREG32(mmMME_QM_CP_MSG_BASE1_ADDR_LO, so_base_lo);
+ WREG32(mmMME_QM_CP_MSG_BASE1_ADDR_HI, so_base_hi);
+
+ /* QMAN CQ has 8 cache lines */
+ WREG32(mmMME_QM_CQ_CFG1, 0x00080008);
+
+ WREG32(mmMME_QM_GLBL_ERR_ADDR_LO, gic_base_lo);
+ WREG32(mmMME_QM_GLBL_ERR_ADDR_HI, gic_base_hi);
+
+ WREG32(mmMME_QM_GLBL_ERR_WDATA, GOYA_ASYNC_EVENT_ID_MME_QM);
+
+ WREG32(mmMME_QM_GLBL_ERR_CFG, QMAN_MME_ERR_MSG_EN);
+
+ WREG32(mmMME_QM_GLBL_PROT, QMAN_MME_ERR_PROT);
+
+ WREG32(mmMME_QM_GLBL_CFG0, QMAN_MME_ENABLE);
+}
+
+static void goya_init_mme_cmdq(struct hl_device *hdev)
+{
+ u32 mtr_base_lo, mtr_base_hi;
+ u32 so_base_lo, so_base_hi;
+ u32 gic_base_lo, gic_base_hi;
+
+ mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
+ mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
+ so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
+ so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
+
+ gic_base_lo =
+ lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
+ gic_base_hi =
+ upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
+
+ WREG32(mmMME_CMDQ_CP_MSG_BASE0_ADDR_LO, mtr_base_lo);
+ WREG32(mmMME_CMDQ_CP_MSG_BASE0_ADDR_HI, mtr_base_hi);
+ WREG32(mmMME_CMDQ_CP_MSG_BASE1_ADDR_LO, so_base_lo);
+ WREG32(mmMME_CMDQ_CP_MSG_BASE1_ADDR_HI, so_base_hi);
+
+ /* CMDQ CQ has 20 cache lines */
+ WREG32(mmMME_CMDQ_CQ_CFG1, 0x00140014);
+
+ WREG32(mmMME_CMDQ_GLBL_ERR_ADDR_LO, gic_base_lo);
+ WREG32(mmMME_CMDQ_GLBL_ERR_ADDR_HI, gic_base_hi);
+
+ WREG32(mmMME_CMDQ_GLBL_ERR_WDATA, GOYA_ASYNC_EVENT_ID_MME_CMDQ);
+
+ WREG32(mmMME_CMDQ_GLBL_ERR_CFG, CMDQ_MME_ERR_MSG_EN);
+
+ WREG32(mmMME_CMDQ_GLBL_PROT, CMDQ_MME_ERR_PROT);
+
+ WREG32(mmMME_CMDQ_GLBL_CFG0, CMDQ_MME_ENABLE);
+}
+
+void goya_init_mme_qmans(struct hl_device *hdev)
+{
+ struct goya_device *goya = hdev->asic_specific;
+ u32 so_base_lo, so_base_hi;
+
+ if (goya->hw_cap_initialized & HW_CAP_MME)
+ return;
+
+ so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
+ so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
+
+ WREG32(mmMME_SM_BASE_ADDRESS_LOW, so_base_lo);
+ WREG32(mmMME_SM_BASE_ADDRESS_HIGH, so_base_hi);
+
+ goya_init_mme_qman(hdev);
+ goya_init_mme_cmdq(hdev);
+
+ goya->hw_cap_initialized |= HW_CAP_MME;
+}
+
+static void goya_init_tpc_qman(struct hl_device *hdev, u32 base_off, int tpc_id)
+{
+ u32 mtr_base_lo, mtr_base_hi;
+ u32 so_base_lo, so_base_hi;
+ u32 gic_base_lo, gic_base_hi;
+ u64 qman_base_addr;
+ u32 reg_off = tpc_id * (mmTPC1_QM_PQ_PI - mmTPC0_QM_PQ_PI);
+
+ mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
+ mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
+ so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
+ so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
+
+ gic_base_lo =
+ lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
+ gic_base_hi =
+ upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
+
+ qman_base_addr = hdev->asic_prop.sram_base_address + base_off;
+
+ WREG32(mmTPC0_QM_PQ_BASE_LO + reg_off, lower_32_bits(qman_base_addr));
+ WREG32(mmTPC0_QM_PQ_BASE_HI + reg_off, upper_32_bits(qman_base_addr));
+ WREG32(mmTPC0_QM_PQ_SIZE + reg_off, ilog2(TPC_QMAN_LENGTH));
+ WREG32(mmTPC0_QM_PQ_PI + reg_off, 0);
+ WREG32(mmTPC0_QM_PQ_CI + reg_off, 0);
+ WREG32(mmTPC0_QM_CP_LDMA_SRC_BASE_LO_OFFSET + reg_off, 0x10C0);
+ WREG32(mmTPC0_QM_CP_LDMA_SRC_BASE_HI_OFFSET + reg_off, 0x10C4);
+ WREG32(mmTPC0_QM_CP_LDMA_TSIZE_OFFSET + reg_off, 0x10C8);
+ WREG32(mmTPC0_QM_CP_LDMA_COMMIT_OFFSET + reg_off, 0x10CC);
+
+ WREG32(mmTPC0_QM_CP_MSG_BASE0_ADDR_LO + reg_off, mtr_base_lo);
+ WREG32(mmTPC0_QM_CP_MSG_BASE0_ADDR_HI + reg_off, mtr_base_hi);
+ WREG32(mmTPC0_QM_CP_MSG_BASE1_ADDR_LO + reg_off, so_base_lo);
+ WREG32(mmTPC0_QM_CP_MSG_BASE1_ADDR_HI + reg_off, so_base_hi);
+
+ WREG32(mmTPC0_QM_CQ_CFG1 + reg_off, 0x00080008);
+
+ WREG32(mmTPC0_QM_GLBL_ERR_ADDR_LO + reg_off, gic_base_lo);
+ WREG32(mmTPC0_QM_GLBL_ERR_ADDR_HI + reg_off, gic_base_hi);
+
+ WREG32(mmTPC0_QM_GLBL_ERR_WDATA + reg_off,
+ GOYA_ASYNC_EVENT_ID_TPC0_QM + tpc_id);
+
+ WREG32(mmTPC0_QM_GLBL_ERR_CFG + reg_off, QMAN_TPC_ERR_MSG_EN);
+
+ WREG32(mmTPC0_QM_GLBL_PROT + reg_off, QMAN_TPC_ERR_PROT);
+
+ WREG32(mmTPC0_QM_GLBL_CFG0 + reg_off, QMAN_TPC_ENABLE);
+}
+
+static void goya_init_tpc_cmdq(struct hl_device *hdev, int tpc_id)
+{
+ u32 mtr_base_lo, mtr_base_hi;
+ u32 so_base_lo, so_base_hi;
+ u32 gic_base_lo, gic_base_hi;
+ u32 reg_off = tpc_id * (mmTPC1_CMDQ_CQ_CFG1 - mmTPC0_CMDQ_CQ_CFG1);
+
+ mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
+ mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
+ so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
+ so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
+
+ gic_base_lo =
+ lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
+ gic_base_hi =
+ upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
+
+ WREG32(mmTPC0_CMDQ_CP_MSG_BASE0_ADDR_LO + reg_off, mtr_base_lo);
+ WREG32(mmTPC0_CMDQ_CP_MSG_BASE0_ADDR_HI + reg_off, mtr_base_hi);
+ WREG32(mmTPC0_CMDQ_CP_MSG_BASE1_ADDR_LO + reg_off, so_base_lo);
+ WREG32(mmTPC0_CMDQ_CP_MSG_BASE1_ADDR_HI + reg_off, so_base_hi);
+
+ WREG32(mmTPC0_CMDQ_CQ_CFG1 + reg_off, 0x00140014);
+
+ WREG32(mmTPC0_CMDQ_GLBL_ERR_ADDR_LO + reg_off, gic_base_lo);
+ WREG32(mmTPC0_CMDQ_GLBL_ERR_ADDR_HI + reg_off, gic_base_hi);
+
+ WREG32(mmTPC0_CMDQ_GLBL_ERR_WDATA + reg_off,
+ GOYA_ASYNC_EVENT_ID_TPC0_CMDQ + tpc_id);
+
+ WREG32(mmTPC0_CMDQ_GLBL_ERR_CFG + reg_off, CMDQ_TPC_ERR_MSG_EN);
+
+ WREG32(mmTPC0_CMDQ_GLBL_PROT + reg_off, CMDQ_TPC_ERR_PROT);
+
+ WREG32(mmTPC0_CMDQ_GLBL_CFG0 + reg_off, CMDQ_TPC_ENABLE);
+}
+
+void goya_init_tpc_qmans(struct hl_device *hdev)
+{
+ struct goya_device *goya = hdev->asic_specific;
+ u32 so_base_lo, so_base_hi;
+ u32 cfg_off = mmTPC1_CFG_SM_BASE_ADDRESS_LOW -
+ mmTPC0_CFG_SM_BASE_ADDRESS_LOW;
+ int i;
+
+ if (goya->hw_cap_initialized & HW_CAP_TPC)
+ return;
+
+ so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
+ so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
+
+ for (i = 0 ; i < TPC_MAX_NUM ; i++) {
+ WREG32(mmTPC0_CFG_SM_BASE_ADDRESS_LOW + i * cfg_off,
+ so_base_lo);
+ WREG32(mmTPC0_CFG_SM_BASE_ADDRESS_HIGH + i * cfg_off,
+ so_base_hi);
+ }
+
+ goya_init_tpc_qman(hdev, TPC0_QMAN_BASE_OFFSET, 0);
+ goya_init_tpc_qman(hdev, TPC1_QMAN_BASE_OFFSET, 1);
+ goya_init_tpc_qman(hdev, TPC2_QMAN_BASE_OFFSET, 2);
+ goya_init_tpc_qman(hdev, TPC3_QMAN_BASE_OFFSET, 3);
+ goya_init_tpc_qman(hdev, TPC4_QMAN_BASE_OFFSET, 4);
+ goya_init_tpc_qman(hdev, TPC5_QMAN_BASE_OFFSET, 5);
+ goya_init_tpc_qman(hdev, TPC6_QMAN_BASE_OFFSET, 6);
+ goya_init_tpc_qman(hdev, TPC7_QMAN_BASE_OFFSET, 7);
+
+ for (i = 0 ; i < TPC_MAX_NUM ; i++)
+ goya_init_tpc_cmdq(hdev, i);
+
+ goya->hw_cap_initialized |= HW_CAP_TPC;
+}
+
+/*
+ * goya_disable_internal_queues - Disable internal queues
+ *
+ * @hdev: pointer to hl_device structure
+ *
+ */
+static void goya_disable_internal_queues(struct hl_device *hdev)
+{
+ struct goya_device *goya = hdev->asic_specific;
+
+ if (!(goya->hw_cap_initialized & HW_CAP_MME))
+ goto disable_tpc;
+
+ WREG32(mmMME_QM_GLBL_CFG0, 0);
+ WREG32(mmMME_CMDQ_GLBL_CFG0, 0);
+
+disable_tpc:
+ if (!(goya->hw_cap_initialized & HW_CAP_TPC))
+ return;
+
+ WREG32(mmTPC0_QM_GLBL_CFG0, 0);
+ WREG32(mmTPC0_CMDQ_GLBL_CFG0, 0);
+
+ WREG32(mmTPC1_QM_GLBL_CFG0, 0);
+ WREG32(mmTPC1_CMDQ_GLBL_CFG0, 0);
+
+ WREG32(mmTPC2_QM_GLBL_CFG0, 0);
+ WREG32(mmTPC2_CMDQ_GLBL_CFG0, 0);
+
+ WREG32(mmTPC3_QM_GLBL_CFG0, 0);
+ WREG32(mmTPC3_CMDQ_GLBL_CFG0, 0);
+
+ WREG32(mmTPC4_QM_GLBL_CFG0, 0);
+ WREG32(mmTPC4_CMDQ_GLBL_CFG0, 0);
+
+ WREG32(mmTPC5_QM_GLBL_CFG0, 0);
+ WREG32(mmTPC5_CMDQ_GLBL_CFG0, 0);
+
+ WREG32(mmTPC6_QM_GLBL_CFG0, 0);
+ WREG32(mmTPC6_CMDQ_GLBL_CFG0, 0);
+
+ WREG32(mmTPC7_QM_GLBL_CFG0, 0);
+ WREG32(mmTPC7_CMDQ_GLBL_CFG0, 0);
+}
+
+/*
+ * goya_stop_internal_queues - Stop internal queues
+ *
+ * @hdev: pointer to hl_device structure
+ *
+ * Returns 0 on success
+ *
+ */
+static int goya_stop_internal_queues(struct hl_device *hdev)
+{
+ struct goya_device *goya = hdev->asic_specific;
+ int rc, retval = 0;
+
+ if (!(goya->hw_cap_initialized & HW_CAP_MME))
+ goto stop_tpc;
+
+ /*
+ * Each queue (QMAN) is a separate H/W logic. That means that each
+ * QMAN can be stopped independently and failure to stop one does NOT
+ * mandate we should not try to stop other QMANs
+ */
+
+ rc = goya_stop_queue(hdev,
+ mmMME_QM_GLBL_CFG1,
+ mmMME_QM_CP_STS,
+ mmMME_QM_GLBL_STS0);
+
+ if (rc) {
+ dev_err(hdev->dev, "failed to stop MME QMAN\n");
+ retval = -EIO;
+ }
+
+ rc = goya_stop_queue(hdev,
+ mmMME_CMDQ_GLBL_CFG1,
+ mmMME_CMDQ_CP_STS,
+ mmMME_CMDQ_GLBL_STS0);
+
+ if (rc) {
+ dev_err(hdev->dev, "failed to stop MME CMDQ\n");
+ retval = -EIO;
+ }
+
+stop_tpc:
+ if (!(goya->hw_cap_initialized & HW_CAP_TPC))
+ return retval;
+
+ rc = goya_stop_queue(hdev,
+ mmTPC0_QM_GLBL_CFG1,
+ mmTPC0_QM_CP_STS,
+ mmTPC0_QM_GLBL_STS0);
+
+ if (rc) {
+ dev_err(hdev->dev, "failed to stop TPC 0 QMAN\n");
+ retval = -EIO;
+ }
+
+ rc = goya_stop_queue(hdev,
+ mmTPC0_CMDQ_GLBL_CFG1,
+ mmTPC0_CMDQ_CP_STS,
+ mmTPC0_CMDQ_GLBL_STS0);
+
+ if (rc) {
+ dev_err(hdev->dev, "failed to stop TPC 0 CMDQ\n");
+ retval = -EIO;
+ }
+
+ rc = goya_stop_queue(hdev,
+ mmTPC1_QM_GLBL_CFG1,
+ mmTPC1_QM_CP_STS,
+ mmTPC1_QM_GLBL_STS0);
+
+ if (rc) {
+ dev_err(hdev->dev, "failed to stop TPC 1 QMAN\n");
+ retval = -EIO;
+ }
+
+ rc = goya_stop_queue(hdev,
+ mmTPC1_CMDQ_GLBL_CFG1,
+ mmTPC1_CMDQ_CP_STS,
+ mmTPC1_CMDQ_GLBL_STS0);
+
+ if (rc) {
+ dev_err(hdev->dev, "failed to stop TPC 1 CMDQ\n");
+ retval = -EIO;
+ }
+
+ rc = goya_stop_queue(hdev,
+ mmTPC2_QM_GLBL_CFG1,
+ mmTPC2_QM_CP_STS,
+ mmTPC2_QM_GLBL_STS0);
+
+ if (rc) {
+ dev_err(hdev->dev, "failed to stop TPC 2 QMAN\n");
+ retval = -EIO;
+ }
+
+ rc = goya_stop_queue(hdev,
+ mmTPC2_CMDQ_GLBL_CFG1,
+ mmTPC2_CMDQ_CP_STS,
+ mmTPC2_CMDQ_GLBL_STS0);
+
+ if (rc) {
+ dev_err(hdev->dev, "failed to stop TPC 2 CMDQ\n");
+ retval = -EIO;
+ }
+
+ rc = goya_stop_queue(hdev,
+ mmTPC3_QM_GLBL_CFG1,
+ mmTPC3_QM_CP_STS,
+ mmTPC3_QM_GLBL_STS0);
+
+ if (rc) {
+ dev_err(hdev->dev, "failed to stop TPC 3 QMAN\n");
+ retval = -EIO;
+ }
+
+ rc = goya_stop_queue(hdev,
+ mmTPC3_CMDQ_GLBL_CFG1,
+ mmTPC3_CMDQ_CP_STS,
+ mmTPC3_CMDQ_GLBL_STS0);
+
+ if (rc) {
+ dev_err(hdev->dev, "failed to stop TPC 3 CMDQ\n");
+ retval = -EIO;
+ }
+
+ rc = goya_stop_queue(hdev,
+ mmTPC4_QM_GLBL_CFG1,
+ mmTPC4_QM_CP_STS,
+ mmTPC4_QM_GLBL_STS0);
+
+ if (rc) {
+ dev_err(hdev->dev, "failed to stop TPC 4 QMAN\n");
+ retval = -EIO;
+ }
+
+ rc = goya_stop_queue(hdev,
+ mmTPC4_CMDQ_GLBL_CFG1,
+ mmTPC4_CMDQ_CP_STS,
+ mmTPC4_CMDQ_GLBL_STS0);
+
+ if (rc) {
+ dev_err(hdev->dev, "failed to stop TPC 4 CMDQ\n");
+ retval = -EIO;
+ }
+
+ rc = goya_stop_queue(hdev,
+ mmTPC5_QM_GLBL_CFG1,
+ mmTPC5_QM_CP_STS,
+ mmTPC5_QM_GLBL_STS0);
+
+ if (rc) {
+ dev_err(hdev->dev, "failed to stop TPC 5 QMAN\n");
+ retval = -EIO;
+ }
+
+ rc = goya_stop_queue(hdev,
+ mmTPC5_CMDQ_GLBL_CFG1,
+ mmTPC5_CMDQ_CP_STS,
+ mmTPC5_CMDQ_GLBL_STS0);
+
+ if (rc) {
+ dev_err(hdev->dev, "failed to stop TPC 5 CMDQ\n");
+ retval = -EIO;
+ }
+
+ rc = goya_stop_queue(hdev,
+ mmTPC6_QM_GLBL_CFG1,
+ mmTPC6_QM_CP_STS,
+ mmTPC6_QM_GLBL_STS0);
+
+ if (rc) {
+ dev_err(hdev->dev, "failed to stop TPC 6 QMAN\n");
+ retval = -EIO;
+ }
+
+ rc = goya_stop_queue(hdev,
+ mmTPC6_CMDQ_GLBL_CFG1,
+ mmTPC6_CMDQ_CP_STS,
+ mmTPC6_CMDQ_GLBL_STS0);
+
+ if (rc) {
+ dev_err(hdev->dev, "failed to stop TPC 6 CMDQ\n");
+ retval = -EIO;
+ }
+
+ rc = goya_stop_queue(hdev,
+ mmTPC7_QM_GLBL_CFG1,
+ mmTPC7_QM_CP_STS,
+ mmTPC7_QM_GLBL_STS0);
+
+ if (rc) {
+ dev_err(hdev->dev, "failed to stop TPC 7 QMAN\n");
+ retval = -EIO;
+ }
+
+ rc = goya_stop_queue(hdev,
+ mmTPC7_CMDQ_GLBL_CFG1,
+ mmTPC7_CMDQ_CP_STS,
+ mmTPC7_CMDQ_GLBL_STS0);
+
+ if (rc) {
+ dev_err(hdev->dev, "failed to stop TPC 7 CMDQ\n");
+ retval = -EIO;
+ }
+
+ return retval;
+}
+
+static void goya_dma_stall(struct hl_device *hdev)
+{
+ struct goya_device *goya = hdev->asic_specific;
+
+ if (!(goya->hw_cap_initialized & HW_CAP_DMA))
+ return;
+
+ WREG32(mmDMA_QM_0_GLBL_CFG1, 1 << DMA_QM_0_GLBL_CFG1_DMA_STOP_SHIFT);
+ WREG32(mmDMA_QM_1_GLBL_CFG1, 1 << DMA_QM_1_GLBL_CFG1_DMA_STOP_SHIFT);
+ WREG32(mmDMA_QM_2_GLBL_CFG1, 1 << DMA_QM_2_GLBL_CFG1_DMA_STOP_SHIFT);
+ WREG32(mmDMA_QM_3_GLBL_CFG1, 1 << DMA_QM_3_GLBL_CFG1_DMA_STOP_SHIFT);
+ WREG32(mmDMA_QM_4_GLBL_CFG1, 1 << DMA_QM_4_GLBL_CFG1_DMA_STOP_SHIFT);
+}
+
+static void goya_tpc_stall(struct hl_device *hdev)
+{
+ struct goya_device *goya = hdev->asic_specific;
+
+ if (!(goya->hw_cap_initialized & HW_CAP_TPC))
+ return;
+
+ WREG32(mmTPC0_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT);
+ WREG32(mmTPC1_CFG_TPC_STALL, 1 << TPC1_CFG_TPC_STALL_V_SHIFT);
+ WREG32(mmTPC2_CFG_TPC_STALL, 1 << TPC2_CFG_TPC_STALL_V_SHIFT);
+ WREG32(mmTPC3_CFG_TPC_STALL, 1 << TPC3_CFG_TPC_STALL_V_SHIFT);
+ WREG32(mmTPC4_CFG_TPC_STALL, 1 << TPC4_CFG_TPC_STALL_V_SHIFT);
+ WREG32(mmTPC5_CFG_TPC_STALL, 1 << TPC5_CFG_TPC_STALL_V_SHIFT);
+ WREG32(mmTPC6_CFG_TPC_STALL, 1 << TPC6_CFG_TPC_STALL_V_SHIFT);
+ WREG32(mmTPC7_CFG_TPC_STALL, 1 << TPC7_CFG_TPC_STALL_V_SHIFT);
+}
+
+static void goya_mme_stall(struct hl_device *hdev)
+{
+ struct goya_device *goya = hdev->asic_specific;
+
+ if (!(goya->hw_cap_initialized & HW_CAP_MME))
+ return;
+
+ WREG32(mmMME_STALL, 0xFFFFFFFF);
+}
+
+static int goya_enable_msix(struct hl_device *hdev)
+{
+ struct goya_device *goya = hdev->asic_specific;
+ int cq_cnt = hdev->asic_prop.completion_queues_count;
+ int rc, i, irq_cnt_init, irq;
+
+ if (goya->hw_cap_initialized & HW_CAP_MSIX)
+ return 0;
+
+ rc = pci_alloc_irq_vectors(hdev->pdev, GOYA_MSIX_ENTRIES,
+ GOYA_MSIX_ENTRIES, PCI_IRQ_MSIX);
+ if (rc < 0) {
+ dev_err(hdev->dev,
+ "MSI-X: Failed to enable support -- %d/%d\n",
+ GOYA_MSIX_ENTRIES, rc);
+ return rc;
+ }
+
+ for (i = 0, irq_cnt_init = 0 ; i < cq_cnt ; i++, irq_cnt_init++) {
+ irq = pci_irq_vector(hdev->pdev, i);
+ rc = request_irq(irq, hl_irq_handler_cq, 0, goya_irq_name[i],
+ &hdev->completion_queue[i]);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to request IRQ %d", irq);
+ goto free_irqs;
+ }
+ }
+
+ irq = pci_irq_vector(hdev->pdev, GOYA_EVENT_QUEUE_MSIX_IDX);
+
+ rc = request_irq(irq, hl_irq_handler_eq, 0,
+ goya_irq_name[GOYA_EVENT_QUEUE_MSIX_IDX],
+ &hdev->event_queue);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to request IRQ %d", irq);
+ goto free_irqs;
+ }
+
+ goya->hw_cap_initialized |= HW_CAP_MSIX;
+ return 0;
+
+free_irqs:
+ for (i = 0 ; i < irq_cnt_init ; i++)
+ free_irq(pci_irq_vector(hdev->pdev, i),
+ &hdev->completion_queue[i]);
+
+ pci_free_irq_vectors(hdev->pdev);
+ return rc;
+}
+
+static void goya_sync_irqs(struct hl_device *hdev)
+{
+ struct goya_device *goya = hdev->asic_specific;
+ int i;
+
+ if (!(goya->hw_cap_initialized & HW_CAP_MSIX))
+ return;
+
+ /* Wait for all pending IRQs to be finished */
+ for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
+ synchronize_irq(pci_irq_vector(hdev->pdev, i));
+
+ synchronize_irq(pci_irq_vector(hdev->pdev, GOYA_EVENT_QUEUE_MSIX_IDX));
+}
+
+static void goya_disable_msix(struct hl_device *hdev)
+{
+ struct goya_device *goya = hdev->asic_specific;
+ int i, irq;
+
+ if (!(goya->hw_cap_initialized & HW_CAP_MSIX))
+ return;
+
+ goya_sync_irqs(hdev);
+
+ irq = pci_irq_vector(hdev->pdev, GOYA_EVENT_QUEUE_MSIX_IDX);
+ free_irq(irq, &hdev->event_queue);
+
+ for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) {
+ irq = pci_irq_vector(hdev->pdev, i);
+ free_irq(irq, &hdev->completion_queue[i]);
+ }
+
+ pci_free_irq_vectors(hdev->pdev);
+
+ goya->hw_cap_initialized &= ~HW_CAP_MSIX;
+}
+
+static void goya_enable_timestamp(struct hl_device *hdev)
+{
+ /* Disable the timestamp counter */
+ WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE, 0);
+
+ /* Zero the lower/upper parts of the 64-bit counter */
+ WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE + 0xC, 0);
+ WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE + 0x8, 0);
+
+ /* Enable the counter */
+ WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE, 1);
+}
+
+static void goya_disable_timestamp(struct hl_device *hdev)
+{
+ /* Disable the timestamp counter */
+ WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE, 0);
+}
+
+static void goya_halt_engines(struct hl_device *hdev, bool hard_reset, bool fw_reset)
+{
+ u32 wait_timeout_ms;
+
+ if (hdev->pldm)
+ wait_timeout_ms = GOYA_PLDM_RESET_WAIT_MSEC;
+ else
+ wait_timeout_ms = GOYA_RESET_WAIT_MSEC;
+
+ goya_stop_external_queues(hdev);
+ goya_stop_internal_queues(hdev);
+
+ msleep(wait_timeout_ms);
+
+ goya_dma_stall(hdev);
+ goya_tpc_stall(hdev);
+ goya_mme_stall(hdev);
+
+ msleep(wait_timeout_ms);
+
+ goya_disable_external_queues(hdev);
+ goya_disable_internal_queues(hdev);
+
+ goya_disable_timestamp(hdev);
+
+ if (hard_reset) {
+ goya_disable_msix(hdev);
+ goya_mmu_remove_device_cpu_mappings(hdev);
+ } else {
+ goya_sync_irqs(hdev);
+ }
+}
+
+/*
+ * goya_load_firmware_to_device() - Load LINUX FW code to device.
+ * @hdev: Pointer to hl_device structure.
+ *
+ * Copy LINUX fw code from firmware file to HBM BAR.
+ *
+ * Return: 0 on success, non-zero for failure.
+ */
+static int goya_load_firmware_to_device(struct hl_device *hdev)
+{
+ void __iomem *dst;
+
+ dst = hdev->pcie_bar[DDR_BAR_ID] + LINUX_FW_OFFSET;
+
+ return hl_fw_load_fw_to_device(hdev, GOYA_LINUX_FW_FILE, dst, 0, 0);
+}
+
+/*
+ * goya_load_boot_fit_to_device() - Load boot fit to device.
