+++ /dev/null
-from __future__ import with_statement
-
-
-# Copyright 2007 Google, Inc. All Rights Reserved.
-# Licensed to PSF under a Contributor Agreement.
-
-"""Abstract Base Classes (ABCs) according to PEP 3119."""
-
-import types
-
-from _weakref import ref
-
-__all__ = ['WeakSet']
-
-
-class _IterationGuard(object):
- # This context manager registers itself in the current iterators of the
- # weak container, such as to delay all removals until the context manager
- # exits.
- # This technique should be relatively thread-safe (since sets are).
-
- def __init__(self, weakcontainer):
- # Don't create cycles
- self.weakcontainer = ref(weakcontainer)
-
- def __enter__(self):
- w = self.weakcontainer()
- if w is not None:
- w._iterating.add(self)
- return self
-
- def __exit__(self, e, t, b):
- w = self.weakcontainer()
- if w is not None:
- s = w._iterating
- s.remove(self)
- if not s:
- w._commit_removals()
-
-
-class WeakSet(object):
- def __init__(self, data=None):
- self.data = set()
- def _remove(item, selfref=ref(self)):
- self = selfref()
- if self is not None:
- if self._iterating:
- self._pending_removals.append(item)
- else:
- self.data.discard(item)
- self._remove = _remove
- # A list of keys to be removed
- self._pending_removals = []
- self._iterating = set()
- if data is not None:
- self.update(data)
-
- def _commit_removals(self):
- l = self._pending_removals
- discard = self.data.discard
- while l:
- discard(l.pop())
-
- def __iter__(self):
- with _IterationGuard(self):
- for itemref in self.data:
- item = itemref()
- if item is not None:
- yield item
-
- def __len__(self):
- return sum(x() is not None for x in self.data)
-
- def __contains__(self, item):
- try:
- wr = ref(item)
- except TypeError:
- return False
- return wr in self.data
-
- def __reduce__(self):
- return (self.__class__, (list(self),),
- getattr(self, '__dict__', None))
-
- __hash__ = None
-
- def add(self, item):
- if self._pending_removals:
- self._commit_removals()
- self.data.add(ref(item, self._remove))
-
- def clear(self):
- if self._pending_removals:
- self._commit_removals()
- self.data.clear()
-
- def copy(self):
- return self.__class__(self)
-
- def pop(self):
- if self._pending_removals:
- self._commit_removals()
- while True:
- try:
- itemref = self.data.pop()
- except KeyError:
- raise KeyError('pop from empty WeakSet')
- item = itemref()
- if item is not None:
- return item
-
- def remove(self, item):
- if self._pending_removals:
- self._commit_removals()
- self.data.remove(ref(item))
-
- def discard(self, item):
- if self._pending_removals:
- self._commit_removals()
- self.data.discard(ref(item))
-
- def update(self, other):
- if self._pending_removals:
- self._commit_removals()
- if isinstance(other, self.__class__):
- self.data.update(other.data)
- else:
- for element in other:
- self.add(element)
-
- def __ior__(self, other):
- self.update(other)
- return self
-
- # Helper functions for simple delegating methods.
