Make Softmax kernels and operator stateless
authorMichalis Spyrou <michalis.spyrou@arm.com>
Wed, 20 Jan 2021 16:41:12 +0000 (16:41 +0000)
committerMichalis Spyrou <michalis.spyrou@arm.com>
Tue, 9 Feb 2021 18:25:46 +0000 (18:25 +0000)
COMPMID-3997

Change-Id: I3a3cc76d8247dd769d9a5e6e171d718ea909312c
Signed-off-by: Michalis Spyrou <michalis.spyrou@arm.com>
Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/4986
Tested-by: Arm Jenkins <bsgcomp@arm.com>
Reviewed-by: Michele Di Giorgio <michele.digiorgio@arm.com>
Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>

18 files changed:
Android.bp
arm_compute/core/experimental/Types.h
arm_compute/runtime/NEON/functions/NEFillBorder.h
arm_compute/runtime/NEON/functions/NESoftmaxLayer.h
docs/00_introduction.dox
src/core/NEON/NEKernels.h
src/core/NEON/kernels/NESoftmaxLayerKernel.cpp [deleted file]
src/core/NEON/kernels/NESoftmaxLayerKernel.h [deleted file]
src/core/NEON/kernels/softmax/impl/NEON/list.h [deleted file]
src/core/NEON/kernels/softmax/impl/SVE/list.h [deleted file]
src/core/cpu/kernels/CpuSoftmaxKernel.cpp [new file with mode: 0644]
src/core/cpu/kernels/CpuSoftmaxKernel.h [new file with mode: 0644]
src/core/cpu/kernels/softmax/impl/NEON/list.h [new file with mode: 0644]
src/core/cpu/kernels/softmax/impl/SVE/list.h [new file with mode: 0644]
src/runtime/NEON/functions/NEFillBorder.cpp
src/runtime/NEON/functions/NESoftmaxLayer.cpp
src/runtime/cpu/operators/CpuSoftmax.cpp [new file with mode: 0644]
src/runtime/cpu/operators/CpuSoftmax.h [new file with mode: 0644]

index 31bc14b6b3c9408ace340313bc7a6738ce7e2d9b..04f9d93c655dacfa7cdbc3e311255d52a5f6ee7d 100644 (file)
@@ -300,7 +300,6 @@ cc_library_static {
         "src/core/NEON/kernels/NESobel3x3Kernel.cpp",
         "src/core/NEON/kernels/NESobel5x5Kernel.cpp",
         "src/core/NEON/kernels/NESobel7x7Kernel.cpp",
-        "src/core/NEON/kernels/NESoftmaxLayerKernel.cpp",
         "src/core/NEON/kernels/NESpaceToBatchLayerKernel.cpp",
         "src/core/NEON/kernels/NESpaceToDepthLayerKernel.cpp",
         "src/core/NEON/kernels/NEStackLayerKernel.cpp",
@@ -405,6 +404,7 @@ cc_library_static {
         "src/core/cpu/kernels/CpuPoolingAssemblyWrapperKernel.cpp",
         "src/core/cpu/kernels/CpuPoolingKernel.cpp",
         "src/core/cpu/kernels/CpuReshapeKernel.cpp",
+        "src/core/cpu/kernels/CpuSoftmaxKernel.cpp",
         "src/core/cpu/kernels/CpuSubKernel.cpp",
         "src/core/cpu/kernels/activation/NEON/fp16.cpp",
         "src/core/cpu/kernels/activation/NEON/fp32.cpp",
@@ -801,6 +801,7 @@ cc_library_static {
         "src/runtime/cpu/operators/CpuPooling.cpp",
         "src/runtime/cpu/operators/CpuPoolingAssemblyDispatch.cpp",
         "src/runtime/cpu/operators/CpuReshape.cpp",
+        "src/runtime/cpu/operators/CpuSoftmax.cpp",
         "src/runtime/cpu/operators/CpuSub.cpp",
         "src/runtime/gpu/cl/operators/ClActivation.cpp",
         "src/runtime/gpu/cl/operators/ClAdd.cpp",
index 81b4dc8752dbcfc054a11779181d6148de2c1b0c..f615678e310d200e84632f912988aa54a53098c8 100644 (file)
@@ -46,10 +46,12 @@ enum TensorType : int32_t
     ACL_DST     = 30,
     ACL_DST_0   = 30,
     ACL_DST_1   = 31,
+    ACL_DST_2   = 32,
     ACL_INT     = 50,
     ACL_INT_0   = 50,
     ACL_INT_1   = 51,
     ACL_INT_2   = 52,
+    ACL_INT_3   = 53,
     ACL_SRC_VEC = 256,
 };
 
index e9a08ef7ece8e0ab6984816445e5f11c3dbdce4c..8a8a0c7dc2407072d2ddd61666ed362d815374c1 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2016-2020 Arm Limited.
+ * Copyright (c) 2016-2021 Arm Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -39,6 +39,7 @@ class NEFillBorderKernel;
 class NEFillBorder : public IFunction
 {
 public:
+    NEFillBorder();
     /** Initialize the function's source, destination and border_mode.
      *
      * @note This function fills the borders within the XY-planes.
index 40fa38afde6c326ecdd87b9e2be78d8329009557..8a2ae101293444b090602712de46519bb05b7ded 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2017-2020 Arm Limited.
+ * Copyright (c) 2017-2021 Arm Limited.
  *
  * SPDX-License-Identifier: MIT
  *
 
 #include "arm_compute/runtime/IFunction.h"
 #include "arm_compute/runtime/MemoryGroup.h"
-#include "arm_compute/runtime/NEON/functions/NEPermute.h"
-#include "arm_compute/runtime/Tensor.h"
 #include <memory>
 
 namespace arm_compute
 {
 class ITensor;
-class NELogits1DMaxKernel;
-template <bool IS_LOG>
-class NELogits1DSoftmaxKernel;
-class NEFillBorderKernel;
+class ITensorInfo;
 
-/** Basic function to compute a SoftmaxLayer and a Log SoftmaxLayer.
- *
- * Softmax is calculated by :
- * @f[ out = exp((x - max(x)) * beta) / sum(exp((x - max(x)) * beta)) @f]
- *
- * Log Softmax is calculated by :
- * @f[ out = (x - max(x) * beta) - log(\sum{e^{x - max(x) * beta}}) @f]
- *
- * This function runs the following function/kernels:
- * -# If axis is not 0:
- * -#   @ref NEPermute
- * -# @ref NEFillBorderKernel
- * -# @ref NELogits1DMaxKernel
- * -# @ref NELogits1DSoftmaxKernel
- */
+/** Basic function to compute a SoftmaxLayer and a Log SoftmaxLayer. */
 template <bool IS_LOG = false>
 class NESoftmaxLayerGeneric : public IFunction
 {
@@ -62,17 +43,17 @@ public:
     /** Prevent instances of this class from being copied (As this class contains pointers) */
     NESoftmaxLayerGeneric(const NESoftmaxLayerGeneric &) = delete;
     /** Default move constructor */
-    NESoftmaxLayerGeneric(NESoftmaxLayerGeneric &&) = default;
+    NESoftmaxLayerGeneric(NESoftmaxLayerGeneric &&);
     /** Prevent instances of this class from being copied (As this class contains pointers) */
     NESoftmaxLayerGeneric &operator=(const NESoftmaxLayerGeneric &) = delete;
     /** Default move assignment operator */
-    NESoftmaxLayerGeneric &operator=(NESoftmaxLayerGeneric &&) = default;
+    NESoftmaxLayerGeneric &operator=(NESoftmaxLayerGeneric &&);
     /** Default destructor */
     ~NESoftmaxLayerGeneric();
     /** Set the input and output tensors.
      *
      * @param[in,out] input  Source tensor. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32. If the width is not a
-     *                       multiple of the internal processing block size, @ref NEFillBorderKernel replicates the
+     *                       multiple of the internal processing block size, @ref NEFillBorder replicates the
      *                       last value of each row to the nearest multiple.
      * @param[out]    output Destination tensor. Data types supported: same as @p input.
      * @param[in]     beta   (Optional) A scaling factor for the exponent.
@@ -96,17 +77,9 @@ public:
     void run() override;
 
 private:
-    MemoryGroup                                      _memory_group;
-    NEPermute                                        _permute_input;
-    NEPermute                                        _permute_output;
-    std::unique_ptr<NELogits1DMaxKernel>             _max_kernel;
-    std::unique_ptr<NELogits1DSoftmaxKernel<IS_LOG>> _softmax_kernel;
-    std::unique_ptr<NEFillBorderKernel>              _fill_border_kernel;
-    Tensor                                           _max;
-    Tensor                                           _tmp;
-    Tensor                                           _input_permuted;
-    Tensor                                           _output_permuted;
-    bool                                             _needs_permute;
+    MemoryGroup _memory_group;
+    struct Impl;
+    std::unique_ptr<Impl> _impl;
 };
 
