return Changed ? &I : nullptr;
}
+
/// Analyze the specified subexpression and see if it is capable of providing
-/// pieces of a bswap. The subexpression provides pieces of a bswap if it is
-/// proven that each of the non-zero bytes in the output of the expression came
-/// from the corresponding "byte swapped" byte in some other value.
-/// For example, if the current subexpression is "(shl i32 %X, 24)" then
-/// we know that the expression deposits the low byte of %X into the high byte
-/// of the bswap result and that all other bytes are zero. This expression is
-/// accepted, the high byte of ByteValues is set to X to indicate a correct
-/// match.
+/// pieces of a bswap or bitreverse. The subexpression provides a potential
+/// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
+/// the output of the expression came from a corresponding bit in some other
+/// value. This function is recursive, and the end result is a mapping of
+/// (value, bitnumber) to bitnumber. It is the caller's responsibility to
+/// validate that all `value`s are identical and that the bitnumber to bitnumber
+/// mapping is correct for a bswap or bitreverse.
+///
+/// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
+/// that the expression deposits the low byte of %X into the high byte of the
+/// result and that all other bits are zero. This expression is accepted,
+/// BitValues[24-31] are set to %X and BitProvenance[24-31] are set to [0-7].
///
/// This function returns true if the match was unsuccessful and false if so.
/// On entry to the function the "OverallLeftShift" is a signed integer value
-/// indicating the number of bytes that the subexpression is later shifted. For
+/// indicating the number of bits that the subexpression is later shifted. For
/// example, if the expression is later right shifted by 16 bits, the
-/// OverallLeftShift value would be -2 on entry. This is used to specify which
-/// byte of ByteValues is actually being set.
+/// OverallLeftShift value would be -16 on entry. This is used to specify which
+/// bits of BitValues are actually being set.
///
-/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
-/// byte is masked to zero by a user. For example, in (X & 255), X will be
-/// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
-/// this function to working on up to 32-byte (256 bit) values. ByteMask is
-/// always in the local (OverallLeftShift) coordinate space.
+/// Similarly, BitMask is a bitmask where a bit is clear if its corresponding
+/// bit is masked to zero by a user. For example, in (X & 255), X will be
+/// processed with a bytemask of 255. BitMask is always in the local
+/// (OverallLeftShift) coordinate space.
///
-static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
- SmallVectorImpl<Value *> &ByteValues) {
+static bool CollectBitParts(Value *V, int OverallLeftShift, APInt BitMask,
+ SmallVectorImpl<Value *> &BitValues,
+ SmallVectorImpl<int> &BitProvenance) {
if (Instruction *I = dyn_cast<Instruction>(V)) {
// If this is an or instruction, it may be an inner node of the bswap.
- if (I->getOpcode() == Instruction::Or) {
- return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
- ByteValues) ||
- CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
- ByteValues);
- }
-
- // If this is a logical shift by a constant multiple of 8, recurse with
- // OverallLeftShift and ByteMask adjusted.
+ if (I->getOpcode() == Instruction::Or)
+ return CollectBitParts(I->getOperand(0), OverallLeftShift, BitMask,
+ BitValues, BitProvenance) ||
+ CollectBitParts(I->getOperand(1), OverallLeftShift, BitMask,
+ BitValues, BitProvenance);
+
+ // If this is a logical shift by a constant, recurse with OverallLeftShift
+ // and BitMask adjusted.
if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
unsigned ShAmt =
- cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
- // Ensure the shift amount is defined and of a byte value.
- if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
+ cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
+ // Ensure the shift amount is defined.