- def _apply(self, other, method):
- if not isinstance(other, self.__class__):
- other = self.__class__(other)
- newdata = method(other.data)
- newset = self.__class__()
- newset.data = newdata
- return newset
-
- def difference(self, other):
- return self._apply(other, self.data.difference)
- __sub__ = difference
-
- def difference_update(self, other):
- if self._pending_removals:
- self._commit_removals()
- if self is other:
- self.data.clear()
- else:
- self.data.difference_update(ref(item) for item in other)
- def __isub__(self, other):
- if self._pending_removals:
- self._commit_removals()
- if self is other:
- self.data.clear()
- else:
- self.data.difference_update(ref(item) for item in other)
- return self
-
- def intersection(self, other):
- return self._apply(other, self.data.intersection)
- __and__ = intersection
-
- def intersection_update(self, other):
- if self._pending_removals:
- self._commit_removals()
- self.data.intersection_update(ref(item) for item in other)
- def __iand__(self, other):
- if self._pending_removals:
- self._commit_removals()
- self.data.intersection_update(ref(item) for item in other)
- return self
-
- def issubset(self, other):
- return self.data.issubset(ref(item) for item in other)
- __lt__ = issubset
-
- def __le__(self, other):
- return self.data <= set(ref(item) for item in other)
-
- def issuperset(self, other):
- return self.data.issuperset(ref(item) for item in other)
- __gt__ = issuperset
-
- def __ge__(self, other):
- return self.data >= set(ref(item) for item in other)
-
- def __eq__(self, other):
- if not isinstance(other, self.__class__):
- return NotImplemented
- return self.data == set(ref(item) for item in other)
-
- def symmetric_difference(self, other):
- return self._apply(other, self.data.symmetric_difference)
- __xor__ = symmetric_difference
-
- def symmetric_difference_update(self, other):
- if self._pending_removals:
- self._commit_removals()
- if self is other:
- self.data.clear()
- else:
- self.data.symmetric_difference_update(ref(item) for item in other)
- def __ixor__(self, other):
- if self._pending_removals:
- self._commit_removals()
- if self is other:
- self.data.clear()
- else:
- self.data.symmetric_difference_update(ref(item) for item in other)
- return self
-
- def union(self, other):
- return self._apply(other, self.data.union)
- __or__ = union
-
- def isdisjoint(self, other):
- return len(self.intersection(other)) == 0
-
-
-# Instance of old-style class
-class _C: pass
-_InstanceType = type(_C())
-
-
-def abstractmethod(funcobj):
- """A decorator indicating abstract methods.
-
- Requires that the metaclass is ABCMeta or derived from it. A
- class that has a metaclass derived from ABCMeta cannot be
- instantiated unless all of its abstract methods are overridden.
- The abstract methods can be called using any of the normal
- 'super' call mechanisms.
-
- Usage:
-
- class C:
- __metaclass__ = ABCMeta
- @abstractmethod
- def my_abstract_method(self, ...):
- ...
- """
- funcobj.__isabstractmethod__ = True
- return funcobj
-
-
-class abstractproperty(property):
- """A decorator indicating abstract properties.
-
- Requires that the metaclass is ABCMeta or derived from it. A
- class that has a metaclass derived from ABCMeta cannot be
- instantiated unless all of its abstract properties are overridden.
- The abstract properties can be called using any of the normal
- 'super' call mechanisms.
-
- Usage:
-
- class C:
- __metaclass__ = ABCMeta
- @abstractproperty
- def my_abstract_property(self):
- ...
-
- This defines a read-only property; you can also define a read-write
- abstract property using the 'long' form of property declaration:
-
- class C:
- __metaclass__ = ABCMeta
- def getx(self): ...
- def setx(self, value): ...
- x = abstractproperty(getx, setx)
- """
- __isabstractmethod__ = True
-
-
-class ABCMeta(type):
-
- """Metaclass for defining Abstract Base Classes (ABCs).
-
- Use this metaclass to create an ABC. An ABC can be subclassed
- directly, and then acts as a mix-in class. You can also register
- unrelated concrete classes (even built-in classes) and unrelated
- ABCs as 'virtual subclasses' -- these and their descendants will
- be considered subclasses of the registering ABC by the built-in
- issubclass() function, but the registering ABC won't show up in
- their MRO (Method Resolution Order) nor will method
- implementations defined by the registering ABC be callable (not
- even via super()).
-
- """
-
- # A global counter that is incremented each time a class is
- # registered as a virtual subclass of anything. It forces the
- # negative cache to be cleared before its next use.