 using NESoftmaxLayer    = NESoftmaxLayerGeneric<false>;
index 4c1112f2d1370d329abdcfef8e88bfa88129296f..3dc86fe05977b9898299579aeeec731de6e5cb11 100644 (file)
@@ -96,8 +96,8 @@ v21.02 Public major release
    - @ref NEActivationLayer
    - @ref NEArithmeticAddition
    - @ref NEBatchNormalizationLayerKernel
-   - @ref NELogits1DSoftmaxKernel
-   - @ref NELogits1DMaxKernel
+   - NELogits1DSoftmaxKernel
+   - NELogits1DMaxKernel
    - NEElementwiseUnaryKernel
  - Remove padding from OpenCL kernels:
    - @ref CLDirectConvolutionLayerKernel
@@ -460,8 +460,8 @@ v20.08 Public major release
    - @ref NEBatchNormalizationLayerKernel
    - NEArithmeticSubtractionKernel
    - @ref NEBoundingBoxTransformKernel
-   - @ref NELogits1DMaxKernel
-   - @ref NELogits1DSoftmaxKernel
+   - NELogits1DMaxKernel
+   - NELogits1DSoftmaxKernel
    - @ref NEROIPoolingLayerKernel
    - @ref NEROIAlignLayerKernel
    - NEYOLOLayerKernel
@@ -1269,7 +1269,7 @@ v17.04 Public bug fixes release
  -  NEHarrisScoreFP16Kernel
  -  @ref NEHarrisScoreKernel
  -  @ref NEHOGDetectorKernel
- -  @ref NELogits1DMaxKernel
+ -  NELogits1DMaxKernel
  -  NELogits1DShiftExpSumKernel
  -  NELogits1DNormKernel
  -  @ref NENonMaximaSuppression3x3FP16Kernel
@@ -1284,7 +1284,7 @@ v17.03.1 First Major public release of the sources
  - New NEON kernels / functions:
    - @ref NENormalizationLayerKernel / @ref NENormalizationLayer
    - @ref NETransposeKernel / @ref NETranspose
-   - @ref NELogits1DMaxKernel, NELogits1DShiftExpSumKernel, NELogits1DNormKernel / @ref NESoftmaxLayer
+   - NELogits1DMaxKernel, NELogits1DShiftExpSumKernel, NELogits1DNormKernel / @ref NESoftmaxLayer
    - @ref NEIm2ColKernel, @ref NECol2ImKernel, NEConvolutionLayerWeightsReshapeKernel / @ref NEConvolutionLayer
    - NEGEMMMatrixAccumulateBiasesKernel / @ref NEFullyConnectedLayer
    - @ref NEGEMMLowpMatrixMultiplyKernel / NEGEMMLowp
index c636e5b3be63211bc0bf613a7bf2ea7fc68dc558..66309f9296237d61dd1302758690a6eb000ce4b4 100644 (file)
 #include "src/core/NEON/kernels/NESobel3x3Kernel.h"
 #include "src/core/NEON/kernels/NESobel5x5Kernel.h"
 #include "src/core/NEON/kernels/NESobel7x7Kernel.h"
-#include "src/core/NEON/kernels/NESoftmaxLayerKernel.h"
 #include "src/core/NEON/kernels/NESpaceToBatchLayerKernel.h"
 #include "src/core/NEON/kernels/NESpaceToDepthLayerKernel.h"
 #include "src/core/NEON/kernels/NEStackLayerKernel.h"
diff --git a/src/core/NEON/kernels/NESoftmaxLayerKernel.cpp b/src/core/NEON/kernels/NESoftmaxLayerKernel.cpp
deleted file mode 100644 (file)
index fe09f1e..0000000
+++ /dev/null
@@ -1,380 +0,0 @@
-/*
- * Copyright (c) 2017-2021 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "src/core/NEON/kernels/NESoftmaxLayerKernel.h"
-
-#include "arm_compute/core/Error.h"
-#include "arm_compute/core/Helpers.h"
-#include "arm_compute/core/ITensor.h"
-#include "arm_compute/core/TensorInfo.h"
-#include "arm_compute/core/Validate.h"
-#include "arm_compute/core/Window.h"
-#include "src/core/CPP/Validate.h"
-#include "src/core/helpers/AutoConfiguration.h"
-#include "src/core/helpers/WindowHelpers.h"
-
-#include "src/core/NEON/kernels/softmax/impl/NEON/list.h"
-#include "src/core/NEON/kernels/softmax/impl/SVE/list.h"
-#include "src/core/common/Registrars.h"
-
-namespace arm_compute
-{
-namespace
-{
-struct SoftmaxSelectorData
-{
-    DataType dt;
-};
-using SoftmaxSelectorPtr          = std::add_pointer<bool(const SoftmaxSelectorData &data)>::type;
-using SoftmaxLogits1DMaxKernelPtr = std::add_pointer<void(const ITensor *, ITensor *, const Window &)>::type;
-using SoftmaxLogits1DKernelPtr    = std::add_pointer<void(const ITensor *, const ITensor *, void *const, ITensor *, float, bool, const Window &)>::type;
-
-struct SoftmaxLogits1DKernel
-{
-    const char              *name;
-    const SoftmaxSelectorPtr is_selected;
-    SoftmaxLogits1DKernelPtr ukernel;
-};
-
-struct SoftmaxLogits1DMaxKernel
-{
-    const char                 *name;
-    const SoftmaxSelectorPtr    is_selected;
-    SoftmaxLogits1DMaxKernelPtr ukernel;
-};
-
-static const SoftmaxLogits1DKernel available_logits_1d_kernels[] =
-{
-#if defined(__ARM_FEATURE_SVE)
-    {
-        "sve_softmax_logits_1d_float",
-        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::F32); },
-        REGISTER_FP32_SVE(arm_compute::cpu::sve_softmax_logits_1d_float<float>)
-    },
-    {
-        "sve_softmax_logits_1d_float",
-        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::F16); },
-        REGISTER_FP16_SVE(arm_compute::cpu::sve_softmax_logits_1d_float<float16_t>)
-    },
-#else /* !defined(__ARM_FEATURE_SVE) */
-    {
-        "neon_softmax_logits_1d_float",
-        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::F32); },
-        REGISTER_FP32_NEON(arm_compute::cpu::neon_softmax_logits_1d_float<float>)
-    },
-#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
-    {
-        "neon_softmax_logits_1d_float",
-        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::F16); },
-        REGISTER_FP16_NEON(arm_compute::cpu::neon_softmax_logits_1d_float<float16_t>)
-    },
-#endif /* defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) */
-#endif /* defined(__ARM_FEATURE_SVE) */
-
-#if defined(__ARM_FEATURE_SVE2)
-    {
-        "sve_softmax_logits_1d_quantized",
-        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::QASYMM8); },
-        REGISTER_QASYMM8_SVE(arm_compute::cpu::sve_softmax_logits_1d_quantized<qasymm8_t>)
-    },
-    {
-        "sve_softmax_logits_1d_quantized",
-        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::QASYMM8_SIGNED); },
-        REGISTER_QASYMM8_SIGNED_SVE(arm_compute::cpu::sve_softmax_logits_1d_quantized<qasymm8_signed_t>)
-    },
-#else  /* !defined(__ARM_FEATURE_SVE2) */
-    {
-        "neon_softmax_logits_1d_quantized",
-        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::QASYMM8); },
-        REGISTER_QASYMM8_NEON(arm_compute::cpu::neon_softmax_logits_1d_quantized<qasymm8_t>)
-    },
-    {
-        "neon_softmax_logits_1d_quantized",
-        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::QASYMM8_SIGNED); },
-        REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::neon_softmax_logits_1d_quantized<qasymm8_signed_t>)
-    },
-#endif /* defined(__ARM_FEATURE_SVE2) */
-
-};
-
-static const SoftmaxLogits1DMaxKernel available_logits_1d_max_kernels[] =
-{
-#if defined(__ARM_FEATURE_SVE)
-    {
-        "sve_logits_1d_max",
-        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::F32); },
-        REGISTER_FP32_SVE(arm_compute::cpu::sve_logits_1d_max<float>)
-    },
-    {
-        "sve_logits_1d_max",
-        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::F16); },
-        REGISTER_FP16_SVE(arm_compute::cpu::sve_logits_1d_max<float16_t>)
-    },
-    {
-        "sve_logits_1d_max",
-        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::QASYMM8); },
-        REGISTER_QASYMM8_SVE(arm_compute::cpu::sve_logits_1d_max<qasymm8_t>)
-    },
-    {
-        "sve_logits_1d_max",
-        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::QASYMM8_SIGNED); },
-        REGISTER_QASYMM8_SIGNED_SVE(arm_compute::cpu::sve_logits_1d_max<qasymm8_signed_t>)
-    },
-#else /* !defined(__ARM_FEATURE_SVE) */
-    {
-        "neon_logits_1d_max",
-        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::F32); },
-        REGISTER_FP32_NEON(arm_compute::cpu::neon_logits_1d_max<float>)
-    },
-#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
-    {
-        "neon_logits_1d_max",
-        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::F16); },
-        REGISTER_FP16_NEON(arm_compute::cpu::neon_logits_1d_max<float16_t>)
-    },
-#endif /* defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) */
-    {
-        "neon_logits_1d_max",
-        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::QASYMM8); },
-        REGISTER_QASYMM8_NEON(arm_compute::cpu::neon_logits_1d_max<qasymm8_t>)
-    },
-    {
-        "neon_logits_1d_max",
-        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::QASYMM8_SIGNED); },
-        REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::neon_logits_1d_max<qasymm8_signed_t>)
-    },
-#endif /* defined(__ARM_FEATURE_SVE) */
-};
-
-const SoftmaxLogits1DKernel *get_implementation_logits(const SoftmaxSelectorData &data)
-{
-    for(const auto &uk : available_logits_1d_kernels)
-    {
-        if(uk.is_selected({ data.dt }))
-        {
-            return &uk;
-        }
-    }
-    return nullptr;
-}
-
-const SoftmaxLogits1DMaxKernel *get_implementation_logits_max(const SoftmaxSelectorData &data)
-{
-    for(const auto &uk : available_logits_1d_max_kernels)
-    {
-        if(uk.is_selected({ data.dt }))
-        {
-            return &uk;
-        }
-    }
-    return nullptr;
-}
-
-Status validate_arguments_logits_1d_max(const ITensorInfo &input, const ITensorInfo &output)
-{
-    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input);
-    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
-
-    // Validate in case of configured output
-    if(output.total_size() != 0)
-    {
-        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input, &output);
-        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(&input, &output);
-        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output.tensor_shape(), TensorShape(input.tensor_shape()).set(0, 1));
-    }
-
-    return Status{};
-}
-
-} // namespace
-
-NELogits1DMaxKernel::NELogits1DMaxKernel()
-    : _border_size()
-{
-}
-
-BorderSize NELogits1DMaxKernel::border_size() const
-{
-    return _border_size;
-}
-
-void NELogits1DMaxKernel::configure(const ITensor *input, ITensor *output)
-{
-    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
-    ARM_COMPUTE_ERROR_ON_NULLPTR(input->info(), output->info());
-    // Perform validation step
-    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_logits_1d_max(*input->info(), *output->info()));
-    // Configure kernel window
-
-    // Softmax across the x dimension
-    const TensorShape output_shape = TensorShape(input->info()->tensor_shape()).set(0, 1);
-    // Output auto initialization if not yet initialized
-    auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type(), input->info()->quantization_info());
-
-    Window      win = calculate_max_window(*input->info(), Steps());
-    Coordinates coord;
-    coord.set_num_dimensions(output->info()->num_dimensions());
-    output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
-
-    _input  = input;
-    _output = output;
-
-    const int input_width                       = input->info()->valid_region().shape.x();
-    const int num_elems_processed_per_iteration = 16U / data_size_from_type(input->info()->data_type());
-    const int num_elems_read_per_iteration      = ceil_to_multiple(input_width, num_elems_processed_per_iteration);
-
-    _border_size = BorderSize(0, num_elems_read_per_iteration - input_width, 0, 0);
-
-    INEKernel::configure(win);
-}
-
-Status NELogits1DMaxKernel::validate(const ITensorInfo *input, const ITensorInfo *output)
-{
-    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
-    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_logits_1d_max(*input, *output));
-
-    return Status{};
-}
-
-void NELogits1DMaxKernel::run(const Window &window, const ThreadInfo &info)
-{
-    ARM_COMPUTE_UNUSED(info);
-    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
-    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
-
-    const auto *uk = get_implementation_logits_max(SoftmaxSelectorData{ _input->info()->data_type() });
-    uk->ukernel(_input, _output, window);
-}
-
-namespace
-{
-Status validate_arguments_logits_softmax(const ITensorInfo &input, const ITensorInfo &max,
-                                         const ITensorInfo &output, const float beta, const ITensorInfo &tmp, bool is_log)
-{
-    ARM_COMPUTE_UNUSED(beta);
-    // Check input
-    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input);
-    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
-
-    const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(input.data_type());
-
-    // Check max
-    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input, &max);
-    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(TensorShape(input.tensor_shape()).set(0, 1), max.tensor_shape());
-    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(&input, &max);
-
-    // Check output if configured
-    if(output.total_size() != 0)
-    {
-        const QuantizationInfo output_quantization = is_quantized_asymmetric ? arm_compute::get_softmax_output_quantization_info(input.data_type(), is_log) : output.quantization_info();
-        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input, &output);
-        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&input, &output);
-        ARM_COMPUTE_RETURN_ERROR_ON(output.quantization_info() != output_quantization);
-    }
-
-    // Check tmp if configured
-    if(tmp.total_size() != 0)
-    {
-        const DataType tmp_data_type = is_quantized_asymmetric ? DataType::F32 : input.data_type();
-        ARM_COMPUTE_RETURN_ERROR_ON(tmp.data_type() != tmp_data_type);
-        // We could potentially reduce tmp memory if we could predict or make an assumption
-        // on the maximum number of threads that will run in parallel.
-        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&input, &tmp);
-    }
-
-    return Status{};
-}
-} // namespace
-
-template <bool IS_LOG>
-NELogits1DSoftmaxKernel<IS_LOG>::NELogits1DSoftmaxKernel()
-    : _input(nullptr), _max(nullptr), _output(nullptr), _beta(1.0f), _tmp(nullptr)
-{
-}
-
-template <bool IS_LOG>
-void NELogits1DSoftmaxKernel<IS_LOG>::configure(const ITensor *input, const ITensor *max, ITensor *output, const float beta, ITensor *tmp)
-{
-    ARM_COMPUTE_ERROR_ON_NULLPTR(input, max, output, tmp);
-    ARM_COMPUTE_ERROR_ON_NULLPTR(input->info(), max->info(), output->info(), tmp->info());
-    // Perform validation step
-    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_logits_softmax(*input->info(), *max->info(), *output->info(), beta, *tmp->info(), IS_LOG));
-
-    // Configure kernel window
-    const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(input->info()->data_type());
-
-    // Output auto initialization if not yet initialized
-    const QuantizationInfo output_quantization = is_quantized_asymmetric ? arm_compute::get_softmax_output_quantization_info(input->info()->data_type(), IS_LOG) : output->info()->quantization_info();
-    auto_init_if_empty(*output->info(), TensorInfo(*input->info()).set_quantization_info(output_quantization).reset_padding());
-
-    // Tmp auto initialization if not yet initialized
-    const DataType tmp_data_type = is_quantized_asymmetric ? DataType::F32 : input->info()->data_type();
-    auto_init_if_empty(*tmp->info(), TensorInfo(*input->info()).set_data_type(tmp_data_type).reset_padding());
-
-    // Configure kernel window
-    Window      win = calculate_max_window(*max->info(), Steps());
-    Coordinates coord;
-    coord.set_num_dimensions(output->info()->num_dimensions());
-    output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
-
-    _input  = input;
-    _max    = max;
-    _output = output;
-    _beta   = beta;
-    _tmp    = tmp;
-
-    INEKernel::configure(win);
-}
-
-template <bool IS_LOG>
-Status NELogits1DSoftmaxKernel<IS_LOG>::validate(const ITensorInfo *input, const ITensorInfo *max,
-                                                 const ITensorInfo *output, const float beta, const ITensorInfo *tmp)
-{
-    ARM_COMPUTE_ERROR_ON_NULLPTR(input, max, output, tmp);
-    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_logits_softmax(*input, *max, *output, beta, *tmp, IS_LOG));
-
-    return Status{};
-}
-
-template <bool IS_LOG>
-void NELogits1DSoftmaxKernel<IS_LOG>::run(const Window &window, const ThreadInfo &info)
-{
-    ARM_COMPUTE_UNUSED(info);
-    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
-    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
-
-    const unsigned int num_elems_processed_per_iteration = _input->info()->valid_region().shape.x();
-    const unsigned int tmp_size_for_thread               = _tmp->info()->element_size() * num_elems_processed_per_iteration;
-
-    ARM_COMPUTE_ERROR_ON(_tmp->info()->total_size() < (info.num_threads * tmp_size_for_thread));
-
-    void *tmp_for_thread = _tmp->buffer() + (info.thread_id * tmp_size_for_thread);
-
-    const auto *uk = get_implementation_logits(SoftmaxSelectorData{ _input->info()->data_type() });
-    uk->ukernel(_input, _max, tmp_for_thread, _output, _beta, IS_LOG, window);
-}
-
-template class NELogits1DSoftmaxKernel<true>;
-template class NELogits1DSoftmaxKernel<false>;
-
-} // namespace arm_compute
diff --git a/src/core/NEON/kernels/NESoftmaxLayerKernel.h b/src/core/NEON/kernels/NESoftmaxLayerKernel.h
deleted file mode 100644 (file)
index 70e2417..0000000
+++ /dev/null
@@ -1,141 +0,0 @@
-/*
- * Copyright (c) 2017-2021 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#ifndef ARM_COMPUTE_NESOFTMAXLAYERKERNEL_H
-#define ARM_COMPUTE_NESOFTMAXLAYERKERNEL_H
-
-#include "src/core/NEON/INEKernel.h"
-#include "src/core/NEON/INESimpleKernel.h"
-
-namespace arm_compute
-{
-class ITensor;
-
-/** Interface for the identifying the max value of 1D Logits */
-class NELogits1DMaxKernel : public INESimpleKernel
-{
-public:
-    const char *name() const override
-    {
-        return "NELogits1DMaxKernel";
-    }
-    /** Default constructor */
-    NELogits1DMaxKernel();
-    /** Prevent instances of this class from being copied (As this class contains pointers) */
-    NELogits1DMaxKernel(const NELogits1DMaxKernel &) = delete;
-    /** Prevent instances of this class from being copied (As this class contains pointers) */
-    NELogits1DMaxKernel &operator=(const NELogits1DMaxKernel &) = delete;
-    /** Allow instances of this class to be moved */
-    NELogits1DMaxKernel(NELogits1DMaxKernel &&) = default;
-    /** Allow instances of this class to be moved */
-    NELogits1DMaxKernel &operator=(NELogits1DMaxKernel &&) = default;
-    /** Default destructor */
-    ~NELogits1DMaxKernel() = default;
-    /** Set the input and output tensors.
-     *
-     * @param[in]  input  Source tensor. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
-     * @param[out] output Destination tensor. Data types supported: same as @p input
-     */
-    void configure(const ITensor *input, ITensor *output);
-    /** Static function to check if given info will lead to a valid configuration of @ref NELogits1DMaxKernel
-     *
-     * @param[in] input  Source tensor. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
-     * @param[in] output Destination tensor. Data types supported: same as @p input
-     *
-     * @return a status
-     */
-    static Status validate(const ITensorInfo *input, const ITensorInfo *output);
-
-    // Inherited methods overridden:
-    void run(const Window &window, const ThreadInfo &info) override;
-    BorderSize border_size() const override;
-
-private:
-    BorderSize _border_size;
-};
-
-/** Interface for softmax computation for QASYMM8 with pre-computed max. */
-template <bool IS_LOG = false>
-class NELogits1DSoftmaxKernel : public INEKernel
-{
-public:
-    const char *name() const override
-    {
-        if(IS_LOG)
-        {
-            return "NELogits1DSoftmaxKernel";
-        }
-        else
-        {
-            return "NELogits1DLogSoftmaxKernel";
-        }
-    }
-    /** Default constructor */
-    NELogits1DSoftmaxKernel();
-    /** Prevent instances of this class from being copied (As this class contains pointers) */
-    NELogits1DSoftmaxKernel(const NELogits1DSoftmaxKernel &) = delete;
-    /** Prevent instances of this class from being copied (As this class contains pointers) */
-    NELogits1DSoftmaxKernel &operator=(const NELogits1DSoftmaxKernel &) = delete;
-    /** Allow instances of this class to be moved */
-    NELogits1DSoftmaxKernel(NELogits1DSoftmaxKernel &&) = default;
-    /** Allow instances of this class to be moved */
-    NELogits1DSoftmaxKernel &operator=(NELogits1DSoftmaxKernel &&) = default;
-    /** Default destructor */
-    ~NELogits1DSoftmaxKernel() = default;
-    /** Set the input and output tensors.
-     *
-     * @param[in]  input  Source tensor. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
-     * @param[in]  max    Max values tensor. Same shape as input with dimension 0 set to 1.
-     *                    Data types supported: same as @p input.
-     * @param[out] output Destination tensor. Data types supported: same as @p input.
-     * @param[in]  beta   A scaling factor for the exponent.
-     *
-     * @param      tmp    Auxiliary tensor. Must be type F32 and same shape as the input.
-     */
-    void configure(const ITensor *input, const ITensor *max, ITensor *output, const float beta, ITensor *tmp);
-    /** Static function to check if given info will lead to a valid configuration of @ref NELogits1DSoftmaxKernel
-     *
-     * @param[in] input  Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
-     * @param[in] max    Max values tensor info. Same shape as input with dimension 0 set to 1.
-     *                   Data types supported: same as @p input.
-     * @param[in] output Destination tensor info. Data types supported: same as @p input.
-     * @param[in] beta   A scaling factor for the exponent.
-     * @param[in] tmp    Tensor info of auxiliary. Must be type F32 and same shape as the input.
-     *
-     * @return a status
-     */
-    static Status validate(const ITensorInfo *input, const ITensorInfo *max,
-                           const ITensorInfo *output, const float beta, const ITensorInfo *tmp);
-
-    // Inherited methods overridden:
-    void run(const Window &window, const ThreadInfo &info) override;
-
-private:
-    const ITensor *_input;
-    const ITensor *_max;
-    ITensor       *_output;
-    float          _beta;
-    ITensor       *_tmp; //Temporary. Used internally
-};
-} // namespace arm_compute
-#endif /*ARM_COMPUTE_NESOFTMAXLAYERKERNEL_H */
diff --git a/src/core/NEON/kernels/softmax/impl/NEON/list.h b/src/core/NEON/kernels/softmax/impl/NEON/list.h
deleted file mode 100644 (file)
index a8f781f..0000000
+++ /dev/null
@@ -1,425 +0,0 @@
-/*
- * Copyright (c) 2021 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#ifndef SRC_CORE_NEON_KERNELS_SOFTMAX_LIST_H
-#define SRC_CORE_NEON_KERNELS_SOFTMAX_LIST_H
-
-#include "src/core/NEON/wrapper/wrapper.h"
-#include "support/SaturateCast.h"
-#include "src/core/NEON/NEFixedPoint.h"
-#include "src/core/NEON/NEMath.h"
-
-namespace arm_compute
-{
-namespace cpu
-{
-namespace
-{
-template <typename float_vec_type, typename int_vec_type>
-int_vec_type convert_float_to_int(const float_vec_type &in);
-
-template <typename float_vec_type, typename int_vec_type>
-float_vec_type convert_int_to_float(const int_vec_type &in);
-
-template <>
-uint8x16_t convert_float_to_int<float32x4x4_t, uint8x16_t>(const float32x4x4_t &in)
-{
-    uint8x16_t out;
-    convert_float32x4x4_to_uint8x16(in, out);
-    return out;
-}
-
-template <>
-int8x16_t convert_float_to_int<float32x4x4_t, int8x16_t>(const float32x4x4_t &in)
-{
-    int8x16_t out;
-    convert_float32x4x4_to_int8x16(in, out);
-    return out;
-}
-
-template <>
-float32x4x4_t convert_int_to_float<float32x4x4_t, uint8x16_t>(const uint8x16_t &in)
-{
-    return convert_uint8x16_to_float32x4x4(in);
-}
-
-template <>
-float32x4x4_t convert_int_to_float<float32x4x4_t, int8x16_t>(const int8x16_t &in)
-{
-    return convert_int8x16_to_float32x4x4(in);
-}
-} // namespace
-
-template <typename T>
-void neon_logits_1d_max(const ITensor *in, ITensor *out, const Window &window)
-{
-    /** NEON vector tag type. */
-    using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
-
-    constexpr int window_step_x  = 16 / sizeof(T);
-    const auto    window_start_x = static_cast<int>(window.x().start());
-    const auto    window_end_x   = static_cast<int>(window.x().end());
-
-    Window win{ window };
-    win.set(Window::DimX, Window::Dimension(0, 1, 1));
-    Iterator input(in, win);
-    Iterator output(out, win);
-
-    const int sum_stages = log2(window_step_x / 2);
-    execute_window_loop(win, [&](const Coordinates &)
-    {
-        // Get pointers
-        const auto in_ptr  = reinterpret_cast<const T *>(input.ptr());
-        const auto out_ptr = reinterpret_cast<T *>(output.ptr());
-
-        // Init max value
-        auto vec_max = wrapper::vdup_n(support::cpp11::lowest<T>(), ExactTagType{});
-        int  x       = window_start_x;
-
-        for(; x <= (window_end_x - window_step_x); x += window_step_x)
-        {
-            const auto current_value = wrapper::vloadq(in_ptr + x);
-            vec_max                  = wrapper::vmax(vec_max, current_value);
-        }
-        auto carry_max = wrapper::vpmax(wrapper::vgethigh(vec_max), wrapper::vgetlow(vec_max));
-
-        for(int i = 0; i < sum_stages; ++i)
-        {
-            carry_max = wrapper::vpmax(carry_max, carry_max);
-        }
-        T max_val = wrapper::vgetlane(carry_max, 0);
-
-        // Compute left-over elements
-        for(; x < window_end_x; ++x)
-        {
-            max_val = *(in_ptr + x) > max_val ? *(in_ptr + x) : max_val;
-        }
-
-        *out_ptr = max_val;
-    },
-    input, output);
-}
-
-template <typename T>
-void neon_softmax_logits_1d_quantized(const ITensor *in, const ITensor *max, void *const tmp,
-                                      ITensor *out, float beta, bool is_log, const Window &window)
-{
-    static_assert(std::is_same<T, qasymm8_t>::value
-                  || std::is_same<T, qasymm8_signed_t>::value,
-                  "quantized type should be either qasymm8_t or qasymm8_signed_t.");
-
-    const int start_x     = in->info()->valid_region().anchor.x();
-    const int input_width = in->info()->valid_region().shape.x();
-
-    const float scale_beta     = -beta * in->info()->quantization_info().uniform().scale;
-    const auto  scale_beta_vec = vdupq_n_f32(scale_beta);
-
-    Iterator      in_it(in, window);
-    Iterator      max_it(max, window);
-    Iterator      out_it(out, window);
-    constexpr int vec_size = 16;
-
-    execute_window_loop(window, [&](const Coordinates &)
-    {
-        /* Get pointers */
-        const auto in_ptr  = reinterpret_cast<const T *>(in_it.ptr()) + start_x;
-        const auto out_ptr = reinterpret_cast<T *>(out_it.ptr()) + start_x;
-        const auto tmp_ptr = reinterpret_cast<float *>(tmp);
-
-        float sum{};
-        float sum_inversed{};
-
-        /* Compute exponentials and sum */
-        {
-            /* Get max value */
-            const auto max_val = *reinterpret_cast<const T *>(max_it.ptr());
-            const auto vec_max = wrapper::vdup_n(max_val, wrapper::traits::vector_128_tag{});
-
-            /* Init sum to zero */
-            float32x4x4_t vec_sum =
-            {
-                vdupq_n_f32(0.f),
-                vdupq_n_f32(0.f),
-                vdupq_n_f32(0.f),
-                vdupq_n_f32(0.f),
-            };
-
-            /* Loop over row and compute exponentials and sum */
-            int x = 0;
-            for(; x <= (input_width - vec_size); x += vec_size)
-            {
-                auto vec_elements     = wrapper::vloadq(in_ptr + x);
-                vec_elements          = wrapper::vqsub(vec_max, vec_elements);
-                auto vec_elements_flt = convert_int_to_float<float32x4x4_t>(vec_elements);
-
-                if(is_log)
-                {
-                    vec_elements_flt.val[0] = vmulq_f32(vec_elements_flt.val[0], scale_beta_vec);
-                    vec_elements_flt.val[1] = vmulq_f32(vec_elements_flt.val[1], scale_beta_vec);
-                    vec_elements_flt.val[2] = vmulq_f32(vec_elements_flt.val[2], scale_beta_vec);
-                    vec_elements_flt.val[3] = vmulq_f32(vec_elements_flt.val[3], scale_beta_vec);
-                    vec_sum.val[0]          = vaddq_f32(vec_sum.val[0], vexpq_f32(vec_elements_flt.val[0]));
-                    vec_sum.val[1]          = vaddq_f32(vec_sum.val[1], vexpq_f32(vec_elements_flt.val[1]));
-                    vec_sum.val[2]          = vaddq_f32(vec_sum.val[2], vexpq_f32(vec_elements_flt.val[2]));
-                    vec_sum.val[3]          = vaddq_f32(vec_sum.val[3], vexpq_f32(vec_elements_flt.val[3]));
-                }
-                else
-                {
-                    vec_elements_flt.val[0] = vexpq_f32(vmulq_f32(vec_elements_flt.val[0], scale_beta_vec));
-                    vec_elements_flt.val[1] = vexpq_f32(vmulq_f32(vec_elements_flt.val[1], scale_beta_vec));
-                    vec_elements_flt.val[2] = vexpq_f32(vmulq_f32(vec_elements_flt.val[2], scale_beta_vec));
-                    vec_elements_flt.val[3] = vexpq_f32(vmulq_f32(vec_elements_flt.val[3], scale_beta_vec));
-                    vec_sum.val[0]          = vaddq_f32(vec_sum.val[0], vec_elements_flt.val[0]);
-                    vec_sum.val[1]          = vaddq_f32(vec_sum.val[1], vec_elements_flt.val[1]);
-                    vec_sum.val[2]          = vaddq_f32(vec_sum.val[2], vec_elements_flt.val[2]);
-                    vec_sum.val[3]          = vaddq_f32(vec_sum.val[3], vec_elements_flt.val[3]);
-                }
-
-                vst4q_f32(tmp_ptr + x, vec_elements_flt);
-            }
-
-            /* Reduce sum */
-            const auto sum_16_byte = vaddq_f32(vaddq_f32(vec_sum.val[0], vec_sum.val[1]), vaddq_f32(vec_sum.val[2], vec_sum.val[3]));
-            auto       sum_res     = vpadd_f32(vget_high_f32(sum_16_byte), vget_low_f32(sum_16_byte));
-            sum_res                = vpadd_f32(sum_res, sum_res);
-            sum                    = wrapper::vgetlane(sum_res, 0);
-
-            /* Run remaining elements */
-            for(; x < input_width; ++x)
-            {
-                float element{};
-                if(is_log)
-                {
-                    element = (max_val - in_ptr[x]) * scale_beta;
-                    sum += std::exp(element);
-                }
-                else
-                {
-                    element = std::exp((max_val - in_ptr[x]) * scale_beta);
-                    sum += element;
-                }
-
-                tmp_ptr[x] = element;
-            }
-
-            if(!is_log)
-            {
-                sum_inversed = 256.f / sum;
-            }
-            else
-            {
-                sum = std::log(sum);
-            }
-        }
-
-        /* Normalize exponentials */
-        {
-            constexpr bool is_qasymm8_signed = std::is_same<T, qasymm8_signed_t>::value;
-            /* Loop over row and compute softmax */
-            int x = 0;
-            for(; x <= (input_width - vec_size); x += vec_size)
-            {
-                using int_vec_type   = wrapper::traits::neon_vector_t<T, 16>;
-                float32x4x4_t vec_in = vld4q_f32(tmp_ptr + x);
-                int_vec_type  normalized_value{};
-                if(is_log)
-                {
-                    const float32x4x4_t sub =
-                    {
-                        vsubq_f32(vec_in.val[0], vdupq_n_f32(sum)),
-                        vsubq_f32(vec_in.val[1], vdupq_n_f32(sum)),
-                        vsubq_f32(vec_in.val[2], vdupq_n_f32(sum)),
-                        vsubq_f32(vec_in.val[3], vdupq_n_f32(sum)),
-                    };
-                    normalized_value = convert_float_to_int<float32x4x4_t, int_vec_type>(sub);
-                }
-                else
-                {
-                    float32x4x4_t mul =
-                    {
-                        vmulq_f32(vec_in.val[0], vdupq_n_f32(sum_inversed)),
-                        vmulq_f32(vec_in.val[1], vdupq_n_f32(sum_inversed)),
-                        vmulq_f32(vec_in.val[2], vdupq_n_f32(sum_inversed)),
-                        vmulq_f32(vec_in.val[3], vdupq_n_f32(sum_inversed)),
-                    };
-
-                    if(is_qasymm8_signed)
-                    {
-                        const auto offset_vec = wrapper::vdup_n(128.f, wrapper::traits::vector_128_tag{});
-                        mul.val[0]            = wrapper::vsub(mul.val[0], offset_vec);
-                        mul.val[1]            = wrapper::vsub(mul.val[1], offset_vec);
-                        mul.val[2]            = wrapper::vsub(mul.val[2], offset_vec);
-                        mul.val[3]            = wrapper::vsub(mul.val[3], offset_vec);
-                    }
-
-                    normalized_value = convert_float_to_int<float32x4x4_t, int_vec_type>(mul);
-                }
-                wrapper::vstore(out_ptr + x, normalized_value);
-            }
-            /* Run remaining elements */
-            for(; x < input_width; ++x)
-            {
-                if(is_log)
-                {
-                    out_ptr[x] = utils::cast::saturate_cast<T>(tmp_ptr[x] - sum);
-                }
-                else
-                {
-                    out_ptr[x] = utils::cast::saturate_cast<T>((tmp_ptr[x] * sum_inversed) - (is_qasymm8_signed ? 128.f : 0));
-                }
-            }
-        }
-    },
-    in_it, max_it, out_it);
-}
-
-template <typename T>
-void neon_softmax_logits_1d_float(const ITensor *in, const ITensor *max, void *const tmp,
-                                  ITensor *out, const float beta, bool is_log, const Window &window)
-{
-    const int start_x     = in->info()->valid_region().anchor.x();
-    const int input_width = in->info()->valid_region().shape.x();
-
-    Iterator in_it(in, window);
-    Iterator max_it(max, window);
-    Iterator out_it(out, window);
-
-    /** NEON vector tag type. */
-    using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
-
-    constexpr int vec_size   = 16 / sizeof(T);
-    const int     sum_stages = log2(vec_size / 2);
-
-    execute_window_loop(window, [&](const Coordinates &)
-    {
-        /* Get pointers */
-        const auto in_ptr  = reinterpret_cast<const T *>(in_it.ptr()) + start_x;
-        const auto out_ptr = reinterpret_cast<T *>(out_it.ptr()) + start_x;
-        const auto tmp_ptr = reinterpret_cast<T *>(tmp);
-
-        T sum{};
-        T sum_inversed{};
-
-        /* Compute exponentials and sum */
-        {
-            /* Get max value */
-            const auto max_val = *reinterpret_cast<const T *>(max_it.ptr());
-            const auto vec_max = wrapper::vdup_n(max_val, ExactTagType{});
-
-            /* Init sum to zero */
-            auto vec_sum = wrapper::vdup_n(static_cast<T>(0), ExactTagType{});
-
-            /* Loop over row and compute exponentials and sum */
-            int x = 0;
-            for(; x <= (input_width - vec_size); x += vec_size)
-            {
-                auto vec_elements = wrapper::vloadq(in_ptr + x);
-                vec_elements      = wrapper::vsub(vec_elements, vec_max);
-                if(is_log)
-                {
-                    vec_elements = wrapper::vmul(vec_elements, wrapper::vdup_n(static_cast<T>(beta), ExactTagType{}));
-                    vec_sum      = wrapper::vadd(vec_sum, wrapper::vexpq(vec_elements));
-                }
