--- /dev/null
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Copyright (C) 2010-2013, NVIDIA Corporation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+/*
+ * Copyright (c) 2013 NVIDIA Corporation. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ *
+ * Neither the name of NVIDIA Corporation nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef __OPENCV_GPU_SIMD_FUNCTIONS_HPP__
+#define __OPENCV_GPU_SIMD_FUNCTIONS_HPP__
+
+#include "common.hpp"
+
+/*
+ This header file contains inline functions that implement intra-word SIMD
+ operations, that are hardware accelerated on sm_3x (Kepler) GPUs. Efficient
+ emulation code paths are provided for earlier architectures (sm_1x, sm_2x)
+ to make the code portable across all GPUs supported by CUDA. The following
+ functions are currently implemented:
+
+ vadd2(a,b) per-halfword unsigned addition, with wrap-around: a + b
+ vsub2(a,b) per-halfword unsigned subtraction, with wrap-around: a - b
+ vabsdiff2(a,b) per-halfword unsigned absolute difference: |a - b|
+ vavg2(a,b) per-halfword unsigned average: (a + b) / 2
+ vavrg2(a,b) per-halfword unsigned rounded average: (a + b + 1) / 2
+ vseteq2(a,b) per-halfword unsigned comparison: a == b ? 1 : 0
+ vcmpeq2(a,b) per-halfword unsigned comparison: a == b ? 0xffff : 0
+ vsetge2(a,b) per-halfword unsigned comparison: a >= b ? 1 : 0
+ vcmpge2(a,b) per-halfword unsigned comparison: a >= b ? 0xffff : 0
+ vsetgt2(a,b) per-halfword unsigned comparison: a > b ? 1 : 0
+ vcmpgt2(a,b) per-halfword unsigned comparison: a > b ? 0xffff : 0
+ vsetle2(a,b) per-halfword unsigned comparison: a <= b ? 1 : 0
+ vcmple2(a,b) per-halfword unsigned comparison: a <= b ? 0xffff : 0
+ vsetlt2(a,b) per-halfword unsigned comparison: a < b ? 1 : 0
+ vcmplt2(a,b) per-halfword unsigned comparison: a < b ? 0xffff : 0
+ vsetne2(a,b) per-halfword unsigned comparison: a != b ? 1 : 0
+ vcmpne2(a,b) per-halfword unsigned comparison: a != b ? 0xffff : 0
+ vmax2(a,b) per-halfword unsigned maximum: max(a, b)
+ vmin2(a,b) per-halfword unsigned minimum: min(a, b)
+
+ vadd4(a,b) per-byte unsigned addition, with wrap-around: a + b
+ vsub4(a,b) per-byte unsigned subtraction, with wrap-around: a - b
+ vabsdiff4(a,b) per-byte unsigned absolute difference: |a - b|
+ vavg4(a,b) per-byte unsigned average: (a + b) / 2
+ vavrg4(a,b) per-byte unsigned rounded average: (a + b + 1) / 2
+ vseteq4(a,b) per-byte unsigned comparison: a == b ? 1 : 0
+ vcmpeq4(a,b) per-byte unsigned comparison: a == b ? 0xff : 0
+ vsetge4(a,b) per-byte unsigned comparison: a >= b ? 1 : 0
+ vcmpge4(a,b) per-byte unsigned comparison: a >= b ? 0xff : 0
+ vsetgt4(a,b) per-byte unsigned comparison: a > b ? 1 : 0
+ vcmpgt4(a,b) per-byte unsigned comparison: a > b ? 0xff : 0
+ vsetle4(a,b) per-byte unsigned comparison: a <= b ? 1 : 0
+ vcmple4(a,b) per-byte unsigned comparison: a <= b ? 0xff : 0
+ vsetlt4(a,b) per-byte unsigned comparison: a < b ? 1 : 0
+ vcmplt4(a,b) per-byte unsigned comparison: a < b ? 0xff : 0
+ vsetne4(a,b) per-byte unsigned comparison: a != b ? 1: 0
+ vcmpne4(a,b) per-byte unsigned comparison: a != b ? 0xff: 0
+ vmax4(a,b) per-byte unsigned maximum: max(a, b)
+ vmin4(a,b) per-byte unsigned minimum: min(a, b)
+*/
+
+namespace cv { namespace gpu { namespace device
+{
+ // 2
+
+ static __device__ __forceinline__ unsigned int vadd2(unsigned int a, unsigned int b)
+ {
+ unsigned int r = 0;
+
+ #if __CUDA_ARCH__ >= 300
+ asm("vadd2.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #elif __CUDA_ARCH__ >= 200
+ asm("vadd.u32.u32.u32.sat %0.h0, %1.h0, %2.h0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ asm("vadd.u32.u32.u32.sat %0.h1, %1.h1, %2.h1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #else
+ unsigned int s;
+ s = a ^ b; // sum bits
+ r = a + b; // actual sum
+ s = s ^ r; // determine carry-ins for each bit position
+ s = s & 0x00010000; // carry-in to high word (= carry-out from low word)
+ r = r - s; // subtract out carry-out from low word
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vsub2(unsigned int a, unsigned int b)
+ {
+ unsigned int r = 0;
+
+ #if __CUDA_ARCH__ >= 300
+ asm("vsub2.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #elif __CUDA_ARCH__ >= 200
+ asm("vsub.u32.u32.u32.sat %0.h0, %1.h0, %2.h0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ asm("vsub.u32.u32.u32.sat %0.h1, %1.h1, %2.h1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #else
+ unsigned int s;
+ s = a ^ b; // sum bits
+ r = a - b; // actual sum
+ s = s ^ r; // determine carry-ins for each bit position
+ s = s & 0x00010000; // borrow to high word
+ r = r + s; // compensate for borrow from low word
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vabsdiff2(unsigned int a, unsigned int b)
+ {
+ unsigned int r = 0;
+
+ #if __CUDA_ARCH__ >= 300
+ asm("vabsdiff2.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #elif __CUDA_ARCH__ >= 200
+ asm("vabsdiff.u32.u32.u32.sat %0.h0, %1.h0, %2.h0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ asm("vabsdiff.u32.u32.u32.sat %0.h1, %1.h1, %2.h1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #else
+ unsigned int s, t, u, v;
+ s = a & 0x0000ffff; // extract low halfword
+ r = b & 0x0000ffff; // extract low halfword
+ u = ::max(r, s); // maximum of low halfwords
+ v = ::min(r, s); // minimum of low halfwords
+ s = a & 0xffff0000; // extract high halfword
+ r = b & 0xffff0000; // extract high halfword
+ t = ::max(r, s); // maximum of high halfwords
+ s = ::min(r, s); // minimum of high halfwords
+ r = u | t; // maximum of both halfwords
+ s = v | s; // minimum of both halfwords
+ r = r - s; // |a - b| = max(a,b) - min(a,b);
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vavg2(unsigned int a, unsigned int b)
+ {
+ unsigned int r, s;
+
+ // HAKMEM #23: a + b = 2 * (a & b) + (a ^ b) ==>
+ // (a + b) / 2 = (a & b) + ((a ^ b) >> 1)
+ s = a ^ b;
+ r = a & b;
+ s = s & 0xfffefffe; // ensure shift doesn't cross halfword boundaries
+ s = s >> 1;
+ s = r + s;
+
+ return s;
+ }
+
+ static __device__ __forceinline__ unsigned int vavrg2(unsigned int a, unsigned int b)
+ {
+ unsigned int r = 0;
+
+ #if __CUDA_ARCH__ >= 300
+ asm("vavrg2.u32.u32.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #else
+ // HAKMEM #23: a + b = 2 * (a | b) - (a ^ b) ==>
+ // (a + b + 1) / 2 = (a | b) - ((a ^ b) >> 1)
+ unsigned int s;
+ s = a ^ b;
+ r = a | b;
+ s = s & 0xfffefffe; // ensure shift doesn't cross half-word boundaries
+ s = s >> 1;
+ r = r - s;
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vseteq2(unsigned int a, unsigned int b)
+ {
+ unsigned int r = 0;
+
+ #if __CUDA_ARCH__ >= 300
+ asm("vset2.u32.u32.eq %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #else
+ // inspired by Alan Mycroft's null-byte detection algorithm:
+ // null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080))
+ unsigned int c;
+ r = a ^ b; // 0x0000 if a == b
+ c = r | 0x80008000; // set msbs, to catch carry out
+ r = r ^ c; // extract msbs, msb = 1 if r < 0x8000
+ c = c - 0x00010001; // msb = 0, if r was 0x0000 or 0x8000
+ c = r & ~c; // msb = 1, if r was 0x0000
+ r = c >> 15; // convert to bool
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vcmpeq2(unsigned int a, unsigned int b)
+ {
+ unsigned int r, c;
+
+ #if __CUDA_ARCH__ >= 300
+ r = vseteq2(a, b);
+ c = r << 16; // convert bool
+ r = c - r; // into mask
+ #else
+ // inspired by Alan Mycroft's null-byte detection algorithm:
+ // null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080))
+ r = a ^ b; // 0x0000 if a == b
+ c = r | 0x80008000; // set msbs, to catch carry out
+ r = r ^ c; // extract msbs, msb = 1 if r < 0x8000
+ c = c - 0x00010001; // msb = 0, if r was 0x0000 or 0x8000
+ c = r & ~c; // msb = 1, if r was 0x0000
+ r = c >> 15; // convert
+ r = c - r; // msbs to
+ r = c | r; // mask
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vsetge2(unsigned int a, unsigned int b)
+ {
+ unsigned int r = 0;
+
+ #if __CUDA_ARCH__ >= 300
+ asm("vset2.u32.u32.ge %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #else
+ unsigned int c;
+ asm("not.b32 %0, %0;" : "+r"(b));
+ c = vavrg2(a, b); // (a + ~b + 1) / 2 = (a - b) / 2
+ c = c & 0x80008000; // msb = carry-outs
+ r = c >> 15; // convert to bool
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vcmpge2(unsigned int a, unsigned int b)
+ {
+ unsigned int r, c;
+
+ #if __CUDA_ARCH__ >= 300
+ r = vsetge2(a, b);
+ c = r << 16; // convert bool
+ r = c - r; // into mask
+ #else
+ asm("not.b32 %0, %0;" : "+r"(b));
+ c = vavrg2(a, b); // (a + ~b + 1) / 2 = (a - b) / 2
+ c = c & 0x80008000; // msb = carry-outs
+ r = c >> 15; // convert
+ r = c - r; // msbs to
+ r = c | r; // mask
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vsetgt2(unsigned int a, unsigned int b)
+ {
+ unsigned int r = 0;
+
+ #if __CUDA_ARCH__ >= 300
+ asm("vset2.u32.u32.gt %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #else
+ unsigned int c;
+ asm("not.b32 %0, %0;" : "+r"(b));
+ c = vavg2(a, b); // (a + ~b) / 2 = (a - b) / 2 [rounded down]
+ c = c & 0x80008000; // msbs = carry-outs
+ r = c >> 15; // convert to bool
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vcmpgt2(unsigned int a, unsigned int b)
+ {
+ unsigned int r, c;
+
+ #if __CUDA_ARCH__ >= 300
+ r = vsetgt2(a, b);
+ c = r << 16; // convert bool
+ r = c - r; // into mask
+ #else
+ asm("not.b32 %0, %0;" : "+r"(b));
+ c = vavg2(a, b); // (a + ~b) / 2 = (a - b) / 2 [rounded down]
+ c = c & 0x80008000; // msbs = carry-outs
+ r = c >> 15; // convert
+ r = c - r; // msbs to
+ r = c | r; // mask
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vsetle2(unsigned int a, unsigned int b)
+ {
+ unsigned int r = 0;
+
+ #if __CUDA_ARCH__ >= 300
+ asm("vset2.u32.u32.le %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #else
+ unsigned int c;
+ asm("not.b32 %0, %0;" : "+r"(a));
+ c = vavrg2(a, b); // (b + ~a + 1) / 2 = (b - a) / 2
+ c = c & 0x80008000; // msb = carry-outs
+ r = c >> 15; // convert to bool
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vcmple2(unsigned int a, unsigned int b)
+ {
+ unsigned int r, c;
+
+ #if __CUDA_ARCH__ >= 300
+ r = vsetle2(a, b);
+ c = r << 16; // convert bool
+ r = c - r; // into mask
+ #else
+ asm("not.b32 %0, %0;" : "+r"(a));
+ c = vavrg2(a, b); // (b + ~a + 1) / 2 = (b - a) / 2
+ c = c & 0x80008000; // msb = carry-outs
+ r = c >> 15; // convert
+ r = c - r; // msbs to
+ r = c | r; // mask
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vsetlt2(unsigned int a, unsigned int b)
+ {
+ unsigned int r = 0;
+
+ #if __CUDA_ARCH__ >= 300
+ asm("vset2.u32.u32.lt %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #else
+ unsigned int c;
+ asm("not.b32 %0, %0;" : "+r"(a));
+ c = vavg2(a, b); // (b + ~a) / 2 = (b - a) / 2 [rounded down]
+ c = c & 0x80008000; // msb = carry-outs
+ r = c >> 15; // convert to bool
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vcmplt2(unsigned int a, unsigned int b)
+ {
+ unsigned int r, c;
+
+ #if __CUDA_ARCH__ >= 300
+ r = vsetlt2(a, b);
+ c = r << 16; // convert bool
+ r = c - r; // into mask
+ #else
+ asm("not.b32 %0, %0;" : "+r"(a));
+ c = vavg2(a, b); // (b + ~a) / 2 = (b - a) / 2 [rounded down]
+ c = c & 0x80008000; // msb = carry-outs
+ r = c >> 15; // convert
+ r = c - r; // msbs to
+ r = c | r; // mask
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vsetne2(unsigned int a, unsigned int b)
+ {
+ unsigned int r = 0;
+
+ #if __CUDA_ARCH__ >= 300
+ asm ("vset2.u32.u32.ne %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #else
+ // inspired by Alan Mycroft's null-byte detection algorithm:
+ // null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080))
+ unsigned int c;
+ r = a ^ b; // 0x0000 if a == b
+ c = r | 0x80008000; // set msbs, to catch carry out
+ c = c - 0x00010001; // msb = 0, if r was 0x0000 or 0x8000
+ c = r | c; // msb = 1, if r was not 0x0000
+ c = c & 0x80008000; // extract msbs
+ r = c >> 15; // convert to bool
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vcmpne2(unsigned int a, unsigned int b)
+ {
+ unsigned int r, c;
+
+ #if __CUDA_ARCH__ >= 300
+ r = vsetne2(a, b);
+ c = r << 16; // convert bool
+ r = c - r; // into mask
+ #else
+ // inspired by Alan Mycroft's null-byte detection algorithm:
+ // null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080))
+ r = a ^ b; // 0x0000 if a == b
+ c = r | 0x80008000; // set msbs, to catch carry out
+ c = c - 0x00010001; // msb = 0, if r was 0x0000 or 0x8000
+ c = r | c; // msb = 1, if r was not 0x0000
+ c = c & 0x80008000; // extract msbs
+ r = c >> 15; // convert
+ r = c - r; // msbs to
+ r = c | r; // mask
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vmax2(unsigned int a, unsigned int b)
+ {
+ unsigned int r = 0;
+
+ #if __CUDA_ARCH__ >= 300
+ asm("vmax2.u32.u32.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #elif __CUDA_ARCH__ >= 200
+ asm("vmax.u32.u32.u32 %0.h0, %1.h0, %2.h0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ asm("vmax.u32.u32.u32 %0.h1, %1.h1, %2.h1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #else
+ unsigned int s, t, u;
+ r = a & 0x0000ffff; // extract low halfword
+ s = b & 0x0000ffff; // extract low halfword
+ t = ::max(r, s); // maximum of low halfwords
+ r = a & 0xffff0000; // extract high halfword
+ s = b & 0xffff0000; // extract high halfword
+ u = ::max(r, s); // maximum of high halfwords
+ r = t | u; // combine halfword maximums
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vmin2(unsigned int a, unsigned int b)
+ {
+ unsigned int r = 0;
+
+ #if __CUDA_ARCH__ >= 300
+ asm("vmin2.u32.u32.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #elif __CUDA_ARCH__ >= 200
+ asm("vmin.u32.u32.u32 %0.h0, %1.h0, %2.h0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ asm("vmin.u32.u32.u32 %0.h1, %1.h1, %2.h1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #else
+ unsigned int s, t, u;
+ r = a & 0x0000ffff; // extract low halfword
+ s = b & 0x0000ffff; // extract low halfword
+ t = ::min(r, s); // minimum of low halfwords
+ r = a & 0xffff0000; // extract high halfword
+ s = b & 0xffff0000; // extract high halfword
+ u = ::min(r, s); // minimum of high halfwords
+ r = t | u; // combine halfword minimums
+ #endif
+
+ return r;
+ }
+
+ // 4
+
+ static __device__ __forceinline__ unsigned int vadd4(unsigned int a, unsigned int b)
+ {
+ unsigned int r = 0;
+
+ #if __CUDA_ARCH__ >= 300
+ asm("vadd4.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #elif __CUDA_ARCH__ >= 200
+ asm("vadd.u32.u32.u32.sat %0.b0, %1.b0, %2.b0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ asm("vadd.u32.u32.u32.sat %0.b1, %1.b1, %2.b1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ asm("vadd.u32.u32.u32.sat %0.b2, %1.b2, %2.b2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ asm("vadd.u32.u32.u32.sat %0.b3, %1.b3, %2.b3, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #else