- _abc_invalidation_counter = 0
-
- def __new__(mcls, name, bases, namespace):
- cls = super(ABCMeta, mcls).__new__(mcls, name, bases, namespace)
- # Compute set of abstract method names
- abstracts = set(name
- for name, value in namespace.items()
- if getattr(value, "__isabstractmethod__", False))
- for base in bases:
- for name in getattr(base, "__abstractmethods__", set()):
- value = getattr(cls, name, None)
- if getattr(value, "__isabstractmethod__", False):
- abstracts.add(name)
- cls.__abstractmethods__ = frozenset(abstracts)
- # Set up inheritance registry
- cls._abc_registry = WeakSet()
- cls._abc_cache = WeakSet()
- cls._abc_negative_cache = WeakSet()
- cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter
- return cls
-
- def register(cls, subclass):
- """Register a virtual subclass of an ABC."""
- if not isinstance(subclass, (type, types.ClassType)):
- raise TypeError("Can only register classes")
- if issubclass(subclass, cls):
- return # Already a subclass
- # Subtle: test for cycles *after* testing for "already a subclass";
- # this means we allow X.register(X) and interpret it as a no-op.
- if issubclass(cls, subclass):
- # This would create a cycle, which is bad for the algorithm below
- raise RuntimeError("Refusing to create an inheritance cycle")
- cls._abc_registry.add(subclass)
- ABCMeta._abc_invalidation_counter += 1 # Invalidate negative cache
-
- def _dump_registry(cls, file=None):
- """Debug helper to print the ABC registry."""
- print >> file, "Class: %s.%s" % (cls.__module__, cls.__name__)
- print >> file, "Inv.counter: %s" % ABCMeta._abc_invalidation_counter
- for name in sorted(cls.__dict__.keys()):
- if name.startswith("_abc_"):
- value = getattr(cls, name)
- print >> file, "%s: %r" % (name, value)
-
- def __instancecheck__(cls, instance):
- """Override for isinstance(instance, cls)."""
- # Inline the cache checking when it's simple.
- subclass = getattr(instance, '__class__', None)
- if subclass is not None and subclass in cls._abc_cache:
- return True
- subtype = type(instance)
- # Old-style instances
- if subtype is _InstanceType:
- subtype = subclass
- if subtype is subclass or subclass is None:
- if (cls._abc_negative_cache_version ==
- ABCMeta._abc_invalidation_counter and
- subtype in cls._abc_negative_cache):
- return False
- # Fall back to the subclass check.
- return cls.__subclasscheck__(subtype)
- return (cls.__subclasscheck__(subclass) or
- cls.__subclasscheck__(subtype))
-
- def __subclasscheck__(cls, subclass):
- """Override for issubclass(subclass, cls)."""
- # Check cache
- if subclass in cls._abc_cache:
- return True
- # Check negative cache; may have to invalidate
- if cls._abc_negative_cache_version < ABCMeta._abc_invalidation_counter:
- # Invalidate the negative cache
- cls._abc_negative_cache = WeakSet()
- cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter
- elif subclass in cls._abc_negative_cache:
- return False
- # Check the subclass hook
- ok = cls.__subclasshook__(subclass)
- if ok is not NotImplemented:
- assert isinstance(ok, bool)
- if ok:
- cls._abc_cache.add(subclass)
- else:
- cls._abc_negative_cache.add(subclass)
- return ok
- # Check if it's a direct subclass
- if cls in getattr(subclass, '__mro__', ()):
- cls._abc_cache.add(subclass)
- return True
- # Check if it's a subclass of a registered class (recursive)
- for rcls in cls._abc_registry:
- if issubclass(subclass, rcls):
- cls._abc_cache.add(subclass)
- return True
- # Check if it's a subclass of a subclass (recursive)
- for scls in cls.__subclasses__():
- if issubclass(subclass, scls):
- cls._abc_cache.add(subclass)
- return True
- # No dice; update negative cache
- cls._abc_negative_cache.add(subclass)
- return False
-
-
-
-
-
-
-
-
-import sys
-
-### ONE-TRICK PONIES ###
-
-def _hasattr(C, attr):
- try:
- return any(attr in B.__dict__ for B in C.__mro__)
- except AttributeError:
- # Old-style class
- return hasattr(C, attr)
-
-
-class Hashable:
- __metaclass__ = ABCMeta
-
- @abstractmethod
- def __hash__(self):
- return 0
-
- @classmethod