+ * @hdev: Pointer to hl_device structure.
+ *
+ * Copy boot fit file to SRAM BAR.
+ *
+ * Return: 0 on success, non-zero for failure.
+ */
+static int goya_load_boot_fit_to_device(struct hl_device *hdev)
+{
+ void __iomem *dst;
+
+ dst = hdev->pcie_bar[SRAM_CFG_BAR_ID] + BOOT_FIT_SRAM_OFFSET;
+
+ return hl_fw_load_fw_to_device(hdev, GOYA_BOOT_FIT_FILE, dst, 0, 0);
+}
+
+static void goya_init_dynamic_firmware_loader(struct hl_device *hdev)
+{
+ struct dynamic_fw_load_mgr *dynamic_loader;
+ struct cpu_dyn_regs *dyn_regs;
+
+ dynamic_loader = &hdev->fw_loader.dynamic_loader;
+
+ /*
+ * here we update initial values for few specific dynamic regs (as
+ * before reading the first descriptor from FW those value has to be
+ * hard-coded) in later stages of the protocol those values will be
+ * updated automatically by reading the FW descriptor so data there
+ * will always be up-to-date
+ */
+ dyn_regs = &dynamic_loader->comm_desc.cpu_dyn_regs;
+ dyn_regs->kmd_msg_to_cpu =
+ cpu_to_le32(mmPSOC_GLOBAL_CONF_KMD_MSG_TO_CPU);
+ dyn_regs->cpu_cmd_status_to_host =
+ cpu_to_le32(mmCPU_CMD_STATUS_TO_HOST);
+
+ dynamic_loader->wait_for_bl_timeout = GOYA_WAIT_FOR_BL_TIMEOUT_USEC;
+}
+
+static void goya_init_static_firmware_loader(struct hl_device *hdev)
+{
+ struct static_fw_load_mgr *static_loader;
+
+ static_loader = &hdev->fw_loader.static_loader;
+
+ static_loader->preboot_version_max_off = SRAM_SIZE - VERSION_MAX_LEN;
+ static_loader->boot_fit_version_max_off = SRAM_SIZE - VERSION_MAX_LEN;
+ static_loader->kmd_msg_to_cpu_reg = mmPSOC_GLOBAL_CONF_KMD_MSG_TO_CPU;
+ static_loader->cpu_cmd_status_to_host_reg = mmCPU_CMD_STATUS_TO_HOST;
+ static_loader->cpu_boot_status_reg = mmPSOC_GLOBAL_CONF_CPU_BOOT_STATUS;
+ static_loader->cpu_boot_dev_status0_reg = mmCPU_BOOT_DEV_STS0;
+ static_loader->cpu_boot_dev_status1_reg = mmCPU_BOOT_DEV_STS1;
+ static_loader->boot_err0_reg = mmCPU_BOOT_ERR0;
+ static_loader->boot_err1_reg = mmCPU_BOOT_ERR1;
+ static_loader->preboot_version_offset_reg = mmPREBOOT_VER_OFFSET;
+ static_loader->boot_fit_version_offset_reg = mmUBOOT_VER_OFFSET;
+ static_loader->sram_offset_mask = ~(lower_32_bits(SRAM_BASE_ADDR));
+}
+
+static void goya_init_firmware_preload_params(struct hl_device *hdev)
+{
+ struct pre_fw_load_props *pre_fw_load = &hdev->fw_loader.pre_fw_load;
+
+ pre_fw_load->cpu_boot_status_reg = mmPSOC_GLOBAL_CONF_CPU_BOOT_STATUS;
+ pre_fw_load->sts_boot_dev_sts0_reg = mmCPU_BOOT_DEV_STS0;
+ pre_fw_load->sts_boot_dev_sts1_reg = mmCPU_BOOT_DEV_STS1;
+ pre_fw_load->boot_err0_reg = mmCPU_BOOT_ERR0;
+ pre_fw_load->boot_err1_reg = mmCPU_BOOT_ERR1;
+ pre_fw_load->wait_for_preboot_timeout = GOYA_BOOT_FIT_REQ_TIMEOUT_USEC;
+}
+
+static void goya_init_firmware_loader(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct fw_load_mgr *fw_loader = &hdev->fw_loader;
+
+ /* fill common fields */
+ fw_loader->fw_comp_loaded = FW_TYPE_NONE;
+ fw_loader->boot_fit_img.image_name = GOYA_BOOT_FIT_FILE;
+ fw_loader->linux_img.image_name = GOYA_LINUX_FW_FILE;
+ fw_loader->cpu_timeout = GOYA_CPU_TIMEOUT_USEC;
+ fw_loader->boot_fit_timeout = GOYA_BOOT_FIT_REQ_TIMEOUT_USEC;
+ fw_loader->skip_bmc = false;
+ fw_loader->sram_bar_id = SRAM_CFG_BAR_ID;
+ fw_loader->dram_bar_id = DDR_BAR_ID;
+
+ if (prop->dynamic_fw_load)
+ goya_init_dynamic_firmware_loader(hdev);
+ else
+ goya_init_static_firmware_loader(hdev);
+}
+
+static int goya_init_cpu(struct hl_device *hdev)
+{
+ struct goya_device *goya = hdev->asic_specific;
+ int rc;
+
+ if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU))
+ return 0;
+
+ if (goya->hw_cap_initialized & HW_CAP_CPU)
+ return 0;
+
+ /*
+ * Before pushing u-boot/linux to device, need to set the ddr bar to
+ * base address of dram
+ */
+ if (goya_set_ddr_bar_base(hdev, DRAM_PHYS_BASE) == U64_MAX) {
+ dev_err(hdev->dev,
+ "failed to map DDR bar to DRAM base address\n");
+ return -EIO;
+ }
+
+ rc = hl_fw_init_cpu(hdev);
+
+ if (rc)
+ return rc;
+
+ goya->hw_cap_initialized |= HW_CAP_CPU;
+
+ return 0;
+}
+
+static int goya_mmu_update_asid_hop0_addr(struct hl_device *hdev, u32 asid,
+ u64 phys_addr)
+{
+ u32 status, timeout_usec;
+ int rc;
+
+ if (hdev->pldm)
+ timeout_usec = GOYA_PLDM_MMU_TIMEOUT_USEC;
+ else
+ timeout_usec = MMU_CONFIG_TIMEOUT_USEC;
+
+ WREG32(MMU_HOP0_PA43_12, phys_addr >> MMU_HOP0_PA43_12_SHIFT);
+ WREG32(MMU_HOP0_PA49_44, phys_addr >> MMU_HOP0_PA49_44_SHIFT);
+ WREG32(MMU_ASID_BUSY, 0x80000000 | asid);
+
+ rc = hl_poll_timeout(
+ hdev,
+ MMU_ASID_BUSY,
+ status,
+ !(status & 0x80000000),
+ 1000,
+ timeout_usec);
+
+ if (rc) {
+ dev_err(hdev->dev,
+ "Timeout during MMU hop0 config of asid %d\n", asid);
+ return rc;
+ }
+
+ return 0;
+}
+
+int goya_mmu_init(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct goya_device *goya = hdev->asic_specific;
+ u64 hop0_addr;
+ int rc, i;
+
+ if (!hdev->mmu_enable)
+ return 0;
+
+ if (goya->hw_cap_initialized & HW_CAP_MMU)
+ return 0;
+
+ hdev->dram_default_page_mapping = true;
+
+ for (i = 0 ; i < prop->max_asid ; i++) {
+ hop0_addr = prop->mmu_pgt_addr +
+ (i * prop->mmu_hop_table_size);
+
+ rc = goya_mmu_update_asid_hop0_addr(hdev, i, hop0_addr);
+ if (rc) {
+ dev_err(hdev->dev,
+ "failed to set hop0 addr for asid %d\n", i);
+ goto err;
+ }
+ }
+
+ goya->hw_cap_initialized |= HW_CAP_MMU;
+
+ /* init MMU cache manage page */
+ WREG32(mmSTLB_CACHE_INV_BASE_39_8,
+ lower_32_bits(MMU_CACHE_MNG_ADDR >> 8));
+ WREG32(mmSTLB_CACHE_INV_BASE_49_40, MMU_CACHE_MNG_ADDR >> 40);
+
+ /* Remove follower feature due to performance bug */
+ WREG32_AND(mmSTLB_STLB_FEATURE_EN,
+ (~STLB_STLB_FEATURE_EN_FOLLOWER_EN_MASK));
+
+ hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR | MMU_OP_PHYS_PACK);
+
+ WREG32(mmMMU_MMU_ENABLE, 1);
+ WREG32(mmMMU_SPI_MASK, 0xF);
+
+ return 0;
+
+err:
+ return rc;
+}
+
+/*
+ * goya_hw_init - Goya hardware initialization code
+ *
+ * @hdev: pointer to hl_device structure
+ *
+ * Returns 0 on success
+ *
+ */
+static int goya_hw_init(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ int rc;
+
+ /* Perform read from the device to make sure device is up */
+ RREG32(mmPCIE_DBI_DEVICE_ID_VENDOR_ID_REG);
+
+ /*
+ * Let's mark in the H/W that we have reached this point. We check
+ * this value in the reset_before_init function to understand whether
+ * we need to reset the chip before doing H/W init. This register is
+ * cleared by the H/W upon H/W reset
+ */
+ WREG32(mmHW_STATE, HL_DEVICE_HW_STATE_DIRTY);
+
+ rc = goya_init_cpu(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "failed to initialize CPU\n");
+ return rc;
+ }
+
+ goya_tpc_mbist_workaround(hdev);
+
+ goya_init_golden_registers(hdev);
+
+ /*
+ * After CPU initialization is finished, change DDR bar mapping inside
+ * iATU to point to the start address of the MMU page tables
+ */
+ if (goya_set_ddr_bar_base(hdev, (MMU_PAGE_TABLES_ADDR &
+ ~(prop->dram_pci_bar_size - 0x1ull))) == U64_MAX) {
+ dev_err(hdev->dev,
+ "failed to map DDR bar to MMU page tables\n");
+ return -EIO;
+ }
+
+ rc = goya_mmu_init(hdev);
+ if (rc)
+ return rc;
+
+ goya_init_security(hdev);
+
+ goya_init_dma_qmans(hdev);
+
+ goya_init_mme_qmans(hdev);
+
+ goya_init_tpc_qmans(hdev);
+
+ goya_enable_timestamp(hdev);
+
+ /* MSI-X must be enabled before CPU queues are initialized */
+ rc = goya_enable_msix(hdev);
+ if (rc)
+ goto disable_queues;
+
+ /* Perform read from the device to flush all MSI-X configuration */
+ RREG32(mmPCIE_DBI_DEVICE_ID_VENDOR_ID_REG);
+
+ return 0;
+
+disable_queues:
+ goya_disable_internal_queues(hdev);
+ goya_disable_external_queues(hdev);
+
+ return rc;
+}
+
+static void goya_hw_fini(struct hl_device *hdev, bool hard_reset, bool fw_reset)
+{
+ struct goya_device *goya = hdev->asic_specific;
+ u32 reset_timeout_ms, cpu_timeout_ms, status;
+
+ if (hdev->pldm) {
+ reset_timeout_ms = GOYA_PLDM_RESET_TIMEOUT_MSEC;
+ cpu_timeout_ms = GOYA_PLDM_RESET_WAIT_MSEC;
+ } else {
+ reset_timeout_ms = GOYA_RESET_TIMEOUT_MSEC;
+ cpu_timeout_ms = GOYA_CPU_RESET_WAIT_MSEC;
+ }
+
+ if (hard_reset) {
+ /* I don't know what is the state of the CPU so make sure it is
+ * stopped in any means necessary
+ */
+ WREG32(mmPSOC_GLOBAL_CONF_UBOOT_MAGIC, KMD_MSG_GOTO_WFE);
+ WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR,
+ GOYA_ASYNC_EVENT_ID_HALT_MACHINE);
+
+ msleep(cpu_timeout_ms);
+
+ goya_set_ddr_bar_base(hdev, DRAM_PHYS_BASE);
+ goya_disable_clk_rlx(hdev);
+ goya_set_pll_refclk(hdev);
+
+ WREG32(mmPSOC_GLOBAL_CONF_SW_ALL_RST_CFG, RESET_ALL);
+ dev_dbg(hdev->dev,
+ "Issued HARD reset command, going to wait %dms\n",
+ reset_timeout_ms);
+ } else {
+ WREG32(mmPSOC_GLOBAL_CONF_SW_ALL_RST_CFG, DMA_MME_TPC_RESET);
+ dev_dbg(hdev->dev,
+ "Issued SOFT reset command, going to wait %dms\n",
+ reset_timeout_ms);
+ }
+
+ /*
+ * After hard reset, we can't poll the BTM_FSM register because the PSOC
+ * itself is in reset. In either reset we need to wait until the reset
+ * is deasserted
+ */
+ msleep(reset_timeout_ms);
+
+ status = RREG32(mmPSOC_GLOBAL_CONF_BTM_FSM);
+ if (status & PSOC_GLOBAL_CONF_BTM_FSM_STATE_MASK)
+ dev_err(hdev->dev,
+ "Timeout while waiting for device to reset 0x%x\n",
+ status);
+
+ if (!hard_reset && goya) {
+ goya->hw_cap_initialized &= ~(HW_CAP_DMA | HW_CAP_MME |
+ HW_CAP_GOLDEN | HW_CAP_TPC);
+ WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR,
+ GOYA_ASYNC_EVENT_ID_SOFT_RESET);
+ return;
+ }
+
+ /* Chicken bit to re-initiate boot sequencer flow */
+ WREG32(mmPSOC_GLOBAL_CONF_BOOT_SEQ_RE_START,
+ 1 << PSOC_GLOBAL_CONF_BOOT_SEQ_RE_START_IND_SHIFT);
+ /* Move boot manager FSM to pre boot sequencer init state */
+ WREG32(mmPSOC_GLOBAL_CONF_SW_BTM_FSM,
+ 0xA << PSOC_GLOBAL_CONF_SW_BTM_FSM_CTRL_SHIFT);
+
+ if (goya) {
+ goya->hw_cap_initialized &= ~(HW_CAP_CPU | HW_CAP_CPU_Q |
+ HW_CAP_DDR_0 | HW_CAP_DDR_1 |
+ HW_CAP_DMA | HW_CAP_MME |
+ HW_CAP_MMU | HW_CAP_TPC_MBIST |
+ HW_CAP_GOLDEN | HW_CAP_TPC);
+
+ memset(goya->events_stat, 0, sizeof(goya->events_stat));
+ }
+}
+
+int goya_suspend(struct hl_device *hdev)
+{
+ int rc;
+
+ rc = hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0);
+ if (rc)
+ dev_err(hdev->dev, "Failed to disable PCI access from CPU\n");
+
+ return rc;
+}
+
+int goya_resume(struct hl_device *hdev)
+{
+ return goya_init_iatu(hdev);
+}
+
+static int goya_mmap(struct hl_device *hdev, struct vm_area_struct *vma,
+ void *cpu_addr, dma_addr_t dma_addr, size_t size)
+{
+ int rc;
+
++ vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP |
++ VM_DONTCOPY | VM_NORESERVE);
+
+ rc = dma_mmap_coherent(hdev->dev, vma, cpu_addr,
+ (dma_addr - HOST_PHYS_BASE), size);
+ if (rc)
+ dev_err(hdev->dev, "dma_mmap_coherent error %d", rc);
+
+ return rc;
+}
+
+void goya_ring_doorbell(struct hl_device *hdev, u32 hw_queue_id, u32 pi)
+{
+ u32 db_reg_offset, db_value;
+
+ switch (hw_queue_id) {
+ case GOYA_QUEUE_ID_DMA_0:
+ db_reg_offset = mmDMA_QM_0_PQ_PI;
+ break;
+
+ case GOYA_QUEUE_ID_DMA_1:
+ db_reg_offset = mmDMA_QM_1_PQ_PI;
+ break;
+
+ case GOYA_QUEUE_ID_DMA_2:
+ db_reg_offset = mmDMA_QM_2_PQ_PI;
+ break;
+
+ case GOYA_QUEUE_ID_DMA_3:
+ db_reg_offset = mmDMA_QM_3_PQ_PI;
+ break;
+
+ case GOYA_QUEUE_ID_DMA_4:
+ db_reg_offset = mmDMA_QM_4_PQ_PI;
+ break;
+
+ case GOYA_QUEUE_ID_CPU_PQ:
+ db_reg_offset = mmCPU_IF_PF_PQ_PI;
+ break;
+
+ case GOYA_QUEUE_ID_MME:
+ db_reg_offset = mmMME_QM_PQ_PI;
+ break;
+
+ case GOYA_QUEUE_ID_TPC0:
+ db_reg_offset = mmTPC0_QM_PQ_PI;
+ break;
+
+ case GOYA_QUEUE_ID_TPC1:
+ db_reg_offset = mmTPC1_QM_PQ_PI;
+ break;
+
+ case GOYA_QUEUE_ID_TPC2:
+ db_reg_offset = mmTPC2_QM_PQ_PI;
+ break;
+
+ case GOYA_QUEUE_ID_TPC3:
+ db_reg_offset = mmTPC3_QM_PQ_PI;
+ break;
+
+ case GOYA_QUEUE_ID_TPC4:
+ db_reg_offset = mmTPC4_QM_PQ_PI;
+ break;
+
+ case GOYA_QUEUE_ID_TPC5:
+ db_reg_offset = mmTPC5_QM_PQ_PI;
+ break;
+
+ case GOYA_QUEUE_ID_TPC6:
+ db_reg_offset = mmTPC6_QM_PQ_PI;
+ break;
+
+ case GOYA_QUEUE_ID_TPC7:
+ db_reg_offset = mmTPC7_QM_PQ_PI;
+ break;
+
+ default:
+ /* Should never get here */
+ dev_err(hdev->dev, "H/W queue %d is invalid. Can't set pi\n",
+ hw_queue_id);
+ return;
+ }
+
+ db_value = pi;
+
+ /* ring the doorbell */
+ WREG32(db_reg_offset, db_value);
+
+ if (hw_queue_id == GOYA_QUEUE_ID_CPU_PQ) {
+ /* make sure device CPU will read latest data from host */
+ mb();
+ WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR,
+ GOYA_ASYNC_EVENT_ID_PI_UPDATE);
+ }
+}
+
+void goya_pqe_write(struct hl_device *hdev, __le64 *pqe, struct hl_bd *bd)
+{
+ /* The QMANs are on the SRAM so need to copy to IO space */
+ memcpy_toio((void __iomem *) pqe, bd, sizeof(struct hl_bd));
+}
+
+static void *goya_dma_alloc_coherent(struct hl_device *hdev, size_t size,
+ dma_addr_t *dma_handle, gfp_t flags)
+{
+ void *kernel_addr = dma_alloc_coherent(&hdev->pdev->dev, size,
+ dma_handle, flags);
+
+ /* Shift to the device's base physical address of host memory */
+ if (kernel_addr)
+ *dma_handle += HOST_PHYS_BASE;
+
+ return kernel_addr;
+}
+
+static void goya_dma_free_coherent(struct hl_device *hdev, size_t size,
+ void *cpu_addr, dma_addr_t dma_handle)
+{
+ /* Cancel the device's base physical address of host memory */
+ dma_addr_t fixed_dma_handle = dma_handle - HOST_PHYS_BASE;
+
+ dma_free_coherent(&hdev->pdev->dev, size, cpu_addr, fixed_dma_handle);
+}
+
+int goya_scrub_device_mem(struct hl_device *hdev)
+{
+ return 0;
+}
+
+void *goya_get_int_queue_base(struct hl_device *hdev, u32 queue_id,
+ dma_addr_t *dma_handle, u16 *queue_len)
+{
+ void *base;
+ u32 offset;
+
+ *dma_handle = hdev->asic_prop.sram_base_address;
+
+ base = (__force void *) hdev->pcie_bar[SRAM_CFG_BAR_ID];
+
+ switch (queue_id) {
+ case GOYA_QUEUE_ID_MME:
+ offset = MME_QMAN_BASE_OFFSET;
+ *queue_len = MME_QMAN_LENGTH;
+ break;
+ case GOYA_QUEUE_ID_TPC0:
+ offset = TPC0_QMAN_BASE_OFFSET;
+ *queue_len = TPC_QMAN_LENGTH;
+ break;
+ case GOYA_QUEUE_ID_TPC1:
+ offset = TPC1_QMAN_BASE_OFFSET;
+ *queue_len = TPC_QMAN_LENGTH;
+ break;
+ case GOYA_QUEUE_ID_TPC2:
+ offset = TPC2_QMAN_BASE_OFFSET;
+ *queue_len = TPC_QMAN_LENGTH;
+ break;
+ case GOYA_QUEUE_ID_TPC3:
+ offset = TPC3_QMAN_BASE_OFFSET;
+ *queue_len = TPC_QMAN_LENGTH;
+ break;
+ case GOYA_QUEUE_ID_TPC4:
+ offset = TPC4_QMAN_BASE_OFFSET;
+ *queue_len = TPC_QMAN_LENGTH;
+ break;
+ case GOYA_QUEUE_ID_TPC5:
+ offset = TPC5_QMAN_BASE_OFFSET;
+ *queue_len = TPC_QMAN_LENGTH;
+ break;
+ case GOYA_QUEUE_ID_TPC6:
+ offset = TPC6_QMAN_BASE_OFFSET;
+ *queue_len = TPC_QMAN_LENGTH;
+ break;
+ case GOYA_QUEUE_ID_TPC7:
+ offset = TPC7_QMAN_BASE_OFFSET;
+ *queue_len = TPC_QMAN_LENGTH;
+ break;
+ default:
+ dev_err(hdev->dev, "Got invalid queue id %d\n", queue_id);
+ return NULL;
+ }
+
+ base += offset;
+ *dma_handle += offset;
+
+ return base;
+}
+
+static int goya_send_job_on_qman0(struct hl_device *hdev, struct hl_cs_job *job)
+{
+ struct packet_msg_prot *fence_pkt;
+ u32 *fence_ptr;
+ dma_addr_t fence_dma_addr;
+ struct hl_cb *cb;
+ u32 tmp, timeout;
+ int rc;
+
+ if (hdev->pldm)
+ timeout = GOYA_PLDM_QMAN0_TIMEOUT_USEC;
+ else
+ timeout = HL_DEVICE_TIMEOUT_USEC;
+
+ if (!hdev->asic_funcs->is_device_idle(hdev, NULL, 0, NULL)) {
+ dev_err_ratelimited(hdev->dev,
+ "Can't send driver job on QMAN0 because the device is not idle\n");
+ return -EBUSY;
+ }
+
+ fence_ptr = hl_asic_dma_pool_zalloc(hdev, 4, GFP_KERNEL, &fence_dma_addr);
+ if (!fence_ptr) {
+ dev_err(hdev->dev,
+ "Failed to allocate fence memory for QMAN0\n");
+ return -ENOMEM;
+ }
+
+ goya_qman0_set_security(hdev, true);
+
+ cb = job->patched_cb;
+
+ fence_pkt = cb->kernel_address +
+ job->job_cb_size - sizeof(struct packet_msg_prot);
+
+ tmp = (PACKET_MSG_PROT << GOYA_PKT_CTL_OPCODE_SHIFT) |
+ (1 << GOYA_PKT_CTL_EB_SHIFT) |
+ (1 << GOYA_PKT_CTL_MB_SHIFT);
+ fence_pkt->ctl = cpu_to_le32(tmp);
+ fence_pkt->value = cpu_to_le32(GOYA_QMAN0_FENCE_VAL);
+ fence_pkt->addr = cpu_to_le64(fence_dma_addr);
+
+ rc = hl_hw_queue_send_cb_no_cmpl(hdev, GOYA_QUEUE_ID_DMA_0,
+ job->job_cb_size, cb->bus_address);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to send CB on QMAN0, %d\n", rc);
+ goto free_fence_ptr;
+ }
+
+ rc = hl_poll_timeout_memory(hdev, fence_ptr, tmp,
+ (tmp == GOYA_QMAN0_FENCE_VAL), 1000,
+ timeout, true);
+
+ hl_hw_queue_inc_ci_kernel(hdev, GOYA_QUEUE_ID_DMA_0);
+
+ if (rc == -ETIMEDOUT) {
+ dev_err(hdev->dev, "QMAN0 Job timeout (0x%x)\n", tmp);
+ goto free_fence_ptr;
+ }
+
+free_fence_ptr:
+ hl_asic_dma_pool_free(hdev, (void *) fence_ptr, fence_dma_addr);
+
+ goya_qman0_set_security(hdev, false);
+
+ return rc;
+}
+
+int goya_send_cpu_message(struct hl_device *hdev, u32 *msg, u16 len,
+ u32 timeout, u64 *result)
+{
+ struct goya_device *goya = hdev->asic_specific;
+
+ if (!(goya->hw_cap_initialized & HW_CAP_CPU_Q)) {
+ if (result)
+ *result = 0;
+ return 0;
+ }
+
+ if (!timeout)
+ timeout = GOYA_MSG_TO_CPU_TIMEOUT_USEC;
+
+ return hl_fw_send_cpu_message(hdev, GOYA_QUEUE_ID_CPU_PQ, msg, len,
+ timeout, result);
+}
+
+int goya_test_queue(struct hl_device *hdev, u32 hw_queue_id)
+{
+ struct packet_msg_prot *fence_pkt;
+ dma_addr_t pkt_dma_addr;
+ u32 fence_val, tmp;
+ dma_addr_t fence_dma_addr;
+ u32 *fence_ptr;
+ int rc;
+
+ fence_val = GOYA_QMAN0_FENCE_VAL;
+
+ fence_ptr = hl_asic_dma_pool_zalloc(hdev, 4, GFP_KERNEL, &fence_dma_addr);
+ if (!fence_ptr) {
+ dev_err(hdev->dev,
+ "Failed to allocate memory for H/W queue %d testing\n",
+ hw_queue_id);
+ return -ENOMEM;
+ }
+
+ *fence_ptr = 0;
+
+ fence_pkt = hl_asic_dma_pool_zalloc(hdev, sizeof(struct packet_msg_prot), GFP_KERNEL,
+ &pkt_dma_addr);
+ if (!fence_pkt) {
+ dev_err(hdev->dev,
+ "Failed to allocate packet for H/W queue %d testing\n",
+ hw_queue_id);
+ rc = -ENOMEM;
+ goto free_fence_ptr;
+ }
+
+ tmp = (PACKET_MSG_PROT << GOYA_PKT_CTL_OPCODE_SHIFT) |
+ (1 << GOYA_PKT_CTL_EB_SHIFT) |
+ (1 << GOYA_PKT_CTL_MB_SHIFT);
+ fence_pkt->ctl = cpu_to_le32(tmp);
+ fence_pkt->value = cpu_to_le32(fence_val);
+ fence_pkt->addr = cpu_to_le64(fence_dma_addr);
+
+ rc = hl_hw_queue_send_cb_no_cmpl(hdev, hw_queue_id,
+ sizeof(struct packet_msg_prot),
+ pkt_dma_addr);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to send fence packet to H/W queue %d\n",
+ hw_queue_id);
+ goto free_pkt;
+ }
+
+ rc = hl_poll_timeout_memory(hdev, fence_ptr, tmp, (tmp == fence_val),
+ 1000, GOYA_TEST_QUEUE_WAIT_USEC, true);
+
+ hl_hw_queue_inc_ci_kernel(hdev, hw_queue_id);
+
+ if (rc == -ETIMEDOUT) {
+ dev_err(hdev->dev,
+ "H/W queue %d test failed (scratch(0x%08llX) == 0x%08X)\n",
+ hw_queue_id, (unsigned long long) fence_dma_addr, tmp);
+ rc = -EIO;
+ }
+
+free_pkt:
+ hl_asic_dma_pool_free(hdev, (void *) fence_pkt, pkt_dma_addr);
+free_fence_ptr:
+ hl_asic_dma_pool_free(hdev, (void *) fence_ptr, fence_dma_addr);
+ return rc;
+}
+
+int goya_test_cpu_queue(struct hl_device *hdev)
+{
+ struct goya_device *goya = hdev->asic_specific;
+
+ /*
+ * check capability here as send_cpu_message() won't update the result
+ * value if no capability
+ */
+ if (!(goya->hw_cap_initialized & HW_CAP_CPU_Q))
+ return 0;
+
+ return hl_fw_test_cpu_queue(hdev);
+}
+
+int goya_test_queues(struct hl_device *hdev)
+{
+ int i, rc, ret_val = 0;
+
+ for (i = 0 ; i < NUMBER_OF_EXT_HW_QUEUES ; i++) {
+ rc = goya_test_queue(hdev, i);
+ if (rc)
+ ret_val = -EINVAL;
+ }
+
+ return ret_val;
+}
+
+static void *goya_dma_pool_zalloc(struct hl_device *hdev, size_t size,
+ gfp_t mem_flags, dma_addr_t *dma_handle)
+{
+ void *kernel_addr;
+
+ if (size > GOYA_DMA_POOL_BLK_SIZE)
+ return NULL;
+
+ kernel_addr = dma_pool_zalloc(hdev->dma_pool, mem_flags, dma_handle);
+
+ /* Shift to the device's base physical address of host memory */
+ if (kernel_addr)
+ *dma_handle += HOST_PHYS_BASE;
+
+ return kernel_addr;
+}
+
+static void goya_dma_pool_free(struct hl_device *hdev, void *vaddr,