+ if (ShAmt > BitValues.size())
return true;
- unsigned ByteShift = ShAmt >> 3;
+ unsigned BitShift = ShAmt;
if (I->getOpcode() == Instruction::Shl) {
- // X << 2 -> collect(X, +2)
- OverallLeftShift += ByteShift;
- ByteMask >>= ByteShift;
+ // X << C -> collect(X, +C)
+ OverallLeftShift += BitShift;
+ BitMask = BitMask.lshr(BitShift);
} else {
- // X >>u 2 -> collect(X, -2)
- OverallLeftShift -= ByteShift;
- ByteMask <<= ByteShift;
- ByteMask &= (~0U >> (32-ByteValues.size()));
+ // X >>u C -> collect(X, -C)
+ OverallLeftShift -= BitShift;
+ BitMask = BitMask.shl(BitShift);
}
- if (OverallLeftShift >= (int)ByteValues.size()) return true;
- if (OverallLeftShift <= -(int)ByteValues.size()) return true;
+ if (OverallLeftShift >= (int)BitValues.size())
+ return true;
+ if (OverallLeftShift <= -(int)BitValues.size())
+ return true;
- return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
- ByteValues);
+ return CollectBitParts(I->getOperand(0), OverallLeftShift, BitMask,
+ BitValues, BitProvenance);
}
- // If this is a logical 'and' with a mask that clears bytes, clear the
- // corresponding bytes in ByteMask.
+ // If this is a logical 'and' with a mask that clears bits, clear the
+ // corresponding bits in BitMask.
if (I->getOpcode() == Instruction::And &&
isa<ConstantInt>(I->getOperand(1))) {
- // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
- unsigned NumBytes = ByteValues.size();
- APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
+ unsigned NumBits = BitValues.size();
+ APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
- for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
- // If this byte is masked out by a later operation, we don't care what
+ for (unsigned i = 0; i != NumBits; ++i, Bit <<= 1) {
+ // If this bit is masked out by a later operation, we don't care what
// the and mask is.
- if ((ByteMask & (1 << i)) == 0)
+ if (BitMask[i] == 0)
continue;
- // If the AndMask is all zeros for this byte, clear the bit.
- APInt MaskB = AndMask & Byte;
+ // If the AndMask is zero for this bit, clear the bit.
+ APInt MaskB = AndMask & Bit;
if (MaskB == 0) {
- ByteMask &= ~(1U << i);
+ BitMask.clearBit(i);
continue;
}
- // If the AndMask is not all ones for this byte, it's not a bytezap.
- if (MaskB != Byte)
- return true;
-
- // Otherwise, this byte is kept.
+ // Otherwise, this bit is kept.
}
- return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
- ByteValues);
+ return CollectBitParts(I->getOperand(0), OverallLeftShift, BitMask,
+ BitValues, BitProvenance);
}
}
// Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
- // the input value to the bswap. Some observations: 1) if more than one byte
- // is demanded from this input, then it could not be successfully assembled
- // into a byteswap. At least one of the two bytes would not be aligned with
- // their ultimate destination.
- if (!isPowerOf2_32(ByteMask)) return true;
- unsigned InputByteNo = countTrailingZeros(ByteMask);
-
- // 2) The input and ultimate destinations must line up: if byte 3 of an i32
- // is demanded, it needs to go into byte 0 of the result. This means that the
- // byte needs to be shifted until it lands in the right byte bucket. The
- // shift amount depends on the position: if the byte is coming from the high
- // part of the value (e.g. byte 3) then it must be shifted right. If from the
- // low part, it must be shifted left.
- unsigned DestByteNo = InputByteNo + OverallLeftShift;
- if (ByteValues.size()-1-DestByteNo != InputByteNo)
+ // the input value to the bswap/bitreverse. To be part of a bswap or
+ // bitreverse we must be demanding a contiguous range of bits from it.
+ unsigned InputBitLen = BitMask.countPopulation();
+ unsigned InputBitNo = BitMask.countTrailingZeros();
+ if (BitMask.getBitWidth() - BitMask.countLeadingZeros() - InputBitNo !=
+ InputBitLen)
+ // Not a contiguous set range of bits!
return true;
- // If the destination byte value is already defined, the values are or'd
- // together, which isn't a bswap (unless it's an or of the same bits).
- if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
+ // We know we're moving a contiguous range of bits from the input to the
+ // output. Record which bits in the output came from which bits in the input.
+ unsigned DestBitNo = InputBitNo + OverallLeftShift;
+ for (unsigned I = 0; I < InputBitLen; ++I)
+ BitProvenance[DestBitNo + I] = InputBitNo + I;
+
+ // If the destination bit value is already defined, the values are or'd
+ // together, which isn't a bswap/bitreverse (unless it's an or of the same
+ // bits).