+ unsigned int s, t;
+ s = a ^ b; // sum bits
+ r = a & 0x7f7f7f7f; // clear msbs
+ t = b & 0x7f7f7f7f; // clear msbs
+ s = s & 0x80808080; // msb sum bits
+ r = r + t; // add without msbs, record carry-out in msbs
+ r = r ^ s; // sum of msb sum and carry-in bits, w/o carry-out
+ #endif /* __CUDA_ARCH__ >= 300 */
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vsub4(unsigned int a, unsigned int b)
+ {
+ unsigned int r = 0;
+
+ #if __CUDA_ARCH__ >= 300
+ asm("vsub4.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #elif __CUDA_ARCH__ >= 200
+ asm("vsub.u32.u32.u32.sat %0.b0, %1.b0, %2.b0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ asm("vsub.u32.u32.u32.sat %0.b1, %1.b1, %2.b1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ asm("vsub.u32.u32.u32.sat %0.b2, %1.b2, %2.b2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ asm("vsub.u32.u32.u32.sat %0.b3, %1.b3, %2.b3, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #else
+ unsigned int s, t;
+ s = a ^ ~b; // inverted sum bits
+ r = a | 0x80808080; // set msbs
+ t = b & 0x7f7f7f7f; // clear msbs
+ s = s & 0x80808080; // inverted msb sum bits
+ r = r - t; // subtract w/o msbs, record inverted borrows in msb
+ r = r ^ s; // combine inverted msb sum bits and borrows
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vavg4(unsigned int a, unsigned int b)
+ {
+ unsigned int r, s;
+
+ // HAKMEM #23: a + b = 2 * (a & b) + (a ^ b) ==>
+ // (a + b) / 2 = (a & b) + ((a ^ b) >> 1)
+ s = a ^ b;
+ r = a & b;
+ s = s & 0xfefefefe; // ensure following shift doesn't cross byte boundaries
+ s = s >> 1;
+ s = r + s;
+
+ return s;
+ }
+
+ static __device__ __forceinline__ unsigned int vavrg4(unsigned int a, unsigned int b)
+ {
+ unsigned int r = 0;
+
+ #if __CUDA_ARCH__ >= 300
+ asm("vavrg4.u32.u32.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #else
+ // HAKMEM #23: a + b = 2 * (a | b) - (a ^ b) ==>
+ // (a + b + 1) / 2 = (a | b) - ((a ^ b) >> 1)
+ unsigned int c;
+ c = a ^ b;
+ r = a | b;
+ c = c & 0xfefefefe; // ensure following shift doesn't cross byte boundaries
+ c = c >> 1;
+ r = r - c;
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vseteq4(unsigned int a, unsigned int b)
+ {
+ unsigned int r = 0;
+
+ #if __CUDA_ARCH__ >= 300
+ asm("vset4.u32.u32.eq %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #else
+ // inspired by Alan Mycroft's null-byte detection algorithm:
+ // null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080))
+ unsigned int c;
+ r = a ^ b; // 0x00 if a == b
+ c = r | 0x80808080; // set msbs, to catch carry out
+ r = r ^ c; // extract msbs, msb = 1 if r < 0x80
+ c = c - 0x01010101; // msb = 0, if r was 0x00 or 0x80
+ c = r & ~c; // msb = 1, if r was 0x00
+ r = c >> 7; // convert to bool
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vcmpeq4(unsigned int a, unsigned int b)
+ {
+ unsigned int r, t;
+
+ #if __CUDA_ARCH__ >= 300
+ r = vseteq4(a, b);
+ t = r << 8; // convert bool
+ r = t - r; // to mask
+ #else
+ // inspired by Alan Mycroft's null-byte detection algorithm:
+ // null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080))
+ t = a ^ b; // 0x00 if a == b
+ r = t | 0x80808080; // set msbs, to catch carry out
+ t = t ^ r; // extract msbs, msb = 1 if t < 0x80
+ r = r - 0x01010101; // msb = 0, if t was 0x00 or 0x80
+ r = t & ~r; // msb = 1, if t was 0x00
+ t = r >> 7; // build mask
+ t = r - t; // from
+ r = t | r; // msbs
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vsetle4(unsigned int a, unsigned int b)
+ {
+ unsigned int r = 0;
+
+ #if __CUDA_ARCH__ >= 300
+ asm("vset4.u32.u32.le %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #else
+ unsigned int c;
+ asm("not.b32 %0, %0;" : "+r"(a));
+ c = vavrg4(a, b); // (b + ~a + 1) / 2 = (b - a) / 2
+ c = c & 0x80808080; // msb = carry-outs
+ r = c >> 7; // convert to bool
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vcmple4(unsigned int a, unsigned int b)
+ {
+ unsigned int r, c;
+
+ #if __CUDA_ARCH__ >= 300
+ r = vsetle4(a, b);
+ c = r << 8; // convert bool
+ r = c - r; // to mask
+ #else
+ asm("not.b32 %0, %0;" : "+r"(a));
+ c = vavrg4(a, b); // (b + ~a + 1) / 2 = (b - a) / 2
+ c = c & 0x80808080; // msbs = carry-outs
+ r = c >> 7; // convert
+ r = c - r; // msbs to
+ r = c | r; // mask
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vsetlt4(unsigned int a, unsigned int b)
+ {
+ unsigned int r = 0;
+
+ #if __CUDA_ARCH__ >= 300
+ asm("vset4.u32.u32.lt %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #else
+ unsigned int c;
+ asm("not.b32 %0, %0;" : "+r"(a));
+ c = vavg4(a, b); // (b + ~a) / 2 = (b - a) / 2 [rounded down]
+ c = c & 0x80808080; // msb = carry-outs
+ r = c >> 7; // convert to bool
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vcmplt4(unsigned int a, unsigned int b)
+ {
+ unsigned int r, c;
+
+ #if __CUDA_ARCH__ >= 300
+ r = vsetlt4(a, b);
+ c = r << 8; // convert bool
+ r = c - r; // to mask
+ #else
+ asm("not.b32 %0, %0;" : "+r"(a));
+ c = vavg4(a, b); // (b + ~a) / 2 = (b - a) / 2 [rounded down]
+ c = c & 0x80808080; // msbs = carry-outs
+ r = c >> 7; // convert
+ r = c - r; // msbs to
+ r = c | r; // mask
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vsetge4(unsigned int a, unsigned int b)
+ {
+ unsigned int r = 0;
+
+ #if __CUDA_ARCH__ >= 300
+ asm("vset4.u32.u32.ge %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #else
+ unsigned int c;
+ asm("not.b32 %0, %0;" : "+r"(b));
+ c = vavrg4(a, b); // (a + ~b + 1) / 2 = (a - b) / 2
+ c = c & 0x80808080; // msb = carry-outs
+ r = c >> 7; // convert to bool
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vcmpge4(unsigned int a, unsigned int b)
+ {
+ unsigned int r, s;
+
+ #if __CUDA_ARCH__ >= 300
+ r = vsetge4(a, b);
+ s = r << 8; // convert bool
+ r = s - r; // to mask
+ #else
+ asm ("not.b32 %0,%0;" : "+r"(b));
+ r = vavrg4 (a, b); // (a + ~b + 1) / 2 = (a - b) / 2
+ r = r & 0x80808080; // msb = carry-outs
+ s = r >> 7; // build mask
+ s = r - s; // from
+ r = s | r; // msbs
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vsetgt4(unsigned int a, unsigned int b)
+ {
+ unsigned int r = 0;
+
+ #if __CUDA_ARCH__ >= 300
+ asm("vset4.u32.u32.gt %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #else
+ unsigned int c;
+ asm("not.b32 %0, %0;" : "+r"(b));
+ c = vavg4(a, b); // (a + ~b) / 2 = (a - b) / 2 [rounded down]
+ c = c & 0x80808080; // msb = carry-outs
+ r = c >> 7; // convert to bool
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vcmpgt4(unsigned int a, unsigned int b)
+ {
+ unsigned int r, c;
+
+ #if __CUDA_ARCH__ >= 300
+ r = vsetgt4(a, b);
+ c = r << 8; // convert bool
+ r = c - r; // to mask
+ #else
+ asm("not.b32 %0, %0;" : "+r"(b));
+ c = vavg4(a, b); // (a + ~b) / 2 = (a - b) / 2 [rounded down]
+ c = c & 0x80808080; // msb = carry-outs
+ r = c >> 7; // convert
+ r = c - r; // msbs to
+ r = c | r; // mask
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vsetne4(unsigned int a, unsigned int b)
+ {
+ unsigned int r = 0;
+
+ #if __CUDA_ARCH__ >= 300
+ asm("vset4.u32.u32.ne %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #else
+ // inspired by Alan Mycroft's null-byte detection algorithm:
+ // null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080))
+ unsigned int c;
+ r = a ^ b; // 0x00 if a == b
+ c = r | 0x80808080; // set msbs, to catch carry out
+ c = c - 0x01010101; // msb = 0, if r was 0x00 or 0x80
+ c = r | c; // msb = 1, if r was not 0x00
