static const long double C[] = {
/* Smallest integer x for which e^x overflows. */
#define himark C[0]
- 709.08956571282405153382846025171462914L,
+ 709.78271289338399678773454114191496482L,
/* Largest integer x for which e^x underflows. */
#define lomark C[1]
--744.44007192138121808966388925909996033L,
+-744.44007192138126231410729844608163411L,
/* 3x2^96 */
#define THREEp96 C[2]
if (isless (x, himark) && isgreater (x, lomark))
{
int tval1, tval2, unsafe, n_i, exponent2;
- long double x22, n, result, xl;
- union ibm_extended_long_double ex2_u, scale_u;
+ long double x22, n, xl;
+ union ibm_extended_long_double ex2_u, scale_u, result;
fenv_t oldenv;
feholdexcept (&oldenv);
-#ifdef FE_TONEAREST
fesetround (FE_TONEAREST);
-#endif
n = __roundl (x*M_1_LN2);
x = x-n*M_LN2_0;
* __expl_table[T_EXPL_RES2 + tval2];
n_i = (int)n;
/* 'unsafe' is 1 iff n_1 != 0. */
- unsafe = fabsl(n_i) >= -LDBL_MIN_EXP - 1;
+ unsafe = abs (n_i) >= -LDBL_MIN_EXP - 1;
ex2_u.ieee.exponent += n_i >> unsafe;
/* Fortunately, there are no subnormal lowpart doubles in
__expl_table, only normal values and zeros.
/* Return result. */
fesetenv (&oldenv);
- result = x22 * ex2_u.d + ex2_u.d;
+ result.d = x22 * ex2_u.d + ex2_u.d;
/* Now we can test whether the result is ultimate or if we are unsure.
In the later case we should probably call a mpn based routine to give
return __ieee754_expl_proc2 (origx);
}
*/
- if (!unsafe)
- return result;
- else
- return result * scale_u.d;
+ if (unsafe)
+ {
+ /* The scale with denormal number might generated underflow for
+ first high double multiplication. The exception holding is
+ to avoid it. */
+ if (result.ieee.exponent + scale_u.ieee.exponent
+ < IBM_EXTENDED_LONG_DOUBLE_BIAS)
+ {
+ feholdexcept (&oldenv);
+ result.d *= scale_u.d;
+ fesetenv (&oldenv);
+ }
+ else
+ result.d *= scale_u.d;
+ }
+ return result.d;
}
/* Exceptional cases: */
else if (isless (x, himark))
-/* Looks like we can use ieee854 w_expl.c as is for IBM extended format. */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+
+#include <math.h>
+#include <math_private.h>
#include <math_ldbl_opt.h>
-#undef weak_alias
-#define weak_alias(n,a)
-#include <sysdeps/ieee754/ldbl-128/w_expl.c>
+
+/*
+ * wrapper expl(x)
+ */
+static const long double
+o_threshold = 709.78271289338399678773454114191496482L,
+u_threshold = -744.44007192138126231410729844608163411L;
+
+long double __expl(long double x) /* wrapper exp */
+{
+#ifdef _IEEE_LIBM
+ return __ieee754_expl(x);
+#else
+ long double z;
+ z = __ieee754_expl(x);
+ if (_LIB_VERSION == _IEEE_)
+ return z;
+ if (__finitel(x))
+ {
+ if (x >= o_threshold)
+ return __kernel_standard_l(x,x,206); /* exp overflow */
+ else if (x <= u_threshold)
+ return __kernel_standard_l(x,x,207); /* exp underflow */
+ }
+ return z;
+#endif
+}
+hidden_def (__expl)
long_double_symbol (libm, __expl, expl);