-                else
-                {
-                    vec_elements = wrapper::vexpq(wrapper::vmul(vec_elements, wrapper::vdup_n(static_cast<T>(beta), ExactTagType{})));
-                    vec_sum      = wrapper::vadd(vec_sum, vec_elements);
-                }
-                wrapper::vstore(tmp_ptr + x, vec_elements);
-            }
-
-            /* Reduce sum */
-            auto sum_res = wrapper::vpadd(wrapper::vgethigh(vec_sum), wrapper::vgetlow(vec_sum));
-            for(int i = 0; i < sum_stages; ++i)
-            {
-                sum_res = wrapper::vpadd(sum_res, sum_res);
-            }
-            sum = wrapper::vgetlane(sum_res, 0);
-
-            /* Run remaining elements */
-            for(; x < input_width; ++x)
-            {
-                T element{};
-
-                if(is_log)
-                {
-                    element = (in_ptr[x] - max_val) * beta;
-                    sum += std::exp(element);
-                }
-                else
-                {
-                    element = std::exp((in_ptr[x] - max_val) * beta);
-                    sum += element;
-                }
-                tmp_ptr[x] = element;
-            }
-
-            if(!is_log)
-            {
-                sum_inversed = T(1) / sum;
-            }
-            else
-            {
-                sum = static_cast<T>(std::log(sum));
-            }
-        }
-
-        /* Normalize exponentials */
-        {
-            /* Loop over row and compute softmax */
-            int x = 0;
-            for(; x <= (input_width - vec_size); x += vec_size)
-            {
-                auto vec_in           = wrapper::vloadq(tmp_ptr + x);
-                auto normalized_value = wrapper::vdup_n(static_cast<T>(0), ExactTagType{});
-                if(is_log)
-                {
-                    normalized_value = wrapper::vsub(vec_in, wrapper::vdup_n(static_cast<T>(sum), ExactTagType{}));
-                }
-                else
-                {
-                    normalized_value = wrapper::vmul(vec_in, wrapper::vdup_n(static_cast<T>(sum_inversed), ExactTagType{}));
-                }
-                wrapper::vstore(out_ptr + x, normalized_value);
-            }
-            /* Run remaining elements */
-            for(; x < input_width; ++x)
-            {
-                if(is_log)
-                {
-                    out_ptr[x] = tmp_ptr[x] - sum;
-                }
-                else
-                {
-                    out_ptr[x] = tmp_ptr[x] * sum_inversed;
-                }
-            }
-        }
-    },
-    in_it, max_it, out_it);
-}
-
-} // namespace cpu
-} // namespace arm_compute
-
-#endif /* SRC_CORE_NEON_KERNELS_SOFTMAX_LIST_H */
diff --git a/src/core/NEON/kernels/softmax/impl/SVE/list.h b/src/core/NEON/kernels/softmax/impl/SVE/list.h
deleted file mode 100644 (file)
index 0936bd5..0000000
+++ /dev/null
@@ -1,429 +0,0 @@
-/*
- * Copyright (c) 2021 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#ifndef SRC_CORE_SVE_KERNELS_SOFTMAX_LIST_H
-#define SRC_CORE_SVE_KERNELS_SOFTMAX_LIST_H
-
-#if defined(__ARM_FEATURE_SVE)
-#include "arm_compute/core/Types.h"
-#include "arm_compute/core/utils/misc/Traits.h"
-#include "src/core/NEON/SVEMath.h"
-#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
-#include <arm_sve.h>
-
-namespace arm_compute
-{
-namespace cpu
-{
-namespace
-{
-#if defined(__ARM_FEATURE_SVE2)
-template <typename int_vec_type>
-int_vec_type convert_float_to_int(const svfloat32_t &in_0, const svfloat32_t &in_1, const svfloat32_t &in_2, const svfloat32_t &in_3);
-
-template <>
-svuint8_t convert_float_to_int<svuint8_t>(const svfloat32_t &in_0, const svfloat32_t &in_1, const svfloat32_t &in_2, const svfloat32_t &in_3)
-{
-    svuint8_t  out;
-    const auto all_true_pg = svptrue_b32();
-    auto       tmp_0       = svcvt_u32_f32_z(all_true_pg, in_0);
-    auto       tmp_1       = svcvt_u32_f32_z(all_true_pg, in_1);
-    auto       tmp_2       = svcvt_u32_f32_z(all_true_pg, in_2);
-    auto       tmp_3       = svcvt_u32_f32_z(all_true_pg, in_3);
-
-    auto tmp_16_0 = svqxtnt_u32(svqxtnb_u32(tmp_0), tmp_1);
-    auto tmp_16_1 = svqxtnt_u32(svqxtnb_u32(tmp_2), tmp_3);
-
-    auto tmp_16_uzp_0 = svuzp1(tmp_16_0, tmp_16_0);
-    auto tmp_16_uzp_1 = svuzp2(tmp_16_0, tmp_16_0);
-    auto tmp_16_uzp_2 = svuzp1(tmp_16_1, tmp_16_1);
-    auto tmp_16_uzp_3 = svuzp2(tmp_16_1, tmp_16_1);
-
-    auto pg = svwhilelt_b16_s32(0, svcnth() / 2);
-
-    tmp_16_0 = svsplice(pg, tmp_16_uzp_0, tmp_16_uzp_1);
-    tmp_16_1 = svsplice(pg, tmp_16_uzp_2, tmp_16_uzp_3);
-
-    out = svqxtnt_u16(svqxtnb_u16(tmp_16_0), tmp_16_1);
-
-    auto out_uzp_0 = svuzp1(out, out);
-    auto out_uzp_1 = svuzp2(out, out);
-
-    pg  = svwhilelt_b8_s32(0, svcntb() / 2);
-    out = svsplice(pg, out_uzp_0, out_uzp_1);
-
-    return out;
-}
-
-template <>
-svint8_t convert_float_to_int<svint8_t>(const svfloat32_t &in_0, const svfloat32_t &in_1, const svfloat32_t &in_2, const svfloat32_t &in_3)
-{
-    svint8_t   out;
-    const auto all_true_pg = svptrue_b32();
-    auto       tmp_0       = svcvt_s32_f32_z(all_true_pg, in_0);
-    auto       tmp_1       = svcvt_s32_f32_z(all_true_pg, in_1);
-    auto       tmp_2       = svcvt_s32_f32_z(all_true_pg, in_2);
-    auto       tmp_3       = svcvt_s32_f32_z(all_true_pg, in_3);
-
-    auto tmp_16_0 = svqxtnt_s32(svqxtnb_s32(tmp_0), tmp_1);
-    auto tmp_16_1 = svqxtnt_s32(svqxtnb_s32(tmp_2), tmp_3);
-
-    auto tmp_16_uzp_0 = svuzp1(tmp_16_0, tmp_16_0);
-    auto tmp_16_uzp_1 = svuzp2(tmp_16_0, tmp_16_0);
-    auto tmp_16_uzp_2 = svuzp1(tmp_16_1, tmp_16_1);
-    auto tmp_16_uzp_3 = svuzp2(tmp_16_1, tmp_16_1);
-
-    auto pg = svwhilelt_b16_s32(0, svcnth() / 2);
-
-    tmp_16_0 = svsplice(pg, tmp_16_uzp_0, tmp_16_uzp_1);
-    tmp_16_1 = svsplice(pg, tmp_16_uzp_2, tmp_16_uzp_3);
-
-    out = svqxtnt_s16(svqxtnb_s16(tmp_16_0), tmp_16_1);
-
-    auto out_uzp_0 = svuzp1(out, out);
-    auto out_uzp_1 = svuzp2(out, out);
-
-    pg  = svwhilelt_b8_s32(0, svcntb() / 2);
-    out = svsplice(pg, out_uzp_0, out_uzp_1);
-
-    return out;
-}
-#endif /* defined(__ARM_FEATURE_SVE2) */
-} // namespace
-
-template <typename ScalarType>
-void sve_logits_1d_max(const ITensor *in, ITensor *out, const Window &window)
-{
-    const auto all_true_pg    = wrapper::svptrue<ScalarType>();
-    const auto window_start_x = static_cast<int>(window.x().start());
-    const auto window_end_x   = static_cast<int>(window.x().end());
-
-    Window win{ window };
-    win.set(Window::DimX, Window::Dimension(0, 1, 1));
-    Iterator input(in, win);
-    Iterator output(out, win);
-
-    execute_window_loop(win, [&](const Coordinates &)
-    {
-        // Get pointers
-        const auto in_ptr  = reinterpret_cast<const ScalarType *>(input.ptr());
-        const auto out_ptr = reinterpret_cast<ScalarType *>(output.ptr());
-
-        // Init max value
-        auto vec_max = wrapper::svdup_n(support::cpp11::lowest<ScalarType>());
-
-        int      x  = window_start_x;
-        svbool_t pg = wrapper::svwhilelt<ScalarType>(x, window_end_x);
-        do
-        {
-            const auto current_value = svld1(pg, in_ptr + x);
-            vec_max                  = svmax_m(pg, vec_max, current_value);
-
-            x += wrapper::svcnt<ScalarType>();
-            pg = wrapper::svwhilelt<ScalarType>(x, window_end_x);
-        }
-        while(svptest_any(all_true_pg, pg));
-
-        auto max_val = svmaxv(all_true_pg, vec_max);
-
-        *out_ptr = max_val;
-    },
-    input, output);
-}
-
-#if defined(__ARM_FEATURE_SVE2)
-template <typename ScalarType>
-void sve_softmax_logits_1d_quantized(const ITensor *in, const ITensor *max, void *const tmp,
-                                     ITensor *out, float beta, bool is_log, const Window &window)
-{
-    const int start_x     = in->info()->valid_region().anchor.x();
-    const int input_width = in->info()->valid_region().shape.x();
-
-    const float scale_beta     = -beta * in->info()->quantization_info().uniform().scale;
-    const auto  scale_beta_vec = svdup_n_f32(scale_beta);
-
-    Iterator   in_it(in, window);
-    Iterator   max_it(max, window);
-    Iterator   out_it(out, window);
-    const auto all_true_pg = wrapper::svptrue<ScalarType>();
-    using SVEType          = typename wrapper::traits::sve_vector<ScalarType>::type;
-
-    const int inc_1 = static_cast<int>(svcntw());
-    const int inc_2 = static_cast<int>(2 * svcntw());
-    const int inc_3 = static_cast<int>(3 * svcntw());
-
-    execute_window_loop(window, [&](const Coordinates &)
-    {
-        /* Get pointers */
-        const auto in_ptr  = reinterpret_cast<const ScalarType *>(in_it.ptr()) + start_x;
-        const auto out_ptr = reinterpret_cast<ScalarType *>(out_it.ptr()) + start_x;
-        const auto tmp_ptr = reinterpret_cast<float *>(tmp);
-
-        float sum{};
-
-        /* Compute exponentials and sum */
-        {
-            /* Get max value */
-            const auto max_val = *reinterpret_cast<const ScalarType *>(max_it.ptr());
-            const auto vec_max = wrapper::svdup_n(max_val);
-
-            /* Init sum to zero */
-            auto vec_sum_0 = svdup_n_f32(0.f);
-            auto vec_sum_1 = svdup_n_f32(0.f);
-            auto vec_sum_2 = svdup_n_f32(0.f);
-            auto vec_sum_3 = svdup_n_f32(0.f);
-
-            /* Loop over row and compute exponentials and sum */
-            int      x    = 0;
-            svbool_t pg   = wrapper::svwhilelt<ScalarType>(x, input_width);
-            svbool_t pg_0 = svunpklo(svunpklo(pg));
-            svbool_t pg_1 = svunpkhi(svunpklo(pg));
-            svbool_t pg_2 = svunpklo(svunpkhi(pg));
-            svbool_t pg_3 = svunpkhi(svunpkhi(pg));
-            do
-            {
-                auto vec_elements = svld1(pg, in_ptr + x);
-                vec_elements      = svsub_z(pg, vec_max, vec_elements);
-
-                auto vec_elements_flt_0 = svcvt_f32_z(pg_0, svunpklo(svunpklo(vec_elements)));
-                auto vec_elements_flt_1 = svcvt_f32_z(pg_1, svunpkhi(svunpklo(vec_elements)));
-                auto vec_elements_flt_2 = svcvt_f32_z(pg_2, svunpklo(svunpkhi(vec_elements)));
-                auto vec_elements_flt_3 = svcvt_f32_z(pg_3, svunpkhi(svunpkhi(vec_elements)));
-
-                if(is_log)
-                {
-                    vec_elements_flt_0 = svmul_f32_z(pg_0, vec_elements_flt_0, scale_beta_vec);
-                    vec_elements_flt_1 = svmul_f32_z(pg_1, vec_elements_flt_1, scale_beta_vec);
-                    vec_elements_flt_2 = svmul_f32_z(pg_2, vec_elements_flt_2, scale_beta_vec);
-                    vec_elements_flt_3 = svmul_f32_z(pg_3, vec_elements_flt_3, scale_beta_vec);
-                    vec_sum_0          = svadd_f32_m(pg_0, vec_sum_0, svexp_f32_z(pg_0, vec_elements_flt_0));
-                    vec_sum_1          = svadd_f32_m(pg_1, vec_sum_1, svexp_f32_z(pg_1, vec_elements_flt_1));
-                    vec_sum_2          = svadd_f32_m(pg_2, vec_sum_2, svexp_f32_z(pg_2, vec_elements_flt_2));
-                    vec_sum_3          = svadd_f32_m(pg_3, vec_sum_3, svexp_f32_z(pg_3, vec_elements_flt_3));
-                }
-                else
-                {
-                    vec_elements_flt_0 = svexp_f32_z(pg_0, svmul_f32_z(pg_0, vec_elements_flt_0, scale_beta_vec));
-                    vec_elements_flt_1 = svexp_f32_z(pg_1, svmul_f32_z(pg_1, vec_elements_flt_1, scale_beta_vec));
-                    vec_elements_flt_2 = svexp_f32_z(pg_2, svmul_f32_z(pg_2, vec_elements_flt_2, scale_beta_vec));
-                    vec_elements_flt_3 = svexp_f32_z(pg_3, svmul_f32_z(pg_3, vec_elements_flt_3, scale_beta_vec));
-                    vec_sum_0          = svadd_f32_m(pg_0, vec_sum_0, vec_elements_flt_0);
-                    vec_sum_1          = svadd_f32_m(pg_1, vec_sum_1, vec_elements_flt_1);
-                    vec_sum_2          = svadd_f32_m(pg_2, vec_sum_2, vec_elements_flt_2);
-                    vec_sum_3          = svadd_f32_m(pg_3, vec_sum_3, vec_elements_flt_3);
-                }
-
-                svst1_f32(pg_0, tmp_ptr + x, vec_elements_flt_0);
-                svst1_f32(pg_1, tmp_ptr + x + inc_1, vec_elements_flt_1);
-                svst1_f32(pg_2, tmp_ptr + x + inc_2, vec_elements_flt_2);
-                svst1_f32(pg_3, tmp_ptr + x + inc_3, vec_elements_flt_3);
-
-                x += wrapper::svcnt<ScalarType>();
-                pg   = wrapper::svwhilelt<ScalarType>(x, input_width);
-                pg_0 = svunpklo(svunpklo(pg));
-                pg_1 = svunpkhi(svunpklo(pg));
-                pg_2 = svunpklo(svunpkhi(pg));
-                pg_3 = svunpkhi(svunpkhi(pg));
-            }
-            while(svptest_any(all_true_pg, pg));
-
-            /* Reduce sum */
-            const auto vec_sum = svadd_f32_z(all_true_pg, svadd_f32_z(all_true_pg, vec_sum_0, vec_sum_1), svadd_f32_z(all_true_pg, vec_sum_2, vec_sum_3));
-            sum                = svaddv_f32(all_true_pg, vec_sum);
-
-            /* Run remaining elements */
-            x = 0;
-            if(is_log)
-            {
-                sum = std::log(sum);
-            }
-            else
-            {
-                sum = 256.f / sum;
-            }
-        }
-
-        /* Normalize exponentials */
-        {
-            constexpr bool is_qasymm8_signed = std::is_same<ScalarType, qasymm8_signed_t>::value;
-            /* Loop over row and compute softmax */
-            int      x    = 0;
-            svbool_t pg   = wrapper::svwhilelt<ScalarType>(x, input_width);
-            svbool_t pg_0 = svunpklo(svunpklo(pg));
-            svbool_t pg_1 = svunpkhi(svunpklo(pg));
-            svbool_t pg_2 = svunpklo(svunpkhi(pg));
-            svbool_t pg_3 = svunpkhi(svunpkhi(pg));
-            do
-            {
-                auto vec_in_0 = svld1_f32(pg_0, tmp_ptr + x);
-                auto vec_in_1 = svld1_f32(pg_1, tmp_ptr + x + inc_1);
-                auto vec_in_2 = svld1_f32(pg_2, tmp_ptr + x + inc_2);
-                auto vec_in_3 = svld1_f32(pg_3, tmp_ptr + x + inc_3);
-
-                svfloat32_t res_0{};
-                svfloat32_t res_1{};
-                svfloat32_t res_2{};
-                svfloat32_t res_3{};
-
-                if(is_log)
-                {
-                    res_0 = svsub_f32_z(pg_0, vec_in_0, svdup_n_f32(sum));
-                    res_1 = svsub_f32_z(pg_1, vec_in_1, svdup_n_f32(sum));
-                    res_2 = svsub_f32_z(pg_2, vec_in_2, svdup_n_f32(sum));
-                    res_3 = svsub_f32_z(pg_3, vec_in_3, svdup_n_f32(sum));
-                }
-                else
-                {
-                    res_0 = svmul_f32_z(pg_0, vec_in_0, svdup_n_f32(sum));
-                    res_1 = svmul_f32_z(pg_1, vec_in_1, svdup_n_f32(sum));
-                    res_2 = svmul_f32_z(pg_2, vec_in_2, svdup_n_f32(sum));
-                    res_3 = svmul_f32_z(pg_3, vec_in_3, svdup_n_f32(sum));
-
-                    if(is_qasymm8_signed)
-                    {
-                        const auto offset_vec = svdup_n_f32(128.f);
-                        res_0                 = svsub_z(pg_0, vec_in_0, offset_vec);
-                        res_1                 = svsub_z(pg_1, vec_in_1, offset_vec);
-                        res_2                 = svsub_z(pg_2, vec_in_2, offset_vec);
-                        res_3                 = svsub_z(pg_3, vec_in_3, offset_vec);
-                    }
-                }
-
-                // Store value
-                const auto out = convert_float_to_int<SVEType>(res_0, res_1, res_2, res_3);
-                svst1(pg, out_ptr + x, out);
-                x += wrapper::svcnt<ScalarType>();
-                pg   = wrapper::svwhilelt<ScalarType>(x, input_width);
-                pg_0 = svunpklo(svunpklo(pg));
-                pg_1 = svunpkhi(svunpklo(pg));
-                pg_2 = svunpklo(svunpkhi(pg));
-                pg_3 = svunpkhi(svunpkhi(pg));
-            }
-            while(svptest_any(all_true_pg, pg));
-        }
-    },
-    in_it, max_it, out_it);
-}
-#endif /* defined(__ARM_FEATURE_SVE2) */
-
-template <typename ScalarType>
-void sve_softmax_logits_1d_float(const ITensor *in, const ITensor *max, void *const tmp,
-                                 ITensor *out, const float beta, bool is_log, const Window &window)
-{
-    const int start_x     = in->info()->valid_region().anchor.x();
-    const int input_width = in->info()->valid_region().shape.x();
-
-    Iterator in_it(in, window);
-    Iterator max_it(max, window);
-    Iterator out_it(out, window);
-
-    const auto all_true_pg = wrapper::svptrue<ScalarType>();
-
-    execute_window_loop(window, [&](const Coordinates &)
-    {
-        /* Get pointers */
-        const auto in_ptr  = reinterpret_cast<const ScalarType *>(in_it.ptr()) + start_x;
-        const auto out_ptr = reinterpret_cast<ScalarType *>(out_it.ptr()) + start_x;
-        const auto tmp_ptr = reinterpret_cast<ScalarType *>(tmp);
-
-        ScalarType sum{ 0 };
-
-        /* Compute exponentials and sum */
-        {
-            /* Get max value */
-            const auto max_val = *reinterpret_cast<const ScalarType *>(max_it.ptr());
-            const auto vec_max = wrapper::svdup_n(max_val);
-
-            /* Init sum to zero */
-            auto vec_sum = wrapper::svdup_n(static_cast<ScalarType>(0));
-
-            /* Loop over row and compute exponentials and sum */
-            int      x  = 0;
-            svbool_t pg = wrapper::svwhilelt<ScalarType>(x, input_width);
-            do
-            {
-                auto vec_elements = svld1(pg, in_ptr + x);
-                vec_elements      = svsub_z(pg, vec_elements, vec_max);
-                if(is_log)
-                {
-                    vec_elements = svmul_z(pg, vec_elements, wrapper::svdup_n(static_cast<ScalarType>(beta)));
-                    vec_sum      = svadd_m(pg, vec_sum, wrapper::svexp_z(pg, vec_elements));
-                }
-                else
-                {
-                    vec_elements = wrapper::svexp_z(pg, svmul_z(pg, vec_elements, wrapper::svdup_n(static_cast<ScalarType>(beta))));
-                    vec_sum      = svadd_m(pg, vec_sum, vec_elements);
-                }
-                svst1(pg, tmp_ptr + x, vec_elements);
-
-                x += wrapper::svcnt<ScalarType>();
-                pg = wrapper::svwhilelt<ScalarType>(x, input_width);
-            }
-            while(svptest_any(all_true_pg, pg));
-
-            /* Reduce sum */
-            sum = svaddv(all_true_pg, vec_sum);
-
-            if(is_log)
-            {
-                sum = static_cast<ScalarType>(std::log(sum));
-            }
-            else
-            {
-                sum = ScalarType(1) / sum;
-            }
-        }
-
-        /* Normalize exponentials */
-        {
-            /* Loop over row and compute softmax */
-            int      x  = 0;
-            svbool_t pg = wrapper::svwhilelt<ScalarType>(x, input_width);
-            do
-            {
-                auto vec_in           = svld1(pg, tmp_ptr + x);
-                auto normalized_value = wrapper::svdup_n(static_cast<ScalarType>(0));
-                if(is_log)
-                {
-                    normalized_value = svsub_z(pg, vec_in, wrapper::svdup_n(static_cast<ScalarType>(sum)));
-                }
-                else
-                {
-                    normalized_value = svmul_z(pg, vec_in, wrapper::svdup_n(static_cast<ScalarType>(sum)));
-                }
-                svst1(pg, out_ptr + x, normalized_value);
-
-                x += wrapper::svcnt<ScalarType>();
-                pg = wrapper::svwhilelt<ScalarType>(x, input_width);
-            }
-            while(svptest_any(all_true_pg, pg));
-        }
-    },
-    in_it, max_it, out_it);
-}
-
-} // namespace cpu
-} // namespace arm_compute
-#endif /* defined(__ARM_FEATURE_SVE) */
-
-#endif /* SRC_CORE_SVE_KERNELS_SOFTMAX_LIST_H */
diff --git a/src/core/cpu/kernels/CpuSoftmaxKernel.cpp b/src/core/cpu/kernels/CpuSoftmaxKernel.cpp
new file mode 100644 (file)
index 0000000..a8542b6
--- /dev/null
@@ -0,0 +1,392 @@
+/*
+ * Copyright (c) 2017-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/core/cpu/kernels/CpuSoftmaxKernel.h"
+
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/Window.h"
+#include "src/core/CPP/Validate.h"
+#include "src/core/helpers/AutoConfiguration.h"
+#include "src/core/helpers/WindowHelpers.h"
+
+#include "src/core/common/Registrars.h"
+#include "src/core/cpu/kernels/softmax/impl/NEON/list.h"
+#include "src/core/cpu/kernels/softmax/impl/SVE/list.h"
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace kernels
+{
+namespace
+{
+struct SoftmaxSelectorData
+{
+    DataType dt;
+};
+using SoftmaxSelectorPtr          = std::add_pointer<bool(const SoftmaxSelectorData &data)>::type;
+using SoftmaxLogits1DMaxKernelPtr = std::add_pointer<void(const ITensor *, ITensor *, const Window &)>::type;
+using SoftmaxLogits1DKernelPtr    = std::add_pointer<void(const ITensor *, const ITensor *, void *const, ITensor *, float, bool, const Window &)>::type;
+
+struct SoftmaxLogits1DKernel
+{
+    const char              *name;
+    const SoftmaxSelectorPtr is_selected;
+    SoftmaxLogits1DKernelPtr ukernel;
+};
+
+struct SoftmaxLogits1DMaxKernel
+{
+    const char                 *name;
+    const SoftmaxSelectorPtr    is_selected;
+    SoftmaxLogits1DMaxKernelPtr ukernel;
+};
+
+static const SoftmaxLogits1DKernel available_logits_1d_kernels[] =
+{
+#if defined(__ARM_FEATURE_SVE)
+    {
+        "sve_softmax_logits_1d_float",
+        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::F32); },
+        REGISTER_FP32_SVE(arm_compute::cpu::sve_softmax_logits_1d_float<float>)
+    },
+    {
+        "sve_softmax_logits_1d_float",
+        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::F16); },
+        REGISTER_FP16_SVE(arm_compute::cpu::sve_softmax_logits_1d_float<float16_t>)
+    },
+#else /* !defined(__ARM_FEATURE_SVE) */
+    {
+        "neon_softmax_logits_1d_float",
+        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::F32); },
+        REGISTER_FP32_NEON(arm_compute::cpu::neon_softmax_logits_1d_float<float>)
+    },
+#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
+    {
+        "neon_softmax_logits_1d_float",
+        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::F16); },
+        REGISTER_FP16_NEON(arm_compute::cpu::neon_softmax_logits_1d_float<float16_t>)
+    },
+#endif /* defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) */
+#endif /* defined(__ARM_FEATURE_SVE) */
+
+#if defined(__ARM_FEATURE_SVE2)
+    {
+        "sve_softmax_logits_1d_quantized",
+        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::QASYMM8); },
+        REGISTER_QASYMM8_SVE(arm_compute::cpu::sve_softmax_logits_1d_quantized<qasymm8_t>)
+    },
+    {
+        "sve_softmax_logits_1d_quantized",
+        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::QASYMM8_SIGNED); },
+        REGISTER_QASYMM8_SIGNED_SVE(arm_compute::cpu::sve_softmax_logits_1d_quantized<qasymm8_signed_t>)
+    },
+#else  /* !defined(__ARM_FEATURE_SVE2) */
+    {
+        "neon_softmax_logits_1d_quantized",
+        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::QASYMM8); },
+        REGISTER_QASYMM8_NEON(arm_compute::cpu::neon_softmax_logits_1d_quantized<qasymm8_t>)
+    },
+    {
+        "neon_softmax_logits_1d_quantized",
+        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::QASYMM8_SIGNED); },
+        REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::neon_softmax_logits_1d_quantized<qasymm8_signed_t>)
+    },
+#endif /* defined(__ARM_FEATURE_SVE2) */
+
+};
+
+static const SoftmaxLogits1DMaxKernel available_logits_1d_max_kernels[] =
+{
+#if defined(__ARM_FEATURE_SVE)
+    {
+        "sve_logits_1d_max",
+        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::F32); },
+        REGISTER_FP32_SVE(arm_compute::cpu::sve_logits_1d_max<float>)
+    },
+    {
+        "sve_logits_1d_max",
+        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::F16); },
+        REGISTER_FP16_SVE(arm_compute::cpu::sve_logits_1d_max<float16_t>)
+    },
+    {
+        "sve_logits_1d_max",
+        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::QASYMM8); },
+        REGISTER_QASYMM8_SVE(arm_compute::cpu::sve_logits_1d_max<qasymm8_t>)
+    },
+    {
+        "sve_logits_1d_max",
+        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::QASYMM8_SIGNED); },
+        REGISTER_QASYMM8_SIGNED_SVE(arm_compute::cpu::sve_logits_1d_max<qasymm8_signed_t>)
+    },
+#else /* !defined(__ARM_FEATURE_SVE) */
+    {
+        "neon_logits_1d_max",
+        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::F32); },
+        REGISTER_FP32_NEON(arm_compute::cpu::neon_logits_1d_max<float>)
+    },
+#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
+    {
+        "neon_logits_1d_max",
+        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::F16); },
+        REGISTER_FP16_NEON(arm_compute::cpu::neon_logits_1d_max<float16_t>)
+    },
+#endif /* defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) */
+    {
+        "neon_logits_1d_max",
+        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::QASYMM8); },
+        REGISTER_QASYMM8_NEON(arm_compute::cpu::neon_logits_1d_max<qasymm8_t>)
+    },
+    {
+        "neon_logits_1d_max",
+        [](const SoftmaxSelectorData & data) { return (data.dt == DataType::QASYMM8_SIGNED); },
+        REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::neon_logits_1d_max<qasymm8_signed_t>)
+    },
+#endif /* defined(__ARM_FEATURE_SVE) */
+};
+
+const SoftmaxLogits1DKernel *get_implementation_logits(const SoftmaxSelectorData &data)
+{
+    for(const auto &uk : available_logits_1d_kernels)
+    {
+        if(uk.is_selected({ data.dt }))
+        {
+            return &uk;
+        }
+    }
+    return nullptr;
+}
+
+const SoftmaxLogits1DMaxKernel *get_implementation_logits_max(const SoftmaxSelectorData &data)
+{
+    for(const auto &uk : available_logits_1d_max_kernels)
+    {
+        if(uk.is_selected({ data.dt }))
+        {
+            return &uk;
+        }
+    }
+    return nullptr;
+}
+
+Status validate_arguments_logits_1d_max(const ITensorInfo &input, const ITensorInfo &output)
+{
+    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
+
+    // Validate in case of configured output
+    if(output.total_size() != 0)
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input, &output);
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(&input, &output);
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output.tensor_shape(), TensorShape(input.tensor_shape()).set(0, 1));
+    }
+
+    return Status{};
+}
+
+} // namespace
+
+CpuLogits1DMaxKernel::CpuLogits1DMaxKernel()
+{
+}
+
+void CpuLogits1DMaxKernel::configure(const ITensorInfo *src, ITensorInfo *dst)
+{
+    ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
+
+    // Perform validation step
+    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_logits_1d_max(*src, *dst));
+
+    // Softmax across the x dimension
+    const TensorShape output_shape = TensorShape(src->tensor_shape()).set(0, 1);
+    // Output auto initialization if not yet initialized
+    auto_init_if_empty(*dst, output_shape, 1, src->data_type(), src->quantization_info());
+
+    Window      win = calculate_max_window(*src, Steps());
+    Coordinates coord;
+    coord.set_num_dimensions(dst->num_dimensions());
+    dst->set_valid_region(ValidRegion(coord, dst->tensor_shape()));
+
+    ICpuKernel::configure(win);
+}
+
+Status CpuLogits1DMaxKernel::validate(const ITensorInfo *src, const ITensorInfo *dst)
+{
+    ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
+    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_logits_1d_max(*src, *dst));
+
+    return Status{};
+}
+
+void CpuLogits1DMaxKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
+{
+    ARM_COMPUTE_UNUSED(info);
+    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
+
+    const auto src = tensors.get_const_tensor(TensorType::ACL_SRC);
+    auto       dst = tensors.get_tensor(TensorType::ACL_DST);
+
+    const auto *uk = get_implementation_logits_max(SoftmaxSelectorData{ src->info()->data_type() });
+    uk->ukernel(src, dst, window);
+}
+
+const char *CpuLogits1DMaxKernel::name() const
+{
+    return "CpuLogits1DMaxKernel";
+}
+
+namespace
+{
+Status validate_arguments_logits_softmax(const ITensorInfo &src, const ITensorInfo &max,
+                                         const ITensorInfo &dst, const float beta, const ITensorInfo &tmp, bool is_log)
+{
+    ARM_COMPUTE_UNUSED(beta);
+    // Check input
+    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&src);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
+
+    const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(src.data_type());
+
+    // Check max
+    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src, &max);
+    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(TensorShape(src.tensor_shape()).set(0, 1), max.tensor_shape());
+    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(&src, &max);
+
+    // Check output if configured
+    if(dst.total_size() != 0)
+    {
+        const QuantizationInfo output_quantization = is_quantized_asymmetric ? arm_compute::get_softmax_output_quantization_info(src.data_type(), is_log) : dst.quantization_info();
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src, &dst);
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&src, &dst);
+        ARM_COMPUTE_RETURN_ERROR_ON(dst.quantization_info() != output_quantization);
+    }
+
+    // Check tmp if configured
+    if(tmp.total_size() != 0)
+    {
+        const DataType tmp_data_type = is_quantized_asymmetric ? DataType::F32 : src.data_type();
+        ARM_COMPUTE_RETURN_ERROR_ON(tmp.data_type() != tmp_data_type);
+        // We could potentially reduce tmp memory if we could predict or make an assumption
+        // on the maximum number of threads that will run in parallel.
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&src, &tmp);
+    }
+
+    return Status{};
+}
+} // namespace
+
+template <bool IS_LOG>
+CpuLogits1DSoftmaxKernel<IS_LOG>::CpuLogits1DSoftmaxKernel()
+    : _beta(1.0f)
+{
+}
+
+template <bool IS_LOG>
+void CpuLogits1DSoftmaxKernel<IS_LOG>::configure(const ITensorInfo *src, const ITensorInfo *max, ITensorInfo *dst, const float beta, ITensorInfo *tmp)
+{
+    ARM_COMPUTE_ERROR_ON_NULLPTR(src, max, dst, tmp);
+    ARM_COMPUTE_ERROR_ON_NULLPTR(src, max, dst, tmp);
+    // Perform validation step
+    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_logits_softmax(*src, *max, *dst, beta, *tmp, IS_LOG));
+
+    _beta = beta;
+
+    // Configure kernel window
+    const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(src->data_type());
+
+    // Output auto initialization if not yet initialized
+    const QuantizationInfo output_quantization = is_quantized_asymmetric ? arm_compute::get_softmax_output_quantization_info(src->data_type(), IS_LOG) : dst->quantization_info();
+    auto_init_if_empty(*dst, TensorInfo(*src).set_quantization_info(output_quantization).reset_padding());
+
+    // Tmp auto initialization if not yet initialized
+    const DataType tmp_data_type = is_quantized_asymmetric ? DataType::F32 : src->data_type();
+    auto_init_if_empty(*tmp, TensorInfo(*src).set_data_type(tmp_data_type).reset_padding());
+
+    // Configure kernel window
+    Window      win = calculate_max_window(*max, Steps());
+    Coordinates coord;
+    coord.set_num_dimensions(dst->num_dimensions());
+    dst->set_valid_region(ValidRegion(coord, dst->tensor_shape()));
+
+    ICpuKernel::configure(win);
+}
+
+template <bool IS_LOG>
+Status CpuLogits1DSoftmaxKernel<IS_LOG>::validate(const ITensorInfo *src, const ITensorInfo *max,
+                                                  const ITensorInfo *dst, const float beta, const ITensorInfo *tmp)
+{
+    ARM_COMPUTE_ERROR_ON_NULLPTR(src, max, dst, tmp);
+    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_logits_softmax(*src, *max, *dst, beta, *tmp, IS_LOG));
+
+    return Status{};
+}
+
+template <bool IS_LOG>
+void CpuLogits1DSoftmaxKernel<IS_LOG>::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
+{
+    ARM_COMPUTE_UNUSED(info);
+    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
+
+    const auto src = tensors.get_const_tensor(TensorType::ACL_SRC_0);
+    auto       max = tensors.get_tensor(TensorType::ACL_SRC_1);
+    auto       dst = tensors.get_tensor(TensorType::ACL_DST_0);
+    auto       tmp = tensors.get_tensor(TensorType::ACL_DST_1);
+
+    const unsigned int num_elems_processed_per_iteration = src->info()->valid_region().shape.x();
+    const unsigned int tmp_size_for_thread               = tmp->info()->element_size() * num_elems_processed_per_iteration;
+
+    ARM_COMPUTE_ERROR_ON(tmp->info()->total_size() < (info.num_threads * tmp_size_for_thread));
+
+    void *tmp_for_thread = tmp->buffer() + (info.thread_id * tmp_size_for_thread);
+
+    const auto *uk = get_implementation_logits(SoftmaxSelectorData{ src->info()->data_type() });
+    uk->ukernel(src, max, tmp_for_thread, dst, _beta, IS_LOG, window);
+}
+
+template <bool IS_LOG>
+const char    *CpuLogits1DSoftmaxKernel<IS_LOG>::name() const
+{
+    if(IS_LOG)
+    {
+        return "CpuLogits1DSoftmaxKernel";
+    }
+    else
+    {
+        return "CpuLogits1DLogSoftmaxKernel";
+    }
+}
+
+template class CpuLogits1DSoftmaxKernel<true>;
+template class CpuLogits1DSoftmaxKernel<false>;
+
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute
diff --git a/src/core/cpu/kernels/CpuSoftmaxKernel.h b/src/core/cpu/kernels/CpuSoftmaxKernel.h
new file mode 100644 (file)
index 0000000..aa10467
--- /dev/null
@@ -0,0 +1,107 @@
+/*
+ * Copyright (c) 2017-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ARM_COMPUTE_CPU_SOFTMAXKERNEL_H
+#define ARM_COMPUTE_CPU_SOFTMAXKERNEL_H
+
+#include "src/core/common/Macros.h"
+#include "src/core/cpu/ICpuKernel.h"
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace kernels
+{
+/** Interface for the identifying the max value of 1D Logits */
+class CpuLogits1DMaxKernel : public ICpuKernel
+{
+public:
+    /** Constructor */
+    CpuLogits1DMaxKernel();
+    ARM_COMPUTE_DISALLOW_COPY_ALLOW_MOVE(CpuLogits1DMaxKernel);
+    /** Set the input and output tensors.
+     *
+     * @param[in]  src Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
+     * @param[out] dst Destination tensor info. Data types supported: same as @p input
+     */
+    void configure(const ITensorInfo *src, ITensorInfo *dst);
+    /** Static function to check if given info will lead to a valid configuration of @ref CpuLogits1DMaxKernel
+     *
+     * @param[in] src Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
+     * @param[in] dst Destination tensor info. Data types supported: same as @p input
+     *
+     * @return a status
+     */
+    static Status validate(const ITensorInfo *src, const ITensorInfo *dst);
+
+    // Inherited methods overridden:
+    void run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) override;
+    const char *name() const override;
+};
+
+/** Interface for softmax computation for QASYMM8 with pre-computed max. */