+ c = c & 0x80808080; // extract msbs
+ r = c >> 7; // convert to bool
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vcmpne4(unsigned int a, unsigned int b)
+ {
+ unsigned int r, c;
+
+ #if __CUDA_ARCH__ >= 300
+ r = vsetne4(a, b);
+ c = r << 8; // convert bool
+ r = c - r; // to mask
+ #else
+ // inspired by Alan Mycroft's null-byte detection algorithm:
+ // null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080))
+ r = a ^ b; // 0x00 if a == b
+ c = r | 0x80808080; // set msbs, to catch carry out
+ c = c - 0x01010101; // msb = 0, if r was 0x00 or 0x80
+ c = r | c; // msb = 1, if r was not 0x00
+ c = c & 0x80808080; // extract msbs
+ r = c >> 7; // convert
+ r = c - r; // msbs to
+ r = c | r; // mask
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vabsdiff4(unsigned int a, unsigned int b)
+ {
+ unsigned int r = 0;
+
+ #if __CUDA_ARCH__ >= 300
+ asm("vabsdiff4.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #elif __CUDA_ARCH__ >= 200
+ asm("vabsdiff.u32.u32.u32.sat %0.b0, %1.b0, %2.b0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ asm("vabsdiff.u32.u32.u32.sat %0.b1, %1.b1, %2.b1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ asm("vabsdiff.u32.u32.u32.sat %0.b2, %1.b2, %2.b2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ asm("vabsdiff.u32.u32.u32.sat %0.b3, %1.b3, %2.b3, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #else
+ unsigned int s;
+ s = vcmpge4(a, b); // mask = 0xff if a >= b
+ r = a ^ b; //
+ s = (r & s) ^ b; // select a when a >= b, else select b => max(a,b)
+ r = s ^ r; // select a when b >= a, else select b => min(a,b)
+ r = s - r; // |a - b| = max(a,b) - min(a,b);
+ #endif
+
+ return r;
+ }
+
+ static __device__ __forceinline__ unsigned int vmax4(unsigned int a, unsigned int b)
+ {
+ unsigned int r = 0;
+
+ #if __CUDA_ARCH__ >= 300
+ asm("vmax4.u32.u32.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #elif __CUDA_ARCH__ >= 200
+ asm("vmax.u32.u32.u32 %0.b0, %1.b0, %2.b0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ asm("vmax.u32.u32.u32 %0.b1, %1.b1, %2.b1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ asm("vmax.u32.u32.u32 %0.b2, %1.b2, %2.b2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ asm("vmax.u32.u32.u32 %0.b3, %1.b3, %2.b3, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #else
+ unsigned int s;
+ s = vcmpge4(a, b); // mask = 0xff if a >= b
+ r = a & s; // select a when b >= a
+ s = b & ~s; // select b when b < a
+ r = r | s; // combine byte selections
+ #endif
+
+ return r; // byte-wise unsigned maximum
+ }
+
+ static __device__ __forceinline__ unsigned int vmin4(unsigned int a, unsigned int b)
+ {
+ unsigned int r = 0;
+
+ #if __CUDA_ARCH__ >= 300
+ asm("vmin4.u32.u32.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #elif __CUDA_ARCH__ >= 200
+ asm("vmin.u32.u32.u32 %0.b0, %1.b0, %2.b0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ asm("vmin.u32.u32.u32 %0.b1, %1.b1, %2.b1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ asm("vmin.u32.u32.u32 %0.b2, %1.b2, %2.b2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ asm("vmin.u32.u32.u32 %0.b3, %1.b3, %2.b3, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
+ #else
+ unsigned int s;
+ s = vcmpge4(b, a); // mask = 0xff if a >= b
+ r = a & s; // select a when b >= a
+ s = b & ~s; // select b when b < a
+ r = r | s; // combine byte selections
+ #endif
+
+ return r;
+ }
+}}}
+
+#endif // __OPENCV_GPU_SIMD_FUNCTIONS_HPP__
#include "opencv2/gpu/device/transform.hpp"
#include "opencv2/gpu/device/limits.hpp"
#include "opencv2/gpu/device/saturate_cast.hpp"
+#include "opencv2/gpu/device/simd_functions.hpp"
using namespace cv::gpu;
using namespace cv::gpu::device;
namespace arithm
{
- template <typename T, typename D> struct VAdd4;
- template <> struct VAdd4<uint, uint> : binary_function<uint, uint, uint>
+ struct VAdd4 : binary_function<uint, uint, uint>
{
__device__ __forceinline__ uint operator ()(uint a, uint b) const
{
- uint res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vadd4.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vadd.u32.u32.u32.sat %0.b0, %1.b0, %2.b0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vadd.u32.u32.u32.sat %0.b1, %1.b1, %2.b1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vadd.u32.u32.u32.sat %0.b2, %1.b2, %2.b2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vadd.u32.u32.u32.sat %0.b3, %1.b3, %2.b3, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
- }
-
- __device__ __forceinline__ VAdd4() {}
- __device__ __forceinline__ VAdd4(const VAdd4<uint, uint>& other) {}
- };
- template <> struct VAdd4<int, uint> : binary_function<int, int, uint>
- {
- __device__ __forceinline__ uint operator ()(int a, int b) const
- {
- uint res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vadd4.u32.s32.s32.sat %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vadd.u32.s32.s32.sat %0.b0, %1.b0, %2.b0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vadd.u32.s32.s32.sat %0.b1, %1.b1, %2.b1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vadd.u32.s32.s32.sat %0.b2, %1.b2, %2.b2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vadd.u32.s32.s32.sat %0.b3, %1.b3, %2.b3, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
+ return vadd4(a, b);
}
__device__ __forceinline__ VAdd4() {}
- __device__ __forceinline__ VAdd4(const VAdd4<int, uint>& other) {}
- };
- template <> struct VAdd4<uint, int> : binary_function<uint, uint, int>
- {
- __device__ __forceinline__ int operator ()(uint a, uint b) const
- {
- int res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vadd4.s32.u32.u32.sat %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vadd.s32.u32.u32.sat %0.b0, %1.b0, %2.b0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vadd.s32.u32.u32.sat %0.b1, %1.b1, %2.b1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vadd.s32.u32.u32.sat %0.b2, %1.b2, %2.b2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vadd.s32.u32.u32.sat %0.b3, %1.b3, %2.b3, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
- }
-
- __device__ __forceinline__ VAdd4() {}
- __device__ __forceinline__ VAdd4(const VAdd4<uint, int>& other) {}
- };
- template <> struct VAdd4<int, int> : binary_function<int, int, int>
- {
- __device__ __forceinline__ int operator ()(int a, int b) const
- {
- int res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vadd4.s32.s32.s32.sat %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vadd.s32.s32.s32.sat %0.b0, %1.b0, %2.b0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vadd.s32.s32.s32.sat %0.b1, %1.b1, %2.b1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vadd.s32.s32.s32.sat %0.b2, %1.b2, %2.b2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vadd.s32.s32.s32.sat %0.b3, %1.b3, %2.b3, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
- }
-
- __device__ __forceinline__ VAdd4() {}
- __device__ __forceinline__ VAdd4(const VAdd4<int, int>& other) {}
+ __device__ __forceinline__ VAdd4(const VAdd4& other) {}
};
////////////////////////////////////
- template <typename T, typename D> struct VAdd2;
- template <> struct VAdd2<uint, uint> : binary_function<uint, uint, uint>
+ struct VAdd2 : binary_function<uint, uint, uint>
{
__device__ __forceinline__ uint operator ()(uint a, uint b) const
{
- uint res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vadd2.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vadd.u32.u32.u32.sat %0.h0, %1.h0, %2.h0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vadd.u32.u32.u32.sat %0.h1, %1.h1, %2.h1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