+ dma_addr_t dma_addr)
+{
+ /* Cancel the device's base physical address of host memory */
+ dma_addr_t fixed_dma_addr = dma_addr - HOST_PHYS_BASE;
+
+ dma_pool_free(hdev->dma_pool, vaddr, fixed_dma_addr);
+}
+
+void *goya_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
+ dma_addr_t *dma_handle)
+{
+ void *vaddr;
+
+ vaddr = hl_fw_cpu_accessible_dma_pool_alloc(hdev, size, dma_handle);
+ *dma_handle = (*dma_handle) - hdev->cpu_accessible_dma_address +
+ VA_CPU_ACCESSIBLE_MEM_ADDR;
+
+ return vaddr;
+}
+
+void goya_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
+ void *vaddr)
+{
+ hl_fw_cpu_accessible_dma_pool_free(hdev, size, vaddr);
+}
+
+u32 goya_get_dma_desc_list_size(struct hl_device *hdev, struct sg_table *sgt)
+{
+ struct scatterlist *sg, *sg_next_iter;
+ u32 count, dma_desc_cnt;
+ u64 len, len_next;
+ dma_addr_t addr, addr_next;
+
+ dma_desc_cnt = 0;
+
+ for_each_sgtable_dma_sg(sgt, sg, count) {
+ len = sg_dma_len(sg);
+ addr = sg_dma_address(sg);
+
+ if (len == 0)
+ break;
+
+ while ((count + 1) < sgt->nents) {
+ sg_next_iter = sg_next(sg);
+ len_next = sg_dma_len(sg_next_iter);
+ addr_next = sg_dma_address(sg_next_iter);
+
+ if (len_next == 0)
+ break;
+
+ if ((addr + len == addr_next) &&
+ (len + len_next <= DMA_MAX_TRANSFER_SIZE)) {
+ len += len_next;
+ count++;
+ sg = sg_next_iter;
+ } else {
+ break;
+ }
+ }
+
+ dma_desc_cnt++;
+ }
+
+ return dma_desc_cnt * sizeof(struct packet_lin_dma);
+}
+
+static int goya_pin_memory_before_cs(struct hl_device *hdev,
+ struct hl_cs_parser *parser,
+ struct packet_lin_dma *user_dma_pkt,
+ u64 addr, enum dma_data_direction dir)
+{
+ struct hl_userptr *userptr;
+ int rc;
+
+ if (hl_userptr_is_pinned(hdev, addr, le32_to_cpu(user_dma_pkt->tsize),
+ parser->job_userptr_list, &userptr))
+ goto already_pinned;
+
+ userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
+ if (!userptr)
+ return -ENOMEM;
+
+ rc = hl_pin_host_memory(hdev, addr, le32_to_cpu(user_dma_pkt->tsize),
+ userptr);
+ if (rc)
+ goto free_userptr;
+
+ list_add_tail(&userptr->job_node, parser->job_userptr_list);
+
+ rc = hdev->asic_funcs->asic_dma_map_sgtable(hdev, userptr->sgt, dir);
+ if (rc) {
+ dev_err(hdev->dev, "failed to map sgt with DMA region\n");
+ goto unpin_memory;
+ }
+
+ userptr->dma_mapped = true;
+ userptr->dir = dir;
+
+already_pinned:
+ parser->patched_cb_size +=
+ goya_get_dma_desc_list_size(hdev, userptr->sgt);
+
+ return 0;
+
+unpin_memory:
+ list_del(&userptr->job_node);
+ hl_unpin_host_memory(hdev, userptr);
+free_userptr:
+ kfree(userptr);
+ return rc;
+}
+
+static int goya_validate_dma_pkt_host(struct hl_device *hdev,
+ struct hl_cs_parser *parser,
+ struct packet_lin_dma *user_dma_pkt)
+{
+ u64 device_memory_addr, addr;
+ enum dma_data_direction dir;
+ enum hl_goya_dma_direction user_dir;
+ bool sram_addr = true;
+ bool skip_host_mem_pin = false;
+ bool user_memset;
+ u32 ctl;
+ int rc = 0;
+
+ ctl = le32_to_cpu(user_dma_pkt->ctl);
+
+ user_dir = (ctl & GOYA_PKT_LIN_DMA_CTL_DMA_DIR_MASK) >>
+ GOYA_PKT_LIN_DMA_CTL_DMA_DIR_SHIFT;
+
+ user_memset = (ctl & GOYA_PKT_LIN_DMA_CTL_MEMSET_MASK) >>
+ GOYA_PKT_LIN_DMA_CTL_MEMSET_SHIFT;
+
+ switch (user_dir) {
+ case HL_DMA_HOST_TO_DRAM:
+ dev_dbg(hdev->dev, "DMA direction is HOST --> DRAM\n");
+ dir = DMA_TO_DEVICE;
+ sram_addr = false;
+ addr = le64_to_cpu(user_dma_pkt->src_addr);
+ device_memory_addr = le64_to_cpu(user_dma_pkt->dst_addr);
+ if (user_memset)
+ skip_host_mem_pin = true;
+ break;
+
+ case HL_DMA_DRAM_TO_HOST:
+ dev_dbg(hdev->dev, "DMA direction is DRAM --> HOST\n");
+ dir = DMA_FROM_DEVICE;
+ sram_addr = false;
+ addr = le64_to_cpu(user_dma_pkt->dst_addr);
+ device_memory_addr = le64_to_cpu(user_dma_pkt->src_addr);
+ break;
+
+ case HL_DMA_HOST_TO_SRAM:
+ dev_dbg(hdev->dev, "DMA direction is HOST --> SRAM\n");
+ dir = DMA_TO_DEVICE;
+ addr = le64_to_cpu(user_dma_pkt->src_addr);
+ device_memory_addr = le64_to_cpu(user_dma_pkt->dst_addr);
+ if (user_memset)
+ skip_host_mem_pin = true;
+ break;
+
+ case HL_DMA_SRAM_TO_HOST:
+ dev_dbg(hdev->dev, "DMA direction is SRAM --> HOST\n");
+ dir = DMA_FROM_DEVICE;
+ addr = le64_to_cpu(user_dma_pkt->dst_addr);
+ device_memory_addr = le64_to_cpu(user_dma_pkt->src_addr);
+ break;
+ default:
+ dev_err(hdev->dev, "DMA direction %d is unsupported/undefined\n", user_dir);
+ return -EFAULT;
+ }
+
+ if (sram_addr) {
+ if (!hl_mem_area_inside_range(device_memory_addr,
+ le32_to_cpu(user_dma_pkt->tsize),
+ hdev->asic_prop.sram_user_base_address,
+ hdev->asic_prop.sram_end_address)) {
+
+ dev_err(hdev->dev,
+ "SRAM address 0x%llx + 0x%x is invalid\n",
+ device_memory_addr,
+ user_dma_pkt->tsize);
+ return -EFAULT;
+ }
+ } else {
+ if (!hl_mem_area_inside_range(device_memory_addr,
+ le32_to_cpu(user_dma_pkt->tsize),
+ hdev->asic_prop.dram_user_base_address,
+ hdev->asic_prop.dram_end_address)) {
+
+ dev_err(hdev->dev,
+ "DRAM address 0x%llx + 0x%x is invalid\n",
+ device_memory_addr,
+ user_dma_pkt->tsize);
+ return -EFAULT;
+ }
+ }
+
+ if (skip_host_mem_pin)
+ parser->patched_cb_size += sizeof(*user_dma_pkt);
+ else {
+ if ((dir == DMA_TO_DEVICE) &&
+ (parser->hw_queue_id > GOYA_QUEUE_ID_DMA_1)) {
+ dev_err(hdev->dev,
+ "Can't DMA from host on queue other then 1\n");
+ return -EFAULT;
+ }
+
+ rc = goya_pin_memory_before_cs(hdev, parser, user_dma_pkt,
+ addr, dir);
+ }
+
+ return rc;
+}
+
+static int goya_validate_dma_pkt_no_host(struct hl_device *hdev,
+ struct hl_cs_parser *parser,
+ struct packet_lin_dma *user_dma_pkt)
+{
+ u64 sram_memory_addr, dram_memory_addr;
+ enum hl_goya_dma_direction user_dir;
+ u32 ctl;
+
+ ctl = le32_to_cpu(user_dma_pkt->ctl);
+ user_dir = (ctl & GOYA_PKT_LIN_DMA_CTL_DMA_DIR_MASK) >>
+ GOYA_PKT_LIN_DMA_CTL_DMA_DIR_SHIFT;
+
+ if (user_dir == HL_DMA_DRAM_TO_SRAM) {
+ dev_dbg(hdev->dev, "DMA direction is DRAM --> SRAM\n");
+ dram_memory_addr = le64_to_cpu(user_dma_pkt->src_addr);
+ sram_memory_addr = le64_to_cpu(user_dma_pkt->dst_addr);
+ } else {
+ dev_dbg(hdev->dev, "DMA direction is SRAM --> DRAM\n");
+ sram_memory_addr = le64_to_cpu(user_dma_pkt->src_addr);
+ dram_memory_addr = le64_to_cpu(user_dma_pkt->dst_addr);
+ }
+
+ if (!hl_mem_area_inside_range(sram_memory_addr,
+ le32_to_cpu(user_dma_pkt->tsize),
+ hdev->asic_prop.sram_user_base_address,
+ hdev->asic_prop.sram_end_address)) {
+ dev_err(hdev->dev, "SRAM address 0x%llx + 0x%x is invalid\n",
+ sram_memory_addr, user_dma_pkt->tsize);
+ return -EFAULT;
+ }
+
+ if (!hl_mem_area_inside_range(dram_memory_addr,
+ le32_to_cpu(user_dma_pkt->tsize),
+ hdev->asic_prop.dram_user_base_address,
+ hdev->asic_prop.dram_end_address)) {
+ dev_err(hdev->dev, "DRAM address 0x%llx + 0x%x is invalid\n",
+ dram_memory_addr, user_dma_pkt->tsize);
+ return -EFAULT;
+ }
+
+ parser->patched_cb_size += sizeof(*user_dma_pkt);
+
+ return 0;
+}
+
+static int goya_validate_dma_pkt_no_mmu(struct hl_device *hdev,
+ struct hl_cs_parser *parser,
+ struct packet_lin_dma *user_dma_pkt)
+{
+ enum hl_goya_dma_direction user_dir;
+ u32 ctl;
+ int rc;
+
+ dev_dbg(hdev->dev, "DMA packet details:\n");
+ dev_dbg(hdev->dev, "source == 0x%llx\n",
+ le64_to_cpu(user_dma_pkt->src_addr));
+ dev_dbg(hdev->dev, "destination == 0x%llx\n",
+ le64_to_cpu(user_dma_pkt->dst_addr));
+ dev_dbg(hdev->dev, "size == %u\n", le32_to_cpu(user_dma_pkt->tsize));
+
+ ctl = le32_to_cpu(user_dma_pkt->ctl);
+ user_dir = (ctl & GOYA_PKT_LIN_DMA_CTL_DMA_DIR_MASK) >>
+ GOYA_PKT_LIN_DMA_CTL_DMA_DIR_SHIFT;
+
+ /*
+ * Special handling for DMA with size 0. The H/W has a bug where
+ * this can cause the QMAN DMA to get stuck, so block it here.
+ */
+ if (user_dma_pkt->tsize == 0) {
+ dev_err(hdev->dev,
+ "Got DMA with size 0, might reset the device\n");
+ return -EINVAL;
+ }
+
+ if ((user_dir == HL_DMA_DRAM_TO_SRAM) || (user_dir == HL_DMA_SRAM_TO_DRAM))
+ rc = goya_validate_dma_pkt_no_host(hdev, parser, user_dma_pkt);
+ else
+ rc = goya_validate_dma_pkt_host(hdev, parser, user_dma_pkt);
+
+ return rc;
+}
+
+static int goya_validate_dma_pkt_mmu(struct hl_device *hdev,
+ struct hl_cs_parser *parser,
+ struct packet_lin_dma *user_dma_pkt)
+{
+ dev_dbg(hdev->dev, "DMA packet details:\n");
+ dev_dbg(hdev->dev, "source == 0x%llx\n",
+ le64_to_cpu(user_dma_pkt->src_addr));
+ dev_dbg(hdev->dev, "destination == 0x%llx\n",
+ le64_to_cpu(user_dma_pkt->dst_addr));
+ dev_dbg(hdev->dev, "size == %u\n", le32_to_cpu(user_dma_pkt->tsize));
+
+ /*
+ * WA for HW-23.
+ * We can't allow user to read from Host using QMANs other than 1.
+ * PMMU and HPMMU addresses are equal, check only one of them.
+ */
+ if (parser->hw_queue_id != GOYA_QUEUE_ID_DMA_1 &&
+ hl_mem_area_inside_range(le64_to_cpu(user_dma_pkt->src_addr),
+ le32_to_cpu(user_dma_pkt->tsize),
+ hdev->asic_prop.pmmu.start_addr,
+ hdev->asic_prop.pmmu.end_addr)) {
+ dev_err(hdev->dev,
+ "Can't DMA from host on queue other then 1\n");
+ return -EFAULT;
+ }
+
+ if (user_dma_pkt->tsize == 0) {
+ dev_err(hdev->dev,
+ "Got DMA with size 0, might reset the device\n");
+ return -EINVAL;
+ }
+
+ parser->patched_cb_size += sizeof(*user_dma_pkt);
+
+ return 0;
+}
+
+static int goya_validate_wreg32(struct hl_device *hdev,
+ struct hl_cs_parser *parser,
+ struct packet_wreg32 *wreg_pkt)
+{
+ struct goya_device *goya = hdev->asic_specific;
+ u32 sob_start_addr, sob_end_addr;
+ u16 reg_offset;
+
+ reg_offset = le32_to_cpu(wreg_pkt->ctl) &
+ GOYA_PKT_WREG32_CTL_REG_OFFSET_MASK;
+
+ dev_dbg(hdev->dev, "WREG32 packet details:\n");
+ dev_dbg(hdev->dev, "reg_offset == 0x%x\n", reg_offset);
+ dev_dbg(hdev->dev, "value == 0x%x\n",
+ le32_to_cpu(wreg_pkt->value));
+
+ if (reg_offset != (mmDMA_CH_0_WR_COMP_ADDR_LO & 0x1FFF)) {
+ dev_err(hdev->dev, "WREG32 packet with illegal address 0x%x\n",
+ reg_offset);
+ return -EPERM;
+ }
+
+ /*
+ * With MMU, DMA channels are not secured, so it doesn't matter where
+ * the WR COMP will be written to because it will go out with
+ * non-secured property
+ */
+ if (goya->hw_cap_initialized & HW_CAP_MMU)
+ return 0;
+
+ sob_start_addr = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
+ sob_end_addr = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_1023);
+
+ if ((le32_to_cpu(wreg_pkt->value) < sob_start_addr) ||
+ (le32_to_cpu(wreg_pkt->value) > sob_end_addr)) {
+
+ dev_err(hdev->dev, "WREG32 packet with illegal value 0x%x\n",
+ wreg_pkt->value);
+ return -EPERM;
+ }
+
+ return 0;
+}
+
+static int goya_validate_cb(struct hl_device *hdev,
+ struct hl_cs_parser *parser, bool is_mmu)
+{
+ u32 cb_parsed_length = 0;
+ int rc = 0;
+
+ parser->patched_cb_size = 0;
+
+ /* cb_user_size is more than 0 so loop will always be executed */
+ while (cb_parsed_length < parser->user_cb_size) {
+ enum packet_id pkt_id;
+ u16 pkt_size;
+ struct goya_packet *user_pkt;
+
+ user_pkt = parser->user_cb->kernel_address + cb_parsed_length;
+
+ pkt_id = (enum packet_id) (
+ (le64_to_cpu(user_pkt->header) &
+ PACKET_HEADER_PACKET_ID_MASK) >>
+ PACKET_HEADER_PACKET_ID_SHIFT);
+
+ if (!validate_packet_id(pkt_id)) {
+ dev_err(hdev->dev, "Invalid packet id %u\n", pkt_id);
+ rc = -EINVAL;
+ break;
+ }
+
+ pkt_size = goya_packet_sizes[pkt_id];
+ cb_parsed_length += pkt_size;
+ if (cb_parsed_length > parser->user_cb_size) {
+ dev_err(hdev->dev,
+ "packet 0x%x is out of CB boundary\n", pkt_id);
+ rc = -EINVAL;
+ break;
+ }
+
+ switch (pkt_id) {
+ case PACKET_WREG_32:
+ /*
+ * Although it is validated after copy in patch_cb(),
+ * need to validate here as well because patch_cb() is
+ * not called in MMU path while this function is called
+ */
+ rc = goya_validate_wreg32(hdev,
+ parser, (struct packet_wreg32 *) user_pkt);
+ parser->patched_cb_size += pkt_size;
+ break;
+
+ case PACKET_WREG_BULK:
+ dev_err(hdev->dev,
+ "User not allowed to use WREG_BULK\n");
+ rc = -EPERM;
+ break;
+
+ case PACKET_MSG_PROT:
+ dev_err(hdev->dev,
+ "User not allowed to use MSG_PROT\n");
+ rc = -EPERM;
+ break;
+
+ case PACKET_CP_DMA:
+ dev_err(hdev->dev, "User not allowed to use CP_DMA\n");
+ rc = -EPERM;
+ break;
+
+ case PACKET_STOP:
+ dev_err(hdev->dev, "User not allowed to use STOP\n");
+ rc = -EPERM;
+ break;
+
+ case PACKET_LIN_DMA:
+ if (is_mmu)
+ rc = goya_validate_dma_pkt_mmu(hdev, parser,
+ (struct packet_lin_dma *) user_pkt);
+ else
+ rc = goya_validate_dma_pkt_no_mmu(hdev, parser,
+ (struct packet_lin_dma *) user_pkt);
+ break;
+
+ case PACKET_MSG_LONG:
+ case PACKET_MSG_SHORT:
+ case PACKET_FENCE:
+ case PACKET_NOP:
+ parser->patched_cb_size += pkt_size;
+ break;
+
+ default:
+ dev_err(hdev->dev, "Invalid packet header 0x%x\n",
+ pkt_id);
+ rc = -EINVAL;
+ break;
+ }
+
+ if (rc)
+ break;
+ }
+
+ /*
+ * The new CB should have space at the end for two MSG_PROT packets:
+ * 1. A packet that will act as a completion packet
+ * 2. A packet that will generate MSI-X interrupt
+ */
+ parser->patched_cb_size += sizeof(struct packet_msg_prot) * 2;
+
+ return rc;
+}
+
+static int goya_patch_dma_packet(struct hl_device *hdev,
+ struct hl_cs_parser *parser,
+ struct packet_lin_dma *user_dma_pkt,
+ struct packet_lin_dma *new_dma_pkt,
+ u32 *new_dma_pkt_size)
+{
+ struct hl_userptr *userptr;
+ struct scatterlist *sg, *sg_next_iter;
+ u32 count, dma_desc_cnt;
+ u64 len, len_next;
+ dma_addr_t dma_addr, dma_addr_next;
+ enum hl_goya_dma_direction user_dir;
+ u64 device_memory_addr, addr;
+ enum dma_data_direction dir;
+ struct sg_table *sgt;
+ bool skip_host_mem_pin = false;
+ bool user_memset;
+ u32 user_rdcomp_mask, user_wrcomp_mask, ctl;
+
+ ctl = le32_to_cpu(user_dma_pkt->ctl);
+
+ user_dir = (ctl & GOYA_PKT_LIN_DMA_CTL_DMA_DIR_MASK) >>
+ GOYA_PKT_LIN_DMA_CTL_DMA_DIR_SHIFT;
+
+ user_memset = (ctl & GOYA_PKT_LIN_DMA_CTL_MEMSET_MASK) >>
+ GOYA_PKT_LIN_DMA_CTL_MEMSET_SHIFT;
+
+ if ((user_dir == HL_DMA_DRAM_TO_SRAM) || (user_dir == HL_DMA_SRAM_TO_DRAM) ||
+ (user_dma_pkt->tsize == 0)) {
+ memcpy(new_dma_pkt, user_dma_pkt, sizeof(*new_dma_pkt));
+ *new_dma_pkt_size = sizeof(*new_dma_pkt);
+ return 0;
+ }
+
+ if ((user_dir == HL_DMA_HOST_TO_DRAM) || (user_dir == HL_DMA_HOST_TO_SRAM)) {
+ addr = le64_to_cpu(user_dma_pkt->src_addr);
+ device_memory_addr = le64_to_cpu(user_dma_pkt->dst_addr);
+ dir = DMA_TO_DEVICE;
+ if (user_memset)
+ skip_host_mem_pin = true;
+ } else {
+ addr = le64_to_cpu(user_dma_pkt->dst_addr);
+ device_memory_addr = le64_to_cpu(user_dma_pkt->src_addr);
+ dir = DMA_FROM_DEVICE;
+ }
+
+ if ((!skip_host_mem_pin) &&
+ (hl_userptr_is_pinned(hdev, addr,
+ le32_to_cpu(user_dma_pkt->tsize),
+ parser->job_userptr_list, &userptr) == false)) {
+ dev_err(hdev->dev, "Userptr 0x%llx + 0x%x NOT mapped\n",
+ addr, user_dma_pkt->tsize);
+ return -EFAULT;
+ }
+
+ if ((user_memset) && (dir == DMA_TO_DEVICE)) {
+ memcpy(new_dma_pkt, user_dma_pkt, sizeof(*user_dma_pkt));
+ *new_dma_pkt_size = sizeof(*user_dma_pkt);
+ return 0;
+ }
+
+ user_rdcomp_mask = ctl & GOYA_PKT_LIN_DMA_CTL_RDCOMP_MASK;
+
+ user_wrcomp_mask = ctl & GOYA_PKT_LIN_DMA_CTL_WRCOMP_MASK;
+
+ sgt = userptr->sgt;
+ dma_desc_cnt = 0;
+
+ for_each_sgtable_dma_sg(sgt, sg, count) {
+ len = sg_dma_len(sg);
+ dma_addr = sg_dma_address(sg);
+
+ if (len == 0)
+ break;
+
+ while ((count + 1) < sgt->nents) {
+ sg_next_iter = sg_next(sg);
+ len_next = sg_dma_len(sg_next_iter);
+ dma_addr_next = sg_dma_address(sg_next_iter);
+
+ if (len_next == 0)
+ break;
+
+ if ((dma_addr + len == dma_addr_next) &&
+ (len + len_next <= DMA_MAX_TRANSFER_SIZE)) {
+ len += len_next;
+ count++;
+ sg = sg_next_iter;
+ } else {
+ break;
+ }
+ }
+
+ ctl = le32_to_cpu(user_dma_pkt->ctl);
+ if (likely(dma_desc_cnt))
+ ctl &= ~GOYA_PKT_CTL_EB_MASK;
+ ctl &= ~(GOYA_PKT_LIN_DMA_CTL_RDCOMP_MASK |
+ GOYA_PKT_LIN_DMA_CTL_WRCOMP_MASK);
+ new_dma_pkt->ctl = cpu_to_le32(ctl);
+ new_dma_pkt->tsize = cpu_to_le32((u32) len);
+
+ if (dir == DMA_TO_DEVICE) {
+ new_dma_pkt->src_addr = cpu_to_le64(dma_addr);
+ new_dma_pkt->dst_addr = cpu_to_le64(device_memory_addr);
+ } else {
+ new_dma_pkt->src_addr = cpu_to_le64(device_memory_addr);
+ new_dma_pkt->dst_addr = cpu_to_le64(dma_addr);
+ }
+
+ if (!user_memset)
+ device_memory_addr += len;
+ dma_desc_cnt++;
+ new_dma_pkt++;
+ }
+
+ if (!dma_desc_cnt) {
+ dev_err(hdev->dev,
+ "Error of 0 SG entries when patching DMA packet\n");
+ return -EFAULT;
+ }
+
+ /* Fix the last dma packet - rdcomp/wrcomp must be as user set them */
+ new_dma_pkt--;
+ new_dma_pkt->ctl |= cpu_to_le32(user_rdcomp_mask | user_wrcomp_mask);
+
+ *new_dma_pkt_size = dma_desc_cnt * sizeof(struct packet_lin_dma);
+
+ return 0;
+}
+
+static int goya_patch_cb(struct hl_device *hdev,
+ struct hl_cs_parser *parser)
+{
+ u32 cb_parsed_length = 0;
+ u32 cb_patched_cur_length = 0;
+ int rc = 0;
+
+ /* cb_user_size is more than 0 so loop will always be executed */
+ while (cb_parsed_length < parser->user_cb_size) {
+ enum packet_id pkt_id;
+ u16 pkt_size;
+ u32 new_pkt_size = 0;
+ struct goya_packet *user_pkt, *kernel_pkt;
+
+ user_pkt = parser->user_cb->kernel_address + cb_parsed_length;
+ kernel_pkt = parser->patched_cb->kernel_address +
+ cb_patched_cur_length;
+
+ pkt_id = (enum packet_id) (
+ (le64_to_cpu(user_pkt->header) &
+ PACKET_HEADER_PACKET_ID_MASK) >>
+ PACKET_HEADER_PACKET_ID_SHIFT);
+
+ if (!validate_packet_id(pkt_id)) {
+ dev_err(hdev->dev, "Invalid packet id %u\n", pkt_id);
+ rc = -EINVAL;
+ break;
+ }
+
+ pkt_size = goya_packet_sizes[pkt_id];
+ cb_parsed_length += pkt_size;
+ if (cb_parsed_length > parser->user_cb_size) {
+ dev_err(hdev->dev,
+ "packet 0x%x is out of CB boundary\n", pkt_id);
+ rc = -EINVAL;
+ break;
+ }
+
+ switch (pkt_id) {
+ case PACKET_LIN_DMA:
+ rc = goya_patch_dma_packet(hdev, parser,
+ (struct packet_lin_dma *) user_pkt,
+ (struct packet_lin_dma *) kernel_pkt,
+ &new_pkt_size);
+ cb_patched_cur_length += new_pkt_size;
+ break;
+
+ case PACKET_WREG_32:
+ memcpy(kernel_pkt, user_pkt, pkt_size);
+ cb_patched_cur_length += pkt_size;
+ rc = goya_validate_wreg32(hdev, parser,
+ (struct packet_wreg32 *) kernel_pkt);
+ break;
+
+ case PACKET_WREG_BULK:
+ dev_err(hdev->dev,
+ "User not allowed to use WREG_BULK\n");
+ rc = -EPERM;
+ break;
+
+ case PACKET_MSG_PROT:
+ dev_err(hdev->dev,
+ "User not allowed to use MSG_PROT\n");
+ rc = -EPERM;
+ break;
+
+ case PACKET_CP_DMA:
+ dev_err(hdev->dev, "User not allowed to use CP_DMA\n");
+ rc = -EPERM;
+ break;
+
+ case PACKET_STOP:
+ dev_err(hdev->dev, "User not allowed to use STOP\n");
+ rc = -EPERM;
+ break;
+
+ case PACKET_MSG_LONG:
+ case PACKET_MSG_SHORT:
+ case PACKET_FENCE:
+ case PACKET_NOP:
+ memcpy(kernel_pkt, user_pkt, pkt_size);
+ cb_patched_cur_length += pkt_size;
+ break;
+
+ default:
+ dev_err(hdev->dev, "Invalid packet header 0x%x\n",
+ pkt_id);
+ rc = -EINVAL;
+ break;
+ }
+
+ if (rc)
+ break;
+ }
+
+ return rc;
+}
+
+static int goya_parse_cb_mmu(struct hl_device *hdev,
+ struct hl_cs_parser *parser)
+{
+ u64 handle;
+ u32 patched_cb_size;
+ struct hl_cb *user_cb;
+ int rc;
+
+ /*
+ * The new CB should have space at the end for two MSG_PROT pkt:
+ * 1. A packet that will act as a completion packet
+ * 2. A packet that will generate MSI-X interrupt
+ */
+ parser->patched_cb_size = parser->user_cb_size +
+ sizeof(struct packet_msg_prot) * 2;
+
+ rc = hl_cb_create(hdev, &hdev->kernel_mem_mgr, hdev->kernel_ctx,
+ parser->patched_cb_size, false, false,
+ &handle);
+
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to allocate patched CB for DMA CS %d\n",
+ rc);
+ return rc;
+ }
+
+ parser->patched_cb = hl_cb_get(&hdev->kernel_mem_mgr, handle);
+ /* hl_cb_get should never fail here */
+ if (!parser->patched_cb) {
+ dev_crit(hdev->dev, "DMA CB handle invalid 0x%llx\n", handle);
+ rc = -EFAULT;
+ goto out;
+ }
+
+ /*
+ * The check that parser->user_cb_size <= parser->user_cb->size was done
+ * in validate_queue_index().