+template <bool IS_LOG = false>
+class CpuLogits1DSoftmaxKernel : public ICpuKernel
+{
+public:
+    /** Default constructor */
+    CpuLogits1DSoftmaxKernel();
+    ARM_COMPUTE_DISALLOW_COPY_ALLOW_MOVE(CpuLogits1DSoftmaxKernel);
+
+    /** Set the input and output tensors.
+     *
+     * @param[in]  src  Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
+     * @param[in]  max  Max values tensor info. Same shape as input with dimension 0 set to 1.
+     *                  Data types supported: same as @p input.
+     * @param[out] dst  Destination tensor info. Data types supported: same as @p input.
+     * @param[in]  beta A scaling factor for the exponent.
+     *
+     * @param      tmp    Auxiliary tensor info. Must be type F32 and same shape as the input.
+     */
+    void configure(const ITensorInfo *src, const ITensorInfo *max, ITensorInfo *dst, const float beta, ITensorInfo *tmp);
+    /** Static function to check if given info will lead to a valid configuration of @ref CpuLogits1DSoftmaxKernel
+     *
+     * @param[in] src  Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
+     * @param[in] max  Max values tensor info. Same shape as input with dimension 0 set to 1.
+     *                 Data types supported: same as @p input.
+     * @param[in] dst  Destination tensor info. Data types supported: same as @p input.
+     * @param[in] beta A scaling factor for the exponent.
+     * @param[in] tmp  Tensor info of auxiliary. Must be type F32 and same shape as the input.
+     *
+     * @return a status
+     */
+    static Status validate(const ITensorInfo *src, const ITensorInfo *max,
+                           const ITensorInfo *dst, const float beta, const ITensorInfo *tmp);
+
+    // Inherited methods overridden:
+    void run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) override;
+    const char *name() const override;
+
+private:
+    float _beta;
+};
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute
+#endif /* ARM_COMPUTE_CPU_SOFTMAXKERNEL_H */
diff --git a/src/core/cpu/kernels/softmax/impl/NEON/list.h b/src/core/cpu/kernels/softmax/impl/NEON/list.h
new file mode 100644 (file)
index 0000000..1aa7e8f
--- /dev/null
@@ -0,0 +1,425 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef SRC_CORE_NEON_KERNELS_SOFTMAX_LIST_H
+#define SRC_CORE_NEON_KERNELS_SOFTMAX_LIST_H
+
+#include "src/core/NEON/NEFixedPoint.h"
+#include "src/core/NEON/NEMath.h"
+#include "src/core/NEON/wrapper/wrapper.h"
+#include "support/SaturateCast.h"
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace
+{
+template <typename float_vec_type, typename int_vec_type>
+int_vec_type convert_float_to_int(const float_vec_type &in);
+
+template <typename float_vec_type, typename int_vec_type>
+float_vec_type convert_int_to_float(const int_vec_type &in);
+
+template <>
+uint8x16_t convert_float_to_int<float32x4x4_t, uint8x16_t>(const float32x4x4_t &in)
+{
+    uint8x16_t out;
+    convert_float32x4x4_to_uint8x16(in, out);
+    return out;
+}
+
+template <>
+int8x16_t convert_float_to_int<float32x4x4_t, int8x16_t>(const float32x4x4_t &in)
+{
+    int8x16_t out;
+    convert_float32x4x4_to_int8x16(in, out);
+    return out;
+}
+
+template <>
+float32x4x4_t convert_int_to_float<float32x4x4_t, uint8x16_t>(const uint8x16_t &in)
+{
+    return convert_uint8x16_to_float32x4x4(in);
+}
+
+template <>
+float32x4x4_t convert_int_to_float<float32x4x4_t, int8x16_t>(const int8x16_t &in)
+{
+    return convert_int8x16_to_float32x4x4(in);
+}
+} // namespace
+
+template <typename T>
+void neon_logits_1d_max(const ITensor *in, ITensor *out, const Window &window)
+{
+    /** NEON vector tag type. */
+    using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
+
+    constexpr int window_step_x  = 16 / sizeof(T);
+    const auto    window_start_x = static_cast<int>(window.x().start());
+    const auto    window_end_x   = static_cast<int>(window.x().end());
+
+    Window win{ window };
+    win.set(Window::DimX, Window::Dimension(0, 1, 1));
+    Iterator input(in, win);
+    Iterator output(out, win);
+
+    const int sum_stages = log2(window_step_x / 2);
+    execute_window_loop(win, [&](const Coordinates &)
+    {
+        // Get pointers
+        const auto in_ptr  = reinterpret_cast<const T *>(input.ptr());
+        const auto out_ptr = reinterpret_cast<T *>(output.ptr());
+
+        // Init max value
+        auto vec_max = wrapper::vdup_n(support::cpp11::lowest<T>(), ExactTagType{});
+        int  x       = window_start_x;
+
+        for(; x <= (window_end_x - window_step_x); x += window_step_x)
+        {
+            const auto current_value = wrapper::vloadq(in_ptr + x);
+            vec_max                  = wrapper::vmax(vec_max, current_value);
+        }
+        auto carry_max = wrapper::vpmax(wrapper::vgethigh(vec_max), wrapper::vgetlow(vec_max));
+
+        for(int i = 0; i < sum_stages; ++i)
+        {
+            carry_max = wrapper::vpmax(carry_max, carry_max);
+        }
+        T max_val = wrapper::vgetlane(carry_max, 0);
+
+        // Compute left-over elements
+        for(; x < window_end_x; ++x)
+        {
+            max_val = *(in_ptr + x) > max_val ? *(in_ptr + x) : max_val;
+        }
+
+        *out_ptr = max_val;
+    },
+    input, output);
+}
+
+template <typename T>
+void neon_softmax_logits_1d_quantized(const ITensor *in, const ITensor *max, void *const tmp,
+                                      ITensor *out, float beta, bool is_log, const Window &window)
+{
+    static_assert(std::is_same<T, qasymm8_t>::value
+                  || std::is_same<T, qasymm8_signed_t>::value,
+                  "quantized type should be either qasymm8_t or qasymm8_signed_t.");
+
+    const int start_x     = in->info()->valid_region().anchor.x();
+    const int input_width = in->info()->valid_region().shape.x();
+
+    const float scale_beta     = -beta * in->info()->quantization_info().uniform().scale;
+    const auto  scale_beta_vec = vdupq_n_f32(scale_beta);
+
+    Iterator      in_it(in, window);
+    Iterator      max_it(max, window);
+    Iterator      out_it(out, window);
+    constexpr int vec_size = 16;
+
+    execute_window_loop(window, [&](const Coordinates &)
+    {
+        /* Get pointers */
+        const auto in_ptr  = reinterpret_cast<const T *>(in_it.ptr()) + start_x;
+        const auto out_ptr = reinterpret_cast<T *>(out_it.ptr()) + start_x;
+        const auto tmp_ptr = reinterpret_cast<float *>(tmp);
+
+        float sum{};
+        float sum_inversed{};
+
+        /* Compute exponentials and sum */
+        {
+            /* Get max value */
+            const auto max_val = *reinterpret_cast<const T *>(max_it.ptr());
+            const auto vec_max = wrapper::vdup_n(max_val, wrapper::traits::vector_128_tag{});
+
+            /* Init sum to zero */
+            float32x4x4_t vec_sum =
+            {
+                vdupq_n_f32(0.f),
+                vdupq_n_f32(0.f),
+                vdupq_n_f32(0.f),
+                vdupq_n_f32(0.f),
+            };
+
+            /* Loop over row and compute exponentials and sum */
+            int x = 0;
+            for(; x <= (input_width - vec_size); x += vec_size)
+            {
+                auto vec_elements     = wrapper::vloadq(in_ptr + x);
+                vec_elements          = wrapper::vqsub(vec_max, vec_elements);
+                auto vec_elements_flt = convert_int_to_float<float32x4x4_t>(vec_elements);
+
+                if(is_log)
+                {
+                    vec_elements_flt.val[0] = vmulq_f32(vec_elements_flt.val[0], scale_beta_vec);
+                    vec_elements_flt.val[1] = vmulq_f32(vec_elements_flt.val[1], scale_beta_vec);
+                    vec_elements_flt.val[2] = vmulq_f32(vec_elements_flt.val[2], scale_beta_vec);
+                    vec_elements_flt.val[3] = vmulq_f32(vec_elements_flt.val[3], scale_beta_vec);
+                    vec_sum.val[0]          = vaddq_f32(vec_sum.val[0], vexpq_f32(vec_elements_flt.val[0]));
+                    vec_sum.val[1]          = vaddq_f32(vec_sum.val[1], vexpq_f32(vec_elements_flt.val[1]));
+                    vec_sum.val[2]          = vaddq_f32(vec_sum.val[2], vexpq_f32(vec_elements_flt.val[2]));
+                    vec_sum.val[3]          = vaddq_f32(vec_sum.val[3], vexpq_f32(vec_elements_flt.val[3]));
+                }
+                else
+                {
+                    vec_elements_flt.val[0] = vexpq_f32(vmulq_f32(vec_elements_flt.val[0], scale_beta_vec));
+                    vec_elements_flt.val[1] = vexpq_f32(vmulq_f32(vec_elements_flt.val[1], scale_beta_vec));
+                    vec_elements_flt.val[2] = vexpq_f32(vmulq_f32(vec_elements_flt.val[2], scale_beta_vec));
+                    vec_elements_flt.val[3] = vexpq_f32(vmulq_f32(vec_elements_flt.val[3], scale_beta_vec));
+                    vec_sum.val[0]          = vaddq_f32(vec_sum.val[0], vec_elements_flt.val[0]);
+                    vec_sum.val[1]          = vaddq_f32(vec_sum.val[1], vec_elements_flt.val[1]);
+                    vec_sum.val[2]          = vaddq_f32(vec_sum.val[2], vec_elements_flt.val[2]);
+                    vec_sum.val[3]          = vaddq_f32(vec_sum.val[3], vec_elements_flt.val[3]);
+                }
+
+                vst4q_f32(tmp_ptr + x, vec_elements_flt);
+            }
+
+            /* Reduce sum */
+            const auto sum_16_byte = vaddq_f32(vaddq_f32(vec_sum.val[0], vec_sum.val[1]), vaddq_f32(vec_sum.val[2], vec_sum.val[3]));
+            auto       sum_res     = vpadd_f32(vget_high_f32(sum_16_byte), vget_low_f32(sum_16_byte));
+            sum_res                = vpadd_f32(sum_res, sum_res);
+            sum                    = wrapper::vgetlane(sum_res, 0);
+
+            /* Run remaining elements */
+            for(; x < input_width; ++x)
+            {
+                float element{};
+                if(is_log)
+                {
+                    element = (max_val - in_ptr[x]) * scale_beta;
+                    sum += std::exp(element);
+                }
+                else
+                {
+                    element = std::exp((max_val - in_ptr[x]) * scale_beta);
+                    sum += element;
+                }
+
+                tmp_ptr[x] = element;
+            }
+
+            if(!is_log)
+            {
+                sum_inversed = 256.f / sum;
+            }
+            else
+            {
+                sum = std::log(sum);
+            }
+        }
+
+        /* Normalize exponentials */
+        {
+            constexpr bool is_qasymm8_signed = std::is_same<T, qasymm8_signed_t>::value;
+            /* Loop over row and compute softmax */
+            int x = 0;
+            for(; x <= (input_width - vec_size); x += vec_size)
+            {
+                using int_vec_type   = wrapper::traits::neon_vector_t<T, 16>;
+                float32x4x4_t vec_in = vld4q_f32(tmp_ptr + x);
+                int_vec_type  normalized_value{};
+                if(is_log)
+                {
+                    const float32x4x4_t sub =
+                    {
+                        vsubq_f32(vec_in.val[0], vdupq_n_f32(sum)),
+                        vsubq_f32(vec_in.val[1], vdupq_n_f32(sum)),
+                        vsubq_f32(vec_in.val[2], vdupq_n_f32(sum)),
+                        vsubq_f32(vec_in.val[3], vdupq_n_f32(sum)),
+                    };
+                    normalized_value = convert_float_to_int<float32x4x4_t, int_vec_type>(sub);
+                }
+                else
+                {
+                    float32x4x4_t mul =
+                    {
+                        vmulq_f32(vec_in.val[0], vdupq_n_f32(sum_inversed)),
+                        vmulq_f32(vec_in.val[1], vdupq_n_f32(sum_inversed)),
+                        vmulq_f32(vec_in.val[2], vdupq_n_f32(sum_inversed)),
+                        vmulq_f32(vec_in.val[3], vdupq_n_f32(sum_inversed)),
+                    };
+
+                    if(is_qasymm8_signed)
+                    {
+                        const auto offset_vec = wrapper::vdup_n(128.f, wrapper::traits::vector_128_tag{});
+                        mul.val[0]            = wrapper::vsub(mul.val[0], offset_vec);
+                        mul.val[1]            = wrapper::vsub(mul.val[1], offset_vec);
+                        mul.val[2]            = wrapper::vsub(mul.val[2], offset_vec);
+                        mul.val[3]            = wrapper::vsub(mul.val[3], offset_vec);
+                    }
+
+                    normalized_value = convert_float_to_int<float32x4x4_t, int_vec_type>(mul);
+                }
+                wrapper::vstore(out_ptr + x, normalized_value);
+            }
+            /* Run remaining elements */
+            for(; x < input_width; ++x)
+            {
+                if(is_log)
+                {
+                    out_ptr[x] = utils::cast::saturate_cast<T>(tmp_ptr[x] - sum);
+                }
+                else
+                {
+                    out_ptr[x] = utils::cast::saturate_cast<T>((tmp_ptr[x] * sum_inversed) - (is_qasymm8_signed ? 128.f : 0));
+                }
+            }
+        }
+    },
+    in_it, max_it, out_it);
+}
+
+template <typename T>
+void neon_softmax_logits_1d_float(const ITensor *in, const ITensor *max, void *const tmp,
+                                  ITensor *out, const float beta, bool is_log, const Window &window)
+{
+    const int start_x     = in->info()->valid_region().anchor.x();
+    const int input_width = in->info()->valid_region().shape.x();
+
+    Iterator in_it(in, window);
+    Iterator max_it(max, window);
+    Iterator out_it(out, window);
+
+    /** NEON vector tag type. */
+    using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
+
+    constexpr int vec_size   = 16 / sizeof(T);
+    const int     sum_stages = log2(vec_size / 2);
+
+    execute_window_loop(window, [&](const Coordinates &)
+    {
+        /* Get pointers */
+        const auto in_ptr  = reinterpret_cast<const T *>(in_it.ptr()) + start_x;
+        const auto out_ptr = reinterpret_cast<T *>(out_it.ptr()) + start_x;
+        const auto tmp_ptr = reinterpret_cast<T *>(tmp);
+
+        T sum{};
+        T sum_inversed{};
+
+        /* Compute exponentials and sum */
+        {
+            /* Get max value */
+            const auto max_val = *reinterpret_cast<const T *>(max_it.ptr());
+            const auto vec_max = wrapper::vdup_n(max_val, ExactTagType{});
+
+            /* Init sum to zero */
+            auto vec_sum = wrapper::vdup_n(static_cast<T>(0), ExactTagType{});
+
+            /* Loop over row and compute exponentials and sum */
+            int x = 0;
+            for(; x <= (input_width - vec_size); x += vec_size)
+            {
+                auto vec_elements = wrapper::vloadq(in_ptr + x);
+                vec_elements      = wrapper::vsub(vec_elements, vec_max);
+                if(is_log)
+                {
+                    vec_elements = wrapper::vmul(vec_elements, wrapper::vdup_n(static_cast<T>(beta), ExactTagType{}));
+                    vec_sum      = wrapper::vadd(vec_sum, wrapper::vexpq(vec_elements));
+                }
+                else
+                {
+                    vec_elements = wrapper::vexpq(wrapper::vmul(vec_elements, wrapper::vdup_n(static_cast<T>(beta), ExactTagType{})));
+                    vec_sum      = wrapper::vadd(vec_sum, vec_elements);
+                }
+                wrapper::vstore(tmp_ptr + x, vec_elements);
+            }
+
+            /* Reduce sum */
+            auto sum_res = wrapper::vpadd(wrapper::vgethigh(vec_sum), wrapper::vgetlow(vec_sum));
+            for(int i = 0; i < sum_stages; ++i)
+            {
+                sum_res = wrapper::vpadd(sum_res, sum_res);
+            }
+            sum = wrapper::vgetlane(sum_res, 0);
+
+            /* Run remaining elements */
+            for(; x < input_width; ++x)
+            {
+                T element{};
+
+                if(is_log)
+                {
+                    element = (in_ptr[x] - max_val) * beta;
+                    sum += std::exp(element);
+                }
+                else
+                {
+                    element = std::exp((in_ptr[x] - max_val) * beta);
+                    sum += element;
+                }
+                tmp_ptr[x] = element;
+            }
+
+            if(!is_log)
+            {
+                sum_inversed = T(1) / sum;
+            }
+            else
+            {
+                sum = static_cast<T>(std::log(sum));
+            }
+        }
+
+        /* Normalize exponentials */
+        {
+            /* Loop over row and compute softmax */
+            int x = 0;
+            for(; x <= (input_width - vec_size); x += vec_size)
+            {
+                auto vec_in           = wrapper::vloadq(tmp_ptr + x);
+                auto normalized_value = wrapper::vdup_n(static_cast<T>(0), ExactTagType{});
+                if(is_log)
+                {
+                    normalized_value = wrapper::vsub(vec_in, wrapper::vdup_n(static_cast<T>(sum), ExactTagType{}));
+                }
+                else
+                {
+                    normalized_value = wrapper::vmul(vec_in, wrapper::vdup_n(static_cast<T>(sum_inversed), ExactTagType{}));
+                }
+                wrapper::vstore(out_ptr + x, normalized_value);
+            }
+            /* Run remaining elements */
+            for(; x < input_width; ++x)
+            {
+                if(is_log)
+                {
+                    out_ptr[x] = tmp_ptr[x] - sum;
+                }
+                else
+                {
+                    out_ptr[x] = tmp_ptr[x] * sum_inversed;
+                }
+            }
+        }
+    },
+    in_it, max_it, out_it);
+}
+
+} // namespace cpu
+} // namespace arm_compute
+
+#endif /* SRC_CORE_NEON_KERNELS_SOFTMAX_LIST_H */
diff --git a/src/core/cpu/kernels/softmax/impl/SVE/list.h b/src/core/cpu/kernels/softmax/impl/SVE/list.h
new file mode 100644 (file)
index 0000000..0936bd5
--- /dev/null
@@ -0,0 +1,429 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef SRC_CORE_SVE_KERNELS_SOFTMAX_LIST_H
+#define SRC_CORE_SVE_KERNELS_SOFTMAX_LIST_H
+
+#if defined(__ARM_FEATURE_SVE)
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/utils/misc/Traits.h"
+#include "src/core/NEON/SVEMath.h"
+#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
+#include <arm_sve.h>
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace
+{
+#if defined(__ARM_FEATURE_SVE2)
+template <typename int_vec_type>
+int_vec_type convert_float_to_int(const svfloat32_t &in_0, const svfloat32_t &in_1, const svfloat32_t &in_2, const svfloat32_t &in_3);
+
+template <>
+svuint8_t convert_float_to_int<svuint8_t>(const svfloat32_t &in_0, const svfloat32_t &in_1, const svfloat32_t &in_2, const svfloat32_t &in_3)
+{
+    svuint8_t  out;
+    const auto all_true_pg = svptrue_b32();
+    auto       tmp_0       = svcvt_u32_f32_z(all_true_pg, in_0);
+    auto       tmp_1       = svcvt_u32_f32_z(all_true_pg, in_1);
+    auto       tmp_2       = svcvt_u32_f32_z(all_true_pg, in_2);
+    auto       tmp_3       = svcvt_u32_f32_z(all_true_pg, in_3);
+
+    auto tmp_16_0 = svqxtnt_u32(svqxtnb_u32(tmp_0), tmp_1);
+    auto tmp_16_1 = svqxtnt_u32(svqxtnb_u32(tmp_2), tmp_3);
+
+    auto tmp_16_uzp_0 = svuzp1(tmp_16_0, tmp_16_0);
+    auto tmp_16_uzp_1 = svuzp2(tmp_16_0, tmp_16_0);
+    auto tmp_16_uzp_2 = svuzp1(tmp_16_1, tmp_16_1);
+    auto tmp_16_uzp_3 = svuzp2(tmp_16_1, tmp_16_1);
+
+    auto pg = svwhilelt_b16_s32(0, svcnth() / 2);
+
+    tmp_16_0 = svsplice(pg, tmp_16_uzp_0, tmp_16_uzp_1);
+    tmp_16_1 = svsplice(pg, tmp_16_uzp_2, tmp_16_uzp_3);
+
+    out = svqxtnt_u16(svqxtnb_u16(tmp_16_0), tmp_16_1);
+
+    auto out_uzp_0 = svuzp1(out, out);
+    auto out_uzp_1 = svuzp2(out, out);
+
+    pg  = svwhilelt_b8_s32(0, svcntb() / 2);
+    out = svsplice(pg, out_uzp_0, out_uzp_1);
+
+    return out;
+}
+
+template <>
+svint8_t convert_float_to_int<svint8_t>(const svfloat32_t &in_0, const svfloat32_t &in_1, const svfloat32_t &in_2, const svfloat32_t &in_3)
+{
+    svint8_t   out;
+    const auto all_true_pg = svptrue_b32();
+    auto       tmp_0       = svcvt_s32_f32_z(all_true_pg, in_0);
+    auto       tmp_1       = svcvt_s32_f32_z(all_true_pg, in_1);
+    auto       tmp_2       = svcvt_s32_f32_z(all_true_pg, in_2);
+    auto       tmp_3       = svcvt_s32_f32_z(all_true_pg, in_3);
+
+    auto tmp_16_0 = svqxtnt_s32(svqxtnb_s32(tmp_0), tmp_1);
+    auto tmp_16_1 = svqxtnt_s32(svqxtnb_s32(tmp_2), tmp_3);
+
+    auto tmp_16_uzp_0 = svuzp1(tmp_16_0, tmp_16_0);
+    auto tmp_16_uzp_1 = svuzp2(tmp_16_0, tmp_16_0);
+    auto tmp_16_uzp_2 = svuzp1(tmp_16_1, tmp_16_1);
+    auto tmp_16_uzp_3 = svuzp2(tmp_16_1, tmp_16_1);
+
+    auto pg = svwhilelt_b16_s32(0, svcnth() / 2);
+
+    tmp_16_0 = svsplice(pg, tmp_16_uzp_0, tmp_16_uzp_1);
+    tmp_16_1 = svsplice(pg, tmp_16_uzp_2, tmp_16_uzp_3);
+
+    out = svqxtnt_s16(svqxtnb_s16(tmp_16_0), tmp_16_1);
+
+    auto out_uzp_0 = svuzp1(out, out);
+    auto out_uzp_1 = svuzp2(out, out);
+
+    pg  = svwhilelt_b8_s32(0, svcntb() / 2);
+    out = svsplice(pg, out_uzp_0, out_uzp_1);
+
+    return out;
+}
+#endif /* defined(__ARM_FEATURE_SVE2) */
+} // namespace
+
+template <typename ScalarType>
+void sve_logits_1d_max(const ITensor *in, ITensor *out, const Window &window)
+{
+    const auto all_true_pg    = wrapper::svptrue<ScalarType>();
+    const auto window_start_x = static_cast<int>(window.x().start());
+    const auto window_end_x   = static_cast<int>(window.x().end());
+
+    Window win{ window };
+    win.set(Window::DimX, Window::Dimension(0, 1, 1));
+    Iterator input(in, win);
+    Iterator output(out, win);
+
+    execute_window_loop(win, [&](const Coordinates &)
+    {
+        // Get pointers
+        const auto in_ptr  = reinterpret_cast<const ScalarType *>(input.ptr());
+        const auto out_ptr = reinterpret_cast<ScalarType *>(output.ptr());
+
+        // Init max value
+        auto vec_max = wrapper::svdup_n(support::cpp11::lowest<ScalarType>());
+
+        int      x  = window_start_x;
+        svbool_t pg = wrapper::svwhilelt<ScalarType>(x, window_end_x);
+        do
+        {
+            const auto current_value = svld1(pg, in_ptr + x);
+            vec_max                  = svmax_m(pg, vec_max, current_value);
+
+            x += wrapper::svcnt<ScalarType>();
+            pg = wrapper::svwhilelt<ScalarType>(x, window_end_x);
+        }
+        while(svptest_any(all_true_pg, pg));
+
+        auto max_val = svmaxv(all_true_pg, vec_max);
+
+        *out_ptr = max_val;
+    },
+    input, output);
+}
+
+#if defined(__ARM_FEATURE_SVE2)
+template <typename ScalarType>
+void sve_softmax_logits_1d_quantized(const ITensor *in, const ITensor *max, void *const tmp,
+                                     ITensor *out, float beta, bool is_log, const Window &window)
+{
+    const int start_x     = in->info()->valid_region().anchor.x();
+    const int input_width = in->info()->valid_region().shape.x();
+
+    const float scale_beta     = -beta * in->info()->quantization_info().uniform().scale;
+    const auto  scale_beta_vec = svdup_n_f32(scale_beta);
+
+    Iterator   in_it(in, window);
+    Iterator   max_it(max, window);
+    Iterator   out_it(out, window);
+    const auto all_true_pg = wrapper::svptrue<ScalarType>();
+    using SVEType          = typename wrapper::traits::sve_vector<ScalarType>::type;
+
+    const int inc_1 = static_cast<int>(svcntw());
+    const int inc_2 = static_cast<int>(2 * svcntw());
+    const int inc_3 = static_cast<int>(3 * svcntw());
+
+    execute_window_loop(window, [&](const Coordinates &)
+    {
+        /* Get pointers */
+        const auto in_ptr  = reinterpret_cast<const ScalarType *>(in_it.ptr()) + start_x;
+        const auto out_ptr = reinterpret_cast<ScalarType *>(out_it.ptr()) + start_x;
+        const auto tmp_ptr = reinterpret_cast<float *>(tmp);
+
+        float sum{};
+
+        /* Compute exponentials and sum */
+        {
+            /* Get max value */
+            const auto max_val = *reinterpret_cast<const ScalarType *>(max_it.ptr());
+            const auto vec_max = wrapper::svdup_n(max_val);
+
+            /* Init sum to zero */
+            auto vec_sum_0 = svdup_n_f32(0.f);
+            auto vec_sum_1 = svdup_n_f32(0.f);
+            auto vec_sum_2 = svdup_n_f32(0.f);
+            auto vec_sum_3 = svdup_n_f32(0.f);
+
+            /* Loop over row and compute exponentials and sum */
+            int      x    = 0;
+            svbool_t pg   = wrapper::svwhilelt<ScalarType>(x, input_width);
+            svbool_t pg_0 = svunpklo(svunpklo(pg));
+            svbool_t pg_1 = svunpkhi(svunpklo(pg));
+            svbool_t pg_2 = svunpklo(svunpkhi(pg));
+            svbool_t pg_3 = svunpkhi(svunpkhi(pg));
+            do
+            {
+                auto vec_elements = svld1(pg, in_ptr + x);
+                vec_elements      = svsub_z(pg, vec_max, vec_elements);
+
+                auto vec_elements_flt_0 = svcvt_f32_z(pg_0, svunpklo(svunpklo(vec_elements)));
+                auto vec_elements_flt_1 = svcvt_f32_z(pg_1, svunpkhi(svunpklo(vec_elements)));
+                auto vec_elements_flt_2 = svcvt_f32_z(pg_2, svunpklo(svunpkhi(vec_elements)));
+                auto vec_elements_flt_3 = svcvt_f32_z(pg_3, svunpkhi(svunpkhi(vec_elements)));
+
+                if(is_log)
+                {
+                    vec_elements_flt_0 = svmul_f32_z(pg_0, vec_elements_flt_0, scale_beta_vec);
+                    vec_elements_flt_1 = svmul_f32_z(pg_1, vec_elements_flt_1, scale_beta_vec);
+                    vec_elements_flt_2 = svmul_f32_z(pg_2, vec_elements_flt_2, scale_beta_vec);
+                    vec_elements_flt_3 = svmul_f32_z(pg_3, vec_elements_flt_3, scale_beta_vec);
+                    vec_sum_0          = svadd_f32_m(pg_0, vec_sum_0, svexp_f32_z(pg_0, vec_elements_flt_0));
+                    vec_sum_1          = svadd_f32_m(pg_1, vec_sum_1, svexp_f32_z(pg_1, vec_elements_flt_1));
+                    vec_sum_2          = svadd_f32_m(pg_2, vec_sum_2, svexp_f32_z(pg_2, vec_elements_flt_2));
+                    vec_sum_3          = svadd_f32_m(pg_3, vec_sum_3, svexp_f32_z(pg_3, vec_elements_flt_3));
+                }
+                else
+                {
+                    vec_elements_flt_0 = svexp_f32_z(pg_0, svmul_f32_z(pg_0, vec_elements_flt_0, scale_beta_vec));
+                    vec_elements_flt_1 = svexp_f32_z(pg_1, svmul_f32_z(pg_1, vec_elements_flt_1, scale_beta_vec));
+                    vec_elements_flt_2 = svexp_f32_z(pg_2, svmul_f32_z(pg_2, vec_elements_flt_2, scale_beta_vec));
+                    vec_elements_flt_3 = svexp_f32_z(pg_3, svmul_f32_z(pg_3, vec_elements_flt_3, scale_beta_vec));
+                    vec_sum_0          = svadd_f32_m(pg_0, vec_sum_0, vec_elements_flt_0);
+                    vec_sum_1          = svadd_f32_m(pg_1, vec_sum_1, vec_elements_flt_1);
+                    vec_sum_2          = svadd_f32_m(pg_2, vec_sum_2, vec_elements_flt_2);
+                    vec_sum_3          = svadd_f32_m(pg_3, vec_sum_3, vec_elements_flt_3);
+                }
+
+                svst1_f32(pg_0, tmp_ptr + x, vec_elements_flt_0);
+                svst1_f32(pg_1, tmp_ptr + x + inc_1, vec_elements_flt_1);
+                svst1_f32(pg_2, tmp_ptr + x + inc_2, vec_elements_flt_2);
+                svst1_f32(pg_3, tmp_ptr + x + inc_3, vec_elements_flt_3);
+
+                x += wrapper::svcnt<ScalarType>();
+                pg   = wrapper::svwhilelt<ScalarType>(x, input_width);
+                pg_0 = svunpklo(svunpklo(pg));
+                pg_1 = svunpkhi(svunpklo(pg));
+                pg_2 = svunpklo(svunpkhi(pg));
+                pg_3 = svunpkhi(svunpkhi(pg));
+            }
+            while(svptest_any(all_true_pg, pg));
+
+            /* Reduce sum */
+            const auto vec_sum = svadd_f32_z(all_true_pg, svadd_f32_z(all_true_pg, vec_sum_0, vec_sum_1), svadd_f32_z(all_true_pg, vec_sum_2, vec_sum_3));
+            sum                = svaddv_f32(all_true_pg, vec_sum);
+
+            /* Run remaining elements */
+            x = 0;
+            if(is_log)
+            {
+                sum = std::log(sum);
+            }
+            else
+            {
+                sum = 256.f / sum;
+            }
+        }
+
+        /* Normalize exponentials */
+        {
+            constexpr bool is_qasymm8_signed = std::is_same<ScalarType, qasymm8_signed_t>::value;
+            /* Loop over row and compute softmax */
+            int      x    = 0;
+            svbool_t pg   = wrapper::svwhilelt<ScalarType>(x, input_width);
+            svbool_t pg_0 = svunpklo(svunpklo(pg));
+            svbool_t pg_1 = svunpkhi(svunpklo(pg));
+            svbool_t pg_2 = svunpklo(svunpkhi(pg));
+            svbool_t pg_3 = svunpkhi(svunpkhi(pg));
+            do
+            {
+                auto vec_in_0 = svld1_f32(pg_0, tmp_ptr + x);
+                auto vec_in_1 = svld1_f32(pg_1, tmp_ptr + x + inc_1);
+                auto vec_in_2 = svld1_f32(pg_2, tmp_ptr + x + inc_2);
+                auto vec_in_3 = svld1_f32(pg_3, tmp_ptr + x + inc_3);
+
+                svfloat32_t res_0{};
+                svfloat32_t res_1{};
+                svfloat32_t res_2{};
+                svfloat32_t res_3{};
+
+                if(is_log)
+                {
+                    res_0 = svsub_f32_z(pg_0, vec_in_0, svdup_n_f32(sum));
+                    res_1 = svsub_f32_z(pg_1, vec_in_1, svdup_n_f32(sum));
+                    res_2 = svsub_f32_z(pg_2, vec_in_2, svdup_n_f32(sum));
+                    res_3 = svsub_f32_z(pg_3, vec_in_3, svdup_n_f32(sum));
+                }
+                else
+                {
+                    res_0 = svmul_f32_z(pg_0, vec_in_0, svdup_n_f32(sum));
+                    res_1 = svmul_f32_z(pg_1, vec_in_1, svdup_n_f32(sum));
+                    res_2 = svmul_f32_z(pg_2, vec_in_2, svdup_n_f32(sum));
+                    res_3 = svmul_f32_z(pg_3, vec_in_3, svdup_n_f32(sum));
+
+                    if(is_qasymm8_signed)
+                    {
+                        const auto offset_vec = svdup_n_f32(128.f);
+                        res_0                 = svsub_z(pg_0, vec_in_0, offset_vec);
+                        res_1                 = svsub_z(pg_1, vec_in_1, offset_vec);
+                        res_2                 = svsub_z(pg_2, vec_in_2, offset_vec);
+                        res_3                 = svsub_z(pg_3, vec_in_3, offset_vec);
+                    }
+                }
+
+                // Store value
+                const auto out = convert_float_to_int<SVEType>(res_0, res_1, res_2, res_3);
+                svst1(pg, out_ptr + x, out);
+                x += wrapper::svcnt<ScalarType>();
+                pg   = wrapper::svwhilelt<ScalarType>(x, input_width);
+                pg_0 = svunpklo(svunpklo(pg));
+                pg_1 = svunpkhi(svunpklo(pg));
+                pg_2 = svunpklo(svunpkhi(pg));
+                pg_3 = svunpkhi(svunpkhi(pg));
+            }
+            while(svptest_any(all_true_pg, pg));
+        }
+    },
+    in_it, max_it, out_it);
+}
+#endif /* defined(__ARM_FEATURE_SVE2) */
+
+template <typename ScalarType>
+void sve_softmax_logits_1d_float(const ITensor *in, const ITensor *max, void *const tmp,
+                                 ITensor *out, const float beta, bool is_log, const Window &window)
+{
+    const int start_x     = in->info()->valid_region().anchor.x();
+    const int input_width = in->info()->valid_region().shape.x();
+
+    Iterator in_it(in, window);
+    Iterator max_it(max, window);
+    Iterator out_it(out, window);
+
+    const auto all_true_pg = wrapper::svptrue<ScalarType>();
+
+    execute_window_loop(window, [&](const Coordinates &)
+    {
+        /* Get pointers */
+        const auto in_ptr  = reinterpret_cast<const ScalarType *>(in_it.ptr()) + start_x;
+        const auto out_ptr = reinterpret_cast<ScalarType *>(out_it.ptr()) + start_x;
+        const auto tmp_ptr = reinterpret_cast<ScalarType *>(tmp);
+
+        ScalarType sum{ 0 };
+
+        /* Compute exponentials and sum */
+        {
+            /* Get max value */
+            const auto max_val = *reinterpret_cast<const ScalarType *>(max_it.ptr());
+            const auto vec_max = wrapper::svdup_n(max_val);
+
+            /* Init sum to zero */
+            auto vec_sum = wrapper::svdup_n(static_cast<ScalarType>(0));
+
+            /* Loop over row and compute exponentials and sum */
+            int      x  = 0;
+            svbool_t pg = wrapper::svwhilelt<ScalarType>(x, input_width);
+            do
+            {
+                auto vec_elements = svld1(pg, in_ptr + x);
+                vec_elements      = svsub_z(pg, vec_elements, vec_max);
+                if(is_log)
+                {
+                    vec_elements = svmul_z(pg, vec_elements, wrapper::svdup_n(static_cast<ScalarType>(beta)));
+                    vec_sum      = svadd_m(pg, vec_sum, wrapper::svexp_z(pg, vec_elements));
+                }
+                else
+                {
+                    vec_elements = wrapper::svexp_z(pg, svmul_z(pg, vec_elements, wrapper::svdup_n(static_cast<ScalarType>(beta))));
+                    vec_sum      = svadd_m(pg, vec_sum, vec_elements);
+                }
+                svst1(pg, tmp_ptr + x, vec_elements);
+
+                x += wrapper::svcnt<ScalarType>();
+                pg = wrapper::svwhilelt<ScalarType>(x, input_width);
+            }
+            while(svptest_any(all_true_pg, pg));
+
+            /* Reduce sum */
+            sum = svaddv(all_true_pg, vec_sum);
+
+            if(is_log)
+            {
+                sum = static_cast<ScalarType>(std::log(sum));
+            }
+            else
+            {
+                sum = ScalarType(1) / sum;
+            }
+        }
+
+        /* Normalize exponentials */
+        {
+            /* Loop over row and compute softmax */
+            int      x  = 0;
+            svbool_t pg = wrapper::svwhilelt<ScalarType>(x, input_width);
+            do
+            {
+                auto vec_in           = svld1(pg, tmp_ptr + x);
+                auto normalized_value = wrapper::svdup_n(static_cast<ScalarType>(0));
+                if(is_log)
+                {
+                    normalized_value = svsub_z(pg, vec_in, wrapper::svdup_n(static_cast<ScalarType>(sum)));
+                }
+                else
+                {
+                    normalized_value = svmul_z(pg, vec_in, wrapper::svdup_n(static_cast<ScalarType>(sum)));
+                }
+                svst1(pg, out_ptr + x, normalized_value);
+
+                x += wrapper::svcnt<ScalarType>();
+                pg = wrapper::svwhilelt<ScalarType>(x, input_width);
+            }
+            while(svptest_any(all_true_pg, pg));
+        }
+    },
+    in_it, max_it, out_it);
+}
+
+} // namespace cpu
+} // namespace arm_compute
+#endif /* defined(__ARM_FEATURE_SVE) */
+
+#endif /* SRC_CORE_SVE_KERNELS_SOFTMAX_LIST_H */
index bb57222eb4506a43a09ed1122482f12f67c9c7bb..256aad6d3fc7cb1e1957655eb540ba174d3c5cac 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2016-2020 Arm Limited.
+ * Copyright (c) 2016-2021 Arm Limited.
  *
  * SPDX-License-Identifier: MIT
  *
 