- }
-
- __device__ __forceinline__ VAdd2() {}
- __device__ __forceinline__ VAdd2(const VAdd2<uint, uint>& other) {}
- };
- template <> struct VAdd2<uint, int> : binary_function<uint, uint, int>
- {
- __device__ __forceinline__ int operator ()(uint a, uint b) const
- {
- int res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vadd2.s32.u32.u32.sat %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vadd.s32.u32.u32.sat %0.h0, %1.h0, %2.h0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vadd.s32.u32.u32.sat %0.h1, %1.h1, %2.h1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
- }
-
- __device__ __forceinline__ VAdd2() {}
- __device__ __forceinline__ VAdd2(const VAdd2<uint, int>& other) {}
- };
- template <> struct VAdd2<int, uint> : binary_function<int, int, uint>
- {
- __device__ __forceinline__ uint operator ()(int a, int b) const
- {
- uint res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vadd2.u32.s32.s32.sat %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vadd.u32.s32.s32.sat %0.h0, %1.h0, %2.h0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vadd.u32.s32.s32.sat %0.h1, %1.h1, %2.h1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
+ return vadd2(a, b);
}
__device__ __forceinline__ VAdd2() {}
- __device__ __forceinline__ VAdd2(const VAdd2<int, uint>& other) {}
- };
- template <> struct VAdd2<int, int> : binary_function<int, int, int>
- {
- __device__ __forceinline__ int operator ()(int a, int b) const
- {
- int res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vadd2.s32.s32.s32.sat %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vadd.s32.s32.s32.sat %0.h0, %1.h0, %2.h0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vadd.s32.s32.s32.sat %0.h1, %1.h1, %2.h1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
- }
-
- __device__ __forceinline__ VAdd2() {}
- __device__ __forceinline__ VAdd2(const VAdd2<int, int>& other) {}
+ __device__ __forceinline__ VAdd2(const VAdd2& other) {}
};
////////////////////////////////////
namespace cv { namespace gpu { namespace device
{
- template <typename T, typename D> struct TransformFunctorTraits< arithm::VAdd4<T, D> > : arithm::ArithmFuncTraits<sizeof(T), sizeof(D)>
+ template <> struct TransformFunctorTraits< arithm::VAdd4 > : arithm::ArithmFuncTraits<sizeof(uint), sizeof(uint)>
{
};
////////////////////////////////////
- template <typename T, typename D> struct TransformFunctorTraits< arithm::VAdd2<T, D> > : arithm::ArithmFuncTraits<sizeof(T), sizeof(D)>
+ template <> struct TransformFunctorTraits< arithm::VAdd2 > : arithm::ArithmFuncTraits<sizeof(uint), sizeof(uint)>
{
};
namespace arithm
{
- template <typename T, typename D>
- void vadd4(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream)
+ void addMat_v4(PtrStepSz<uint> src1, PtrStepSz<uint> src2, PtrStepSz<uint> dst, cudaStream_t stream)
{
- transform((PtrStepSz<T>) src1, (PtrStepSz<T>) src2, (PtrStepSz<D>) dst, VAdd4<T, D>(), WithOutMask(), stream);
+ transform(src1, src2, dst, VAdd4(), WithOutMask(), stream);
}
- template void vadd4<uint, uint>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
- template void vadd4<uint, int>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
- template void vadd4<int, uint>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
- template void vadd4<int, int>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
-
- template <typename T, typename D>
- void vadd2(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream)
+ void addMat_v2(PtrStepSz<uint> src1, PtrStepSz<uint> src2, PtrStepSz<uint> dst, cudaStream_t stream)
{
- transform((PtrStepSz<T>) src1, (PtrStepSz<T>) src2, (PtrStepSz<D>) dst, VAdd2<T, D>(), WithOutMask(), stream);
+ transform(src1, src2, dst, VAdd2(), WithOutMask(), stream);
}
- template void vadd2<uint, uint>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
- template void vadd2<uint, int>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
- template void vadd2<int, uint>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
- template void vadd2<int, int>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
-
template <typename T, typename D>
void addMat(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, PtrStepb mask, cudaStream_t stream)
{
namespace arithm
{
- template <typename T, typename D> struct VSub4;
- template <> struct VSub4<uint, uint> : binary_function<uint, uint, uint>
+ struct VSub4 : binary_function<uint, uint, uint>
{
__device__ __forceinline__ uint operator ()(uint a, uint b) const
{
- uint res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vsub4.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vsub.u32.u32.u32.sat %0.b0, %1.b0, %2.b0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vsub.u32.u32.u32.sat %0.b1, %1.b1, %2.b1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vsub.u32.u32.u32.sat %0.b2, %1.b2, %2.b2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vsub.u32.u32.u32.sat %0.b3, %1.b3, %2.b3, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
- }
-
- __device__ __forceinline__ VSub4() {}
- __device__ __forceinline__ VSub4(const VSub4<uint, uint>& other) {}
- };
- template <> struct VSub4<int, uint> : binary_function<int, int, uint>
- {
- __device__ __forceinline__ uint operator ()(int a, int b) const
- {
- uint res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vsub4.u32.s32.s32.sat %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vsub.u32.s32.s32.sat %0.b0, %1.b0, %2.b0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vsub.u32.s32.s32.sat %0.b1, %1.b1, %2.b1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vsub.u32.s32.s32.sat %0.b2, %1.b2, %2.b2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vsub.u32.s32.s32.sat %0.b3, %1.b3, %2.b3, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
- }
-
- __device__ __forceinline__ VSub4() {}
- __device__ __forceinline__ VSub4(const VSub4<int, uint>& other) {}
- };
- template <> struct VSub4<uint, int> : binary_function<uint, uint, int>
- {
- __device__ __forceinline__ int operator ()(uint a, uint b) const
- {
- int res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vsub4.s32.u32.u32.sat %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vsub.s32.u32.u32.sat %0.b0, %1.b0, %2.b0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vsub.s32.u32.u32.sat %0.b1, %1.b1, %2.b1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vsub.s32.u32.u32.sat %0.b2, %1.b2, %2.b2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vsub.s32.u32.u32.sat %0.b3, %1.b3, %2.b3, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
+ return vsub4(a, b);
}
__device__ __forceinline__ VSub4() {}
- __device__ __forceinline__ VSub4(const VSub4<uint, int>& other) {}
- };
- template <> struct VSub4<int, int> : binary_function<int, int, int>
- {
- __device__ __forceinline__ int operator ()(int a, int b) const
- {
- int res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vsub4.s32.s32.s32.sat %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vsub.s32.s32.s32.sat %0.b0, %1.b0, %2.b0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vsub.s32.s32.s32.sat %0.b1, %1.b1, %2.b1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vsub.s32.s32.s32.sat %0.b2, %1.b2, %2.b2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vsub.s32.s32.s32.sat %0.b3, %1.b3, %2.b3, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