+ if (BitValues[DestBitNo] && BitValues[DestBitNo] != V)
return true;
- ByteValues[DestByteNo] = V;
+ for (unsigned I = 0; I < InputBitLen; ++I)
+ BitValues[DestBitNo + I] = V;
+
return false;
}
-/// Given an OR instruction, check to see if this is a bswap idiom.
-/// If so, insert the new bswap intrinsic and return it.
-Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
- IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
- if (!ITy || ITy->getBitWidth() % 16 ||
- // ByteMask only allows up to 32-byte values.
- ITy->getBitWidth() > 32*8)
- return nullptr; // Can only bswap pairs of bytes. Can't do vectors.
+static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
+ unsigned BitWidth) {
+ if (From % 8 != To % 8)
+ return false;
+ // Convert from bit indices to byte indices and check for a byte reversal.
+ From >>= 3;
+ To >>= 3;
+ BitWidth >>= 3;
+ return From == BitWidth - To - 1;
+}
- /// ByteValues - For each byte of the result, we keep track of which value
- /// defines each byte.
- SmallVector<Value*, 8> ByteValues;
- ByteValues.resize(ITy->getBitWidth()/8);
+static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
+ unsigned BitWidth) {
+ return From == BitWidth - To - 1;
+}
+/// Given an OR instruction, check to see if this is a bswap or bitreverse
+/// idiom. If so, insert the new intrinsic and return it.
+Instruction *InstCombiner::MatchBSwapOrBitReverse(BinaryOperator &I) {
+ IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
+ if (!ITy)
+ return nullptr; // Can't do vectors.
+ unsigned BW = ITy->getBitWidth();
+
+ /// We keep track of which bit (BitProvenance) inside which value (BitValues)
+ /// defines each bit in the result.
+ SmallVector<Value *, 8> BitValues(BW, nullptr);
+ SmallVector<int, 8> BitProvenance(BW, -1);
+
// Try to find all the pieces corresponding to the bswap.
- uint32_t ByteMask = ~0U >> (32-ByteValues.size());
- if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
+ APInt BitMask = APInt::getAllOnesValue(BitValues.size());
+ if (CollectBitParts(&I, 0, BitMask, BitValues, BitProvenance))
return nullptr;
- // Check to see if all of the bytes come from the same value.
- Value *V = ByteValues[0];
- if (!V) return nullptr; // Didn't find a byte? Must be zero.
+ // Check to see if all of the bits come from the same value.
+ Value *V = BitValues[0];
+ if (!V) return nullptr; // Didn't find a bit? Must be zero.
- // Check to make sure that all of the bytes come from the same value.
- for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
- if (ByteValues[i] != V)
- return nullptr;
+ if (!std::all_of(BitValues.begin(), BitValues.end(),
+ [&](const Value *X) { return X == V; }))
+ return nullptr;
+
+ // Now, is the bit permutation correct for a bswap or a bitreverse? We can
+ // only byteswap values with an even number of bytes.
+ bool OKForBSwap = BW % 16 == 0, OKForBitReverse = true;;
+ for (unsigned i = 0, e = BitValues.size(); i != e; ++i) {
+ OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[i], i, BW);
+ OKForBitReverse &=
+ bitTransformIsCorrectForBitReverse(BitProvenance[i], i, BW);
+ }
+
+ Intrinsic::ID Intrin;
+ if (OKForBSwap)
+ Intrin = Intrinsic::bswap;
+ else if (OKForBitReverse)
+ Intrin = Intrinsic::bitreverse;
+ else
+ return nullptr;
+
Module *M = I.getParent()->getParent()->getParent();
- Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, ITy);
+ Function *F = Intrinsic::getDeclaration(M, Intrin, ITy);
return CallInst::Create(F, V);
}
match(Op1, m_And(m_Value(), m_Value()));
if (OrOfOrs || OrOfShifts || OrOfAnds)
- if (Instruction *BSwap = MatchBSwap(I))
+ if (Instruction *BSwap = MatchBSwapOrBitReverse(I))
return BSwap;
// (X^C)|Y -> (X|Y)^C iff Y&C == 0