 namespace arm_compute
 {
+NEFillBorder::NEFillBorder()
+    : _border_handler(nullptr)
+{
+}
+
 void NEFillBorder::configure(ITensor *input, unsigned int border_width, BorderMode border_mode, const PixelValue &constant_border_value)
 {
     _border_handler = std::make_unique<NEFillBorderKernel>();
index 6be34ad1a4174ba2556a101e8ce8063effda0e87..3f1e43a8f2d8341e90b715f45bfcbbf9c97fed46 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2017-2020 Arm Limited.
+ * Copyright (c) 2017-2021 Arm Limited.
  *
  * SPDX-License-Identifier: MIT
  *
  * SOFTWARE.
  */
 #include "arm_compute/runtime/NEON/functions/NESoftmaxLayer.h"
-
-#include "arm_compute/core/Helpers.h"
-#include "arm_compute/core/utils/misc/ShapeCalculator.h"
-#include "arm_compute/runtime/NEON/NEScheduler.h"
-#include "src/core/NEON/kernels/NEFillBorderKernel.h"
-#include "src/core/NEON/kernels/NESoftmaxLayerKernel.h"
-#include "src/core/NEON/kernels/NESoftmaxLayerKernel.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/runtime/Tensor.h"
+#include "src/core/cpu/kernels/CpuSoftmaxKernel.h"
 #include "src/core/helpers/SoftmaxHelpers.h"
+#include "src/runtime/cpu/operators/CpuSoftmax.h"
 