- def __subclasshook__(cls, C):
- if cls is Hashable:
- try:
- for B in C.__mro__:
- if "__hash__" in B.__dict__:
- if B.__dict__["__hash__"]:
- return True
- break
- except AttributeError:
- # Old-style class
- if getattr(C, "__hash__", None):
- return True
- return NotImplemented
-
-
-class Iterable:
- __metaclass__ = ABCMeta
-
- @abstractmethod
- def __iter__(self):
- while False:
- yield None
-
- @classmethod
- def __subclasshook__(cls, C):
- if cls is Iterable:
- if _hasattr(C, "__iter__"):
- return True
- return NotImplemented
-
-Iterable.register(str)
-
-
-class Iterator(Iterable):
-
- @abstractmethod
- def next(self):
- raise StopIteration
-
- def __iter__(self):
- return self
-
- @classmethod
- def __subclasshook__(cls, C):
- if cls is Iterator:
- if _hasattr(C, "next") and _hasattr(C, "__iter__"):
- return True
- return NotImplemented
-
-
-class Sized:
- __metaclass__ = ABCMeta
-
- @abstractmethod
- def __len__(self):
- return 0
-
- @classmethod
- def __subclasshook__(cls, C):
- if cls is Sized:
- if _hasattr(C, "__len__"):
- return True
- return NotImplemented
-
-
-class Container:
- __metaclass__ = ABCMeta
-
- @abstractmethod
- def __contains__(self, x):
- return False
-
- @classmethod
- def __subclasshook__(cls, C):
- if cls is Container:
- if _hasattr(C, "__contains__"):
- return True
- return NotImplemented
-
-
-class Callable:
- __metaclass__ = ABCMeta
-
- @abstractmethod
- def __call__(self, *args, **kwds):
- return False
-
- @classmethod
- def __subclasshook__(cls, C):
- if cls is Callable:
- if _hasattr(C, "__call__"):
- return True
- return NotImplemented
-
-
-### SETS ###
-
-
-class Set(Sized, Iterable, Container):
- """A set is a finite, iterable container.
-
- This class provides concrete generic implementations of all
- methods except for __contains__, __iter__ and __len__.
-
- To override the comparisons (presumably for speed, as the
- semantics are fixed), all you have to do is redefine __le__ and
- then the other operations will automatically follow suit.
- """
-
- def __le__(self, other):
- if not isinstance(other, Set):
- return NotImplemented
- if len(self) > len(other):
- return False
- for elem in self:
- if elem not in other:
- return False
- return True
-
- def __lt__(self, other):
- if not isinstance(other, Set):
- return NotImplemented
- return len(self) < len(other) and self.__le__(other)
-
- def __gt__(self, other):
- if not isinstance(other, Set):
- return NotImplemented
- return other < self
-
- def __ge__(self, other):
- if not isinstance(other, Set):
- return NotImplemented
- return other <= self
-
- def __eq__(self, other):
- if not isinstance(other, Set):
- return NotImplemented
- return len(self) == len(other) and self.__le__(other)
-
- def __ne__(self, other):
- return not (self == other)
-
- @classmethod
- def _from_iterable(cls, it):
- '''Construct an instance of the class from any iterable input.
-
- Must override this method if the class constructor signature
- does not accept an iterable for an input.
- '''
- return cls(it)
-
- def __and__(self, other):
- if not isinstance(other, Iterable):
- return NotImplemented
- return self._from_iterable(value for value in other if value in self)
-
- def isdisjoint(self, other):
- for value in other:
- if value in self:
- return False
- return True
-
- def __or__(self, other):
- if not isinstance(other, Iterable):
- return NotImplemented
- chain = (e for s in (self, other) for e in s)
- return self._from_iterable(chain)
-
- def __sub__(self, other):
- if not isinstance(other, Set):
- if not isinstance(other, Iterable):
- return NotImplemented
- other = self._from_iterable(other)
- return self._from_iterable(value for value in self
- if value not in other)
-
- def __xor__(self, other):
- if not isinstance(other, Set):
- if not isinstance(other, Iterable):
- return NotImplemented
- other = self._from_iterable(other)
- return (self - other) | (other - self)
-
- # Sets are not hashable by default, but subclasses can change this
- __hash__ = None
-
- def _hash(self):
- """Compute the hash value of a set.
