GpuHidHaarTreeNode;
-//typedef struct __attribute__((aligned (32))) GpuHidHaarClassifier
-//{
-// int count __attribute__((aligned (4)));
-// GpuHidHaarTreeNode* node __attribute__((aligned (8)));
-// float* alpha __attribute__((aligned (8)));
-//}
-//GpuHidHaarClassifier;
+typedef struct __attribute__((aligned (32))) GpuHidHaarClassifier
+{
+ int count __attribute__((aligned (4)));
+ GpuHidHaarTreeNode* node __attribute__((aligned (8)));
+ float* alpha __attribute__((aligned (8)));
+}
+GpuHidHaarClassifier;
typedef struct __attribute__((aligned (64))) GpuHidHaarStageClassifier
GpuHidHaarStageClassifier;
-//typedef struct __attribute__((aligned (64))) GpuHidHaarClassifierCascade
-//{
-// int count __attribute__((aligned (4)));
-// int is_stump_based __attribute__((aligned (4)));
-// int has_tilted_features __attribute__((aligned (4)));
-// int is_tree __attribute__((aligned (4)));
-// int pq0 __attribute__((aligned (4)));
-// int pq1 __attribute__((aligned (4)));
-// int pq2 __attribute__((aligned (4)));
-// int pq3 __attribute__((aligned (4)));
-// int p0 __attribute__((aligned (4)));
-// int p1 __attribute__((aligned (4)));
-// int p2 __attribute__((aligned (4)));
-// int p3 __attribute__((aligned (4)));
-// float inv_window_area __attribute__((aligned (4)));
-//} GpuHidHaarClassifierCascade;
+typedef struct __attribute__((aligned (64))) GpuHidHaarClassifierCascade
+{
+ int count __attribute__((aligned (4)));
+ int is_stump_based __attribute__((aligned (4)));
+ int has_tilted_features __attribute__((aligned (4)));
+ int is_tree __attribute__((aligned (4)));
+ int pq0 __attribute__((aligned (4)));
+ int pq1 __attribute__((aligned (4)));
+ int pq2 __attribute__((aligned (4)));
+ int pq3 __attribute__((aligned (4)));
+ int p0 __attribute__((aligned (4)));
+ int p1 __attribute__((aligned (4)));
+ int p2 __attribute__((aligned (4)));
+ int p3 __attribute__((aligned (4)));
+ float inv_window_area __attribute__((aligned (4)));
+} GpuHidHaarClassifierCascade;
#ifdef PACKED_CLASSIFIER
for(int stageloop = start_stage; (stageloop < end_stage) && result; stageloop++ )
{// iterate until candidate is valid
float stage_sum = 0.0f;
- __global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*)
- ((__global uchar*)stagecascadeptr+stageloop*sizeof(GpuHidHaarStageClassifier));
- int lcl_off = (yl*DATA_SIZE_X)+(xl);
- int stagecount = stageinfo->count;
- float stagethreshold = stageinfo->threshold;
- for(int nodeloop = 0; nodeloop < stagecount; nodecounter++,nodeloop++ )
+ int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
+ float stagethreshold = as_float(stageinfo.y);
+ int lcl_off = (lid_y*DATA_SIZE_X)+(lid_x);
+ for(int nodeloop = 0; nodeloop < stageinfo.x; nodecounter++,nodeloop++ )
{
// simple macro to extract shorts from int
#define M0(_t) ((_t)&0xFFFF)
variance_norm_factor = variance_norm_factor * correction - mean * mean;
variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1.f;
- for(int stageloop = start_stage; (stageloop < split_stage) && result; stageloop++ )
+ for(int stageloop = start_stage; (stageloop < split_stage) && result; stageloop++ )
{
float stage_sum = 0.f;
- __global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*)
- ((__global uchar*)stagecascadeptr+stageloop*sizeof(GpuHidHaarStageClassifier));
- int stagecount = stageinfo->count;
- float stagethreshold = stageinfo->threshold;
- for(int nodeloop = 0; nodeloop < stagecount; )
+ int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
+ float stagethreshold = as_float(stageinfo.y);
+ for(int nodeloop = 0; nodeloop < stageinfo.x; )
{
- __global GpuHidHaarTreeNode* currentnodeptr = (__global GpuHidHaarTreeNode*)
- (((__global uchar*)nodeptr) + nodecounter * sizeof(GpuHidHaarTreeNode));
+ __global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter);
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
#endif
}
- result = (stage_sum >= stagethreshold) ? 1 : 0;
+ result = (stage_sum >= stagethreshold);
}
if(factor < 2)