+ */
+ memcpy(parser->patched_cb->kernel_address,
+ parser->user_cb->kernel_address,
+ parser->user_cb_size);
+
+ patched_cb_size = parser->patched_cb_size;
+
+ /* validate patched CB instead of user CB */
+ user_cb = parser->user_cb;
+ parser->user_cb = parser->patched_cb;
+ rc = goya_validate_cb(hdev, parser, true);
+ parser->user_cb = user_cb;
+
+ if (rc) {
+ hl_cb_put(parser->patched_cb);
+ goto out;
+ }
+
+ if (patched_cb_size != parser->patched_cb_size) {
+ dev_err(hdev->dev, "user CB size mismatch\n");
+ hl_cb_put(parser->patched_cb);
+ rc = -EINVAL;
+ goto out;
+ }
+
+out:
+ /*
+ * Always call cb destroy here because we still have 1 reference
+ * to it by calling cb_get earlier. After the job will be completed,
+ * cb_put will release it, but here we want to remove it from the
+ * idr
+ */
+ hl_cb_destroy(&hdev->kernel_mem_mgr, handle);
+
+ return rc;
+}
+
+static int goya_parse_cb_no_mmu(struct hl_device *hdev,
+ struct hl_cs_parser *parser)
+{
+ u64 handle;
+ int rc;
+
+ rc = goya_validate_cb(hdev, parser, false);
+
+ if (rc)
+ goto free_userptr;
+
+ rc = hl_cb_create(hdev, &hdev->kernel_mem_mgr, hdev->kernel_ctx,
+ parser->patched_cb_size, false, false,
+ &handle);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to allocate patched CB for DMA CS %d\n", rc);
+ goto free_userptr;
+ }
+
+ parser->patched_cb = hl_cb_get(&hdev->kernel_mem_mgr, handle);
+ /* hl_cb_get should never fail here */
+ if (!parser->patched_cb) {
+ dev_crit(hdev->dev, "DMA CB handle invalid 0x%llx\n", handle);
+ rc = -EFAULT;
+ goto out;
+ }
+
+ rc = goya_patch_cb(hdev, parser);
+
+ if (rc)
+ hl_cb_put(parser->patched_cb);
+
+out:
+ /*
+ * Always call cb destroy here because we still have 1 reference
+ * to it by calling cb_get earlier. After the job will be completed,
+ * cb_put will release it, but here we want to remove it from the
+ * idr
+ */
+ hl_cb_destroy(&hdev->kernel_mem_mgr, handle);
+
+free_userptr:
+ if (rc)
+ hl_userptr_delete_list(hdev, parser->job_userptr_list);
+ return rc;
+}
+
+static int goya_parse_cb_no_ext_queue(struct hl_device *hdev,
+ struct hl_cs_parser *parser)
+{
+ struct asic_fixed_properties *asic_prop = &hdev->asic_prop;
+ struct goya_device *goya = hdev->asic_specific;
+
+ if (goya->hw_cap_initialized & HW_CAP_MMU)
+ return 0;
+
+ /* For internal queue jobs, just check if CB address is valid */
+ if (hl_mem_area_inside_range(
+ (u64) (uintptr_t) parser->user_cb,
+ parser->user_cb_size,
+ asic_prop->sram_user_base_address,
+ asic_prop->sram_end_address))
+ return 0;
+
+ if (hl_mem_area_inside_range(
+ (u64) (uintptr_t) parser->user_cb,
+ parser->user_cb_size,
+ asic_prop->dram_user_base_address,
+ asic_prop->dram_end_address))
+ return 0;
+
+ dev_err(hdev->dev,
+ "Internal CB address 0x%px + 0x%x is not in SRAM nor in DRAM\n",
+ parser->user_cb, parser->user_cb_size);
+
+ return -EFAULT;
+}
+
+int goya_cs_parser(struct hl_device *hdev, struct hl_cs_parser *parser)
+{
+ struct goya_device *goya = hdev->asic_specific;
+
+ if (parser->queue_type == QUEUE_TYPE_INT)
+ return goya_parse_cb_no_ext_queue(hdev, parser);
+
+ if (goya->hw_cap_initialized & HW_CAP_MMU)
+ return goya_parse_cb_mmu(hdev, parser);
+ else
+ return goya_parse_cb_no_mmu(hdev, parser);
+}
+
+void goya_add_end_of_cb_packets(struct hl_device *hdev, void *kernel_address,
+ u32 len, u32 original_len, u64 cq_addr, u32 cq_val,
+ u32 msix_vec, bool eb)
+{
+ struct packet_msg_prot *cq_pkt;
+ u32 tmp;
+
+ cq_pkt = kernel_address + len - (sizeof(struct packet_msg_prot) * 2);
+
+ tmp = (PACKET_MSG_PROT << GOYA_PKT_CTL_OPCODE_SHIFT) |
+ (1 << GOYA_PKT_CTL_EB_SHIFT) |
+ (1 << GOYA_PKT_CTL_MB_SHIFT);
+ cq_pkt->ctl = cpu_to_le32(tmp);
+ cq_pkt->value = cpu_to_le32(cq_val);
+ cq_pkt->addr = cpu_to_le64(cq_addr);
+
+ cq_pkt++;
+
+ tmp = (PACKET_MSG_PROT << GOYA_PKT_CTL_OPCODE_SHIFT) |
+ (1 << GOYA_PKT_CTL_MB_SHIFT);
+ cq_pkt->ctl = cpu_to_le32(tmp);
+ cq_pkt->value = cpu_to_le32(msix_vec & 0x7FF);
+ cq_pkt->addr = cpu_to_le64(CFG_BASE + mmPCIE_DBI_MSIX_DOORBELL_OFF);
+}
+
+void goya_update_eq_ci(struct hl_device *hdev, u32 val)
+{
+ WREG32(mmCPU_EQ_CI, val);
+}
+
+void goya_restore_phase_topology(struct hl_device *hdev)
+{
+
+}
+
+static void goya_clear_sm_regs(struct hl_device *hdev)
+{
+ int i, num_of_sob_in_longs, num_of_mon_in_longs;
+
+ num_of_sob_in_longs =
+ ((mmSYNC_MNGR_SOB_OBJ_1023 - mmSYNC_MNGR_SOB_OBJ_0) + 4);
+
+ num_of_mon_in_longs =
+ ((mmSYNC_MNGR_MON_STATUS_255 - mmSYNC_MNGR_MON_STATUS_0) + 4);
+
+ for (i = 0 ; i < num_of_sob_in_longs ; i += 4)
+ WREG32(mmSYNC_MNGR_SOB_OBJ_0 + i, 0);
+
+ for (i = 0 ; i < num_of_mon_in_longs ; i += 4)
+ WREG32(mmSYNC_MNGR_MON_STATUS_0 + i, 0);
+
+ /* Flush all WREG to prevent race */
+ i = RREG32(mmSYNC_MNGR_SOB_OBJ_0);
+}
+
+static int goya_debugfs_read_dma(struct hl_device *hdev, u64 addr, u32 size, void *blob_addr)
+{
+ dev_err(hdev->dev, "Reading via DMA is unimplemented yet\n");
+ return -EPERM;
+}
+
+static u64 goya_read_pte(struct hl_device *hdev, u64 addr)
+{
+ struct goya_device *goya = hdev->asic_specific;
+
+ if (hdev->reset_info.hard_reset_pending)
+ return U64_MAX;
+
+ return readq(hdev->pcie_bar[DDR_BAR_ID] +
+ (addr - goya->ddr_bar_cur_addr));
+}
+
+static void goya_write_pte(struct hl_device *hdev, u64 addr, u64 val)
+{
+ struct goya_device *goya = hdev->asic_specific;
+
+ if (hdev->reset_info.hard_reset_pending)
+ return;
+
+ writeq(val, hdev->pcie_bar[DDR_BAR_ID] +
+ (addr - goya->ddr_bar_cur_addr));
+}
+
+static const char *_goya_get_event_desc(u16 event_type)
+{
+ switch (event_type) {
+ case GOYA_ASYNC_EVENT_ID_PCIE_IF:
+ return "PCIe_if";
+ case GOYA_ASYNC_EVENT_ID_TPC0_ECC:
+ case GOYA_ASYNC_EVENT_ID_TPC1_ECC:
+ case GOYA_ASYNC_EVENT_ID_TPC2_ECC:
+ case GOYA_ASYNC_EVENT_ID_TPC3_ECC:
+ case GOYA_ASYNC_EVENT_ID_TPC4_ECC:
+ case GOYA_ASYNC_EVENT_ID_TPC5_ECC:
+ case GOYA_ASYNC_EVENT_ID_TPC6_ECC:
+ case GOYA_ASYNC_EVENT_ID_TPC7_ECC:
+ return "TPC%d_ecc";
+ case GOYA_ASYNC_EVENT_ID_MME_ECC:
+ return "MME_ecc";
+ case GOYA_ASYNC_EVENT_ID_MME_ECC_EXT:
+ return "MME_ecc_ext";
+ case GOYA_ASYNC_EVENT_ID_MMU_ECC:
+ return "MMU_ecc";
+ case GOYA_ASYNC_EVENT_ID_DMA_MACRO:
+ return "DMA_macro";
+ case GOYA_ASYNC_EVENT_ID_DMA_ECC:
+ return "DMA_ecc";
+ case GOYA_ASYNC_EVENT_ID_CPU_IF_ECC:
+ return "CPU_if_ecc";
+ case GOYA_ASYNC_EVENT_ID_PSOC_MEM:
+ return "PSOC_mem";
+ case GOYA_ASYNC_EVENT_ID_PSOC_CORESIGHT:
+ return "PSOC_coresight";
+ case GOYA_ASYNC_EVENT_ID_SRAM0 ... GOYA_ASYNC_EVENT_ID_SRAM29:
+ return "SRAM%d";
+ case GOYA_ASYNC_EVENT_ID_GIC500:
+ return "GIC500";
+ case GOYA_ASYNC_EVENT_ID_PLL0 ... GOYA_ASYNC_EVENT_ID_PLL6:
+ return "PLL%d";
+ case GOYA_ASYNC_EVENT_ID_AXI_ECC:
+ return "AXI_ecc";
+ case GOYA_ASYNC_EVENT_ID_L2_RAM_ECC:
+ return "L2_ram_ecc";
+ case GOYA_ASYNC_EVENT_ID_PSOC_GPIO_05_SW_RESET:
+ return "PSOC_gpio_05_sw_reset";
+ case GOYA_ASYNC_EVENT_ID_PSOC_GPIO_10_VRHOT_ICRIT:
+ return "PSOC_gpio_10_vrhot_icrit";
+ case GOYA_ASYNC_EVENT_ID_PCIE_DEC:
+ return "PCIe_dec";
+ case GOYA_ASYNC_EVENT_ID_TPC0_DEC:
+ case GOYA_ASYNC_EVENT_ID_TPC1_DEC:
+ case GOYA_ASYNC_EVENT_ID_TPC2_DEC:
+ case GOYA_ASYNC_EVENT_ID_TPC3_DEC:
+ case GOYA_ASYNC_EVENT_ID_TPC4_DEC:
+ case GOYA_ASYNC_EVENT_ID_TPC5_DEC:
+ case GOYA_ASYNC_EVENT_ID_TPC6_DEC:
+ case GOYA_ASYNC_EVENT_ID_TPC7_DEC:
+ return "TPC%d_dec";
+ case GOYA_ASYNC_EVENT_ID_MME_WACS:
+ return "MME_wacs";
+ case GOYA_ASYNC_EVENT_ID_MME_WACSD:
+ return "MME_wacsd";
+ case GOYA_ASYNC_EVENT_ID_CPU_AXI_SPLITTER:
+ return "CPU_axi_splitter";
+ case GOYA_ASYNC_EVENT_ID_PSOC_AXI_DEC:
+ return "PSOC_axi_dec";
+ case GOYA_ASYNC_EVENT_ID_PSOC:
+ return "PSOC";
+ case GOYA_ASYNC_EVENT_ID_TPC0_KRN_ERR:
+ case GOYA_ASYNC_EVENT_ID_TPC1_KRN_ERR:
+ case GOYA_ASYNC_EVENT_ID_TPC2_KRN_ERR:
+ case GOYA_ASYNC_EVENT_ID_TPC3_KRN_ERR:
+ case GOYA_ASYNC_EVENT_ID_TPC4_KRN_ERR:
+ case GOYA_ASYNC_EVENT_ID_TPC5_KRN_ERR:
+ case GOYA_ASYNC_EVENT_ID_TPC6_KRN_ERR:
+ case GOYA_ASYNC_EVENT_ID_TPC7_KRN_ERR:
+ return "TPC%d_krn_err";
+ case GOYA_ASYNC_EVENT_ID_TPC0_CMDQ ... GOYA_ASYNC_EVENT_ID_TPC7_CMDQ:
+ return "TPC%d_cq";
+ case GOYA_ASYNC_EVENT_ID_TPC0_QM ... GOYA_ASYNC_EVENT_ID_TPC7_QM:
+ return "TPC%d_qm";
+ case GOYA_ASYNC_EVENT_ID_MME_QM:
+ return "MME_qm";
+ case GOYA_ASYNC_EVENT_ID_MME_CMDQ:
+ return "MME_cq";
+ case GOYA_ASYNC_EVENT_ID_DMA0_QM ... GOYA_ASYNC_EVENT_ID_DMA4_QM:
+ return "DMA%d_qm";
+ case GOYA_ASYNC_EVENT_ID_DMA0_CH ... GOYA_ASYNC_EVENT_ID_DMA4_CH:
+ return "DMA%d_ch";
+ case GOYA_ASYNC_EVENT_ID_TPC0_BMON_SPMU:
+ case GOYA_ASYNC_EVENT_ID_TPC1_BMON_SPMU:
+ case GOYA_ASYNC_EVENT_ID_TPC2_BMON_SPMU:
+ case GOYA_ASYNC_EVENT_ID_TPC3_BMON_SPMU:
+ case GOYA_ASYNC_EVENT_ID_TPC4_BMON_SPMU:
+ case GOYA_ASYNC_EVENT_ID_TPC5_BMON_SPMU:
+ case GOYA_ASYNC_EVENT_ID_TPC6_BMON_SPMU:
+ case GOYA_ASYNC_EVENT_ID_TPC7_BMON_SPMU:
+ return "TPC%d_bmon_spmu";
+ case GOYA_ASYNC_EVENT_ID_DMA_BM_CH0 ... GOYA_ASYNC_EVENT_ID_DMA_BM_CH4:
+ return "DMA_bm_ch%d";
+ case GOYA_ASYNC_EVENT_ID_FIX_POWER_ENV_S:
+ return "POWER_ENV_S";
+ case GOYA_ASYNC_EVENT_ID_FIX_POWER_ENV_E:
+ return "POWER_ENV_E";
+ case GOYA_ASYNC_EVENT_ID_FIX_THERMAL_ENV_S:
+ return "THERMAL_ENV_S";
+ case GOYA_ASYNC_EVENT_ID_FIX_THERMAL_ENV_E:
+ return "THERMAL_ENV_E";
+ case GOYA_ASYNC_EVENT_PKT_QUEUE_OUT_SYNC:
+ return "QUEUE_OUT_OF_SYNC";
+ default:
+ return "N/A";
+ }
+}
+
+static void goya_get_event_desc(u16 event_type, char *desc, size_t size)
+{
+ u8 index;
+
+ switch (event_type) {
+ case GOYA_ASYNC_EVENT_ID_TPC0_ECC:
+ case GOYA_ASYNC_EVENT_ID_TPC1_ECC:
+ case GOYA_ASYNC_EVENT_ID_TPC2_ECC:
+ case GOYA_ASYNC_EVENT_ID_TPC3_ECC:
+ case GOYA_ASYNC_EVENT_ID_TPC4_ECC:
+ case GOYA_ASYNC_EVENT_ID_TPC5_ECC:
+ case GOYA_ASYNC_EVENT_ID_TPC6_ECC:
+ case GOYA_ASYNC_EVENT_ID_TPC7_ECC:
+ index = (event_type - GOYA_ASYNC_EVENT_ID_TPC0_ECC) / 3;
+ snprintf(desc, size, _goya_get_event_desc(event_type), index);
+ break;
+ case GOYA_ASYNC_EVENT_ID_SRAM0 ... GOYA_ASYNC_EVENT_ID_SRAM29:
+ index = event_type - GOYA_ASYNC_EVENT_ID_SRAM0;
+ snprintf(desc, size, _goya_get_event_desc(event_type), index);
+ break;
+ case GOYA_ASYNC_EVENT_ID_PLL0 ... GOYA_ASYNC_EVENT_ID_PLL6:
+ index = event_type - GOYA_ASYNC_EVENT_ID_PLL0;
+ snprintf(desc, size, _goya_get_event_desc(event_type), index);
+ break;
+ case GOYA_ASYNC_EVENT_ID_TPC0_DEC:
+ case GOYA_ASYNC_EVENT_ID_TPC1_DEC:
+ case GOYA_ASYNC_EVENT_ID_TPC2_DEC:
+ case GOYA_ASYNC_EVENT_ID_TPC3_DEC:
+ case GOYA_ASYNC_EVENT_ID_TPC4_DEC:
+ case GOYA_ASYNC_EVENT_ID_TPC5_DEC:
+ case GOYA_ASYNC_EVENT_ID_TPC6_DEC:
+ case GOYA_ASYNC_EVENT_ID_TPC7_DEC:
+ index = (event_type - GOYA_ASYNC_EVENT_ID_TPC0_DEC) / 3;
+ snprintf(desc, size, _goya_get_event_desc(event_type), index);
+ break;
+ case GOYA_ASYNC_EVENT_ID_TPC0_KRN_ERR:
+ case GOYA_ASYNC_EVENT_ID_TPC1_KRN_ERR:
+ case GOYA_ASYNC_EVENT_ID_TPC2_KRN_ERR:
+ case GOYA_ASYNC_EVENT_ID_TPC3_KRN_ERR:
+ case GOYA_ASYNC_EVENT_ID_TPC4_KRN_ERR:
+ case GOYA_ASYNC_EVENT_ID_TPC5_KRN_ERR:
+ case GOYA_ASYNC_EVENT_ID_TPC6_KRN_ERR:
+ case GOYA_ASYNC_EVENT_ID_TPC7_KRN_ERR:
+ index = (event_type - GOYA_ASYNC_EVENT_ID_TPC0_KRN_ERR) / 10;
+ snprintf(desc, size, _goya_get_event_desc(event_type), index);
+ break;
+ case GOYA_ASYNC_EVENT_ID_TPC0_CMDQ ... GOYA_ASYNC_EVENT_ID_TPC7_CMDQ:
+ index = event_type - GOYA_ASYNC_EVENT_ID_TPC0_CMDQ;
+ snprintf(desc, size, _goya_get_event_desc(event_type), index);
+ break;
+ case GOYA_ASYNC_EVENT_ID_TPC0_QM ... GOYA_ASYNC_EVENT_ID_TPC7_QM:
+ index = event_type - GOYA_ASYNC_EVENT_ID_TPC0_QM;
+ snprintf(desc, size, _goya_get_event_desc(event_type), index);
+ break;
+ case GOYA_ASYNC_EVENT_ID_DMA0_QM ... GOYA_ASYNC_EVENT_ID_DMA4_QM:
+ index = event_type - GOYA_ASYNC_EVENT_ID_DMA0_QM;
+ snprintf(desc, size, _goya_get_event_desc(event_type), index);
+ break;
+ case GOYA_ASYNC_EVENT_ID_DMA0_CH ... GOYA_ASYNC_EVENT_ID_DMA4_CH:
+ index = event_type - GOYA_ASYNC_EVENT_ID_DMA0_CH;
+ snprintf(desc, size, _goya_get_event_desc(event_type), index);
+ break;
+ case GOYA_ASYNC_EVENT_ID_TPC0_BMON_SPMU:
+ case GOYA_ASYNC_EVENT_ID_TPC1_BMON_SPMU:
+ case GOYA_ASYNC_EVENT_ID_TPC2_BMON_SPMU:
+ case GOYA_ASYNC_EVENT_ID_TPC3_BMON_SPMU:
+ case GOYA_ASYNC_EVENT_ID_TPC4_BMON_SPMU:
+ case GOYA_ASYNC_EVENT_ID_TPC5_BMON_SPMU:
+ case GOYA_ASYNC_EVENT_ID_TPC6_BMON_SPMU:
+ case GOYA_ASYNC_EVENT_ID_TPC7_BMON_SPMU:
+ index = (event_type - GOYA_ASYNC_EVENT_ID_TPC0_BMON_SPMU) / 10;
+ snprintf(desc, size, _goya_get_event_desc(event_type), index);
+ break;
+ case GOYA_ASYNC_EVENT_ID_DMA_BM_CH0 ... GOYA_ASYNC_EVENT_ID_DMA_BM_CH4:
+ index = event_type - GOYA_ASYNC_EVENT_ID_DMA_BM_CH0;
+ snprintf(desc, size, _goya_get_event_desc(event_type), index);
+ break;
+ case GOYA_ASYNC_EVENT_PKT_QUEUE_OUT_SYNC:
+ snprintf(desc, size, _goya_get_event_desc(event_type));
+ break;
+ default:
+ snprintf(desc, size, _goya_get_event_desc(event_type));
+ break;
+ }
+}
+
+static void goya_print_razwi_info(struct hl_device *hdev)
+{
+ if (RREG32(mmDMA_MACRO_RAZWI_LBW_WT_VLD)) {
+ dev_err_ratelimited(hdev->dev, "Illegal write to LBW\n");
+ WREG32(mmDMA_MACRO_RAZWI_LBW_WT_VLD, 0);
+ }
+
+ if (RREG32(mmDMA_MACRO_RAZWI_LBW_RD_VLD)) {
+ dev_err_ratelimited(hdev->dev, "Illegal read from LBW\n");
+ WREG32(mmDMA_MACRO_RAZWI_LBW_RD_VLD, 0);
+ }
+
+ if (RREG32(mmDMA_MACRO_RAZWI_HBW_WT_VLD)) {
+ dev_err_ratelimited(hdev->dev, "Illegal write to HBW\n");
+ WREG32(mmDMA_MACRO_RAZWI_HBW_WT_VLD, 0);
+ }
+
+ if (RREG32(mmDMA_MACRO_RAZWI_HBW_RD_VLD)) {
+ dev_err_ratelimited(hdev->dev, "Illegal read from HBW\n");
+ WREG32(mmDMA_MACRO_RAZWI_HBW_RD_VLD, 0);
+ }
+}
+
+static void goya_print_mmu_error_info(struct hl_device *hdev)
+{
+ struct goya_device *goya = hdev->asic_specific;
+ u64 addr;
+ u32 val;
+
+ if (!(goya->hw_cap_initialized & HW_CAP_MMU))
+ return;
+
+ val = RREG32(mmMMU_PAGE_ERROR_CAPTURE);
+ if (val & MMU_PAGE_ERROR_CAPTURE_ENTRY_VALID_MASK) {
+ addr = val & MMU_PAGE_ERROR_CAPTURE_VA_49_32_MASK;
+ addr <<= 32;
+ addr |= RREG32(mmMMU_PAGE_ERROR_CAPTURE_VA);
+
+ dev_err_ratelimited(hdev->dev, "MMU page fault on va 0x%llx\n",
+ addr);
+
+ WREG32(mmMMU_PAGE_ERROR_CAPTURE, 0);
+ }
+}
+
+static void goya_print_out_of_sync_info(struct hl_device *hdev,
+ struct cpucp_pkt_sync_err *sync_err)
+{
+ struct hl_hw_queue *q = &hdev->kernel_queues[GOYA_QUEUE_ID_CPU_PQ];
+
+ dev_err(hdev->dev, "Out of sync with FW, FW: pi=%u, ci=%u, LKD: pi=%u, ci=%d\n",
+ le32_to_cpu(sync_err->pi), le32_to_cpu(sync_err->ci), q->pi, atomic_read(&q->ci));
+}
+
+static void goya_print_irq_info(struct hl_device *hdev, u16 event_type,
+ bool razwi)
+{
+ char desc[20] = "";
+
+ goya_get_event_desc(event_type, desc, sizeof(desc));
+ dev_err_ratelimited(hdev->dev, "Received H/W interrupt %d [\"%s\"]\n",
+ event_type, desc);
+
+ if (razwi) {
+ goya_print_razwi_info(hdev);
+ goya_print_mmu_error_info(hdev);
+ }
+}
+
+static int goya_unmask_irq_arr(struct hl_device *hdev, u32 *irq_arr,
+ size_t irq_arr_size)
+{
+ struct cpucp_unmask_irq_arr_packet *pkt;
+ size_t total_pkt_size;
+ u64 result;
+ int rc;
+ int irq_num_entries, irq_arr_index;
+ __le32 *goya_irq_arr;
+
+ total_pkt_size = sizeof(struct cpucp_unmask_irq_arr_packet) +
+ irq_arr_size;
+
+ /* data should be aligned to 8 bytes in order to CPU-CP to copy it */
+ total_pkt_size = (total_pkt_size + 0x7) & ~0x7;
+
+ /* total_pkt_size is casted to u16 later on */
+ if (total_pkt_size > USHRT_MAX) {
+ dev_err(hdev->dev, "too many elements in IRQ array\n");
+ return -EINVAL;
+ }
+
+ pkt = kzalloc(total_pkt_size, GFP_KERNEL);
+ if (!pkt)
+ return -ENOMEM;
+
+ irq_num_entries = irq_arr_size / sizeof(irq_arr[0]);
+ pkt->length = cpu_to_le32(irq_num_entries);
+
+ /* We must perform any necessary endianness conversation on the irq
+ * array being passed to the goya hardware
+ */
+ for (irq_arr_index = 0, goya_irq_arr = (__le32 *) &pkt->irqs;
+ irq_arr_index < irq_num_entries ; irq_arr_index++)
+ goya_irq_arr[irq_arr_index] =
+ cpu_to_le32(irq_arr[irq_arr_index]);
+
+ pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY <<
+ CPUCP_PKT_CTL_OPCODE_SHIFT);
+
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) pkt,
+ total_pkt_size, 0, &result);
+
+ if (rc)
+ dev_err(hdev->dev, "failed to unmask IRQ array\n");
+
+ kfree(pkt);
+
+ return rc;
+}
+
+static int goya_compute_reset_late_init(struct hl_device *hdev)
+{
+ /*
+ * Unmask all IRQs since some could have been received
+ * during the soft reset
+ */
+ return goya_unmask_irq_arr(hdev, goya_all_events,
+ sizeof(goya_all_events));
+}
+
+static int goya_unmask_irq(struct hl_device *hdev, u16 event_type)
+{
+ struct cpucp_packet pkt;
+ u64 result;
+ int rc;
+
+ memset(&pkt, 0, sizeof(pkt));
+
+ pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ <<
+ CPUCP_PKT_CTL_OPCODE_SHIFT);
+ pkt.value = cpu_to_le64(event_type);
+
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
+ 0, &result);
+
+ if (rc)
+ dev_err(hdev->dev, "failed to unmask RAZWI IRQ %d", event_type);
+
+ return rc;
+}
+
+static void goya_print_clk_change_info(struct hl_device *hdev, u16 event_type)