-
- Note that we don't define __hash__: not all sets are hashable.
- But if you define a hashable set type, its __hash__ should
- call this function.
-
- This must be compatible __eq__.
-
- All sets ought to compare equal if they contain the same
- elements, regardless of how they are implemented, and
- regardless of the order of the elements; so there's not much
- freedom for __eq__ or __hash__. We match the algorithm used
- by the built-in frozenset type.
- """
- MAX = sys.maxint
- MASK = 2 * MAX + 1
- n = len(self)
- h = 1927868237 * (n + 1)
- h &= MASK
- for x in self:
- hx = hash(x)
- h ^= (hx ^ (hx << 16) ^ 89869747) * 3644798167
- h &= MASK
- h = h * 69069 + 907133923
- h &= MASK
- if h > MAX:
- h -= MASK + 1
- if h == -1:
- h = 590923713
- return h
-
-Set.register(frozenset)
-
-
-class MutableSet(Set):
-
- @abstractmethod
- def add(self, value):
- """Add an element."""
- raise NotImplementedError
-
- @abstractmethod
- def discard(self, value):
- """Remove an element. Do not raise an exception if absent."""
- raise NotImplementedError
-
- def remove(self, value):
- """Remove an element. If not a member, raise a KeyError."""
- if value not in self:
- raise KeyError(value)
- self.discard(value)
-
- def pop(self):
- """Return the popped value. Raise KeyError if empty."""
- it = iter(self)
- try:
- value = next(it)
- except StopIteration:
- raise KeyError
- self.discard(value)
- return value
-
- def clear(self):
- """This is slow (creates N new iterators!) but effective."""
- try:
- while True:
- self.pop()
- except KeyError:
- pass
-
- def __ior__(self, it):
- for value in it:
- self.add(value)
- return self
-
- def __iand__(self, it):
- for value in (self - it):
- self.discard(value)
- return self
-
- def __ixor__(self, it):
- if it is self:
- self.clear()
- else:
- if not isinstance(it, Set):
- it = self._from_iterable(it)
- for value in it:
- if value in self:
- self.discard(value)
- else:
- self.add(value)
- return self
-
- def __isub__(self, it):
- if it is self:
- self.clear()
- else:
- for value in it:
- self.discard(value)
- return self
-
-MutableSet.register(set)
-
-
-### MAPPINGS ###
-
-
-class Mapping(Sized, Iterable, Container):
-
- @abstractmethod
- def __getitem__(self, key):
- raise KeyError
-
- def get(self, key, default=None):
- try:
- return self[key]
- except KeyError:
- return default
-
- def __contains__(self, key):
- try:
- self[key]
- except KeyError:
- return False
- else:
- return True
-
- def iterkeys(self):
- return iter(self)
-
- def itervalues(self):
- for key in self:
- yield self[key]
-
- def iteritems(self):
- for key in self:
- yield (key, self[key])
-
- def keys(self):
- return list(self)
-
- def items(self):
- return [(key, self[key]) for key in self]
-
- def values(self):
- return [self[key] for key in self]
-
- # Mappings are not hashable by default, but subclasses can change this
- __hash__ = None
-
- def __eq__(self, other):
- if not isinstance(other, Mapping):
- return NotImplemented
- return dict(self.items()) == dict(other.items())
-
- def __ne__(self, other):
- return not (self == other)
-
-class MappingView(Sized):
-
- def __init__(self, mapping):
- self._mapping = mapping
-
- def __len__(self):
- return len(self._mapping)
-
- def __repr__(self):
- return '{0.__class__.__name__}({0._mapping!r})'.format(self)
-
-
-class KeysView(MappingView, Set):
-
- @classmethod
- def _from_iterable(self, it):
- return set(it)
-
- def __contains__(self, key):
- return key in self._mapping
-
- def __iter__(self):
- for key in self._mapping:
- yield key