{
lclcount[0]=0;
barrier(CLK_LOCAL_MEM_FENCE);
- //int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
- __global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*)
- ((__global uchar*)stagecascadeptr+stageloop*sizeof(GpuHidHaarStageClassifier));
- int stagecount = stageinfo->count;
- float stagethreshold = stageinfo->threshold;
+ int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
+ float stagethreshold = as_float(stageinfo.y);
int perfscale = queuecount > 4 ? 3 : 2;
int queuecount_loop = (queuecount + (1<<perfscale)-1) >> perfscale;
int lcl_compute_win = lcl_sz >> perfscale;
int lcl_compute_win_id = (lcl_id >>(6-perfscale));
- int lcl_loops = (stagecount + lcl_compute_win -1) >> (6-perfscale);
+ int lcl_loops = (stageinfo.x + lcl_compute_win -1) >> (6-perfscale);
int lcl_compute_id = lcl_id - (lcl_compute_win_id << (6-perfscale));
for(int queueloop=0; queueloop<queuecount_loop; queueloop++)
{
float part_sum = 0.f;
const int stump_factor = STUMP_BASED ? 1 : 2;
int root_offset = 0;
- for(int lcl_loop=0; lcl_loop<lcl_loops && tempnodecounter<stagecount;)
+ for(int lcl_loop=0; lcl_loop<lcl_loops && tempnodecounter<stageinfo.x;)
{
- __global GpuHidHaarTreeNode* currentnodeptr = (__global GpuHidHaarTreeNode*)
- (((__global uchar*)nodeptr) + sizeof(GpuHidHaarTreeNode) * ((nodecounter + tempnodecounter) * stump_factor + root_offset));
+ __global GpuHidHaarTreeNode* currentnodeptr =
+ nodeptr + (nodecounter + tempnodecounter) * stump_factor + root_offset;
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
queuecount = lclcount[0];
barrier(CLK_LOCAL_MEM_FENCE);
- nodecounter += stagecount;
+ nodecounter += stageinfo.x;
}//end for(int stageloop = splitstage; stageloop< endstage && queuecount>0;stageloop++)
if(lcl_id<queuecount)
int right __attribute__((aligned(4)));
}
GpuHidHaarTreeNode;
-//typedef struct __attribute__((aligned(32))) GpuHidHaarClassifier
-//{
-// int count __attribute__((aligned(4)));
-// GpuHidHaarTreeNode *node __attribute__((aligned(8)));
-// float *alpha __attribute__((aligned(8)));
-//}
-//GpuHidHaarClassifier;
+typedef struct __attribute__((aligned(32))) GpuHidHaarClassifier
+{
+ int count __attribute__((aligned(4)));
+ GpuHidHaarTreeNode *node __attribute__((aligned(8)));
+ float *alpha __attribute__((aligned(8)));
+}
+GpuHidHaarClassifier;
typedef struct __attribute__((aligned(64))) GpuHidHaarStageClassifier
{
int count __attribute__((aligned(4)));
int reserved3 __attribute__((aligned(8)));
}
GpuHidHaarStageClassifier;
-//typedef struct __attribute__((aligned(64))) GpuHidHaarClassifierCascade
-//{
-// int count __attribute__((aligned(4)));
-// int is_stump_based __attribute__((aligned(4)));
-// int has_tilted_features __attribute__((aligned(4)));
-// int is_tree __attribute__((aligned(4)));
-// int pq0 __attribute__((aligned(4)));
-// int pq1 __attribute__((aligned(4)));
-// int pq2 __attribute__((aligned(4)));
-// int pq3 __attribute__((aligned(4)));
-// int p0 __attribute__((aligned(4)));
-// int p1 __attribute__((aligned(4)));
-// int p2 __attribute__((aligned(4)));
-// int p3 __attribute__((aligned(4)));
-// float inv_window_area __attribute__((aligned(4)));
-//} GpuHidHaarClassifierCascade;
+typedef struct __attribute__((aligned(64))) GpuHidHaarClassifierCascade
+{
+ int count __attribute__((aligned(4)));
+ int is_stump_based __attribute__((aligned(4)));
+ int has_tilted_features __attribute__((aligned(4)));
+ int is_tree __attribute__((aligned(4)));
+ int pq0 __attribute__((aligned(4)));
+ int pq1 __attribute__((aligned(4)));
+ int pq2 __attribute__((aligned(4)));
+ int pq3 __attribute__((aligned(4)));
+ int p0 __attribute__((aligned(4)));
+ int p1 __attribute__((aligned(4)));
+ int p2 __attribute__((aligned(4)));
+ int p3 __attribute__((aligned(4)));
+ float inv_window_area __attribute__((aligned(4)));
+} GpuHidHaarClassifierCascade;
__kernel void gpuRunHaarClassifierCascade_scaled2(
- global GpuHidHaarStageClassifier *stagecascadeptr_,