- }
-
- __device__ __forceinline__ VSub4() {}
- __device__ __forceinline__ VSub4(const VSub4<int, int>& other) {}
+ __device__ __forceinline__ VSub4(const VSub4& other) {}
};
////////////////////////////////////
- template <typename T, typename D> struct VSub2;
- template <> struct VSub2<uint, uint> : binary_function<uint, uint, uint>
+ struct VSub2 : binary_function<uint, uint, uint>
{
__device__ __forceinline__ uint operator ()(uint a, uint b) const
{
- uint res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vsub2.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vsub.u32.u32.u32.sat %0.h0, %1.h0, %2.h0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vsub.u32.u32.u32.sat %0.h1, %1.h1, %2.h1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
- }
-
- __device__ __forceinline__ VSub2() {}
- __device__ __forceinline__ VSub2(const VSub2<uint, uint>& other) {}
- };
- template <> struct VSub2<uint, int> : binary_function<uint, uint, int>
- {
- __device__ __forceinline__ int operator ()(uint a, uint b) const
- {
- int res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vsub2.s32.u32.u32.sat %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vsub.s32.u32.u32.sat %0.h0, %1.h0, %2.h0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vsub.s32.u32.u32.sat %0.h1, %1.h1, %2.h1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
- }
-
- __device__ __forceinline__ VSub2() {}
- __device__ __forceinline__ VSub2(const VSub2<uint, int>& other) {}
- };
- template <> struct VSub2<int, uint> : binary_function<int, int, uint>
- {
- __device__ __forceinline__ uint operator ()(int a, int b) const
- {
- uint res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vsub2.u32.s32.s32.sat %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vsub.u32.s32.s32.sat %0.h0, %1.h0, %2.h0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vsub.u32.s32.s32.sat %0.h1, %1.h1, %2.h1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
- }
-
- __device__ __forceinline__ VSub2() {}
- __device__ __forceinline__ VSub2(const VSub2<int, uint>& other) {}
- };
- template <> struct VSub2<int, int> : binary_function<int, int, int>
- {
- __device__ __forceinline__ int operator ()(int a, int b) const
- {
- int res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vsub2.s32.s32.s32.sat %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vsub.s32.s32.s32.sat %0.h0, %1.h0, %2.h0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vsub.s32.s32.s32.sat %0.h1, %1.h1, %2.h1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
+ return vsub2(a, b);
}
__device__ __forceinline__ VSub2() {}
- __device__ __forceinline__ VSub2(const VSub2<int, int>& other) {}
+ __device__ __forceinline__ VSub2(const VSub2& other) {}
};
////////////////////////////////////
namespace cv { namespace gpu { namespace device
{
- template <typename T, typename D> struct TransformFunctorTraits< arithm::VSub4<T, D> > : arithm::ArithmFuncTraits<sizeof(T), sizeof(D)>
+ template <> struct TransformFunctorTraits< arithm::VSub4 > : arithm::ArithmFuncTraits<sizeof(uint), sizeof(uint)>
{
};
////////////////////////////////////
- template <typename T, typename D> struct TransformFunctorTraits< arithm::VSub2<T, D> > : arithm::ArithmFuncTraits<sizeof(T), sizeof(D)>
+ template <> struct TransformFunctorTraits< arithm::VSub2 > : arithm::ArithmFuncTraits<sizeof(uint), sizeof(uint)>
{
};
namespace arithm
{
- template <typename T, typename D>
- void vsub4(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream)
+ void subMat_v4(PtrStepSz<uint> src1, PtrStepSz<uint> src2, PtrStepSz<uint> dst, cudaStream_t stream)
{
- transform((PtrStepSz<T>) src1, (PtrStepSz<T>) src2, (PtrStepSz<D>) dst, VSub4<T, D>(), WithOutMask(), stream);
+ transform(src1, src2, dst, VSub4(), WithOutMask(), stream);
}
- template void vsub4<uint, uint>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
- template void vsub4<uint, int>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
- template void vsub4<int, uint>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
- template void vsub4<int, int>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
-
- template <typename T, typename D>
- void vsub2(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream)
+ void subMat_v2(PtrStepSz<uint> src1, PtrStepSz<uint> src2, PtrStepSz<uint> dst, cudaStream_t stream)
{
- transform((PtrStepSz<T>) src1, (PtrStepSz<T>) src2, (PtrStepSz<D>) dst, VSub2<T, D>(), WithOutMask(), stream);
+ transform(src1, src2, dst, VSub2(), WithOutMask(), stream);
}
- template void vsub2<uint, uint>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
- template void vsub2<uint, int>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
- template void vsub2<int, uint>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
- template void vsub2<int, int>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
-
template <typename T, typename D>
void subMat(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, PtrStepb mask, cudaStream_t stream)
{
namespace arithm
{
- template <typename T, typename D> struct VAbsDiff4;
- template <> struct VAbsDiff4<uint, uint> : binary_function<uint, uint, uint>
+ struct VAbsDiff4 : binary_function<uint, uint, uint>
{
__device__ __forceinline__ uint operator ()(uint a, uint b) const
{
- uint res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vabsdiff4.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vabsdiff.u32.u32.u32.sat %0.b0, %1.b0, %2.b0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vabsdiff.u32.u32.u32.sat %0.b1, %1.b1, %2.b1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vabsdiff.u32.u32.u32.sat %0.b2, %1.b2, %2.b2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vabsdiff.u32.u32.u32.sat %0.b3, %1.b3, %2.b3, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
+ return vabsdiff4(a, b);
}
__device__ __forceinline__ VAbsDiff4() {}
- __device__ __forceinline__ VAbsDiff4(const VAbsDiff4<uint, uint>& other) {}
- };
- template <> struct VAbsDiff4<int, int> : binary_function<int, int, int>
- {
- __device__ __forceinline__ int operator ()(int a, int b) const
- {
- int res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vabsdiff4.s32.s32.s32.sat %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vabsdiff.s32.s32.s32.sat %0.b0, %1.b0, %2.b0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vabsdiff.s32.s32.s32.sat %0.b1, %1.b1, %2.b1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vabsdiff.s32.s32.s32.sat %0.b2, %1.b2, %2.b2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vabsdiff.s32.s32.s32.sat %0.b3, %1.b3, %2.b3, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
- }
-
- __device__ __forceinline__ VAbsDiff4() {}
- __device__ __forceinline__ VAbsDiff4(const VAbsDiff4<int, int>& other) {}
+ __device__ __forceinline__ VAbsDiff4(const VAbsDiff4& other) {}
};
////////////////////////////////////
- template <typename T, typename D> struct VAbsDiff2;
- template <> struct VAbsDiff2<uint, uint> : binary_function<uint, uint, uint>
+ struct VAbsDiff2 : binary_function<uint, uint, uint>
{
__device__ __forceinline__ uint operator ()(uint a, uint b) const
{
- uint res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vabsdiff2.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vabsdiff.u32.u32.u32.sat %0.h0, %1.h0, %2.h0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vabsdiff.u32.u32.u32.sat %0.h1, %1.h1, %2.h1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