+{
+ ktime_t zero_time = ktime_set(0, 0);
+
+ mutex_lock(&hdev->clk_throttling.lock);
+
+ switch (event_type) {
+ case GOYA_ASYNC_EVENT_ID_FIX_POWER_ENV_S:
+ hdev->clk_throttling.current_reason |= HL_CLK_THROTTLE_POWER;
+ hdev->clk_throttling.aggregated_reason |= HL_CLK_THROTTLE_POWER;
+ hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_POWER].start = ktime_get();
+ hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_POWER].end = zero_time;
+ dev_info_ratelimited(hdev->dev,
+ "Clock throttling due to power consumption\n");
+ break;
+
+ case GOYA_ASYNC_EVENT_ID_FIX_POWER_ENV_E:
+ hdev->clk_throttling.current_reason &= ~HL_CLK_THROTTLE_POWER;
+ hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_POWER].end = ktime_get();
+ dev_info_ratelimited(hdev->dev,
+ "Power envelop is safe, back to optimal clock\n");
+ break;
+
+ case GOYA_ASYNC_EVENT_ID_FIX_THERMAL_ENV_S:
+ hdev->clk_throttling.current_reason |= HL_CLK_THROTTLE_THERMAL;
+ hdev->clk_throttling.aggregated_reason |= HL_CLK_THROTTLE_THERMAL;
+ hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].start = ktime_get();
+ hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].end = zero_time;
+ dev_info_ratelimited(hdev->dev,
+ "Clock throttling due to overheating\n");
+ break;
+
+ case GOYA_ASYNC_EVENT_ID_FIX_THERMAL_ENV_E:
+ hdev->clk_throttling.current_reason &= ~HL_CLK_THROTTLE_THERMAL;
+ hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].end = ktime_get();
+ dev_info_ratelimited(hdev->dev,
+ "Thermal envelop is safe, back to optimal clock\n");
+ break;
+
+ default:
+ dev_err(hdev->dev, "Received invalid clock change event %d\n",
+ event_type);
+ break;
+ }
+
+ mutex_unlock(&hdev->clk_throttling.lock);
+}
+
+void goya_handle_eqe(struct hl_device *hdev, struct hl_eq_entry *eq_entry)
+{
+ u32 ctl = le32_to_cpu(eq_entry->hdr.ctl);
+ u16 event_type = ((ctl & EQ_CTL_EVENT_TYPE_MASK)
+ >> EQ_CTL_EVENT_TYPE_SHIFT);
+ struct goya_device *goya = hdev->asic_specific;
+
+ if (event_type >= GOYA_ASYNC_EVENT_ID_SIZE) {
+ dev_err(hdev->dev, "Event type %u exceeds maximum of %u",
+ event_type, GOYA_ASYNC_EVENT_ID_SIZE - 1);
+ return;
+ }
+
+ goya->events_stat[event_type]++;
+ goya->events_stat_aggregate[event_type]++;
+
+ switch (event_type) {
+ case GOYA_ASYNC_EVENT_ID_PCIE_IF:
+ case GOYA_ASYNC_EVENT_ID_TPC0_ECC:
+ case GOYA_ASYNC_EVENT_ID_TPC1_ECC:
+ case GOYA_ASYNC_EVENT_ID_TPC2_ECC:
+ case GOYA_ASYNC_EVENT_ID_TPC3_ECC:
+ case GOYA_ASYNC_EVENT_ID_TPC4_ECC:
+ case GOYA_ASYNC_EVENT_ID_TPC5_ECC:
+ case GOYA_ASYNC_EVENT_ID_TPC6_ECC:
+ case GOYA_ASYNC_EVENT_ID_TPC7_ECC:
+ case GOYA_ASYNC_EVENT_ID_MME_ECC:
+ case GOYA_ASYNC_EVENT_ID_MME_ECC_EXT:
+ case GOYA_ASYNC_EVENT_ID_MMU_ECC:
+ case GOYA_ASYNC_EVENT_ID_DMA_MACRO:
+ case GOYA_ASYNC_EVENT_ID_DMA_ECC:
+ case GOYA_ASYNC_EVENT_ID_CPU_IF_ECC:
+ case GOYA_ASYNC_EVENT_ID_PSOC_MEM:
+ case GOYA_ASYNC_EVENT_ID_PSOC_CORESIGHT:
+ case GOYA_ASYNC_EVENT_ID_SRAM0 ... GOYA_ASYNC_EVENT_ID_SRAM29:
+ case GOYA_ASYNC_EVENT_ID_GIC500:
+ case GOYA_ASYNC_EVENT_ID_PLL0 ... GOYA_ASYNC_EVENT_ID_PLL6:
+ case GOYA_ASYNC_EVENT_ID_AXI_ECC:
+ case GOYA_ASYNC_EVENT_ID_L2_RAM_ECC:
+ goya_print_irq_info(hdev, event_type, false);
+ if (hdev->hard_reset_on_fw_events)
+ hl_device_reset(hdev, (HL_DRV_RESET_HARD |
+ HL_DRV_RESET_FW_FATAL_ERR));
+ break;
+
+ case GOYA_ASYNC_EVENT_ID_PSOC_GPIO_05_SW_RESET:
+ goya_print_irq_info(hdev, event_type, false);
+ if (hdev->hard_reset_on_fw_events)
+ hl_device_reset(hdev, HL_DRV_RESET_HARD);
+ break;
+
+ case GOYA_ASYNC_EVENT_ID_PCIE_DEC:
+ case GOYA_ASYNC_EVENT_ID_TPC0_DEC:
+ case GOYA_ASYNC_EVENT_ID_TPC1_DEC:
+ case GOYA_ASYNC_EVENT_ID_TPC2_DEC:
+ case GOYA_ASYNC_EVENT_ID_TPC3_DEC:
+ case GOYA_ASYNC_EVENT_ID_TPC4_DEC:
+ case GOYA_ASYNC_EVENT_ID_TPC5_DEC:
+ case GOYA_ASYNC_EVENT_ID_TPC6_DEC:
+ case GOYA_ASYNC_EVENT_ID_TPC7_DEC:
+ case GOYA_ASYNC_EVENT_ID_MME_WACS:
+ case GOYA_ASYNC_EVENT_ID_MME_WACSD:
+ case GOYA_ASYNC_EVENT_ID_CPU_AXI_SPLITTER:
+ case GOYA_ASYNC_EVENT_ID_PSOC_AXI_DEC:
+ case GOYA_ASYNC_EVENT_ID_PSOC:
+ case GOYA_ASYNC_EVENT_ID_TPC0_KRN_ERR:
+ case GOYA_ASYNC_EVENT_ID_TPC1_KRN_ERR:
+ case GOYA_ASYNC_EVENT_ID_TPC2_KRN_ERR:
+ case GOYA_ASYNC_EVENT_ID_TPC3_KRN_ERR:
+ case GOYA_ASYNC_EVENT_ID_TPC4_KRN_ERR:
+ case GOYA_ASYNC_EVENT_ID_TPC5_KRN_ERR:
+ case GOYA_ASYNC_EVENT_ID_TPC6_KRN_ERR:
+ case GOYA_ASYNC_EVENT_ID_TPC7_KRN_ERR:
+ case GOYA_ASYNC_EVENT_ID_TPC0_CMDQ ... GOYA_ASYNC_EVENT_ID_TPC7_QM:
+ case GOYA_ASYNC_EVENT_ID_MME_QM:
+ case GOYA_ASYNC_EVENT_ID_MME_CMDQ:
+ case GOYA_ASYNC_EVENT_ID_DMA0_QM ... GOYA_ASYNC_EVENT_ID_DMA4_QM:
+ case GOYA_ASYNC_EVENT_ID_DMA0_CH ... GOYA_ASYNC_EVENT_ID_DMA4_CH:
+ goya_print_irq_info(hdev, event_type, true);
+ goya_unmask_irq(hdev, event_type);
+ break;
+
+ case GOYA_ASYNC_EVENT_ID_PSOC_GPIO_10_VRHOT_ICRIT:
+ case GOYA_ASYNC_EVENT_ID_TPC0_BMON_SPMU:
+ case GOYA_ASYNC_EVENT_ID_TPC1_BMON_SPMU:
+ case GOYA_ASYNC_EVENT_ID_TPC2_BMON_SPMU:
+ case GOYA_ASYNC_EVENT_ID_TPC3_BMON_SPMU:
+ case GOYA_ASYNC_EVENT_ID_TPC4_BMON_SPMU:
+ case GOYA_ASYNC_EVENT_ID_TPC5_BMON_SPMU:
+ case GOYA_ASYNC_EVENT_ID_TPC6_BMON_SPMU:
+ case GOYA_ASYNC_EVENT_ID_TPC7_BMON_SPMU:
+ case GOYA_ASYNC_EVENT_ID_DMA_BM_CH0 ... GOYA_ASYNC_EVENT_ID_DMA_BM_CH4:
+ goya_print_irq_info(hdev, event_type, false);
+ goya_unmask_irq(hdev, event_type);
+ break;
+
+ case GOYA_ASYNC_EVENT_ID_FIX_POWER_ENV_S:
+ case GOYA_ASYNC_EVENT_ID_FIX_POWER_ENV_E:
+ case GOYA_ASYNC_EVENT_ID_FIX_THERMAL_ENV_S:
+ case GOYA_ASYNC_EVENT_ID_FIX_THERMAL_ENV_E:
+ goya_print_clk_change_info(hdev, event_type);
+ goya_unmask_irq(hdev, event_type);
+ break;
+
+ case GOYA_ASYNC_EVENT_PKT_QUEUE_OUT_SYNC:
+ goya_print_irq_info(hdev, event_type, false);
+ goya_print_out_of_sync_info(hdev, &eq_entry->pkt_sync_err);
+ if (hdev->hard_reset_on_fw_events)
+ hl_device_reset(hdev, HL_DRV_RESET_HARD);
+ else
+ hl_fw_unmask_irq(hdev, event_type);
+ break;
+
+ default:
+ dev_err(hdev->dev, "Received invalid H/W interrupt %d\n",
+ event_type);
+ break;
+ }
+}
+
+void *goya_get_events_stat(struct hl_device *hdev, bool aggregate, u32 *size)
+{
+ struct goya_device *goya = hdev->asic_specific;
+
+ if (aggregate) {
+ *size = (u32) sizeof(goya->events_stat_aggregate);
+ return goya->events_stat_aggregate;
+ }
+
+ *size = (u32) sizeof(goya->events_stat);
+ return goya->events_stat;
+}
+
+static int goya_memset_device_memory(struct hl_device *hdev, u64 addr, u64 size,
+ u64 val, bool is_dram)
+{
+ struct packet_lin_dma *lin_dma_pkt;
+ struct hl_cs_job *job;
+ u32 cb_size, ctl;
+ struct hl_cb *cb;
+ int rc, lin_dma_pkts_cnt;
+
+ lin_dma_pkts_cnt = DIV_ROUND_UP_ULL(size, SZ_2G);
+ cb_size = lin_dma_pkts_cnt * sizeof(struct packet_lin_dma) +
+ sizeof(struct packet_msg_prot);
+ cb = hl_cb_kernel_create(hdev, cb_size, false);
+ if (!cb)
+ return -ENOMEM;
+
+ lin_dma_pkt = cb->kernel_address;
+
+ do {
+ memset(lin_dma_pkt, 0, sizeof(*lin_dma_pkt));
+
+ ctl = ((PACKET_LIN_DMA << GOYA_PKT_CTL_OPCODE_SHIFT) |
+ (1 << GOYA_PKT_LIN_DMA_CTL_MEMSET_SHIFT) |
+ (1 << GOYA_PKT_LIN_DMA_CTL_WO_SHIFT) |
+ (1 << GOYA_PKT_CTL_RB_SHIFT) |
+ (1 << GOYA_PKT_CTL_MB_SHIFT));
+ ctl |= (is_dram ? HL_DMA_HOST_TO_DRAM : HL_DMA_HOST_TO_SRAM) <<
+ GOYA_PKT_LIN_DMA_CTL_DMA_DIR_SHIFT;
+ lin_dma_pkt->ctl = cpu_to_le32(ctl);
+
+ lin_dma_pkt->src_addr = cpu_to_le64(val);
+ lin_dma_pkt->dst_addr = cpu_to_le64(addr);
+ if (lin_dma_pkts_cnt > 1)
+ lin_dma_pkt->tsize = cpu_to_le32(SZ_2G);
+ else
+ lin_dma_pkt->tsize = cpu_to_le32(size);
+
+ size -= SZ_2G;
+ addr += SZ_2G;
+ lin_dma_pkt++;
+ } while (--lin_dma_pkts_cnt);
+
+ job = hl_cs_allocate_job(hdev, QUEUE_TYPE_EXT, true);
+ if (!job) {
+ dev_err(hdev->dev, "Failed to allocate a new job\n");
+ rc = -ENOMEM;
+ goto release_cb;
+ }
+
+ job->id = 0;
+ job->user_cb = cb;
+ atomic_inc(&job->user_cb->cs_cnt);
+ job->user_cb_size = cb_size;
+ job->hw_queue_id = GOYA_QUEUE_ID_DMA_0;
+ job->patched_cb = job->user_cb;
+ job->job_cb_size = job->user_cb_size;
+
+ hl_debugfs_add_job(hdev, job);
+
+ rc = goya_send_job_on_qman0(hdev, job);
+
+ hl_debugfs_remove_job(hdev, job);
+ kfree(job);
+ atomic_dec(&cb->cs_cnt);
+
+release_cb:
+ hl_cb_put(cb);
+ hl_cb_destroy(&hdev->kernel_mem_mgr, cb->buf->handle);
+
+ return rc;
+}
+
+int goya_context_switch(struct hl_device *hdev, u32 asid)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 addr = prop->sram_base_address, sob_addr;
+ u32 size = hdev->pldm ? 0x10000 : prop->sram_size;
+ u64 val = 0x7777777777777777ull;
+ int rc, dma_id;
+ u32 channel_off = mmDMA_CH_1_WR_COMP_ADDR_LO -
+ mmDMA_CH_0_WR_COMP_ADDR_LO;
+
+ rc = goya_memset_device_memory(hdev, addr, size, val, false);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to clear SRAM in context switch\n");
+ return rc;
+ }
+
+ /* we need to reset registers that the user is allowed to change */
+ sob_addr = CFG_BASE + mmSYNC_MNGR_SOB_OBJ_1007;
+ WREG32(mmDMA_CH_0_WR_COMP_ADDR_LO, lower_32_bits(sob_addr));
+
+ for (dma_id = 1 ; dma_id < NUMBER_OF_EXT_HW_QUEUES ; dma_id++) {
+ sob_addr = CFG_BASE + mmSYNC_MNGR_SOB_OBJ_1000 +
+ (dma_id - 1) * 4;
+ WREG32(mmDMA_CH_0_WR_COMP_ADDR_LO + channel_off * dma_id,
+ lower_32_bits(sob_addr));
+ }
+
+ WREG32(mmTPC_PLL_CLK_RLX_0, 0x200020);
+
+ goya_clear_sm_regs(hdev);
+
+ return 0;
+}
+
+static int goya_mmu_clear_pgt_range(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct goya_device *goya = hdev->asic_specific;
+ u64 addr = prop->mmu_pgt_addr;
+ u32 size = prop->mmu_pgt_size + MMU_DRAM_DEFAULT_PAGE_SIZE +
+ MMU_CACHE_MNG_SIZE;
+
+ if (!(goya->hw_cap_initialized & HW_CAP_MMU))
+ return 0;
+
+ return goya_memset_device_memory(hdev, addr, size, 0, true);
+}
+
+static int goya_mmu_set_dram_default_page(struct hl_device *hdev)
+{
+ struct goya_device *goya = hdev->asic_specific;
+ u64 addr = hdev->asic_prop.mmu_dram_default_page_addr;
+ u32 size = MMU_DRAM_DEFAULT_PAGE_SIZE;
+ u64 val = 0x9999999999999999ull;
+
+ if (!(goya->hw_cap_initialized & HW_CAP_MMU))
+ return 0;
+
+ return goya_memset_device_memory(hdev, addr, size, val, true);
+}
+
+static int goya_mmu_add_mappings_for_device_cpu(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct goya_device *goya = hdev->asic_specific;
+ s64 off, cpu_off;
+ int rc;
+
+ if (!(goya->hw_cap_initialized & HW_CAP_MMU))
+ return 0;
+
+ for (off = 0 ; off < CPU_FW_IMAGE_SIZE ; off += PAGE_SIZE_2MB) {
+ rc = hl_mmu_map_page(hdev->kernel_ctx,
+ prop->dram_base_address + off,
+ prop->dram_base_address + off, PAGE_SIZE_2MB,
+ (off + PAGE_SIZE_2MB) == CPU_FW_IMAGE_SIZE);
+ if (rc) {
+ dev_err(hdev->dev, "Map failed for address 0x%llx\n",
+ prop->dram_base_address + off);
+ goto unmap;
+ }
+ }
+
+ if (!(hdev->cpu_accessible_dma_address & (PAGE_SIZE_2MB - 1))) {
+ rc = hl_mmu_map_page(hdev->kernel_ctx,
+ VA_CPU_ACCESSIBLE_MEM_ADDR,
+ hdev->cpu_accessible_dma_address,
+ PAGE_SIZE_2MB, true);
+
+ if (rc) {
+ dev_err(hdev->dev,
+ "Map failed for CPU accessible memory\n");
+ off -= PAGE_SIZE_2MB;
+ goto unmap;
+ }
+ } else {
+ for (cpu_off = 0 ; cpu_off < SZ_2M ; cpu_off += PAGE_SIZE_4KB) {
+ rc = hl_mmu_map_page(hdev->kernel_ctx,
+ VA_CPU_ACCESSIBLE_MEM_ADDR + cpu_off,
+ hdev->cpu_accessible_dma_address + cpu_off,
+ PAGE_SIZE_4KB, true);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Map failed for CPU accessible memory\n");
+ cpu_off -= PAGE_SIZE_4KB;
+ goto unmap_cpu;
+ }
+ }
+ }
+
+ goya_mmu_prepare_reg(hdev, mmCPU_IF_ARUSER_OVR, HL_KERNEL_ASID_ID);
+ goya_mmu_prepare_reg(hdev, mmCPU_IF_AWUSER_OVR, HL_KERNEL_ASID_ID);
+ WREG32(mmCPU_IF_ARUSER_OVR_EN, 0x7FF);
+ WREG32(mmCPU_IF_AWUSER_OVR_EN, 0x7FF);
+
+ /* Make sure configuration is flushed to device */
+ RREG32(mmCPU_IF_AWUSER_OVR_EN);
+
+ goya->device_cpu_mmu_mappings_done = true;
+
+ return 0;
+
+unmap_cpu:
+ for (; cpu_off >= 0 ; cpu_off -= PAGE_SIZE_4KB)
+ if (hl_mmu_unmap_page(hdev->kernel_ctx,
+ VA_CPU_ACCESSIBLE_MEM_ADDR + cpu_off,
+ PAGE_SIZE_4KB, true))
+ dev_warn_ratelimited(hdev->dev,
+ "failed to unmap address 0x%llx\n",
+ VA_CPU_ACCESSIBLE_MEM_ADDR + cpu_off);
+unmap:
+ for (; off >= 0 ; off -= PAGE_SIZE_2MB)
+ if (hl_mmu_unmap_page(hdev->kernel_ctx,
+ prop->dram_base_address + off, PAGE_SIZE_2MB,
+ true))
+ dev_warn_ratelimited(hdev->dev,
+ "failed to unmap address 0x%llx\n",
+ prop->dram_base_address + off);
+
+ return rc;
+}
+
+void goya_mmu_remove_device_cpu_mappings(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct goya_device *goya = hdev->asic_specific;
+ u32 off, cpu_off;
+
+ if (!(goya->hw_cap_initialized & HW_CAP_MMU))
+ return;
+
+ if (!goya->device_cpu_mmu_mappings_done)
+ return;
+
+ WREG32(mmCPU_IF_ARUSER_OVR_EN, 0);
+ WREG32(mmCPU_IF_AWUSER_OVR_EN, 0);
+
+ if (!(hdev->cpu_accessible_dma_address & (PAGE_SIZE_2MB - 1))) {
+ if (hl_mmu_unmap_page(hdev->kernel_ctx,
+ VA_CPU_ACCESSIBLE_MEM_ADDR,
+ PAGE_SIZE_2MB, true))
+ dev_warn(hdev->dev,
+ "Failed to unmap CPU accessible memory\n");
+ } else {
+ for (cpu_off = 0 ; cpu_off < SZ_2M ; cpu_off += PAGE_SIZE_4KB)
+ if (hl_mmu_unmap_page(hdev->kernel_ctx,
+ VA_CPU_ACCESSIBLE_MEM_ADDR + cpu_off,
+ PAGE_SIZE_4KB,
+ (cpu_off + PAGE_SIZE_4KB) >= SZ_2M))
+ dev_warn_ratelimited(hdev->dev,
+ "failed to unmap address 0x%llx\n",
+ VA_CPU_ACCESSIBLE_MEM_ADDR + cpu_off);
+ }
+
+ for (off = 0 ; off < CPU_FW_IMAGE_SIZE ; off += PAGE_SIZE_2MB)
+ if (hl_mmu_unmap_page(hdev->kernel_ctx,
+ prop->dram_base_address + off, PAGE_SIZE_2MB,
+ (off + PAGE_SIZE_2MB) >= CPU_FW_IMAGE_SIZE))
+ dev_warn_ratelimited(hdev->dev,
+ "Failed to unmap address 0x%llx\n",
+ prop->dram_base_address + off);
+
+ goya->device_cpu_mmu_mappings_done = false;
+}
+
+static void goya_mmu_prepare(struct hl_device *hdev, u32 asid)
+{
+ struct goya_device *goya = hdev->asic_specific;
+ int i;
+
+ if (!(goya->hw_cap_initialized & HW_CAP_MMU))
+ return;
+
+ if (asid & ~MME_QM_GLBL_SECURE_PROPS_ASID_MASK) {
+ dev_crit(hdev->dev, "asid %u is too big\n", asid);
+ return;
+ }
+
+ /* zero the MMBP and ASID bits and then set the ASID */
+ for (i = 0 ; i < GOYA_MMU_REGS_NUM ; i++)
+ goya_mmu_prepare_reg(hdev, goya_mmu_regs[i], asid);
+}
+
+static int goya_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard,
+ u32 flags)
+{
+ struct goya_device *goya = hdev->asic_specific;
+ u32 status, timeout_usec;
+ int rc;
+
+ if (!(goya->hw_cap_initialized & HW_CAP_MMU) ||
+ hdev->reset_info.hard_reset_pending)
+ return 0;
+
+ /* no need in L1 only invalidation in Goya */
+ if (!is_hard)
+ return 0;
+
+ if (hdev->pldm)
+ timeout_usec = GOYA_PLDM_MMU_TIMEOUT_USEC;
+ else
+ timeout_usec = MMU_CONFIG_TIMEOUT_USEC;
+
+ /* L0 & L1 invalidation */
+ WREG32(mmSTLB_INV_ALL_START, 1);
+
+ rc = hl_poll_timeout(
+ hdev,
+ mmSTLB_INV_ALL_START,
+ status,
+ !status,
+ 1000,
+ timeout_usec);
+
+ return rc;
+}
+
+static int goya_mmu_invalidate_cache_range(struct hl_device *hdev,
+ bool is_hard, u32 flags,
+ u32 asid, u64 va, u64 size)
+{
+ /* Treat as invalidate all because there is no range invalidation
+ * in Goya
+ */
+ return hl_mmu_invalidate_cache(hdev, is_hard, flags);
+}
+
+int goya_send_heartbeat(struct hl_device *hdev)
+{
+ struct goya_device *goya = hdev->asic_specific;
+
+ if (!(goya->hw_cap_initialized & HW_CAP_CPU_Q))
+ return 0;
+
+ return hl_fw_send_heartbeat(hdev);
+}
+
+int goya_cpucp_info_get(struct hl_device *hdev)
+{
+ struct goya_device *goya = hdev->asic_specific;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 dram_size;
+ int rc;
+
+ if (!(goya->hw_cap_initialized & HW_CAP_CPU_Q))
+ return 0;
+
+ rc = hl_fw_cpucp_handshake(hdev, mmCPU_BOOT_DEV_STS0,
+ mmCPU_BOOT_DEV_STS1, mmCPU_BOOT_ERR0,
+ mmCPU_BOOT_ERR1);
+ if (rc)
+ return rc;
+
+ dram_size = le64_to_cpu(prop->cpucp_info.dram_size);
+ if (dram_size) {
+ if ((!is_power_of_2(dram_size)) ||
+ (dram_size < DRAM_PHYS_DEFAULT_SIZE)) {
+ dev_err(hdev->dev,
+ "F/W reported invalid DRAM size %llu. Trying to use default size\n",
+ dram_size);
+ dram_size = DRAM_PHYS_DEFAULT_SIZE;
+ }
+
+ prop->dram_size = dram_size;
+ prop->dram_end_address = prop->dram_base_address + dram_size;
+ }
+
+ if (!strlen(prop->cpucp_info.card_name))
+ strncpy(prop->cpucp_info.card_name, GOYA_DEFAULT_CARD_NAME,
+ CARD_NAME_MAX_LEN);
+
+ return 0;
+}
+
+static bool goya_is_device_idle(struct hl_device *hdev, u64 *mask_arr, u8 mask_len,
+ struct engines_data *e)
+{
+ const char *fmt = "%-5d%-9s%#-14x%#-16x%#x\n";
+ const char *dma_fmt = "%-5d%-9s%#-14x%#x\n";
+ unsigned long *mask = (unsigned long *)mask_arr;
+ u32 qm_glbl_sts0, cmdq_glbl_sts0, dma_core_sts0, tpc_cfg_sts,
+ mme_arch_sts;
+ bool is_idle = true, is_eng_idle;
+ u64 offset;
+ int i;
+
+ if (e)
+ hl_engine_data_sprintf(e, "\nDMA is_idle QM_GLBL_STS0 DMA_CORE_STS0\n"
+ "--- ------- ------------ -------------\n");
+
+ offset = mmDMA_QM_1_GLBL_STS0 - mmDMA_QM_0_GLBL_STS0;
+
+ for (i = 0 ; i < DMA_MAX_NUM ; i++) {
+ qm_glbl_sts0 = RREG32(mmDMA_QM_0_GLBL_STS0 + i * offset);
+ dma_core_sts0 = RREG32(mmDMA_CH_0_STS0 + i * offset);
+ is_eng_idle = IS_DMA_QM_IDLE(qm_glbl_sts0) &&