+ global GpuHidHaarStageClassifier *stagecascadeptr,
global int4 *info,
- global GpuHidHaarTreeNode *nodeptr_,
+ global GpuHidHaarTreeNode *nodeptr,
global const int *restrict sum,
- global const float *restrict sqsum,
+ global const float *restrict sqsum,
global int4 *candidate,
const int rows,
const int cols,
int max_idx = rows * cols - 1;
for (int scalei = 0; scalei < loopcount; scalei++)
{
- int4 scaleinfo1 = info[scalei];
+ int4 scaleinfo1;
+ scaleinfo1 = info[scalei];
int grpnumperline = (scaleinfo1.y & 0xffff0000) >> 16;
int totalgrp = scaleinfo1.y & 0xffff;
float factor = as_float(scaleinfo1.w);
for (int stageloop = start_stage; (stageloop < end_stage) && result; stageloop++)
{
float stage_sum = 0.f;
- __global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*)
- (((__global uchar*)stagecascadeptr_)+stageloop*sizeof(GpuHidHaarStageClassifier));
- int stagecount = stageinfo->count;
+ int stagecount = stagecascadeptr[stageloop].count;
for (int nodeloop = 0; nodeloop < stagecount;)
{
- __global GpuHidHaarTreeNode* currentnodeptr = (__global GpuHidHaarTreeNode*)
- (((__global uchar*)nodeptr_) + nodecounter * sizeof(GpuHidHaarTreeNode));
+ __global GpuHidHaarTreeNode *currentnodeptr = (nodeptr + nodecounter);
int4 info1 = *(__global int4 *)(&(currentnodeptr->p[0][0]));
int4 info2 = *(__global int4 *)(&(currentnodeptr->p[1][0]));
int4 info3 = *(__global int4 *)(&(currentnodeptr->p[2][0]));
float4 w = *(__global float4 *)(&(currentnodeptr->weight[0]));
- float3 alpha3 = *(__global float3*)(&(currentnodeptr->alpha[0]));
+ float3 alpha3 = *(__global float3 *)(&(currentnodeptr->alpha[0]));
float nodethreshold = w.w * variance_norm_factor;
info1.x += p_offset;
sum[clamp(mad24(info3.w, step, info3.x), 0, max_idx)]
+ sum[clamp(mad24(info3.w, step, info3.z), 0, max_idx)]) * w.z;
- bool passThres = (classsum >= nodethreshold) ? 1 : 0;
+ bool passThres = classsum >= nodethreshold;
#if STUMP_BASED
stage_sum += passThres ? alpha3.y : alpha3.x;
}
#endif
}
-
- result = (stage_sum >= stageinfo->threshold) ? 1 : 0;
+ result = (int)(stage_sum >= stagecascadeptr[stageloop].threshold);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
}
}
-__kernel void gpuscaleclassifier(global GpuHidHaarTreeNode *orinode, global GpuHidHaarTreeNode *newnode, float scale, float weight_scale, const int nodenum)
+__kernel void gpuscaleclassifier(global GpuHidHaarTreeNode *orinode, global GpuHidHaarTreeNode *newnode, float scale, float weight_scale, int nodenum)
{
- const int counter = get_global_id(0);
+ int counter = get_global_id(0);
int tr_x[3], tr_y[3], tr_h[3], tr_w[3], i = 0;
- GpuHidHaarTreeNode t1 = *(__global GpuHidHaarTreeNode*)
- (((__global uchar*)orinode) + counter * sizeof(GpuHidHaarTreeNode));
- __global GpuHidHaarTreeNode* pNew = (__global GpuHidHaarTreeNode*)
- (((__global uchar*)newnode) + (counter + nodenum) * sizeof(GpuHidHaarTreeNode));
+ GpuHidHaarTreeNode t1 = *(orinode + counter);
#pragma unroll
for (i = 0; i < 3; i++)
}
t1.weight[0] = -(t1.weight[1] * tr_h[1] * tr_w[1] + t1.weight[2] * tr_h[2] * tr_w[2]) / (tr_h[0] * tr_w[0]);
+ counter += nodenum;
#pragma unroll
for (i = 0; i < 3; i++)
{
- pNew->p[i][0] = tr_x[i];
- pNew->p[i][1] = tr_y[i];
- pNew->p[i][2] = tr_x[i] + tr_w[i];
- pNew->p[i][3] = tr_y[i] + tr_h[i];
- pNew->weight[i] = t1.weight[i] * weight_scale;
+ newnode[counter].p[i][0] = tr_x[i];
+ newnode[counter].p[i][1] = tr_y[i];
+ newnode[counter].p[i][2] = tr_x[i] + tr_w[i];
+ newnode[counter].p[i][3] = tr_y[i] + tr_h[i];
+ newnode[counter].weight[i] = t1.weight[i] * weight_scale;
}
- pNew->left = t1.left;
- pNew->right = t1.right;
- pNew->threshold = t1.threshold;
- pNew->alpha[0] = t1.alpha[0];
- pNew->alpha[1] = t1.alpha[1];
- pNew->alpha[2] = t1.alpha[2];
+ newnode[counter].left = t1.left;
+ newnode[counter].right = t1.right;
+ newnode[counter].threshold = t1.threshold;
+ newnode[counter].alpha[0] = t1.alpha[0];
+ newnode[counter].alpha[1] = t1.alpha[1];
+ newnode[counter].alpha[2] = t1.alpha[2];
}