- }
-
- __device__ __forceinline__ VAbsDiff2() {}
- __device__ __forceinline__ VAbsDiff2(const VAbsDiff2<uint, uint>& other) {}
- };
- template <> struct VAbsDiff2<int, int> : binary_function<int, int, int>
- {
- __device__ __forceinline__ int operator ()(int a, int b) const
- {
- int res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vabsdiff2.s32.s32.s32.sat %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vabsdiff.s32.s32.s32.sat %0.h0, %1.h0, %2.h0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vabsdiff.s32.s32.s32.sat %0.h1, %1.h1, %2.h1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
+ return vabsdiff2(a, b);
}
__device__ __forceinline__ VAbsDiff2() {}
- __device__ __forceinline__ VAbsDiff2(const VAbsDiff2<int, int>& other) {}
+ __device__ __forceinline__ VAbsDiff2(const VAbsDiff2& other) {}
};
////////////////////////////////////
namespace cv { namespace gpu { namespace device
{
- template <typename T, typename D> struct TransformFunctorTraits< arithm::VAbsDiff4<T, D> > : arithm::ArithmFuncTraits<sizeof(T), sizeof(D)>
+ template <> struct TransformFunctorTraits< arithm::VAbsDiff4 > : arithm::ArithmFuncTraits<sizeof(uint), sizeof(uint)>
{
};
////////////////////////////////////
- template <typename T, typename D> struct TransformFunctorTraits< arithm::VAbsDiff2<T, D> > : arithm::ArithmFuncTraits<sizeof(T), sizeof(D)>
+ template <> struct TransformFunctorTraits< arithm::VAbsDiff2 > : arithm::ArithmFuncTraits<sizeof(uint), sizeof(uint)>
{
};
namespace arithm
{
- template <typename T>
- void vabsDiff4(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream)
+ void absDiffMat_v4(PtrStepSz<uint> src1, PtrStepSz<uint> src2, PtrStepSz<uint> dst, cudaStream_t stream)
{
- transform((PtrStepSz<T>) src1, (PtrStepSz<T>) src2, (PtrStepSz<T>) dst, VAbsDiff4<T, T>(), WithOutMask(), stream);
+ transform(src1, src2, dst, VAbsDiff4(), WithOutMask(), stream);
}
- template void vabsDiff4<uint>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
- template void vabsDiff4<int>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
-
- template <typename T>
- void vabsDiff2(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream)
+ void absDiffMat_v2(PtrStepSz<uint> src1, PtrStepSz<uint> src2, PtrStepSz<uint> dst, cudaStream_t stream)
{
- transform((PtrStepSz<T>) src1, (PtrStepSz<T>) src2, (PtrStepSz<T>) dst, VAbsDiff2<T, T>(), WithOutMask(), stream);
+ transform(src1, src2, dst, VAbsDiff2(), WithOutMask(), stream);
}
- template void vabsDiff2<uint>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
- template void vabsDiff2<int>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
-
template <typename T>
void absDiffMat(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream)
{
namespace arithm
{
+ struct VCmpEq4 : binary_function<uint, uint, uint>
+ {
+ __device__ __forceinline__ uint operator ()(uint a, uint b) const
+ {
+ return vcmpeq4(a, b);
+ }
+
+ __device__ __forceinline__ VCmpEq4() {}
+ __device__ __forceinline__ VCmpEq4(const VCmpEq4& other) {}
+ };
+ struct VCmpNe4 : binary_function<uint, uint, uint>
+ {
+ __device__ __forceinline__ uint operator ()(uint a, uint b) const
+ {
+ return vcmpne4(a, b);
+ }
+
+ __device__ __forceinline__ VCmpNe4() {}
+ __device__ __forceinline__ VCmpNe4(const VCmpNe4& other) {}
+ };
+ struct VCmpLt4 : binary_function<uint, uint, uint>
+ {
+ __device__ __forceinline__ uint operator ()(uint a, uint b) const
+ {
+ return vcmplt4(a, b);
+ }
+
+ __device__ __forceinline__ VCmpLt4() {}
+ __device__ __forceinline__ VCmpLt4(const VCmpLt4& other) {}
+ };
+ struct VCmpLe4 : binary_function<uint, uint, uint>
+ {
+ __device__ __forceinline__ uint operator ()(uint a, uint b) const
+ {
+ return vcmple4(a, b);
+ }
+
+ __device__ __forceinline__ VCmpLe4() {}
+ __device__ __forceinline__ VCmpLe4(const VCmpLe4& other) {}
+ };
+
+ ////////////////////////////////////
+
template <class Op, typename T>
struct Cmp : binary_function<T, T, uchar>
{
namespace cv { namespace gpu { namespace device
{
+ template <> struct TransformFunctorTraits< arithm::VCmpEq4 > : arithm::ArithmFuncTraits<sizeof(uint), sizeof(uint)>
+ {
+ };
+ template <> struct TransformFunctorTraits< arithm::VCmpNe4 > : arithm::ArithmFuncTraits<sizeof(uint), sizeof(uint)>
+ {
+ };
+ template <> struct TransformFunctorTraits< arithm::VCmpLt4 > : arithm::ArithmFuncTraits<sizeof(uint), sizeof(uint)>
+ {
+ };
+ template <> struct TransformFunctorTraits< arithm::VCmpLe4 > : arithm::ArithmFuncTraits<sizeof(uint), sizeof(uint)>
+ {
+ };
+
+ ////////////////////////////////////
+
template <class Op, typename T> struct TransformFunctorTraits< arithm::Cmp<Op, T> > : arithm::ArithmFuncTraits<sizeof(T), sizeof(uchar)>
{
};
namespace arithm
{
+ void cmpMatEq_v4(PtrStepSz<uint> src1, PtrStepSz<uint> src2, PtrStepSz<uint> dst, cudaStream_t stream)
+ {
+ transform(src1, src2, dst, VCmpEq4(), WithOutMask(), stream);
+ }
+ void cmpMatNe_v4(PtrStepSz<uint> src1, PtrStepSz<uint> src2, PtrStepSz<uint> dst, cudaStream_t stream)
+ {
+ transform(src1, src2, dst, VCmpNe4(), WithOutMask(), stream);
+ }
+ void cmpMatLt_v4(PtrStepSz<uint> src1, PtrStepSz<uint> src2, PtrStepSz<uint> dst, cudaStream_t stream)
+ {
+ transform(src1, src2, dst, VCmpLt4(), WithOutMask(), stream);
+ }
+ void cmpMatLe_v4(PtrStepSz<uint> src1, PtrStepSz<uint> src2, PtrStepSz<uint> dst, cudaStream_t stream)
+ {
+ transform(src1, src2, dst, VCmpLe4(), WithOutMask(), stream);
+ }
+
template <template <typename> class Op, typename T>
void cmpMat(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream)
{
namespace arithm
{
- template <typename T> struct VMin4;
- template <> struct VMin4<uint> : binary_function<uint, uint, uint>
+ struct VMin4 : binary_function<uint, uint, uint>
{
__device__ __forceinline__ uint operator ()(uint a, uint b) const
{
- uint res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vmin4.u32.u32.u32 %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vmin.u32.u32.u32 %0.b0, %1.b0, %2.b0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vmin.u32.u32.u32 %0.b1, %1.b1, %2.b1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vmin.u32.u32.u32 %0.b2, %1.b2, %2.b2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vmin.u32.u32.u32 %0.b3, %1.b3, %2.b3, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
- }
-
- __device__ __forceinline__ VMin4() {}
- __device__ __forceinline__ VMin4(const VMin4& other) {}
- };
- template <> struct VMin4<int> : binary_function<int, int, int>
- {
- __device__ __forceinline__ int operator ()(int a, int b) const
- {
- int res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vmin4.s32.s32.s32 %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vmin.s32.s32.s32 %0.b0, %1.b0, %2.b0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vmin.s32.s32.s32 %0.b1, %1.b1, %2.b1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vmin.s32.s32.s32 %0.b2, %1.b2, %2.b2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vmin.s32.s32.s32 %0.b3, %1.b3, %2.b3, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
+ return vmin4(a, b);
}
__device__ __forceinline__ VMin4() {}
////////////////////////////////////
- template <typename T> struct VMin2;
- template <> struct VMin2<uint> : binary_function<uint, uint, uint>
+ struct VMin2 : binary_function<uint, uint, uint>
{
