#include "opencl_kernels_core.hpp"
#include "opencv2/core/detail/dispatch_helper.impl.hpp"
+#include <algorithm> // std::swap_ranges
+
namespace cv {
////////////////////////////////////// transpose /////////////////////////////////////////
flipHoriz( dst.ptr(), dst.step, dst.ptr(), dst.step, dst.size(), esz );
}
+static void
+flipNDImpl(uchar* data, const int* shape, const size_t* step, int axis)
+{
+ int total = 1;
+ for (int i = 0; i < axis; ++i)
+ total *= shape[i];
+
+ int shape_at_axis = shape[axis];
+ size_t step_at_axis = step[axis];
+ size_t offset = 0;
+ size_t offset_increment = axis == 0 ? 0 : step[axis - 1];
+ for (int i = 0; i < total; ++i, offset += offset_increment)
+ for (int j = 0, k = shape_at_axis - 1; j < shape_at_axis / 2; ++j, --k)
+ std::swap_ranges(data + offset + j * step_at_axis,
+ data + offset + j * step_at_axis + step_at_axis,
+ data + offset + k * step_at_axis);
+}
+
+void flipND(InputArray _src, OutputArray _dst, int _axis)
+{
+ CV_INSTRUMENT_REGION();
+
+ Mat src = _src.getMat();
+
+ // verify axis
+ int ndim = src.dims;
+ CV_CheckLT(_axis, ndim, "flipND: given axis is out of range");
+ CV_CheckGE(_axis, -ndim, "flipND: given axis is out of range");
+ int axis = (_axis + ndim) % ndim;
+
+ // in-place flip
+ _src.copyTo(_dst);
+
+ // return the src if it has only one element on the flip axis
+ const auto shape = src.size.p;
+ if (shape[axis] == 1)
+ return ;
+
+ // call impl
+ Mat dst = _dst.getMat();
+ flipNDImpl(dst.ptr(), dst.size.p, dst.step.p, axis);
+}
+
void rotate(InputArray _src, OutputArray _dst, int rotateMode)
{
CV_Assert(_src.dims() <= 2);
testing::Values(perf::MatType(CV_8UC1), CV_32FC1)
));
+class FlipND : public testing::TestWithParam< tuple<std::vector<int>, perf::MatType> >
+{
+public:
+ std::vector<int> m_shape;
+ int m_type;
+
+ void SetUp()
+ {
+ std::tie(m_shape, m_type) = GetParam();
+ }
+};
+
+TEST_P(FlipND, basic)
+{
+ Mat inp(m_shape, m_type);
+ randu(inp, 0, 255);
+
+ int ndim = static_cast<int>(m_shape.size());
+ std::vector<int> axes(ndim*2); // [-shape, shape)
+ std::iota(axes.begin(), axes.end(), -ndim);
+ auto get_flipped_indices = [&inp, ndim] (size_t total, std::vector<int>& indices, int axis)
+ {
+ const int* shape = inp.size.p;
+ size_t t = total, idx;
+ for (int i = ndim - 1; i >= 0; --i)
+ {
+ idx = t / shape[i];
+ indices[i] = int(t - idx * shape[i]);
+ t = idx;
+ }
+
+ int _axis = (axis + ndim) % ndim;
+ std::vector<int> flipped_indices = indices;
+ flipped_indices[_axis] = shape[_axis] - 1 - indices[_axis];
+ return flipped_indices;
+ };
+
+ for (size_t i = 0; i < axes.size(); ++i)
+ {
+ int axis = axes[i];
+ Mat out;
+ cv::flipND(inp, out, axis);
+ // check values
+ std::vector<int> indices(ndim, 0);
+ for (size_t j = 0; j < inp.total(); ++j)
+ {
+ auto flipped_indices = get_flipped_indices(j, indices, axis);