 namespace arm_compute
 {
 template <bool IS_LOG>
-NESoftmaxLayerGeneric<IS_LOG>::~NESoftmaxLayerGeneric() = default;
+struct NESoftmaxLayerGeneric<IS_LOG>::Impl
+{
+    const ITensor                                  *src{ nullptr };
+    ITensor                                        *dst{ nullptr };
+    Tensor                                          max{ nullptr };
+    Tensor                                          tmp{ nullptr };
+    Tensor                                          input_permuted{ nullptr };
+    Tensor                                          output_permuted{ nullptr };
+    std::unique_ptr<cpu::CpuSoftmaxGeneric<IS_LOG>> op{ nullptr };
+};
 
 template <bool IS_LOG>
 NESoftmaxLayerGeneric<IS_LOG>::NESoftmaxLayerGeneric(std::shared_ptr<IMemoryManager> memory_manager)
-    : _memory_group(std::move(memory_manager)), _permute_input(), _permute_output(), _max_kernel(), _softmax_kernel(), _fill_border_kernel(), _max(), _tmp(), _input_permuted(), _output_permuted(),
-      _needs_permute(false)
+    : _memory_group(std::move(memory_manager)), _impl(std::make_unique<Impl>())
 {
 }
 
+template <bool IS_LOG>
+NESoftmaxLayerGeneric<IS_LOG>::NESoftmaxLayerGeneric(NESoftmaxLayerGeneric &&) = default;
+template <bool                 IS_LOG>
+NESoftmaxLayerGeneric<IS_LOG> &NESoftmaxLayerGeneric<IS_LOG>::operator=(NESoftmaxLayerGeneric &&) = default;
+template <bool                 IS_LOG>
+NESoftmaxLayerGeneric<IS_LOG>::~NESoftmaxLayerGeneric() = default;
+
 template <bool IS_LOG>
 void NESoftmaxLayerGeneric<IS_LOG>::configure(ITensor *input, ITensor *output, float beta, int32_t axis)
 {
-    // Perform validation step
     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
-    ARM_COMPUTE_ERROR_THROW_ON(NESoftmaxLayerGeneric::validate(input->info(), output->info(), beta, axis));
 