-
-
-class ItemsView(MappingView, Set):
-
- @classmethod
- def _from_iterable(self, it):
- return set(it)
-
- def __contains__(self, item):
- key, value = item
- try:
- v = self._mapping[key]
- except KeyError:
- return False
- else:
- return v == value
-
- def __iter__(self):
- for key in self._mapping:
- yield (key, self._mapping[key])
-
-
-class ValuesView(MappingView):
-
- def __contains__(self, value):
- for key in self._mapping:
- if value == self._mapping[key]:
- return True
- return False
-
- def __iter__(self):
- for key in self._mapping:
- yield self._mapping[key]
-
-
-class MutableMapping(Mapping):
-
- @abstractmethod
- def __setitem__(self, key, value):
- raise KeyError
-
- @abstractmethod
- def __delitem__(self, key):
- raise KeyError
-
- __marker = object()
-
- def pop(self, key, default=__marker):
- try:
- value = self[key]
- except KeyError:
- if default is self.__marker:
- raise
- return default
- else:
- del self[key]
- return value
-
- def popitem(self):
- try:
- key = next(iter(self))
- except StopIteration:
- raise KeyError
- value = self[key]
- del self[key]
- return key, value
-
- def clear(self):
- try:
- while True:
- self.popitem()
- except KeyError:
- pass
-
- def update(*args, **kwds):
- if len(args) > 2:
- raise TypeError("update() takes at most 2 positional "
- "arguments ({} given)".format(len(args)))
- elif not args:
- raise TypeError("update() takes at least 1 argument (0 given)")
- self = args[0]
- other = args[1] if len(args) >= 2 else ()
-
- if isinstance(other, Mapping):
- for key in other:
- self[key] = other[key]
- elif hasattr(other, "keys"):
- for key in other.keys():
- self[key] = other[key]
- else:
- for key, value in other:
- self[key] = value
- for key, value in kwds.items():
- self[key] = value
-
- def setdefault(self, key, default=None):
- try:
- return self[key]
- except KeyError:
- self[key] = default
- return default
-
-MutableMapping.register(dict)
-
-
-### SEQUENCES ###
-
-
-class Sequence(Sized, Iterable, Container):
- """All the operations on a read-only sequence.
-
- Concrete subclasses must override __new__ or __init__,
- __getitem__, and __len__.
- """
-
- @abstractmethod
- def __getitem__(self, index):
- raise IndexError
-
- def __iter__(self):
- i = 0
- try:
- while True:
- v = self[i]
- yield v
- i += 1
- except IndexError:
- return
-
- def __contains__(self, value):
- for v in self:
- if v == value:
- return True
- return False
-
- def __reversed__(self):
- for i in reversed(range(len(self))):
- yield self[i]
-
- def index(self, value):
- for i, v in enumerate(self):
- if v == value:
- return i
- raise ValueError
-
- def count(self, value):
- return sum(1 for v in self if v == value)
-
-Sequence.register(tuple)
-Sequence.register(basestring)
-Sequence.register(buffer)
-Sequence.register(xrange)
-
-
-class MutableSequence(Sequence):
-
- @abstractmethod
- def __setitem__(self, index, value):
- raise IndexError
-
- @abstractmethod
- def __delitem__(self, index):
- raise IndexError
-
- @abstractmethod
- def insert(self, index, value):
- raise IndexError
-
- def append(self, value):
- self.insert(len(self), value)
-
- def reverse(self):
- n = len(self)
- for i in range(n//2):
- self[i], self[n-i-1] = self[n-i-1], self[i]
-
- def extend(self, values):
- for v in values:
- self.append(v)
-
- def pop(self, index=-1):
- v = self[index]
- del self[index]
- return v
-
- def remove(self, value):
- del self[self.index(value)]
-
- def __iadd__(self, values):
- self.extend(values)
- return self
-
-MutableSequence.register(list)
-