+ IS_DMA_IDLE(dma_core_sts0);
+ is_idle &= is_eng_idle;
+
+ if (mask && !is_eng_idle)
+ set_bit(GOYA_ENGINE_ID_DMA_0 + i, mask);
+ if (e)
+ hl_engine_data_sprintf(e, dma_fmt, i, is_eng_idle ? "Y" : "N",
+ qm_glbl_sts0, dma_core_sts0);
+ }
+
+ if (e)
+ hl_engine_data_sprintf(e,
+ "\nTPC is_idle QM_GLBL_STS0 CMDQ_GLBL_STS0 CFG_STATUS\n"
+ "--- ------- ------------ -------------- ----------\n");
+
+ offset = mmTPC1_QM_GLBL_STS0 - mmTPC0_QM_GLBL_STS0;
+
+ for (i = 0 ; i < TPC_MAX_NUM ; i++) {
+ qm_glbl_sts0 = RREG32(mmTPC0_QM_GLBL_STS0 + i * offset);
+ cmdq_glbl_sts0 = RREG32(mmTPC0_CMDQ_GLBL_STS0 + i * offset);
+ tpc_cfg_sts = RREG32(mmTPC0_CFG_STATUS + i * offset);
+ is_eng_idle = IS_TPC_QM_IDLE(qm_glbl_sts0) &&
+ IS_TPC_CMDQ_IDLE(cmdq_glbl_sts0) &&
+ IS_TPC_IDLE(tpc_cfg_sts);
+ is_idle &= is_eng_idle;
+
+ if (mask && !is_eng_idle)
+ set_bit(GOYA_ENGINE_ID_TPC_0 + i, mask);
+ if (e)
+ hl_engine_data_sprintf(e, fmt, i, is_eng_idle ? "Y" : "N",
+ qm_glbl_sts0, cmdq_glbl_sts0, tpc_cfg_sts);
+ }
+
+ if (e)
+ hl_engine_data_sprintf(e,
+ "\nMME is_idle QM_GLBL_STS0 CMDQ_GLBL_STS0 ARCH_STATUS\n"
+ "--- ------- ------------ -------------- -----------\n");
+
+ qm_glbl_sts0 = RREG32(mmMME_QM_GLBL_STS0);
+ cmdq_glbl_sts0 = RREG32(mmMME_CMDQ_GLBL_STS0);
+ mme_arch_sts = RREG32(mmMME_ARCH_STATUS);
+ is_eng_idle = IS_MME_QM_IDLE(qm_glbl_sts0) &&
+ IS_MME_CMDQ_IDLE(cmdq_glbl_sts0) &&
+ IS_MME_IDLE(mme_arch_sts);
+ is_idle &= is_eng_idle;
+
+ if (mask && !is_eng_idle)
+ set_bit(GOYA_ENGINE_ID_MME_0, mask);
+ if (e) {
+ hl_engine_data_sprintf(e, fmt, 0, is_eng_idle ? "Y" : "N", qm_glbl_sts0,
+ cmdq_glbl_sts0, mme_arch_sts);
+ hl_engine_data_sprintf(e, "\n");
+ }
+
+ return is_idle;
+}
+
+static void goya_hw_queues_lock(struct hl_device *hdev)
+ __acquires(&goya->hw_queues_lock)
+{
+ struct goya_device *goya = hdev->asic_specific;
+
+ spin_lock(&goya->hw_queues_lock);
+}
+
+static void goya_hw_queues_unlock(struct hl_device *hdev)
+ __releases(&goya->hw_queues_lock)
+{
+ struct goya_device *goya = hdev->asic_specific;
+
+ spin_unlock(&goya->hw_queues_lock);
+}
+
+static u32 goya_get_pci_id(struct hl_device *hdev)
+{
+ return hdev->pdev->device;
+}
+
+static int goya_get_eeprom_data(struct hl_device *hdev, void *data,
+ size_t max_size)
+{
+ struct goya_device *goya = hdev->asic_specific;
+
+ if (!(goya->hw_cap_initialized & HW_CAP_CPU_Q))
+ return 0;
+
+ return hl_fw_get_eeprom_data(hdev, data, max_size);
+}
+
+static void goya_cpu_init_scrambler_dram(struct hl_device *hdev)
+{
+
+}
+
+static int goya_ctx_init(struct hl_ctx *ctx)
+{
+ if (ctx->asid != HL_KERNEL_ASID_ID)
+ goya_mmu_prepare(ctx->hdev, ctx->asid);
+
+ return 0;
+}
+
+static int goya_pre_schedule_cs(struct hl_cs *cs)
+{
+ return 0;
+}
+
+u32 goya_get_queue_id_for_cq(struct hl_device *hdev, u32 cq_idx)
+{
+ return cq_idx;
+}
+
+static u32 goya_get_signal_cb_size(struct hl_device *hdev)
+{
+ return 0;
+}
+
+static u32 goya_get_wait_cb_size(struct hl_device *hdev)
+{
+ return 0;
+}
+
+static u32 goya_gen_signal_cb(struct hl_device *hdev, void *data, u16 sob_id,
+ u32 size, bool eb)
+{
+ return 0;
+}
+
+static u32 goya_gen_wait_cb(struct hl_device *hdev,
+ struct hl_gen_wait_properties *prop)
+{
+ return 0;
+}
+
+static void goya_reset_sob(struct hl_device *hdev, void *data)
+{
+
+}
+
+static void goya_reset_sob_group(struct hl_device *hdev, u16 sob_group)
+{
+
+}
+
+u64 goya_get_device_time(struct hl_device *hdev)
+{
+ u64 device_time = ((u64) RREG32(mmPSOC_TIMESTAMP_CNTCVU)) << 32;
+
+ return device_time | RREG32(mmPSOC_TIMESTAMP_CNTCVL);
+}
+
+static int goya_collective_wait_init_cs(struct hl_cs *cs)
+{
+ return 0;
+}
+
+static int goya_collective_wait_create_jobs(struct hl_device *hdev,
+ struct hl_ctx *ctx, struct hl_cs *cs, u32 wait_queue_id,
+ u32 collective_engine_id, u32 encaps_signal_offset)
+{
+ return -EINVAL;
+}
+
+static void goya_ctx_fini(struct hl_ctx *ctx)
+{
+
+}
+
+static int goya_get_hw_block_id(struct hl_device *hdev, u64 block_addr,
+ u32 *block_size, u32 *block_id)
+{
+ return -EPERM;
+}
+
+static int goya_block_mmap(struct hl_device *hdev, struct vm_area_struct *vma,
+ u32 block_id, u32 block_size)
+{
+ return -EPERM;
+}
+
+static void goya_enable_events_from_fw(struct hl_device *hdev)
+{
+ WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR,
+ GOYA_ASYNC_EVENT_ID_INTS_REGISTER);
+}
+
+static int goya_ack_mmu_page_fault_or_access_error(struct hl_device *hdev, u64 mmu_cap_mask)
+{
+ return -EINVAL;
+}
+
+static int goya_map_pll_idx_to_fw_idx(u32 pll_idx)
+{
+ switch (pll_idx) {
+ case HL_GOYA_CPU_PLL: return CPU_PLL;
+ case HL_GOYA_PCI_PLL: return PCI_PLL;
+ case HL_GOYA_MME_PLL: return MME_PLL;
+ case HL_GOYA_TPC_PLL: return TPC_PLL;
+ case HL_GOYA_IC_PLL: return IC_PLL;
+ case HL_GOYA_MC_PLL: return MC_PLL;
+ case HL_GOYA_EMMC_PLL: return EMMC_PLL;
+ default: return -EINVAL;
+ }
+}
+
+static int goya_gen_sync_to_engine_map(struct hl_device *hdev,
+ struct hl_sync_to_engine_map *map)
+{
+ /* Not implemented */
+ return 0;
+}
+
+static int goya_monitor_valid(struct hl_mon_state_dump *mon)
+{
+ /* Not implemented */
+ return 0;
+}
+
+static int goya_print_single_monitor(char **buf, size_t *size, size_t *offset,
+ struct hl_device *hdev,
+ struct hl_mon_state_dump *mon)
+{
+ /* Not implemented */
+ return 0;
+}
+
+
+static int goya_print_fences_single_engine(
+ struct hl_device *hdev, u64 base_offset, u64 status_base_offset,
+ enum hl_sync_engine_type engine_type, u32 engine_id, char **buf,
+ size_t *size, size_t *offset)
+{
+ /* Not implemented */
+ return 0;
+}
+
+
+static struct hl_state_dump_specs_funcs goya_state_dump_funcs = {
+ .monitor_valid = goya_monitor_valid,
+ .print_single_monitor = goya_print_single_monitor,
+ .gen_sync_to_engine_map = goya_gen_sync_to_engine_map,
+ .print_fences_single_engine = goya_print_fences_single_engine,
+};
+
+static void goya_state_dump_init(struct hl_device *hdev)
+{
+ /* Not implemented */
+ hdev->state_dump_specs.props = goya_state_dump_specs_props;
+ hdev->state_dump_specs.funcs = goya_state_dump_funcs;
+}
+
+static u32 goya_get_sob_addr(struct hl_device *hdev, u32 sob_id)
+{
+ return 0;
+}
+
+static u32 *goya_get_stream_master_qid_arr(void)
+{
+ return NULL;
+}
+
+static int goya_get_monitor_dump(struct hl_device *hdev, void *data)
+{
+ return -EOPNOTSUPP;
+}
+
+static void goya_check_if_razwi_happened(struct hl_device *hdev)
+{
+}
+
+static int goya_scrub_device_dram(struct hl_device *hdev, u64 val)
+{
+ return -EOPNOTSUPP;
+}
+
+static int goya_set_dram_properties(struct hl_device *hdev)
+{
+ return 0;
+}
+
+static int goya_set_binning_masks(struct hl_device *hdev)
+{
+ return 0;
+}
+
+static int goya_send_device_activity(struct hl_device *hdev, bool open)
+{
+ return 0;
+}
+
+static const struct hl_asic_funcs goya_funcs = {
+ .early_init = goya_early_init,
+ .early_fini = goya_early_fini,
+ .late_init = goya_late_init,
+ .late_fini = goya_late_fini,
+ .sw_init = goya_sw_init,
+ .sw_fini = goya_sw_fini,
+ .hw_init = goya_hw_init,
+ .hw_fini = goya_hw_fini,
+ .halt_engines = goya_halt_engines,
+ .suspend = goya_suspend,
+ .resume = goya_resume,
+ .mmap = goya_mmap,
+ .ring_doorbell = goya_ring_doorbell,
+ .pqe_write = goya_pqe_write,
+ .asic_dma_alloc_coherent = goya_dma_alloc_coherent,
+ .asic_dma_free_coherent = goya_dma_free_coherent,
+ .scrub_device_mem = goya_scrub_device_mem,
+ .scrub_device_dram = goya_scrub_device_dram,
+ .get_int_queue_base = goya_get_int_queue_base,
+ .test_queues = goya_test_queues,
+ .asic_dma_pool_zalloc = goya_dma_pool_zalloc,
+ .asic_dma_pool_free = goya_dma_pool_free,
+ .cpu_accessible_dma_pool_alloc = goya_cpu_accessible_dma_pool_alloc,
+ .cpu_accessible_dma_pool_free = goya_cpu_accessible_dma_pool_free,
+ .hl_dma_unmap_sgtable = hl_dma_unmap_sgtable,
+ .cs_parser = goya_cs_parser,
+ .asic_dma_map_sgtable = hl_dma_map_sgtable,
+ .add_end_of_cb_packets = goya_add_end_of_cb_packets,
+ .update_eq_ci = goya_update_eq_ci,
+ .context_switch = goya_context_switch,
+ .restore_phase_topology = goya_restore_phase_topology,
+ .debugfs_read_dma = goya_debugfs_read_dma,
+ .add_device_attr = goya_add_device_attr,
+ .handle_eqe = goya_handle_eqe,
+ .get_events_stat = goya_get_events_stat,
+ .read_pte = goya_read_pte,
+ .write_pte = goya_write_pte,
+ .mmu_invalidate_cache = goya_mmu_invalidate_cache,
+ .mmu_invalidate_cache_range = goya_mmu_invalidate_cache_range,
+ .mmu_prefetch_cache_range = NULL,
+ .send_heartbeat = goya_send_heartbeat,
+ .debug_coresight = goya_debug_coresight,
+ .is_device_idle = goya_is_device_idle,
+ .compute_reset_late_init = goya_compute_reset_late_init,
+ .hw_queues_lock = goya_hw_queues_lock,
+ .hw_queues_unlock = goya_hw_queues_unlock,
+ .get_pci_id = goya_get_pci_id,
+ .get_eeprom_data = goya_get_eeprom_data,
+ .get_monitor_dump = goya_get_monitor_dump,
+ .send_cpu_message = goya_send_cpu_message,
+ .pci_bars_map = goya_pci_bars_map,
+ .init_iatu = goya_init_iatu,
+ .rreg = hl_rreg,
+ .wreg = hl_wreg,
+ .halt_coresight = goya_halt_coresight,
+ .ctx_init = goya_ctx_init,
+ .ctx_fini = goya_ctx_fini,
+ .pre_schedule_cs = goya_pre_schedule_cs,
+ .get_queue_id_for_cq = goya_get_queue_id_for_cq,
+ .load_firmware_to_device = goya_load_firmware_to_device,
+ .load_boot_fit_to_device = goya_load_boot_fit_to_device,
+ .get_signal_cb_size = goya_get_signal_cb_size,
+ .get_wait_cb_size = goya_get_wait_cb_size,
+ .gen_signal_cb = goya_gen_signal_cb,
+ .gen_wait_cb = goya_gen_wait_cb,
+ .reset_sob = goya_reset_sob,
+ .reset_sob_group = goya_reset_sob_group,
+ .get_device_time = goya_get_device_time,
+ .pb_print_security_errors = NULL,
+ .collective_wait_init_cs = goya_collective_wait_init_cs,
+ .collective_wait_create_jobs = goya_collective_wait_create_jobs,
+ .get_dec_base_addr = NULL,
+ .scramble_addr = hl_mmu_scramble_addr,
+ .descramble_addr = hl_mmu_descramble_addr,
+ .ack_protection_bits_errors = goya_ack_protection_bits_errors,
+ .get_hw_block_id = goya_get_hw_block_id,
+ .hw_block_mmap = goya_block_mmap,
+ .enable_events_from_fw = goya_enable_events_from_fw,
+ .ack_mmu_errors = goya_ack_mmu_page_fault_or_access_error,
+ .map_pll_idx_to_fw_idx = goya_map_pll_idx_to_fw_idx,
+ .init_firmware_preload_params = goya_init_firmware_preload_params,
+ .init_firmware_loader = goya_init_firmware_loader,
+ .init_cpu_scrambler_dram = goya_cpu_init_scrambler_dram,
+ .state_dump_init = goya_state_dump_init,
+ .get_sob_addr = &goya_get_sob_addr,
+ .set_pci_memory_regions = goya_set_pci_memory_regions,
+ .get_stream_master_qid_arr = goya_get_stream_master_qid_arr,
+ .check_if_razwi_happened = goya_check_if_razwi_happened,
+ .mmu_get_real_page_size = hl_mmu_get_real_page_size,
+ .access_dev_mem = hl_access_dev_mem,
+ .set_dram_bar_base = goya_set_ddr_bar_base,
+ .send_device_activity = goya_send_device_activity,
+ .set_dram_properties = goya_set_dram_properties,
+ .set_binning_masks = goya_set_binning_masks,
+};
+
+/*
+ * goya_set_asic_funcs - set Goya function pointers
+ *
+ * @*hdev: pointer to hl_device structure
+ *
+ */
+void goya_set_asic_funcs(struct hl_device *hdev)
+{
+ hdev->asic_funcs = &goya_funcs;
+}
--- /dev/null
- vma->vm_flags |= VM_PFNMAP | VM_DONTEXPAND;
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2020-2023 Intel Corporation
+ */
+
+#include <linux/dma-buf.h>
+#include <linux/highmem.h>
+#include <linux/module.h>
+#include <linux/set_memory.h>
+#include <linux/xarray.h>
+
+#include <drm/drm_cache.h>
+#include <drm/drm_debugfs.h>
+#include <drm/drm_file.h>
+#include <drm/drm_utils.h>
+
+#include "ivpu_drv.h"
+#include "ivpu_gem.h"
+#include "ivpu_hw.h"
+#include "ivpu_mmu.h"
+#include "ivpu_mmu_context.h"
+
+MODULE_IMPORT_NS(DMA_BUF);
+
+static const struct drm_gem_object_funcs ivpu_gem_funcs;
+
+static struct lock_class_key prime_bo_lock_class_key;
+
+static int __must_check prime_alloc_pages_locked(struct ivpu_bo *bo)
+{
+ /* Pages are managed by the underlying dma-buf */
+ return 0;
+}
+
+static void prime_free_pages_locked(struct ivpu_bo *bo)
+{
+ /* Pages are managed by the underlying dma-buf */
+}
+
+static int prime_map_pages_locked(struct ivpu_bo *bo)
+{
+ struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
+ struct sg_table *sgt;
+
+ sgt = dma_buf_map_attachment_unlocked(bo->base.import_attach, DMA_BIDIRECTIONAL);
+ if (IS_ERR(sgt)) {
+ ivpu_err(vdev, "Failed to map attachment: %ld\n", PTR_ERR(sgt));
+ return PTR_ERR(sgt);
+ }
+
+ bo->sgt = sgt;
+ return 0;
+}
+
+static void prime_unmap_pages_locked(struct ivpu_bo *bo)
+{
+ dma_buf_unmap_attachment_unlocked(bo->base.import_attach, bo->sgt, DMA_BIDIRECTIONAL);
+ bo->sgt = NULL;
+}
+
+static const struct ivpu_bo_ops prime_ops = {
+ .type = IVPU_BO_TYPE_PRIME,
+ .name = "prime",
+ .alloc_pages = prime_alloc_pages_locked,
+ .free_pages = prime_free_pages_locked,
+ .map_pages = prime_map_pages_locked,
+ .unmap_pages = prime_unmap_pages_locked,
+};
+
+static int __must_check shmem_alloc_pages_locked(struct ivpu_bo *bo)
+{
+ int npages = bo->base.size >> PAGE_SHIFT;
+ struct page **pages;
+
+ pages = drm_gem_get_pages(&bo->base);
+ if (IS_ERR(pages))
+ return PTR_ERR(pages);
+
+ if (bo->flags & DRM_IVPU_BO_WC)
+ set_pages_array_wc(pages, npages);
+ else if (bo->flags & DRM_IVPU_BO_UNCACHED)
+ set_pages_array_uc(pages, npages);
+
+ bo->pages = pages;
+ return 0;
+}
+
+static void shmem_free_pages_locked(struct ivpu_bo *bo)
+{
+ if (ivpu_bo_cache_mode(bo) != DRM_IVPU_BO_CACHED)
+ set_pages_array_wb(bo->pages, bo->base.size >> PAGE_SHIFT);
+
+ drm_gem_put_pages(&bo->base, bo->pages, true, false);
+ bo->pages = NULL;
+}
+
+static int ivpu_bo_map_pages_locked(struct ivpu_bo *bo)
+{
+ int npages = bo->base.size >> PAGE_SHIFT;
+ struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
+ struct sg_table *sgt;
+ int ret;
+
+ sgt = drm_prime_pages_to_sg(&vdev->drm, bo->pages, npages);
+ if (IS_ERR(sgt)) {
+ ivpu_err(vdev, "Failed to allocate sgtable\n");
+ return PTR_ERR(sgt);
+ }
+
+ ret = dma_map_sgtable(vdev->drm.dev, sgt, DMA_BIDIRECTIONAL, 0);
+ if (ret) {
+ ivpu_err(vdev, "Failed to map BO in IOMMU: %d\n", ret);
+ goto err_free_sgt;
+ }
+
+ bo->sgt = sgt;
+ return 0;
+
+err_free_sgt:
+ kfree(sgt);
+ return ret;
+}
+
+static void ivpu_bo_unmap_pages_locked(struct ivpu_bo *bo)
+{
+ struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
+
+ dma_unmap_sgtable(vdev->drm.dev, bo->sgt, DMA_BIDIRECTIONAL, 0);
+ sg_free_table(bo->sgt);
+ kfree(bo->sgt);
+ bo->sgt = NULL;
+}
+
+static const struct ivpu_bo_ops shmem_ops = {
+ .type = IVPU_BO_TYPE_SHMEM,
+ .name = "shmem",
+ .alloc_pages = shmem_alloc_pages_locked,
+ .free_pages = shmem_free_pages_locked,
+ .map_pages = ivpu_bo_map_pages_locked,
+ .unmap_pages = ivpu_bo_unmap_pages_locked,
+};
+
+static int __must_check internal_alloc_pages_locked(struct ivpu_bo *bo)
+{
+ unsigned int i, npages = bo->base.size >> PAGE_SHIFT;
+ struct page **pages;
+ int ret;
+
+ pages = kvmalloc_array(npages, sizeof(*bo->pages), GFP_KERNEL);
+ if (!pages)
+ return -ENOMEM;
+
+ for (i = 0; i < npages; i++) {
+ pages[i] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
+ if (!pages[i]) {
+ ret = -ENOMEM;
+ goto err_free_pages;
+ }
+ cond_resched();
+ }
+
+ bo->pages = pages;
+ return 0;
+
+err_free_pages:
+ while (i--)
+ put_page(pages[i]);
+ kvfree(pages);
+ return ret;
+}
+
+static void internal_free_pages_locked(struct ivpu_bo *bo)
+{
+ unsigned int i, npages = bo->base.size >> PAGE_SHIFT;
+
+ for (i = 0; i < npages; i++)
+ put_page(bo->pages[i]);
+
+ kvfree(bo->pages);
+ bo->pages = NULL;
+}
+
+static const struct ivpu_bo_ops internal_ops = {
+ .type = IVPU_BO_TYPE_INTERNAL,
+ .name = "internal",
+ .alloc_pages = internal_alloc_pages_locked,
+ .free_pages = internal_free_pages_locked,
+ .map_pages = ivpu_bo_map_pages_locked,
+ .unmap_pages = ivpu_bo_unmap_pages_locked,
+};
+
+static int __must_check ivpu_bo_alloc_and_map_pages_locked(struct ivpu_bo *bo)
+{
+ struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
+ int ret;
+
+ lockdep_assert_held(&bo->lock);
+ drm_WARN_ON(&vdev->drm, bo->sgt);
+
+ ret = bo->ops->alloc_pages(bo);
+ if (ret) {
+ ivpu_err(vdev, "Failed to allocate pages for BO: %d", ret);
+ return ret;
+ }
+
+ ret = bo->ops->map_pages(bo);
+ if (ret) {
+ ivpu_err(vdev, "Failed to map pages for BO: %d", ret);
+ goto err_free_pages;
+ }
+ return ret;
+
+err_free_pages:
+ bo->ops->free_pages(bo);
+ return ret;
+}
+
+static void ivpu_bo_unmap_and_free_pages(struct ivpu_bo *bo)
+{
+ mutex_lock(&bo->lock);
+
+ WARN_ON(!bo->sgt);
+ bo->ops->unmap_pages(bo);
+ WARN_ON(bo->sgt);
+ bo->ops->free_pages(bo);
+ WARN_ON(bo->pages);
+
+ mutex_unlock(&bo->lock);
+}
+
+/*
+ * ivpu_bo_pin() - pin the backing physical pages and map them to VPU.
+ *
+ * This function pins physical memory pages, then maps the physical pages
+ * to IOMMU address space and finally updates the VPU MMU page tables
+ * to allow the VPU to translate VPU address to IOMMU address.