-    const unsigned int actual_axis = static_cast<unsigned int>(wrap_around(axis, static_cast<int32_t>(input->info()->num_dimensions())));
+    _impl->src = input;
+    _impl->dst = output;
+    _impl->op  = std::make_unique<cpu::CpuSoftmaxGeneric<IS_LOG>>();
+    _impl->op->configure(input->info(), output->info(), beta, axis);
 
-    _needs_permute = actual_axis > 0;
-
-    if(_needs_permute)
+    const unsigned int actual_axis   = static_cast<unsigned int>(wrap_around(axis, static_cast<int32_t>(input->info()->num_dimensions())));
+    const bool         needs_permute = actual_axis > 0;
+    if(needs_permute)
     {
         // Add to the memory manager _input_permuted
-        _memory_group.manage(&_input_permuted);
-
-        _permute_input.configure(input, &_input_permuted, softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis));
+        auto permute_input = std::make_unique<cpu::CpuPermute>();
+        _memory_group.manage(&_impl->input_permuted);
+        permute_input->configure(input->info(), _impl->input_permuted.info(), softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis));
     }
 
     // We want to deal with a 2D input. Either it is the permuted version of the original input (4D case)
     // or it is the original input case (2D case)
-    ITensor *tmp_input = (_needs_permute ? &_input_permuted : input);
+    ITensor *tmp_input = (needs_permute ? &_impl->input_permuted : input);
 
     // Create intermediate tensors shapes
     const TensorInfo input_info    = tmp_input->info()->clone()->reset_padding().set_is_resizable(true);
@@ -74,80 +87,49 @@ void NESoftmaxLayerGeneric<IS_LOG>::configure(ITensor *input, ITensor *output, f
     // Init intermediate tensors
     TensorShape max_sum_shape = tmp_input->info()->tensor_shape();
     max_sum_shape.set(0, 1);
-    _max.allocator()->init(input_info.clone()->set_tensor_shape(max_sum_shape));
-    _tmp.allocator()->init(tensor_info_tmp);
+    _impl->max.allocator()->init(input_info.clone()->set_tensor_shape(max_sum_shape));
+    _impl->tmp.allocator()->init(tensor_info_tmp);
 
     // Manage intermediate buffers
-    _memory_group.manage(&_max);
-    _memory_group.manage(&_tmp);
+    _memory_group.manage(&_impl->max);
+    _memory_group.manage(&_impl->tmp);
 
     // Configure kernels
-    _max_kernel     = std::make_unique<NELogits1DMaxKernel>();
-    _softmax_kernel = std::make_unique<NELogits1DSoftmaxKernel<IS_LOG>>();
-    _max_kernel->configure(tmp_input, &_max);
-    if(_needs_permute)
+    auto max_kernel     = std::make_unique<cpu::kernels::CpuLogits1DMaxKernel>();
+    auto softmax_kernel = std::make_unique<cpu::kernels::CpuLogits1DSoftmaxKernel<IS_LOG>>();
+    max_kernel->configure(tmp_input->info(), _impl->max.info());
+
+    if(needs_permute)
     {
+        auto permute_output = std::make_unique<cpu::CpuPermute>();
         // Add to the memory manager _output_permuted
-        _memory_group.manage(&_output_permuted);
+        _memory_group.manage(&_impl->output_permuted);
 