+ switch (inp.type())
+ {
+ case CV_8UC1:
+ ASSERT_EQ(inp.at<uint8_t>(indices.data()), out.at<uint8_t>(flipped_indices.data()));
+ break;
+ case CV_32FC1:
+ ASSERT_EQ(inp.at<float>(indices.data()), out.at<float>(flipped_indices.data()));
+ break;
+ default:
+ FAIL() << "Unsupported type: " << inp.type();
+ }
+ }
+ }
+}
+
+INSTANTIATE_TEST_CASE_P(Arithm, FlipND, testing::Combine(
+ testing::Values(std::vector<int>{5, 10}, std::vector<int>{2, 3, 4}),
+ testing::Values(perf::MatType(CV_8UC1), CV_32FC1)
+));
TEST(Core_minMaxIdx, regression_9207_2)
{
return range;
}
+// TODO: support cv::Range with steps and negative steps to get rid of this transformation
+void tranformForNegSteps(const MatShape& inpShape, std::vector<std::vector<Range> >& sliceRanges, std::vector<std::vector<int> >& sliceSteps)
+{
+ // in case of negative steps,
+ // x of shape [5, 10], x[5:0:-1, 10:1:-3] <=> np.flip(x[1:5:1, 2:10:3], aixs=(0, 1))
+ // new_end_i = start_i + 1 > dim_i ? dim_i : start_i + 1
+ // new_start_i = end + 1
+ // new_start_i = new_end_i - 1 - ((new_end_i - 1 - new_start_i) / abs(step_i)) * abs(step_i)
+ int start, end, new_start, new_end, step;
+ for (int i = 0; i < sliceSteps[0].size(); ++i)
+ {
+ step = sliceSteps[0][i];
+ if (step > 0)
+ continue;
+
+ step = -step;
+ start = sliceRanges[0][i].start;
+ end = sliceRanges[0][i].end;
+ new_end = start >= inpShape[i] ? inpShape[i] : start + 1;
+ new_start = end + 1;
+ new_start = new_end - 1 - ((new_end - 1 - new_start) / step) * step;
+
+ sliceSteps[0][i] = step;
+ sliceRanges[0][i].start = new_start;
+ sliceRanges[0][i].end = new_end;
+ }
+}
+
std::vector<std::vector<cv::Range> > finalizeSliceRange(const MatShape& inpShape, int& axis,
const std::vector<std::vector<cv::Range> >& inputSliceRanges)
{
const DictValue &sizesOrEnds = params.has("size") ? params.get("size") : params.get("end");
CV_Assert(begins.size() == sizesOrEnds.size());
+ if (params.has("steps"))
+ {
+ const DictValue &steps = params.get("steps");
+ sliceSteps.resize(1);
+ sliceSteps[0].resize(steps.size());
+
+ for (int i = 0; i < steps.size(); ++i)
+ {
+ int step = steps.get<int>(i);
+ CV_Assert(step != 0);
+ if (step < 0)
+ neg_step_dims.push_back(i);
+ if (std::abs(step) > 1)
+ hasSteps = true;
+ sliceSteps[0][i] = step;
+ }
+ }
+
sliceRanges.resize(1);
sliceRanges[0].resize(begins.size(), Range::all());
for (int i = 0; i < begins.size(); ++i)
else
{
int end = sizeOrEnd;
- CV_Assert(end < 0 || end > start); // End index is excluded.
+ if (hasSteps && !neg_step_dims.empty() && sliceSteps[0][i] < 0)
+ CV_Assert(end < 0 || end != start); // if current step is negative, end < start is allowed.
+ else
+ CV_Assert(end < 0 || end > start); // End index is excluded.
sliceRanges[0][i].end = end; // We'll finalize a negative value later.