+ */
+int __must_check ivpu_bo_pin(struct ivpu_bo *bo)
+{
+ struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
+ int ret = 0;
+
+ mutex_lock(&bo->lock);
+
+ if (!bo->vpu_addr) {
+ ivpu_err(vdev, "vpu_addr not set for BO ctx_id: %d handle: %d\n",
+ bo->ctx->id, bo->handle);
+ ret = -EINVAL;
+ goto unlock;
+ }
+
+ if (!bo->sgt) {
+ ret = ivpu_bo_alloc_and_map_pages_locked(bo);
+ if (ret)
+ goto unlock;
+ }
+
+ if (!bo->mmu_mapped) {
+ ret = ivpu_mmu_context_map_sgt(vdev, bo->ctx, bo->vpu_addr, bo->sgt,
+ ivpu_bo_is_snooped(bo));
+ if (ret) {
+ ivpu_err(vdev, "Failed to map BO in MMU: %d\n", ret);
+ goto unlock;
+ }
+ bo->mmu_mapped = true;
+ }
+
+unlock:
+ mutex_unlock(&bo->lock);
+
+ return ret;
+}
+
+static int
+ivpu_bo_alloc_vpu_addr(struct ivpu_bo *bo, struct ivpu_mmu_context *ctx,
+ const struct ivpu_addr_range *range)
+{
+ struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
+ int ret;
+
+ if (!range) {
+ if (bo->flags & DRM_IVPU_BO_HIGH_MEM)
+ range = &vdev->hw->ranges.user_high;
+ else
+ range = &vdev->hw->ranges.user_low;
+ }
+
+ mutex_lock(&ctx->lock);
+ ret = ivpu_mmu_context_insert_node_locked(ctx, range, bo->base.size, &bo->mm_node);
+ if (!ret) {
+ bo->ctx = ctx;
+ bo->vpu_addr = bo->mm_node.start;
+ list_add_tail(&bo->ctx_node, &ctx->bo_list);
+ }
+ mutex_unlock(&ctx->lock);
+
+ return ret;
+}
+
+static void ivpu_bo_free_vpu_addr(struct ivpu_bo *bo)
+{
+ struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
+ struct ivpu_mmu_context *ctx = bo->ctx;
+
+ ivpu_dbg(vdev, BO, "remove from ctx: ctx %d vpu_addr 0x%llx allocated %d mmu_mapped %d\n",
+ ctx->id, bo->vpu_addr, (bool)bo->sgt, bo->mmu_mapped);
+
+ mutex_lock(&bo->lock);
+
+ if (bo->mmu_mapped) {
+ drm_WARN_ON(&vdev->drm, !bo->sgt);
+ ivpu_mmu_context_unmap_sgt(vdev, ctx, bo->vpu_addr, bo->sgt);
+ bo->mmu_mapped = false;
+ }
+
+ mutex_lock(&ctx->lock);
+ list_del(&bo->ctx_node);
+ bo->vpu_addr = 0;
+ bo->ctx = NULL;
+ ivpu_mmu_context_remove_node_locked(ctx, &bo->mm_node);
+ mutex_unlock(&ctx->lock);
+
+ mutex_unlock(&bo->lock);
+}
+
+void ivpu_bo_remove_all_bos_from_context(struct ivpu_mmu_context *ctx)
+{
+ struct ivpu_bo *bo, *tmp;
+
+ list_for_each_entry_safe(bo, tmp, &ctx->bo_list, ctx_node)
+ ivpu_bo_free_vpu_addr(bo);
+}
+
+static struct ivpu_bo *
+ivpu_bo_alloc(struct ivpu_device *vdev, struct ivpu_mmu_context *mmu_context,
+ u64 size, u32 flags, const struct ivpu_bo_ops *ops,
+ const struct ivpu_addr_range *range, u64 user_ptr)
+{
+ struct ivpu_bo *bo;
+ int ret = 0;
+
+ if (drm_WARN_ON(&vdev->drm, size == 0 || !PAGE_ALIGNED(size)))
+ return ERR_PTR(-EINVAL);
+
+ switch (flags & DRM_IVPU_BO_CACHE_MASK) {
+ case DRM_IVPU_BO_CACHED:
+ case DRM_IVPU_BO_UNCACHED:
+ case DRM_IVPU_BO_WC:
+ break;
+ default:
+ return ERR_PTR(-EINVAL);
+ }
+
+ bo = kzalloc(sizeof(*bo), GFP_KERNEL);
+ if (!bo)
+ return ERR_PTR(-ENOMEM);
+
+ mutex_init(&bo->lock);
+ bo->base.funcs = &ivpu_gem_funcs;
+ bo->flags = flags;
+ bo->ops = ops;
+ bo->user_ptr = user_ptr;
+
+ if (ops->type == IVPU_BO_TYPE_SHMEM)
+ ret = drm_gem_object_init(&vdev->drm, &bo->base, size);
+ else
+ drm_gem_private_object_init(&vdev->drm, &bo->base, size);
+
+ if (ret) {
+ ivpu_err(vdev, "Failed to initialize drm object\n");
+ goto err_free;
+ }
+
+ if (flags & DRM_IVPU_BO_MAPPABLE) {
+ ret = drm_gem_create_mmap_offset(&bo->base);
+ if (ret) {
+ ivpu_err(vdev, "Failed to allocate mmap offset\n");
+ goto err_release;
+ }
+ }
+
+ if (mmu_context) {
+ ret = ivpu_bo_alloc_vpu_addr(bo, mmu_context, range);
+ if (ret) {
+ ivpu_err(vdev, "Failed to add BO to context: %d\n", ret);
+ goto err_release;
+ }
+ }
+
+ return bo;
+
+err_release:
+ drm_gem_object_release(&bo->base);
+err_free:
+ kfree(bo);
+ return ERR_PTR(ret);
+}
+
+static void ivpu_bo_free(struct drm_gem_object *obj)
+{
+ struct ivpu_bo *bo = to_ivpu_bo(obj);
+ struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
+
+ if (bo->ctx)
+ ivpu_dbg(vdev, BO, "free: ctx %d vpu_addr 0x%llx allocated %d mmu_mapped %d\n",
+ bo->ctx->id, bo->vpu_addr, (bool)bo->sgt, bo->mmu_mapped);
+ else
+ ivpu_dbg(vdev, BO, "free: ctx (released) allocated %d mmu_mapped %d\n",
+ (bool)bo->sgt, bo->mmu_mapped);
+
+ drm_WARN_ON(&vdev->drm, !dma_resv_test_signaled(obj->resv, DMA_RESV_USAGE_READ));
+
+ vunmap(bo->kvaddr);
+
+ if (bo->ctx)
+ ivpu_bo_free_vpu_addr(bo);
+
+ if (bo->sgt)
+ ivpu_bo_unmap_and_free_pages(bo);
+
+ if (bo->base.import_attach)
+ drm_prime_gem_destroy(&bo->base, bo->sgt);
+
+ drm_gem_object_release(&bo->base);
+
+ mutex_destroy(&bo->lock);
+ kfree(bo);
+}
+
+static int ivpu_bo_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma)
+{
+ struct ivpu_bo *bo = to_ivpu_bo(obj);
+ struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
+
+ ivpu_dbg(vdev, BO, "mmap: ctx %u handle %u vpu_addr 0x%llx size %zu type %s",
+ bo->ctx->id, bo->handle, bo->vpu_addr, bo->base.size, bo->ops->name);
+
+ if (obj->import_attach) {
+ /* Drop the reference drm_gem_mmap_obj() acquired.*/
+ drm_gem_object_put(obj);
+ vma->vm_private_data = NULL;
+ return dma_buf_mmap(obj->dma_buf, vma, 0);
+ }
+
++ vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND);
+ vma->vm_page_prot = ivpu_bo_pgprot(bo, vm_get_page_prot(vma->vm_flags));
+
+ return 0;
+}
+
+static struct sg_table *ivpu_bo_get_sg_table(struct drm_gem_object *obj)
+{
+ struct ivpu_bo *bo = to_ivpu_bo(obj);
+ loff_t npages = obj->size >> PAGE_SHIFT;
+ int ret = 0;
+
+ mutex_lock(&bo->lock);
+
+ if (!bo->sgt)
+ ret = ivpu_bo_alloc_and_map_pages_locked(bo);
+
+ mutex_unlock(&bo->lock);
+
+ if (ret)
+ return ERR_PTR(ret);
+
+ return drm_prime_pages_to_sg(obj->dev, bo->pages, npages);
+}
+
+static vm_fault_t ivpu_vm_fault(struct vm_fault *vmf)
+{
+ struct vm_area_struct *vma = vmf->vma;
+ struct drm_gem_object *obj = vma->vm_private_data;
+ struct ivpu_bo *bo = to_ivpu_bo(obj);
+ loff_t npages = obj->size >> PAGE_SHIFT;
+ pgoff_t page_offset;
+ struct page *page;
+ vm_fault_t ret;
+ int err;
+
+ mutex_lock(&bo->lock);
+
+ if (!bo->sgt) {
+ err = ivpu_bo_alloc_and_map_pages_locked(bo);
+ if (err) {
+ ret = vmf_error(err);
+ goto unlock;
+ }
+ }
+
+ /* We don't use vmf->pgoff since that has the fake offset */
+ page_offset = (vmf->address - vma->vm_start) >> PAGE_SHIFT;
+ if (page_offset >= npages) {
+ ret = VM_FAULT_SIGBUS;
+ } else {
+ page = bo->pages[page_offset];
+ ret = vmf_insert_pfn(vma, vmf->address, page_to_pfn(page));
+ }
+
+unlock:
+ mutex_unlock(&bo->lock);
+
+ return ret;
+}
+
+static const struct vm_operations_struct ivpu_vm_ops = {
+ .fault = ivpu_vm_fault,
+ .open = drm_gem_vm_open,
+ .close = drm_gem_vm_close,
+};
+
+static const struct drm_gem_object_funcs ivpu_gem_funcs = {
+ .free = ivpu_bo_free,
+ .mmap = ivpu_bo_mmap,
+ .vm_ops = &ivpu_vm_ops,
+ .get_sg_table = ivpu_bo_get_sg_table,
+};
+
+int
+ivpu_bo_create_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
+{
+ struct ivpu_file_priv *file_priv = file->driver_priv;
+ struct ivpu_device *vdev = file_priv->vdev;
+ struct drm_ivpu_bo_create *args = data;
+ u64 size = PAGE_ALIGN(args->size);
+ struct ivpu_bo *bo;
+ int ret;
+
+ if (args->flags & ~DRM_IVPU_BO_FLAGS)
+ return -EINVAL;
+
+ if (size == 0)
+ return -EINVAL;
+
+ bo = ivpu_bo_alloc(vdev, &file_priv->ctx, size, args->flags, &shmem_ops, NULL, 0);
+ if (IS_ERR(bo)) {
+ ivpu_err(vdev, "Failed to create BO: %pe (ctx %u size %llu flags 0x%x)",
+ bo, file_priv->ctx.id, args->size, args->flags);
+ return PTR_ERR(bo);
+ }
+
+ ret = drm_gem_handle_create(file, &bo->base, &bo->handle);
+ if (!ret) {
+ args->vpu_addr = bo->vpu_addr;
+ args->handle = bo->handle;
+ }
+
+ drm_gem_object_put(&bo->base);
+
+ ivpu_dbg(vdev, BO, "alloc shmem: ctx %u vpu_addr 0x%llx size %zu flags 0x%x\n",
+ file_priv->ctx.id, bo->vpu_addr, bo->base.size, bo->flags);
+
+ return ret;
+}
+
+struct ivpu_bo *
+ivpu_bo_alloc_internal(struct ivpu_device *vdev, u64 vpu_addr, u64 size, u32 flags)
+{
+ const struct ivpu_addr_range *range;
+ struct ivpu_addr_range fixed_range;
+ struct ivpu_bo *bo;
+ pgprot_t prot;
+ int ret;
+
+ drm_WARN_ON(&vdev->drm, !PAGE_ALIGNED(vpu_addr));
+ drm_WARN_ON(&vdev->drm, !PAGE_ALIGNED(size));
+
+ if (vpu_addr) {
+ fixed_range.start = vpu_addr;
+ fixed_range.end = vpu_addr + size;
+ range = &fixed_range;
+ } else {
+ range = &vdev->hw->ranges.global_low;
+ }
+
+ bo = ivpu_bo_alloc(vdev, &vdev->gctx, size, flags, &internal_ops, range, 0);
+ if (IS_ERR(bo)) {
+ ivpu_err(vdev, "Failed to create BO: %pe (vpu_addr 0x%llx size %llu flags 0x%x)",
+ bo, vpu_addr, size, flags);
+ return NULL;
+ }
+
+ ret = ivpu_bo_pin(bo);
+ if (ret)
+ goto err_put;
+
+ if (ivpu_bo_cache_mode(bo) != DRM_IVPU_BO_CACHED)
+ drm_clflush_pages(bo->pages, bo->base.size >> PAGE_SHIFT);
+
+ prot = ivpu_bo_pgprot(bo, PAGE_KERNEL);
+ bo->kvaddr = vmap(bo->pages, bo->base.size >> PAGE_SHIFT, VM_MAP, prot);
+ if (!bo->kvaddr) {
+ ivpu_err(vdev, "Failed to map BO into kernel virtual memory\n");
+ goto err_put;
+ }
+
+ ivpu_dbg(vdev, BO, "alloc internal: ctx 0 vpu_addr 0x%llx size %zu flags 0x%x\n",
+ bo->vpu_addr, bo->base.size, flags);
+
+ return bo;
+
+err_put:
+ drm_gem_object_put(&bo->base);
+ return NULL;
+}
+
+void ivpu_bo_free_internal(struct ivpu_bo *bo)
+{
+ drm_gem_object_put(&bo->base);
+}
+
+struct drm_gem_object *ivpu_gem_prime_import(struct drm_device *dev, struct dma_buf *buf)
+{
+ struct ivpu_device *vdev = to_ivpu_device(dev);
+ struct dma_buf_attachment *attach;
+ struct ivpu_bo *bo;
+
+ attach = dma_buf_attach(buf, dev->dev);
+ if (IS_ERR(attach))
+ return ERR_CAST(attach);
+
+ get_dma_buf(buf);
+
+ bo = ivpu_bo_alloc(vdev, NULL, buf->size, DRM_IVPU_BO_MAPPABLE, &prime_ops, NULL, 0);
+ if (IS_ERR(bo)) {
+ ivpu_err(vdev, "Failed to import BO: %pe (size %lu)", bo, buf->size);
+ goto err_detach;
+ }
+
+ lockdep_set_class(&bo->lock, &prime_bo_lock_class_key);
+
+ bo->base.import_attach = attach;
+
+ return &bo->base;
+
+err_detach:
+ dma_buf_detach(buf, attach);
+ dma_buf_put(buf);
+ return ERR_CAST(bo);
+}
+
+int ivpu_bo_info_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
+{
+ struct ivpu_file_priv *file_priv = file->driver_priv;
+ struct ivpu_device *vdev = to_ivpu_device(dev);
+ struct drm_ivpu_bo_info *args = data;
+ struct drm_gem_object *obj;
+ struct ivpu_bo *bo;
+ int ret = 0;
+
+ obj = drm_gem_object_lookup(file, args->handle);
+ if (!obj)
+ return -ENOENT;
+
+ bo = to_ivpu_bo(obj);
+
+ mutex_lock(&bo->lock);
+
+ if (!bo->ctx) {
+ ret = ivpu_bo_alloc_vpu_addr(bo, &file_priv->ctx, NULL);
+ if (ret) {
+ ivpu_err(vdev, "Failed to allocate vpu_addr: %d\n", ret);
+ goto unlock;
+ }
+ }
+
+ args->flags = bo->flags;
+ args->mmap_offset = drm_vma_node_offset_addr(&obj->vma_node);
+ args->vpu_addr = bo->vpu_addr;
+ args->size = obj->size;
+unlock:
+ mutex_unlock(&bo->lock);
+ drm_gem_object_put(obj);
+ return ret;
+}
+
+int ivpu_bo_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
+{
+ struct drm_ivpu_bo_wait *args = data;
+ struct drm_gem_object *obj;
+ unsigned long timeout;
+ long ret;
+
+ timeout = drm_timeout_abs_to_jiffies(args->timeout_ns);
+
+ obj = drm_gem_object_lookup(file, args->handle);
+ if (!obj)
+ return -EINVAL;
+
+ ret = dma_resv_wait_timeout(obj->resv, DMA_RESV_USAGE_READ, true, timeout);
+ if (ret == 0) {
+ ret = -ETIMEDOUT;
+ } else if (ret > 0) {
+ ret = 0;
+ args->job_status = to_ivpu_bo(obj)->job_status;
+ }
+
+ drm_gem_object_put(obj);
+
+ return ret;
+}
+
+static void ivpu_bo_print_info(struct ivpu_bo *bo, struct drm_printer *p)
+{
+ unsigned long dma_refcount = 0;
+
+ if (bo->base.dma_buf && bo->base.dma_buf->file)
+ dma_refcount = atomic_long_read(&bo->base.dma_buf->file->f_count);
+
+ drm_printf(p, "%5u %6d %16llx %10lu %10u %12lu %14s\n",
+ bo->ctx->id, bo->handle, bo->vpu_addr, bo->base.size,
+ kref_read(&bo->base.refcount), dma_refcount, bo->ops->name);
+}
+
+void ivpu_bo_list(struct drm_device *dev, struct drm_printer *p)
+{
+ struct ivpu_device *vdev = to_ivpu_device(dev);
+ struct ivpu_file_priv *file_priv;
+ unsigned long ctx_id;
+ struct ivpu_bo *bo;
+
+ drm_printf(p, "%5s %6s %16s %10s %10s %12s %14s\n",
+ "ctx", "handle", "vpu_addr", "size", "refcount", "dma_refcount", "type");
+
+ mutex_lock(&vdev->gctx.lock);
+ list_for_each_entry(bo, &vdev->gctx.bo_list, ctx_node)
+ ivpu_bo_print_info(bo, p);
+ mutex_unlock(&vdev->gctx.lock);
+
+ xa_for_each(&vdev->context_xa, ctx_id, file_priv) {
+ file_priv = ivpu_file_priv_get_by_ctx_id(vdev, ctx_id);
+ if (!file_priv)
+ continue;
+
+ mutex_lock(&file_priv->ctx.lock);
+ list_for_each_entry(bo, &file_priv->ctx.bo_list, ctx_node)
+ ivpu_bo_print_info(bo, p);
+ mutex_unlock(&file_priv->ctx.lock);
+
+ ivpu_file_priv_put(&file_priv);
+ }
+}
+
+void ivpu_bo_list_print(struct drm_device *dev)
+{
+ struct drm_printer p = drm_info_printer(dev->dev);
+
+ ivpu_bo_list(dev, &p);
+}
/* Tell the block layer that this is not a rotational device */
blk_queue_flag_set(QUEUE_FLAG_NONROT, disk->queue);
+ blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, disk->queue);
blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, disk->queue);
+ blk_queue_flag_set(QUEUE_FLAG_NOWAIT, disk->queue);
err = add_disk(disk);
if (err)
goto out_cleanup_disk;
*/
static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
{
- struct inode *inode = bh->b_page->mapping->host;
- /* Decrypt if needed */
- if (uptodate &&
- fscrypt_inode_uses_fs_layer_crypto(bh->b_folio->mapping->host)) {
- struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
++ struct inode *inode = bh->b_folio->mapping->host;
+ bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
+ bool verify = need_fsverity(bh);
+
+ /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
+ if (uptodate && (decrypt || verify)) {
+ struct postprocess_bh_ctx *ctx =
+ kmalloc(sizeof(*ctx), GFP_ATOMIC);
if (ctx) {
- INIT_WORK(&ctx->work, decrypt_bh);
ctx->bh = bh;
- fscrypt_enqueue_decrypt_work(&ctx->work);
+ if (decrypt) {
+ INIT_WORK(&ctx->work, decrypt_bh);
+ fscrypt_enqueue_decrypt_work(&ctx->work);
+ } else {
+ INIT_WORK(&ctx->work, verify_bh);
+ fsverity_enqueue_verify_work(&ctx->work);
+ }
return;
}
uptodate = 0;
return rc;
}
-static struct cifs_writedata *
-wdata_alloc_and_fillpages(pgoff_t tofind, struct address_space *mapping,
- pgoff_t end, pgoff_t *index,
- unsigned int *found_pages)
+/*
+ * Extend the region to be written back to include subsequent contiguously
+ * dirty pages if possible, but don't sleep while doing so.
+ */
+static void cifs_extend_writeback(struct address_space *mapping,
+ long *_count,
+ loff_t start,
+ int max_pages,
+ size_t max_len,
+ unsigned int *_len)
{
- struct cifs_writedata *wdata;
- struct folio_batch fbatch;
- unsigned int i, idx, p, nr;
- wdata = cifs_writedata_alloc((unsigned int)tofind,
- cifs_writev_complete);
- if (!wdata)
- return NULL;
-
- folio_batch_init(&fbatch);
- *found_pages = 0;
-
-again:
- nr = filemap_get_folios_tag(mapping, index, end,
- PAGECACHE_TAG_DIRTY, &fbatch);
- if (!nr)
- goto out; /* No dirty pages left in the range */
-
- for (i = 0; i < nr; i++) {
- struct folio *folio = fbatch.folios[i];
-
- idx = 0;
- p = folio_nr_pages(folio);
-add_more:
- wdata->pages[*found_pages] = folio_page(folio, idx);
- folio_get(folio);
- if (++*found_pages == tofind) {
- folio_batch_release(&fbatch);
- goto out;
- }
- if (++idx < p)
- goto add_more;
- }
- folio_batch_release(&fbatch);
- goto again;
-out:
- return wdata;
-}
+ struct folio_batch batch;
+ struct folio *folio;
+ unsigned int psize, nr_pages;
+ size_t len = *_len;
+ pgoff_t index = (start + len) / PAGE_SIZE;
+ bool stop = true;
+ unsigned int i;
+ XA_STATE(xas, &mapping->i_pages, index);
-static unsigned int
-wdata_prepare_pages(struct cifs_writedata *wdata, unsigned int found_pages,
- struct address_space *mapping,
- struct writeback_control *wbc,
- pgoff_t end, pgoff_t *index, pgoff_t *next, bool *done)
-{
- unsigned int nr_pages = 0, i;
- struct page *page;
+ folio_batch_init(&batch);
- for (i = 0; i < found_pages; i++) {
- page = wdata->pages[i];
- /*
- * At this point we hold neither the i_pages lock nor the
- * page lock: the page may be truncated or invalidated
- * (changing page->mapping to NULL), or even swizzled
- * back from swapper_space to tmpfs file mapping
+ do {
+ /* Firstly, we gather up a batch of contiguous dirty pages
+ * under the RCU read lock - but we can't clear the dirty flags
+ * there if any of those pages are mapped.
*/
+ rcu_read_lock();
- if (nr_pages == 0)
- lock_page(page);
- else if (!trylock_page(page))
- break;
-
- if (unlikely(page->mapping != mapping)) {
- unlock_page(page);
- break;
- }
+ xas_for_each(&xas, folio, ULONG_MAX) {
+ stop = true;
+ if (xas_retry(&xas, folio))
+ continue;
+ if (xa_is_value(folio))
+ break;
+ if (folio_index(folio) != index)
+ break;
+ if (!folio_try_get_rcu(folio)) {
+ xas_reset(&xas);
+ continue;
+ }
+ nr_pages = folio_nr_pages(folio);
+ if (nr_pages > max_pages)
+ break;
- if (!wbc->range_cyclic && page->index > end) {
- *done = true;
- unlock_page(page);
- break;
- }
+ /* Has the page moved or been split? */
+ if (unlikely(folio != xas_reload(&xas))) {
+ folio_put(folio);
+ break;
+ }
- if (*next && (page->index != *next)) {
- /* Not next consecutive page */
- unlock_page(page);
- break;
- }
+ if (!folio_trylock(folio)) {
+ folio_put(folio);
+ break;
+ }
+ if (!folio_test_dirty(folio) || folio_test_writeback(folio)) {
+ folio_unlock(folio);
+ folio_put(folio);
+ break;
+ }
- if (wbc->sync_mode != WB_SYNC_NONE)
- wait_on_page_writeback(page);
+ max_pages -= nr_pages;
+ psize = folio_size(folio);
+ len += psize;
+ stop = false;
+ if (max_pages <= 0 || len >= max_len || *_count <= 0)
+ stop = true;
- if (PageWriteback(page) ||
- !clear_page_dirty_for_io(page)) {
- unlock_page(page);
- break;
+ index += nr_pages;
+ if (!folio_batch_add(&batch, folio))
+ break;
+ if (stop)
+ break;
}
- /*
- * This actually clears the dirty bit in the radix tree.
- * See cifs_writepage() for more commentary.
+ if (!stop)
+ xas_pause(&xas);
+ rcu_read_unlock();
+
+ /* Now, if we obtained any pages, we can shift them to being
+ * writable and mark them for caching.
*/
- set_page_writeback(page);
- if (page_offset(page) >= i_size_read(mapping->host)) {
- *done = true;
- unlock_page(page);
- end_page_writeback(page);
+ if (!folio_batch_count(&batch))
break;
- }
- wdata->pages[i] = page;
- *next = page->index + 1;
- ++nr_pages;
- }
+ for (i = 0; i < folio_batch_count(&batch); i++) {
+ folio = batch.folios[i];
+ /* The folio should be locked, dirty and not undergoing
+ * writeback from the loop above.
+ */
+ if (!folio_clear_dirty_for_io(folio))
+ WARN_ON(1);
+ if (folio_start_writeback(folio))
+ WARN_ON(1);
- /* reset index to refind any pages skipped */
- if (nr_pages == 0)
- *index = wdata->pages[0]->index + 1;
+ *_count -= folio_nr_pages(folio);
+ folio_unlock(folio);
+ }
- /* put any pages we aren't going to use */
- for (i = nr_pages; i < found_pages; i++) {
- put_page(wdata->pages[i]);
- wdata->pages[i] = NULL;
- }
+ folio_batch_release(&batch);
+ cond_resched();
+ } while (!stop);
- return nr_pages;
+ *_len = len;
}
-static int
-wdata_send_pages(struct cifs_writedata *wdata, unsigned int nr_pages,
- struct address_space *mapping, struct writeback_control *wbc)
+/*
+ * Write back the locked page and any subsequent non-locked dirty pages.
+ */
+static ssize_t cifs_write_back_from_locked_folio(struct address_space *mapping,
+ struct writeback_control *wbc,
+ struct folio *folio,
+ loff_t start, loff_t end)
{
+ struct inode *inode = mapping->host;
+ struct TCP_Server_Info *server;
+ struct cifs_writedata *wdata;
+ struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
+ struct cifs_credits credits_on_stack;
+ struct cifs_credits *credits = &credits_on_stack;
+ struct cifsFileInfo *cfile = NULL;
+ unsigned int xid, wsize, len;
+ loff_t i_size = i_size_read(inode);
+ size_t max_len;
+ long count = wbc->nr_to_write;
int rc;
- wdata->sync_mode = wbc->sync_mode;
- wdata->nr_pages = nr_pages;
- wdata->offset = page_offset(wdata->pages[0]);
- wdata->pagesz = PAGE_SIZE;
- wdata->tailsz = min(i_size_read(mapping->host) -
- page_offset(wdata->pages[nr_pages - 1]),
- (loff_t)PAGE_SIZE);
- wdata->bytes = ((nr_pages - 1) * PAGE_SIZE) + wdata->tailsz;
- wdata->pid = wdata->cfile->pid;
-
- rc = adjust_credits(wdata->server, &wdata->credits, wdata->bytes);
- if (rc)
- return rc;
-
- if (wdata->cfile->invalidHandle)
- rc = -EAGAIN;
- else
- rc = wdata->server->ops->async_writev(wdata,
- cifs_writedata_release);
+ /* The folio should be locked, dirty and not undergoing writeback. */
+ if (folio_start_writeback(folio))
+ WARN_ON(1);
- return rc;
-}
+ count -= folio_nr_pages(folio);
+ len = folio_size(folio);
-static int
-cifs_writepage_locked(struct page *page, struct writeback_control *wbc);
+ xid = get_xid();
+ server = cifs_pick_channel(cifs_sb_master_tcon(cifs_sb)->ses);
-static int cifs_write_one_page(struct folio *folio,
- struct writeback_control *wbc, void *data)
-{
- struct address_space *mapping = data;
- int ret;
+ rc = cifs_get_writable_file(CIFS_I(inode), FIND_WR_ANY, &cfile);
+ if (rc) {
+ cifs_dbg(VFS, "No writable handle in writepages rc=%d\n", rc);
+ goto err_xid;
+ }
- ret = cifs_writepage_locked(&folio->page, wbc);
- folio_unlock(folio);
- mapping_set_error(mapping, ret);
- return ret;
-}
+ rc = server->ops->wait_mtu_credits(server, cifs_sb->ctx->wsize,
+ &wsize, credits);
+ if (rc != 0)
+ goto err_close;
-static int cifs_writepages(struct address_space *mapping,
- struct writeback_control *wbc)
-{
- struct inode *inode = mapping->host;
- struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
- struct TCP_Server_Info *server;
- bool done = false, scanned = false, range_whole = false;
- pgoff_t end, index;
- struct cifs_writedata *wdata;
- struct cifsFileInfo *cfile = NULL;
- int rc = 0;
- int saved_rc = 0;
- unsigned int xid;
+ wdata = cifs_writedata_alloc(cifs_writev_complete);
+ if (!wdata) {
+ rc = -ENOMEM;
+ goto err_uncredit;
+ }
- /*
- * If wsize is smaller than the page cache size, default to writing
- * one page at a time.
+ wdata->sync_mode = wbc->sync_mode;
+ wdata->offset = folio_pos(folio);
+ wdata->pid = cfile->pid;
+ wdata->credits = credits_on_stack;
+ wdata->cfile = cfile;
+ wdata->server = server;
+ cfile = NULL;
+
+ /* Find all consecutive lockable dirty pages, stopping when we find a
+ * page that is not immediately lockable, is not dirty or is missing,
+ * or we reach the end of the range.
*/
- if (cifs_sb->ctx->wsize < PAGE_SIZE)
- return write_cache_pages(mapping, wbc, cifs_write_one_page,
- mapping);
+ if (start < i_size) {
+ /* Trim the write to the EOF; the extra data is ignored. Also
+ * put an upper limit on the size of a single storedata op.