         // The normalization kernel stores the result in a permuted output tensor
-        _softmax_kernel->configure(tmp_input, &_max, &_output_permuted, beta, &_tmp);
-        _input_permuted.allocator()->allocate();
+        softmax_kernel->configure(tmp_input->info(), _impl->max.info(), _impl->output_permuted.info(), beta, _impl->tmp.info());
+        _impl->input_permuted.allocator()->allocate();
 
         // Re-permute the permuted output into the requested (4D) output
-        _permute_output.configure(&_output_permuted, output, softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis));
+        permute_output->configure(_impl->output_permuted.info(), output->info(), softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis));
 
         // Allocate the intermediate permuted tensors
-        _output_permuted.allocator()->allocate();
+        _impl->output_permuted.allocator()->allocate();
     }
     else
     {
-        // Softmax 2D case
-        _fill_border_kernel = std::make_unique<NEFillBorderKernel>();
-        _fill_border_kernel->configure(tmp_input, _max_kernel->border_size(), BorderMode::REPLICATE);
-        _softmax_kernel->configure(tmp_input, &_max, output, beta, &_tmp);
+        softmax_kernel->configure(tmp_input->info(), _impl->max.info(), output->info(), beta, _impl->tmp.info());
     }
 
     // Allocate intermediate buffers
-    _max.allocator()->allocate();
-    _tmp.allocator()->allocate();
+    _impl->max.allocator()->allocate();
+    _impl->tmp.allocator()->allocate();
 }
 
 template <bool IS_LOG>
 Status NESoftmaxLayerGeneric<IS_LOG>::validate(const ITensorInfo *input, const ITensorInfo *output, float beta, int32_t axis)
 {
-    // Perform validation step
     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
-    ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->num_dimensions() > 4, "Only up to 4 dimensions are supported");
-    ARM_COMPUTE_UNUSED(beta);
-    ARM_COMPUTE_RETURN_ERROR_ON(axis < static_cast<int32_t>(-input->num_dimensions()) || static_cast<int32_t>(input->num_dimensions()) <= axis);
-
-    // Create intermediate tensor info
-    DataType         tmp_data_type = input->data_type();
-    const TensorInfo tensor_info_tmp(input->clone()->set_data_type(tmp_data_type).set_is_resizable(true));
-
-    TensorShape max_sum_shape = input->tensor_shape();
-    max_sum_shape.set(0, 1);
-    const TensorInfo tensor_info_max_sum(input->clone()->set_tensor_shape(max_sum_shape).set_data_type(tmp_data_type).set_quantization_info(input->quantization_info()).set_is_resizable(true));
-    const TensorInfo dont_care;
-
-    const unsigned int actual_axis = static_cast<unsigned int>(wrap_around(axis, static_cast<int32_t>(input->num_dimensions())));
-
-    const bool needs_permute = actual_axis > 0;
-
-    if(needs_permute)
-    {
-        const PermutationVector permutation_vector = softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis);
-        const TensorShape       permuted_shape     = misc::shape_calculator::compute_permutation_output_shape(*input, permutation_vector);
-        TensorInfo              input_permuted(input->clone()->set_tensor_shape(permuted_shape));
-        ARM_COMPUTE_RETURN_ON_ERROR(NEPermute::validate(input, &input_permuted, permutation_vector));
-        TensorInfo output_permuted(output->clone()->set_tensor_shape(permuted_shape));
-        ARM_COMPUTE_RETURN_ON_ERROR(NEPermute::validate(&output_permuted, output, permutation_vector));
-    }
-
-    ARM_COMPUTE_RETURN_ON_ERROR(NELogits1DMaxKernel::validate(input, &tensor_info_max_sum));
-    ARM_COMPUTE_RETURN_ON_ERROR(NELogits1DSoftmaxKernel<IS_LOG>::validate(&tensor_info_tmp, &tensor_info_max_sum, output, beta, &dont_care));
-
+    ARM_COMPUTE_RETURN_ON_ERROR(cpu::CpuSoftmaxGeneric<IS_LOG>::validate(input, output, beta, axis));
     return Status{};
 }
 
@@ -155,23 +137,14 @@ template <bool IS_LOG>
 void           NESoftmaxLayerGeneric<IS_LOG>::run()
 {
     MemoryGroupResourceScope scope_mg(_memory_group);
-
-    if(_needs_permute)
-    {
-        _permute_input.run();
-    }
-    else
-    {
-        NEScheduler::get().schedule(_fill_border_kernel.get(), Window::DimY);
-    }
-
-    NEScheduler::get().schedule(_max_kernel.get(), Window::DimY);
-    NEScheduler::get().schedule(_softmax_kernel.get(), Window::DimY);
-
-    if(_needs_permute)
-    {
-        _permute_output.run();
-    }
+    ITensorPack              pack;
+    pack.add_tensor(TensorType::ACL_SRC, _impl->src);
+    pack.add_tensor(TensorType::ACL_DST, _impl->dst);
+    pack.add_tensor(TensorType::ACL_INT_0, &_impl->tmp);
+    pack.add_tensor(TensorType::ACL_INT_1, &_impl->max);
+    pack.add_tensor(TensorType::ACL_INT_2, &_impl->input_permuted);
+    pack.add_tensor(TensorType::ACL_INT_3, &_impl->output_permuted);
+    _impl->op->run(pack);
 }
 
 template class NESoftmaxLayerGeneric<false>;
diff --git a/src/runtime/cpu/operators/CpuSoftmax.cpp b/src/runtime/cpu/operators/CpuSoftmax.cpp
new file mode 100644 (file)
index 0000000..0e1bcd5
--- /dev/null
@@ -0,0 +1,204 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/runtime/cpu/operators/CpuSoftmax.h"
+
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+#include "arm_compute/runtime/NEON/NEScheduler.h"
+#include "src/core/cpu/kernels/CpuSoftmaxKernel.h"
+#include "src/core/helpers/SoftmaxHelpers.h"
+
+namespace arm_compute
+{
+namespace cpu
+{
+template <bool IS_LOG>
+CpuSoftmaxGeneric<IS_LOG>::CpuSoftmaxGeneric()
+    : _permute_input(), _permute_output(), _max_kernel(), _softmax_kernel(), _max(nullptr), _tmp(nullptr), _input_permuted(nullptr), _output_permuted(nullptr), _needs_permute(false)
+{
+}
+
+template <bool IS_LOG>
+void CpuSoftmaxGeneric<IS_LOG>::configure(const ITensorInfo *src, ITensorInfo *dst, float beta, int32_t axis)
+{
+    // Perform validation step
+    ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
+    ARM_COMPUTE_ERROR_THROW_ON(CpuSoftmaxGeneric::validate(src, dst, beta, axis));
+
+    const unsigned int actual_axis = static_cast<unsigned int>(wrap_around(axis, static_cast<int32_t>(src->num_dimensions())));
+
+    _needs_permute = actual_axis > 0;
+
+    if(_needs_permute)
+    {
+        _input_permuted = std::make_unique<TensorInfo>();
+        _permute_input.configure(src, _input_permuted.get(), softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis));
+    }
+
+    // We want to deal with a 2D input. Either it is the permuted version of the original input (4D case)
+    // or it is the original input case (2D case)
+    const ITensorInfo *tmp_input = (_needs_permute ? _input_permuted.get() : src);
+
+    // Create intermediate tensors shapes
+    TensorShape max_sum_shape = tmp_input->tensor_shape();
+    max_sum_shape.set(0, 1);
+    const TensorInfo input_info    = tmp_input->clone()->reset_padding().set_is_resizable(true);
+    DataType         tmp_data_type = is_data_type_quantized_asymmetric(tmp_input->data_type()) ? DataType::F32 : tmp_input->data_type();
+    TensorInfo       tensor_info_tmp(input_info.clone()->set_data_type(tmp_data_type));
+    TensorInfo       max_info(tmp_input->clone()->set_tensor_shape(max_sum_shape));
+
+    // Init intermediate tensors
+    _max = std::make_unique<TensorInfo>(max_info);
+    _tmp = std::make_unique<TensorInfo>(tensor_info_tmp);
+
+    // Configure kernels
+    auto mk = std::make_unique<kernels::CpuLogits1DMaxKernel>();
+    mk->configure(tmp_input, _max.get());
+    _max_kernel = std::move(mk);
+
+    auto sm = std::make_unique<kernels::CpuLogits1DSoftmaxKernel<IS_LOG>>();
+    if(_needs_permute)
+    {
+        _output_permuted = std::make_unique<TensorInfo>();
+
+        // The normalization kernel stores the result in a permuted output tensor
+        sm->configure(tmp_input, _max.get(), _output_permuted.get(), beta, _tmp.get());
+
+        // Re-permute the permuted output into the requested (4D) output
+        _permute_output.configure(_output_permuted.get(), dst, softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis));
+    }
+    else
+    {
+        // Softmax 2D case
+        sm->configure(tmp_input, _max.get(), dst, beta, _tmp.get());
+    }
+    _softmax_kernel = std::move(sm);
+}
+
+template <bool IS_LOG>
+Status CpuSoftmaxGeneric<IS_LOG>::validate(const ITensorInfo *src, const ITensorInfo *dst, float beta, int32_t axis)
+{
+    // Perform validation step
+    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
+    ARM_COMPUTE_RETURN_ERROR_ON_MSG(src->num_dimensions() > 4, "Only up to 4 dimensions are supported");
+    ARM_COMPUTE_UNUSED(beta);
+    ARM_COMPUTE_RETURN_ERROR_ON(axis < static_cast<int32_t>(-src->num_dimensions()) || static_cast<int32_t>(src->num_dimensions()) <= axis);
+
+    // Create intermediate tensor info
+    DataType         tmp_data_type = src->data_type();
+    const TensorInfo tensor_info_tmp(src->clone()->set_data_type(tmp_data_type).set_is_resizable(true));
+
+    TensorShape max_sum_shape = src->tensor_shape();
+    max_sum_shape.set(0, 1);
+    const TensorInfo tensor_info_max_sum(src->clone()->set_tensor_shape(max_sum_shape).set_data_type(tmp_data_type).set_quantization_info(src->quantization_info()).set_is_resizable(true));
+    const TensorInfo dont_care;
+
+    const unsigned int actual_axis = static_cast<unsigned int>(wrap_around(axis, static_cast<int32_t>(src->num_dimensions())));
+
+    const bool needs_permute = actual_axis > 0;
+
+    if(needs_permute)
+    {
+        const PermutationVector permutation_vector = softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis);
+        const TensorShape       permuted_shape     = misc::shape_calculator::compute_permutation_output_shape(*src, permutation_vector);
+        TensorInfo              input_permuted(src->clone()->set_tensor_shape(permuted_shape));
+        ARM_COMPUTE_RETURN_ON_ERROR(CpuPermute::validate(src, &input_permuted, permutation_vector));
+        TensorInfo output_permuted(dst->clone()->set_tensor_shape(permuted_shape));
+        ARM_COMPUTE_RETURN_ON_ERROR(CpuPermute::validate(&output_permuted, dst, permutation_vector));
+    }
+
+    ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuLogits1DMaxKernel::validate(src, &tensor_info_max_sum));
+    ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuLogits1DSoftmaxKernel<IS_LOG>::validate(&tensor_info_tmp, &tensor_info_max_sum, dst, beta, &dont_care));
+
+    return Status{};
+}
+
+template <bool IS_LOG>
+void CpuSoftmaxGeneric<IS_LOG>::run(ITensorPack &tensors)
+{
+    ARM_COMPUTE_ERROR_ON_MSG(tensors.empty(), "No inputs provided");
+
+    ITensorPack max_pack;
+    ITensorPack softmax_pack;
+
+    if(_needs_permute)
+    {
+        ITensorPack permute_in_pack;
+        permute_in_pack.add_tensor(TensorType::ACL_SRC, tensors.get_const_tensor(ACL_SRC));
+        permute_in_pack.add_tensor(TensorType::ACL_DST, tensors.get_tensor(ACL_INT_2));
+        _permute_input.run(permute_in_pack);
+
+        max_pack.add_tensor(TensorType::ACL_SRC, tensors.get_tensor(ACL_INT_2));
+
+        softmax_pack.add_tensor(TensorType::ACL_SRC_0, tensors.get_tensor(ACL_INT_2));
+        softmax_pack.add_tensor(TensorType::ACL_SRC_1, tensors.get_tensor(ACL_INT_1));
+        softmax_pack.add_tensor(TensorType::ACL_DST_0, tensors.get_tensor(ACL_INT_3));
+        softmax_pack.add_tensor(TensorType::ACL_DST_1, tensors.get_tensor(ACL_INT_0));
+    }
+    else
+    {
+        max_pack.add_tensor(TensorType::ACL_SRC, tensors.get_const_tensor(ACL_SRC));
+        softmax_pack.add_tensor(TensorType::ACL_SRC_0, tensors.get_const_tensor(ACL_SRC));
+        softmax_pack.add_tensor(TensorType::ACL_SRC_1, tensors.get_tensor(ACL_INT_1));
+        softmax_pack.add_tensor(TensorType::ACL_DST_0, tensors.get_tensor(ACL_DST));
+        softmax_pack.add_tensor(TensorType::ACL_DST_1, tensors.get_tensor(ACL_INT_0));
+    }
+
+    max_pack.add_tensor(TensorType::ACL_DST, tensors.get_tensor(ACL_INT_1));
+
+    NEScheduler::get().schedule_op(_max_kernel.get(), Window::DimY, _max_kernel->window(), max_pack);
+    NEScheduler::get().schedule_op(_softmax_kernel.get(), Window::DimY, _softmax_kernel->window(), softmax_pack);
+
+    if(_needs_permute)
+    {
+        ITensorPack permute_out_pack;
+        permute_out_pack.add_tensor(TensorType::ACL_SRC, tensors.get_tensor(ACL_INT_3));
+        permute_out_pack.add_tensor(TensorType::ACL_DST, tensors.get_tensor(ACL_DST));
+        _permute_output.run(permute_out_pack);
+    }
+}
+
+template <bool                   IS_LOG>
+experimental::MemoryRequirements CpuSoftmaxGeneric<IS_LOG>::workspace() const
+{
+    experimental::MemoryRequirements req{};
+
+    req.push_back({ TensorType::ACL_INT_0, _tmp->total_size(), 0 });
+    req.push_back({ TensorType::ACL_INT_1, _max->total_size(), 0 });
+
+    if(_needs_permute)
+    {
+        req.push_back({ TensorType::ACL_INT_2, _input_permuted->total_size(), 0 });
+        req.push_back({ TensorType::ACL_INT_3, _output_permuted->total_size(), 0 });
+    }
+
+    return req;
+}
+
+template class CpuSoftmaxGeneric<false>;
+template class CpuSoftmaxGeneric<true>;
+} // namespace cpu
+} // namespace arm_compute
diff --git a/src/runtime/cpu/operators/CpuSoftmax.h b/src/runtime/cpu/operators/CpuSoftmax.h
new file mode 100644 (file)
index 0000000..9f18e0e
--- /dev/null
@@ -0,0 +1,105 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ARM_COMPUTE_CPU_SOFTMAX_H
+#define ARM_COMPUTE_CPU_SOFTMAX_H
+
+#include "arm_compute/core/ITensorInfo.h"
+#include "arm_compute/core/experimental/Types.h"
+#include "src/core/cpu/ICpuKernel.h"
+#include "src/runtime/cpu/ICpuOperator.h"
+#include "src/runtime/cpu/operators/CpuPermute.h"
+#include <memory>
+
+namespace arm_compute
+{
+namespace cpu
+{
+class CpuLogits1DMaxKernel;
+template <bool IS_LOG>
+class CpuLogits1DSoftmaxKernel;
+
+/** Basic function to compute a SoftmaxLayer and a Log SoftmaxLayer.
+ *
+ * Softmax is calculated by :
+ * @f[ out = exp((x - max(x)) * beta) / sum(exp((x - max(x)) * beta)) @f]
+ *
+ * Log Softmax is calculated by :
+ * @f[ out = (x - max(x) * beta) - log(\sum{e^{x - max(x) * beta}}) @f]
+ *
+ * This function runs the following function/kernels:
+ * -# If axis is not 0:
+ * -# @ref CpuPermute
+ * -# @ref kernels::CpuLogits1DMaxKernel
+ * -# @ref kernels::CpuLogits1DSoftmaxKernel
+ */
+template <bool IS_LOG = false>
+class CpuSoftmaxGeneric : public ICpuOperator
+{
+public:
+    /** Constructor */
+    CpuSoftmaxGeneric();
+    /** Set the input and output tensors.
+     *
+     * @param[in,out] src  Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
+     *                     last value of each row to the nearest multiple.
+     * @param[out]    dst  Destination tensor ifo. Data types supported: same as @p input.
+     * @param[in]     beta (Optional) A scaling factor for the exponent.
+     * @param[in]     axis (Optional) The dimension in which to apply the function. E.g. for input of shape 4x5x6 and
+     *                       axis=1, softmax will be applied to 4x6=24 vectors of size 5. Defaults to 0
+     */
+    void configure(const ITensorInfo *src, ITensorInfo *dst, float beta = 1.0f, int32_t axis = 0);
+
+    /** Static function to check if given info will lead to a valid configuration of @ref CpuSoftmax
+     *
+     * @param[in] src  Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
+     * @param[in] dst  Destination tensor info. Data types supported: same as @p input
+     * @param[in] beta (Optional) A scaling factor for the exponent.
+     * @param[in] axis (Optional) The dimension in which to apply the function. E.g. for input of shape 4x5x6 and
+     *                       axis=1, softmax will be applied to 4x6=24 vectors of size 5. Defaults to 0
+     *
+     * @return a status
+     */
+    static Status validate(const ITensorInfo *src, const ITensorInfo *dst, float beta = 1.0f, int32_t axis = 0);
+
+    // Inherited methods overridden:
+    void run(ITensorPack &tensors) override;
+    experimental::MemoryRequirements workspace() const override;
+
+private:
+    CpuPermute                   _permute_input;
+    CpuPermute                   _permute_output;
+    std::unique_ptr<ICpuKernel>  _max_kernel;
+    std::unique_ptr<ICpuKernel>  _softmax_kernel;
+    std::unique_ptr<ITensorInfo> _max;
+    std::unique_ptr<ITensorInfo> _tmp;
+    std::unique_ptr<ITensorInfo> _input_permuted;
+    std::unique_ptr<ITensorInfo> _output_permuted;
+    bool                         _needs_permute;
+};
+using CpuSoftmax    = CpuSoftmaxGeneric<false>;
+using CpuLogSoftmax = CpuSoftmaxGeneric<true>;
+
+} // namespace cpu
+} // namespace arm_compute
+#endif /* ARM_COMPUTE_CPU_SOFTMAX_H */