}
}
-
- if (params.has("steps"))
- {
- const DictValue &steps = params.get("steps");
- sliceSteps.resize(1);
- sliceSteps[0].resize(steps.size());
-
- for (int i = 0; i < steps.size(); ++i)
- {
- int step = steps.get<int>(i);
- CV_Assert(step >= 1);
- if (step > 1)
- hasSteps = true;
- sliceSteps[0][i] = step;
- }
- }
}
}
{
#ifdef HAVE_INF_ENGINE
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- return sliceRanges.size() == 1 && !hasSteps;
+ return sliceRanges.size() == 1 && !hasSteps && neg_step_dims.empty();
#endif
#ifdef HAVE_CUDA
if (backendId == DNN_BACKEND_CUDA)
- return !hasSteps;
+ return !hasSteps && neg_step_dims.empty();
#endif
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CANN;
}
CV_Assert(inputs.size() == 1);
MatShape inpShape = inputs[0];
+ std::vector<std::vector<int> > sliceSteps_ = sliceSteps;
+ std::vector<std::vector<cv::Range> > sliceRanges_ = sliceRanges;
+ if (hasSteps && !neg_step_dims.empty())
+ tranformForNegSteps(inpShape, sliceRanges_, sliceSteps_);
+
int axis_rw = axis;
- std::vector<std::vector<cv::Range> > sliceRanges_rw = finalizeSliceRange(inpShape, axis_rw, sliceRanges);
+ std::vector<std::vector<cv::Range> > sliceRanges_rw = finalizeSliceRange(inpShape, axis_rw, sliceRanges_);
if (!sliceRanges_rw.empty())
{
if (shapesInitialized || inpShape[j] > 0)
outputs[i][j] = normalizeRange(sliceRanges_rw[i][j], inpShape[j]).size();
- if (!sliceSteps.empty() && (i < sliceSteps.size()) && (j < sliceSteps[i].size()) && (sliceSteps[i][j] > 1))
- outputs[i][j] = (outputs[i][j] + sliceSteps[i][j] - 1) / sliceSteps[i][j];
+ if (!sliceSteps_.empty() && (i < sliceSteps_.size()) && (j < sliceSteps_[i].size()) && (sliceSteps_[i][j] > 1))
+ outputs[i][j] = (outputs[i][j] + sliceSteps_[i][j] - 1) / sliceSteps_[i][j];
}
}
}
outputs_arr.getMatVector(outputs);
CV_Assert(inputs.size() == 1);
- const MatSize& inpShape = inputs[0].size;
+ MatShape inpShape = shape(inputs[0]);
+
+ if (hasSteps && !neg_step_dims.empty())
+ tranformForNegSteps(inpShape, sliceRanges, sliceSteps);
finalSliceRanges = finalizeSliceRange(shape(inputs[0]), axis, sliceRanges);
for (int i = 0; i < outputs.size(); ++i)
{
- CV_Assert(finalSliceRanges[i].size() <= inpShape.dims());
+ CV_Assert(finalSliceRanges[i].size() <= inpShape.size());
// Fill the rest of ranges.
- for (int j = finalSliceRanges[i].size(); j < inpShape.dims(); ++j)
+ for (int j = finalSliceRanges[i].size(); j < inpShape.size(); ++j)
{
finalSliceRanges[i].push_back(Range::all());
}
getSliceRecursive<int8_t>(inpMat, inpIdx, finalSliceRanges[i], sliceSteps[i], 0, dimsNum, outputs[i], outIdx);
else
getSliceRecursive<float>(inpMat, inpIdx, finalSliceRanges[i], sliceSteps[i], 0, dimsNum, outputs[i], outIdx);
+ // flip for negative steps
+ flip(outputs[i]);
}
}
}
}
#endif
-
#ifdef HAVE_DNN_NGRAPH
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
}
}
+ void flip(Mat& output) // break if 1d tensor?
+ {
+ for (int i = 0; i < neg_step_dims.size(); ++i)
+ cv::flipND(output, output, neg_step_dims[i]);
+ }
protected:
// The actual non-negative values determined from @p sliceRanges depends on input size.
std::vector<std::vector<Range> > finalSliceRanges;
+ std::vector<int> neg_step_dims;
bool hasDynamicShapes;
bool shapesInitialized;
bool hasSteps;