+ */
+ max_len = wsize;
+ max_len = min_t(unsigned long long, max_len, end - start + 1);
+ max_len = min_t(unsigned long long, max_len, i_size - start);
- xid = get_xid();
- if (wbc->range_cyclic) {
- index = mapping->writeback_index; /* Start from prev offset */
- end = -1;
- } else {
- index = wbc->range_start >> PAGE_SHIFT;
- end = wbc->range_end >> PAGE_SHIFT;
- if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
- range_whole = true;
- scanned = true;
+ if (len < max_len) {
+ int max_pages = INT_MAX;
+
+#ifdef CONFIG_CIFS_SMB_DIRECT
+ if (server->smbd_conn)
+ max_pages = server->smbd_conn->max_frmr_depth;
+#endif
+ max_pages -= folio_nr_pages(folio);
+
+ if (max_pages > 0)
+ cifs_extend_writeback(mapping, &count, start,
+ max_pages, max_len, &len);
+ }
+ len = min_t(loff_t, len, max_len);
}
- server = cifs_pick_channel(cifs_sb_master_tcon(cifs_sb)->ses);
-retry:
- while (!done && index <= end) {
- unsigned int i, nr_pages, found_pages, wsize;
- pgoff_t next = 0, tofind, saved_index = index;
- struct cifs_credits credits_on_stack;
- struct cifs_credits *credits = &credits_on_stack;
- int get_file_rc = 0;
+ wdata->bytes = len;
- if (cfile)
- cifsFileInfo_put(cfile);
+ /* We now have a contiguous set of dirty pages, each with writeback
+ * set; the first page is still locked at this point, but all the rest
+ * have been unlocked.
+ */
+ folio_unlock(folio);
- rc = cifs_get_writable_file(CIFS_I(inode), FIND_WR_ANY, &cfile);
+ if (start < i_size) {
+ iov_iter_xarray(&wdata->iter, ITER_SOURCE, &mapping->i_pages,
+ start, len);
- /* in case of an error store it to return later */
+ rc = adjust_credits(wdata->server, &wdata->credits, wdata->bytes);
if (rc)
- get_file_rc = rc;
+ goto err_wdata;
- rc = server->ops->wait_mtu_credits(server, cifs_sb->ctx->wsize,
- &wsize, credits);
- if (rc != 0) {
- done = true;
- break;
+ if (wdata->cfile->invalidHandle)
+ rc = -EAGAIN;
+ else
+ rc = wdata->server->ops->async_writev(wdata,
+ cifs_writedata_release);
+ if (rc >= 0) {
+ kref_put(&wdata->refcount, cifs_writedata_release);
+ goto err_close;
}
+ } else {
+ /* The dirty region was entirely beyond the EOF. */
+ cifs_pages_written_back(inode, start, len);
+ rc = 0;
+ }
- tofind = min((wsize / PAGE_SIZE) - 1, end - index) + 1;
+err_wdata:
+ kref_put(&wdata->refcount, cifs_writedata_release);
+err_uncredit:
+ add_credits_and_wake_if(server, credits, 0);
+err_close:
+ if (cfile)
+ cifsFileInfo_put(cfile);
+err_xid:
+ free_xid(xid);
+ if (rc == 0) {
+ wbc->nr_to_write = count;
+ } else if (is_retryable_error(rc)) {
+ cifs_pages_write_redirty(inode, start, len);
+ } else {
+ cifs_pages_write_failed(inode, start, len);
+ mapping_set_error(mapping, rc);
+ }
+ /* Indication to update ctime and mtime as close is deferred */
+ set_bit(CIFS_INO_MODIFIED_ATTR, &CIFS_I(inode)->flags);
+ return rc;
+}
- wdata = wdata_alloc_and_fillpages(tofind, mapping, end, &index,
- &found_pages);
- if (!wdata) {
- rc = -ENOMEM;
- done = true;
- add_credits_and_wake_if(server, credits, 0);
- break;
- }
+/*
+ * write a region of pages back to the server
+ */
+static int cifs_writepages_region(struct address_space *mapping,
+ struct writeback_control *wbc,
+ loff_t start, loff_t end, loff_t *_next)
+{
- struct folio *folio;
- struct page *head_page;
- ssize_t ret;
- int n, skips = 0;
++ struct folio_batch fbatch;
++ int skips = 0;
- if (found_pages == 0) {
- kref_put(&wdata->refcount, cifs_writedata_release);
- add_credits_and_wake_if(server, credits, 0);
++ folio_batch_init(&fbatch);
+ do {
++ int nr;
+ pgoff_t index = start / PAGE_SIZE;
+
- n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE,
- PAGECACHE_TAG_DIRTY, 1, &head_page);
- if (!n)
++ nr = filemap_get_folios_tag(mapping, &index, end / PAGE_SIZE,
++ PAGECACHE_TAG_DIRTY, &fbatch);
++ if (!nr)
break;
- }
- folio = page_folio(head_page);
- start = folio_pos(folio); /* May regress with THPs */
- nr_pages = wdata_prepare_pages(wdata, found_pages, mapping, wbc,
- end, &index, &next, &done);
++ for (int i = 0; i < nr; i++) {
++ ssize_t ret;
++ struct folio *folio = fbatch.folios[i];
- /* At this point we hold neither the i_pages lock nor the
- * page lock: the page may be truncated or invalidated
- * (changing page->mapping to NULL), or even swizzled
- * back from swapper_space to tmpfs file mapping
- */
- if (wbc->sync_mode != WB_SYNC_NONE) {
- ret = folio_lock_killable(folio);
- if (ret < 0) {
- folio_put(folio);
- return ret;
- /* nothing to write? */
- if (nr_pages == 0) {
- kref_put(&wdata->refcount, cifs_writedata_release);
- add_credits_and_wake_if(server, credits, 0);
- continue;
- }
++redo_folio:
++ start = folio_pos(folio); /* May regress with THPs */
+
- wdata->credits = credits_on_stack;
- wdata->cfile = cfile;
- wdata->server = server;
- cfile = NULL;
++ /* At this point we hold neither the i_pages lock nor the
++ * page lock: the page may be truncated or invalidated
++ * (changing page->mapping to NULL), or even swizzled
++ * back from swapper_space to tmpfs file mapping
++ */
++ if (wbc->sync_mode != WB_SYNC_NONE) {
++ ret = folio_lock_killable(folio);
++ if (ret < 0)
++ goto write_error;
++ } else {
++ if (!folio_trylock(folio))
++ goto skip_write;
+ }
- } else {
- if (!folio_trylock(folio)) {
- folio_put(folio);
- return 0;
+
- if (!wdata->cfile) {
- cifs_dbg(VFS, "No writable handle in writepages rc=%d\n",
- get_file_rc);
- if (is_retryable_error(get_file_rc))
- rc = get_file_rc;
- else
- rc = -EBADF;
- } else
- rc = wdata_send_pages(wdata, nr_pages, mapping, wbc);
++ if (folio_mapping(folio) != mapping ||
++ !folio_test_dirty(folio)) {
++ folio_unlock(folio);
++ goto skip_write;
+ }
- }
- if (folio_mapping(folio) != mapping ||
- !folio_test_dirty(folio)) {
- start += folio_size(folio);
- folio_unlock(folio);
- folio_put(folio);
- continue;
- }
- for (i = 0; i < nr_pages; ++i)
- unlock_page(wdata->pages[i]);
++ if (folio_test_writeback(folio) ||
++ folio_test_fscache(folio)) {
++ folio_unlock(folio);
++ if (wbc->sync_mode == WB_SYNC_NONE)
++ goto skip_write;
- if (folio_test_writeback(folio) ||
- folio_test_fscache(folio)) {
- folio_unlock(folio);
- if (wbc->sync_mode != WB_SYNC_NONE) {
- /* send failure -- clean up the mess */
- if (rc != 0) {
- add_credits_and_wake_if(server, &wdata->credits, 0);
- for (i = 0; i < nr_pages; ++i) {
- if (is_retryable_error(rc))
- redirty_page_for_writepage(wbc,
- wdata->pages[i]);
- else
- SetPageError(wdata->pages[i]);
- end_page_writeback(wdata->pages[i]);
- put_page(wdata->pages[i]);
+ folio_wait_writeback(folio);
+#ifdef CONFIG_CIFS_FSCACHE
+ folio_wait_fscache(folio);
+#endif
- } else {
- start += folio_size(folio);
++ goto redo_folio;
}
- folio_put(folio);
- if (wbc->sync_mode == WB_SYNC_NONE) {
- if (skips >= 5 || need_resched())
- break;
- skips++;
- }
- continue;
- if (!is_retryable_error(rc))
- mapping_set_error(mapping, rc);
-- }
- kref_put(&wdata->refcount, cifs_writedata_release);
- if (!folio_clear_dirty_for_io(folio))
- /* We hold the page lock - it should've been dirty. */
- WARN_ON(1);
- if (wbc->sync_mode == WB_SYNC_ALL && rc == -EAGAIN) {
- index = saved_index;
- continue;
- }
++ if (!folio_clear_dirty_for_io(folio))
++ /* We hold the page lock - it should've been dirty. */
++ WARN_ON(1);
- ret = cifs_write_back_from_locked_folio(mapping, wbc, folio, start, end);
- folio_put(folio);
- if (ret < 0)
- /* Return immediately if we received a signal during writing */
- if (is_interrupt_error(rc)) {
- done = true;
- break;
- }
++ ret = cifs_write_back_from_locked_folio(mapping, wbc, folio, start, end);
++ if (ret < 0)
++ goto write_error;
+
- if (rc != 0 && saved_rc == 0)
- saved_rc = rc;
++ start += ret;
++ continue;
+
- wbc->nr_to_write -= nr_pages;
- if (wbc->nr_to_write <= 0)
- done = true;
++write_error:
++ folio_batch_release(&fbatch);
++ *_next = start;
+ return ret;
- start += ret;
- index = next;
- }
++skip_write:
++ /*
++ * Too many skipped writes, or need to reschedule?
++ * Treat it as a write error without an error code.
++ */
++ if (skips >= 5 || need_resched()) {
++ ret = 0;
++ goto write_error;
++ }
+
- if (!scanned && !done) {
- /*
- * We hit the last page and there is more work to be done: wrap
- * back to the start of the file
- */
- scanned = true;
- index = 0;
- goto retry;
- }
++ /* Otherwise, just skip that folio and go on to the next */
++ skips++;
++ start += folio_size(folio);
++ continue;
++ }
+
- if (saved_rc != 0)
- rc = saved_rc;
++ folio_batch_release(&fbatch);
+ cond_resched();
+ } while (wbc->nr_to_write > 0);
- if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
- mapping->writeback_index = index;
+ *_next = start;
+ return 0;
+}
- if (cfile)
- cifsFileInfo_put(cfile);
- free_xid(xid);
- /* Indication to update ctime and mtime as close is deferred */
- set_bit(CIFS_INO_MODIFIED_ATTR, &CIFS_I(inode)->flags);
- return rc;
+/*
+ * Write some of the pending data back to the server
+ */
+static int cifs_writepages(struct address_space *mapping,
+ struct writeback_control *wbc)
+{
+ loff_t start, next;
+ int ret;
+
+ /* We have to be careful as we can end up racing with setattr()
+ * truncating the pagecache since the caller doesn't take a lock here
+ * to prevent it.
+ */
+
+ if (wbc->range_cyclic) {
+ start = mapping->writeback_index * PAGE_SIZE;
+ ret = cifs_writepages_region(mapping, wbc, start, LLONG_MAX, &next);
+ if (ret == 0) {
+ mapping->writeback_index = next / PAGE_SIZE;
+ if (start > 0 && wbc->nr_to_write > 0) {
+ ret = cifs_writepages_region(mapping, wbc, 0,
+ start, &next);
+ if (ret == 0)
+ mapping->writeback_index =
+ next / PAGE_SIZE;
+ }
+ }
+ } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
+ ret = cifs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next);
+ if (wbc->nr_to_write > 0 && ret == 0)
+ mapping->writeback_index = next / PAGE_SIZE;
+ } else {
+ ret = cifs_writepages_region(mapping, wbc,
+ wbc->range_start, wbc->range_end, &next);
+ }
+
+ return ret;
}
static int
brelse(bd->bd_bh);
}
- static int __gfs2_writepage(struct page *page, struct writeback_control *wbc,
++static int __gfs2_writepage(struct folio *folio, struct writeback_control *wbc,
+ void *data)
+{
+ struct address_space *mapping = data;
- int ret = mapping->a_ops->writepage(page, wbc);
++ int ret = mapping->a_ops->writepage(&folio->page, wbc);
+ mapping_set_error(mapping, ret);
+ return ret;
+}
+
/**
* gfs2_ail1_start_one - Start I/O on a transaction
* @sdp: The superblock
return ret;
}
- static int nfs_writepages_callback(struct page *page,
+ static int nfs_writepages_callback(struct folio *folio,
- struct writeback_control *wbc, void *data)
+ struct writeback_control *wbc, void *data)
{
- struct folio *folio = page_folio(page);
int ret;
- ret = nfs_do_writepage(&folio->page, wbc, data);
+ ret = nfs_do_writepage(folio, wbc, data);
if (ret != AOP_WRITEPAGE_ACTIVATE)
- unlock_page(page);
+ folio_unlock(folio);
return ret;
}
}
}
- static int udf_adinicb_writepage(struct page *page,
++static int udf_adinicb_writepage(struct folio *folio,
+ struct writeback_control *wbc, void *data)
+{
++ struct page *page = &folio->page;
+ struct inode *inode = page->mapping->host;
+ struct udf_inode_info *iinfo = UDF_I(inode);
+
+ BUG_ON(!PageLocked(page));
+ memcpy_to_page(page, 0, iinfo->i_data + iinfo->i_lenEAttr,
+ i_size_read(inode));
+ unlock_page(page);
+ mark_inode_dirty(inode);
+
+ return 0;
+}
+
static int udf_writepages(struct address_space *mapping,
- struct writeback_control *wbc)
+ struct writeback_control *wbc)
{
- return mpage_writepages(mapping, wbc, udf_get_block);
+ struct inode *inode = mapping->host;
+ struct udf_inode_info *iinfo = UDF_I(inode);
+
+ if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
+ return mpage_writepages(mapping, wbc, udf_get_block_wb);
+ return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL);
+}
+
+static void udf_adinicb_readpage(struct page *page)
+{
+ struct inode *inode = page->mapping->host;
+ char *kaddr;
+ struct udf_inode_info *iinfo = UDF_I(inode);
+ loff_t isize = i_size_read(inode);
+
+ kaddr = kmap_local_page(page);
+ memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, isize);
+ memset(kaddr + isize, 0, PAGE_SIZE - isize);
+ flush_dcache_page(page);
+ SetPageUptodate(page);
+ kunmap_local(kaddr);
}
static int udf_read_folio(struct file *file, struct folio *folio)
int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
- extern struct static_key_false memcg_kmem_enabled_key;
+extern struct static_key_false memcg_bpf_enabled_key;
+static inline bool memcg_bpf_enabled(void)
+{
+ return static_branch_likely(&memcg_bpf_enabled_key);
+}
+
+ extern struct static_key_false memcg_kmem_online_key;
- static inline bool memcg_kmem_enabled(void)
+ static inline bool memcg_kmem_online(void)
{
- return static_branch_likely(&memcg_kmem_enabled_key);
+ return static_branch_likely(&memcg_kmem_online_key);
}
static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
return NULL;
}
- static inline bool memcg_kmem_enabled(void)
+static inline bool memcg_bpf_enabled(void)
+{
+ return false;
+}
+
+ static inline bool memcg_kmem_online(void)
{
return false;
}
* &struct mm_struct is freed.
*/
atomic_t mm_count;
-
+#ifdef CONFIG_SCHED_MM_CID
+ /**
+ * @cid_lock: Protect cid bitmap updates vs lookups.
+ *
+ * Prevent situations where updates to the cid bitmap happen
+ * concurrently with lookups. Those can lead to situations
+ * where a lookup cannot find a free bit simply because it was
+ * unlucky enough to load, non-atomically, bitmap words as they
+ * were being concurrently updated by the updaters.
+ */
+ raw_spinlock_t cid_lock;
+#endif
#ifdef CONFIG_MMU
- atomic_long_t pgtables_bytes; /* PTE page table pages */
+ atomic_long_t pgtables_bytes; /* size of all page tables */
#endif
int map_count; /* number of VMAs */
static inline void vma_iter_init(struct vma_iterator *vmi,
struct mm_struct *mm, unsigned long addr)
{
- vmi->mas.tree = &mm->mm_mt;
- vmi->mas.index = addr;
- vmi->mas.node = MAS_START;
+ mas_init(&vmi->mas, &mm->mm_mt, addr);
}
+#ifdef CONFIG_SCHED_MM_CID
+/* Accessor for struct mm_struct's cidmask. */
+static inline cpumask_t *mm_cidmask(struct mm_struct *mm)
+{
+ unsigned long cid_bitmap = (unsigned long)mm;
+
+ cid_bitmap += offsetof(struct mm_struct, cpu_bitmap);
+ /* Skip cpu_bitmap */
+ cid_bitmap += cpumask_size();
+ return (struct cpumask *)cid_bitmap;
+}
+
+static inline void mm_init_cid(struct mm_struct *mm)
+{
+ raw_spin_lock_init(&mm->cid_lock);
+ cpumask_clear(mm_cidmask(mm));
+}
+
+static inline unsigned int mm_cid_size(void)
+{
+ return cpumask_size();
+}
+#else /* CONFIG_SCHED_MM_CID */
+static inline void mm_init_cid(struct mm_struct *mm) { }
+static inline unsigned int mm_cid_size(void)
+{
+ return 0;
+}
+#endif /* CONFIG_SCHED_MM_CID */
+
struct mmu_gather;
extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
if (pmd_swp_soft_dirty(*pvmw->pmd))
pmde = pmd_mksoft_dirty(pmde);
- if (is_writable_migration_entry(entry))
- pmde = maybe_pmd_mkwrite(pmde, vma);
if (pmd_swp_uffd_wp(*pvmw->pmd))
- pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
+ pmde = pmd_mkuffd_wp(pmde);
if (!is_migration_entry_young(entry))
pmde = pmd_mkold(pmde);
/* NOTE: this may contain setting soft-dirty on some archs */
* conditional to this static branch, we'll have to allow modules that does
* kmem_cache_alloc and the such to see this symbol as well
*/
- DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
- EXPORT_SYMBOL(memcg_kmem_enabled_key);
+ DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
+ EXPORT_SYMBOL(memcg_kmem_online_key);
+
+DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
+EXPORT_SYMBOL(memcg_bpf_enabled_key);
#endif
/**
stat->attributes_mask |= (STATX_ATTR_APPEND |
STATX_ATTR_IMMUTABLE |
STATX_ATTR_NODUMP);
- generic_fillattr(&init_user_ns, inode, stat);
+ generic_fillattr(idmap, inode, stat);
- if (shmem_is_huge(NULL, inode, 0, false))
+ if (shmem_is_huge(inode, 0, false, NULL, 0))
stat->blksize = HPAGE_PMD_SIZE;
if (request_mask & STATX_BTIME) {
--- /dev/null
-CFLAGS = -Wall -I $(top_srcdir) -I $(top_srcdir)/usr/include $(EXTRA_CFLAGS) $(KHDR_INCLUDES)
+ # SPDX-License-Identifier: GPL-2.0
+ # Makefile for mm selftests
+
+ LOCAL_HDRS += $(selfdir)/mm/local_config.h $(top_srcdir)/mm/gup_test.h
+
+ include local_config.mk
+
+ ifeq ($(CROSS_COMPILE),)
+ uname_M := $(shell uname -m 2>/dev/null || echo not)
+ else
+ uname_M := $(shell echo $(CROSS_COMPILE) | grep -o '^[a-z0-9]\+')
+ endif
+ MACHINE ?= $(shell echo $(uname_M) | sed -e 's/aarch64.*/arm64/' -e 's/ppc64.*/ppc64/')
+
+ # Without this, failed build products remain, with up-to-date timestamps,
+ # thus tricking Make (and you!) into believing that All Is Well, in subsequent
+ # make invocations:
+ .DELETE_ON_ERROR:
+
+ # Avoid accidental wrong builds, due to built-in rules working just a little
+ # bit too well--but not quite as well as required for our situation here.
+ #
+ # In other words, "make userfaultfd" is supposed to fail to build at all,
+ # because this Makefile only supports either "make" (all), or "make /full/path".
+ # However, the built-in rules, if not suppressed, will pick up CFLAGS and the
+ # initial LDLIBS (but not the target-specific LDLIBS, because those are only
+ # set for the full path target!). This causes it to get pretty far into building
+ # things despite using incorrect values such as an *occasionally* incomplete
+ # LDLIBS.
+ MAKEFLAGS += --no-builtin-rules
+
++CFLAGS = -Wall -I $(top_srcdir) $(EXTRA_CFLAGS) $(KHDR_INCLUDES)
+ LDLIBS = -lrt -lpthread
+ TEST_GEN_FILES = cow
+ TEST_GEN_FILES += compaction_test
+ TEST_GEN_FILES += gup_test
+ TEST_GEN_FILES += hmm-tests
+ TEST_GEN_FILES += hugetlb-madvise
+ TEST_GEN_FILES += hugepage-mmap
+ TEST_GEN_FILES += hugepage-mremap
+ TEST_GEN_FILES += hugepage-shm
+ TEST_GEN_FILES += hugepage-vmemmap
+ TEST_GEN_FILES += khugepaged
+ TEST_GEN_PROGS = madv_populate
+ TEST_GEN_FILES += map_fixed_noreplace
+ TEST_GEN_FILES += map_hugetlb
+ TEST_GEN_FILES += map_populate
+ TEST_GEN_FILES += memfd_secret
+ TEST_GEN_FILES += migration
+ TEST_GEN_FILES += mlock-random-test
+ TEST_GEN_FILES += mlock2-tests
+ TEST_GEN_FILES += mrelease_test
+ TEST_GEN_FILES += mremap_dontunmap
+ TEST_GEN_FILES += mremap_test
+ TEST_GEN_FILES += on-fault-limit
+ TEST_GEN_FILES += thuge-gen
+ TEST_GEN_FILES += transhuge-stress
+ TEST_GEN_FILES += userfaultfd
+ TEST_GEN_PROGS += soft-dirty
+ TEST_GEN_PROGS += split_huge_page_test
+ TEST_GEN_FILES += ksm_tests
+ TEST_GEN_PROGS += ksm_functional_tests
+ TEST_GEN_PROGS += mdwe_test
+
+ ifeq ($(MACHINE),x86_64)
+ CAN_BUILD_I386 := $(shell ./../x86/check_cc.sh "$(CC)" ../x86/trivial_32bit_program.c -m32)
+ CAN_BUILD_X86_64 := $(shell ./../x86/check_cc.sh "$(CC)" ../x86/trivial_64bit_program.c)
+ CAN_BUILD_WITH_NOPIE := $(shell ./../x86/check_cc.sh "$(CC)" ../x86/trivial_program.c -no-pie)
+
+ VMTARGETS := protection_keys
+ BINARIES_32 := $(VMTARGETS:%=%_32)
+ BINARIES_64 := $(VMTARGETS:%=%_64)
+
+ ifeq ($(CAN_BUILD_WITH_NOPIE),1)
+ CFLAGS += -no-pie
+ endif
+
+ ifeq ($(CAN_BUILD_I386),1)
+ TEST_GEN_FILES += $(BINARIES_32)
+ endif
+
+ ifeq ($(CAN_BUILD_X86_64),1)
+ TEST_GEN_FILES += $(BINARIES_64)
+ endif
+ else
+
+ ifneq (,$(findstring $(MACHINE),ppc64))
+ TEST_GEN_FILES += protection_keys
+ endif
+
+ endif
+
+ ifneq (,$(filter $(MACHINE),arm64 ia64 mips64 parisc64 ppc64 riscv64 s390x sh64 sparc64 x86_64))
+ TEST_GEN_FILES += va_128TBswitch
+ TEST_GEN_FILES += virtual_address_range
+ TEST_GEN_FILES += write_to_hugetlbfs
+ endif
+
+ TEST_PROGS := run_vmtests.sh
+
+ TEST_FILES := test_vmalloc.sh
+ TEST_FILES += test_hmm.sh
+ TEST_FILES += va_128TBswitch.sh
+
+ include ../lib.mk
+
+ $(OUTPUT)/cow: vm_util.c
+ $(OUTPUT)/khugepaged: vm_util.c
+ $(OUTPUT)/ksm_functional_tests: vm_util.c
+ $(OUTPUT)/madv_populate: vm_util.c
+ $(OUTPUT)/soft-dirty: vm_util.c
+ $(OUTPUT)/split_huge_page_test: vm_util.c
+ $(OUTPUT)/userfaultfd: vm_util.c
+
+ ifeq ($(MACHINE),x86_64)
+ BINARIES_32 := $(patsubst %,$(OUTPUT)/%,$(BINARIES_32))
+ BINARIES_64 := $(patsubst %,$(OUTPUT)/%,$(BINARIES_64))
+
+ define gen-target-rule-32
+ $(1) $(1)_32: $(OUTPUT)/$(1)_32
+ .PHONY: $(1) $(1)_32
+ endef
+
+ define gen-target-rule-64
+ $(1) $(1)_64: $(OUTPUT)/$(1)_64
+ .PHONY: $(1) $(1)_64
+ endef
+
+ ifeq ($(CAN_BUILD_I386),1)
+ $(BINARIES_32): CFLAGS += -m32 -mxsave
+ $(BINARIES_32): LDLIBS += -lrt -ldl -lm
+ $(BINARIES_32): $(OUTPUT)/%_32: %.c
+ $(CC) $(CFLAGS) $(EXTRA_CFLAGS) $(notdir $^) $(LDLIBS) -o $@
+ $(foreach t,$(VMTARGETS),$(eval $(call gen-target-rule-32,$(t))))
+ endif
+
+ ifeq ($(CAN_BUILD_X86_64),1)
+ $(BINARIES_64): CFLAGS += -m64 -mxsave
+ $(BINARIES_64): LDLIBS += -lrt -ldl
+ $(BINARIES_64): $(OUTPUT)/%_64: %.c
+ $(CC) $(CFLAGS) $(EXTRA_CFLAGS) $(notdir $^) $(LDLIBS) -o $@
+ $(foreach t,$(VMTARGETS),$(eval $(call gen-target-rule-64,$(t))))
+ endif
+
+ # x86_64 users should be encouraged to install 32-bit libraries
+ ifeq ($(CAN_BUILD_I386)$(CAN_BUILD_X86_64),01)
+ all: warn_32bit_failure
+
+ warn_32bit_failure:
+ @echo "Warning: you seem to have a broken 32-bit build" 2>&1; \
+ echo "environment. This will reduce test coverage of 64-bit" 2>&1; \
+ echo "kernels. If you are using a Debian-like distribution," 2>&1; \
+ echo "try:"; 2>&1; \
+ echo ""; \
+ echo " apt-get install gcc-multilib libc6-i386 libc6-dev-i386"; \
+ echo ""; \
+ echo "If you are using a Fedora-like distribution, try:"; \
+ echo ""; \
+ echo " yum install glibc-devel.*i686"; \
+ exit 0;
+ endif
+ endif
+
+ # cow_EXTRA_LIBS may get set in local_config.mk, or it may be left empty.
+ $(OUTPUT)/cow: LDLIBS += $(COW_EXTRA_LIBS)
+
+ $(OUTPUT)/mlock-random-test $(OUTPUT)/memfd_secret: LDLIBS += -lcap
+
+ $(OUTPUT)/ksm_tests: LDLIBS += -lnuma
+
+ $(OUTPUT)/migration: LDLIBS += -lnuma
+
+ local_config.mk local_config.h: check_config.sh
+ /bin/sh ./check_config.sh $(CC)
+
+ EXTRA_CLEAN += local_config.mk local_config.h
+
+ ifeq ($(COW_EXTRA_LIBS),)
+ all: warn_missing_liburing
+
+ warn_missing_liburing:
+ @echo ; \
+ echo "Warning: missing liburing support. Some COW tests will be skipped." ; \
+ echo
+ endif