__device__ __forceinline__ uint operator ()(uint a, uint b) const
{
- uint res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vmin2.u32.u32.u32 %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vmin.u32.u32.u32 %0.h0, %1.h0, %2.h0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vmin.u32.u32.u32 %0.h1, %1.h1, %2.h1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
- }
-
- __device__ __forceinline__ VMin2() {}
- __device__ __forceinline__ VMin2(const VMin2& other) {}
- };
- template <> struct VMin2<int> : binary_function<int, int, int>
- {
- __device__ __forceinline__ int operator ()(int a, int b) const
- {
- int res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vmin2.s32.s32.s32 %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vmin.s32.s32.s32 %0.h0, %1.h0, %2.h0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vmin.s32.s32.s32 %0.h1, %1.h1, %2.h1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
+ return vmin2(a, b);
}
__device__ __forceinline__ VMin2() {}
namespace cv { namespace gpu { namespace device
{
- template <typename T> struct TransformFunctorTraits< arithm::VMin4<T> > : arithm::ArithmFuncTraits<sizeof(T), sizeof(T)>
+ template <> struct TransformFunctorTraits< arithm::VMin4 > : arithm::ArithmFuncTraits<sizeof(uint), sizeof(uint)>
{
};
////////////////////////////////////
- template <typename T> struct TransformFunctorTraits< arithm::VMin2<T> > : arithm::ArithmFuncTraits<sizeof(T), sizeof(T)>
+ template <> struct TransformFunctorTraits< arithm::VMin2 > : arithm::ArithmFuncTraits<sizeof(uint), sizeof(uint)>
{
};
namespace arithm
{
- template <typename T> void vmin4(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream)
+ void minMat_v4(PtrStepSz<uint> src1, PtrStepSz<uint> src2, PtrStepSz<uint> dst, cudaStream_t stream)
{
- transform((PtrStepSz<T>) src1, (PtrStepSz<T>) src2, (PtrStepSz<T>) dst, VMin4<T>(), WithOutMask(), stream);
+ transform(src1, src2, dst, VMin4(), WithOutMask(), stream);
}
- template <typename T> void vmin2(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream)
+ void minMat_v2(PtrStepSz<uint> src1, PtrStepSz<uint> src2, PtrStepSz<uint> dst, cudaStream_t stream)
{
- transform((PtrStepSz<T>) src1, (PtrStepSz<T>) src2, (PtrStepSz<T>) dst, VMin2<T>(), WithOutMask(), stream);
+ transform(src1, src2, dst, VMin2(), WithOutMask(), stream);
}
template <typename T> void minMat(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream)
transform((PtrStepSz<T>) src1, (PtrStepSz<T>) src2, (PtrStepSz<T>) dst, minimum<T>(), WithOutMask(), stream);
}
- template void vmin4<uint>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
- template void vmin4<int>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
-
- template void vmin2<uint>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
- template void vmin2<int>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
-
template void minMat<uchar >(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
template void minMat<schar >(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
template void minMat<ushort>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
namespace arithm
{
- template <typename T> struct VMax4;
- template <> struct VMax4<uint> : binary_function<uint, uint, uint>
+ struct VMax4 : binary_function<uint, uint, uint>
{
__device__ __forceinline__ uint operator ()(uint a, uint b) const
{
- uint res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vmax4.u32.u32.u32 %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vmax.u32.u32.u32 %0.b0, %1.b0, %2.b0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vmax.u32.u32.u32 %0.b1, %1.b1, %2.b1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vmax.u32.u32.u32 %0.b2, %1.b2, %2.b2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vmax.u32.u32.u32 %0.b3, %1.b3, %2.b3, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
- }
-
- __device__ __forceinline__ VMax4() {}
- __device__ __forceinline__ VMax4(const VMax4& other) {}
- };
- template <> struct VMax4<int> : binary_function<int, int, int>
- {
- __device__ __forceinline__ int operator ()(int a, int b) const
- {
- int res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vmax4.s32.s32.s32 %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vmax.s32.s32.s32 %0.b0, %1.b0, %2.b0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vmax.s32.s32.s32 %0.b1, %1.b1, %2.b1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vmax.s32.s32.s32 %0.b2, %1.b2, %2.b2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vmax.s32.s32.s32 %0.b3, %1.b3, %2.b3, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
+ return vmax4(a, b);
}
__device__ __forceinline__ VMax4() {}
////////////////////////////////////
- template <typename T> struct VMax2;
- template <> struct VMax2<uint> : binary_function<uint, uint, uint>
+ struct VMax2 : binary_function<uint, uint, uint>
{
__device__ __forceinline__ uint operator ()(uint a, uint b) const
{
- uint res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vmax2.u32.u32.u32 %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vmax.u32.u32.u32 %0.h0, %1.h0, %2.h0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vmax.u32.u32.u32 %0.h1, %1.h1, %2.h1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
- }
-
- __device__ __forceinline__ VMax2() {}
- __device__ __forceinline__ VMax2(const VMax2& other) {}
- };
- template <> struct VMax2<int> : binary_function<int, int, int>
- {
- __device__ __forceinline__ int operator ()(int a, int b) const
- {
- int res = 0;
-
- #if __CUDA_ARCH__ >= 300
- asm("vmax2.s32.s32.s32 %0, %1, %2, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #elif __CUDA_ARCH__ >= 200
- asm("vmax.s32.s32.s32 %0.h0, %1.h0, %2.h0, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- asm("vmax.s32.s32.s32 %0.h1, %1.h1, %2.h1, %3;" : "=r"(res) : "r"(a), "r"(b), "r"(res));
- #endif
-
- return res;
+ return vmax2(a, b);
}
__device__ __forceinline__ VMax2() {}
namespace cv { namespace gpu { namespace device
{
- template <typename T> struct TransformFunctorTraits< arithm::VMax4<T> > : arithm::ArithmFuncTraits<sizeof(T), sizeof(T)>
+ template <> struct TransformFunctorTraits< arithm::VMax4 > : arithm::ArithmFuncTraits<sizeof(uint), sizeof(uint)>
{
};
////////////////////////////////////
- template <typename T> struct TransformFunctorTraits< arithm::VMax2<T> > : arithm::ArithmFuncTraits<sizeof(T), sizeof(T)>
+ template <> struct TransformFunctorTraits< arithm::VMax2 > : arithm::ArithmFuncTraits<sizeof(uint), sizeof(uint)>
{
};
namespace arithm
{
- template <typename T> void vmax4(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream)
+ void maxMat_v4(PtrStepSz<uint> src1, PtrStepSz<uint> src2, PtrStepSz<uint> dst, cudaStream_t stream)
{
- transform((PtrStepSz<T>) src1, (PtrStepSz<T>) src2, (PtrStepSz<T>) dst, VMax4<T>(), WithOutMask(), stream);
+ transform(src1, src2, dst, VMax4(), WithOutMask(), stream);
}
- template <typename T> void vmax2(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream)
+ void maxMat_v2(PtrStepSz<uint> src1, PtrStepSz<uint> src2, PtrStepSz<uint> dst, cudaStream_t stream)
{
- transform((PtrStepSz<T>) src1, (PtrStepSz<T>) src2, (PtrStepSz<T>) dst, VMax2<T>(), WithOutMask(), stream);
+ transform(src1, src2, dst, VMax2(), WithOutMask(), stream);
}
template <typename T> void maxMat(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream)
transform((PtrStepSz<T>) src1, (PtrStepSz<T>) src2, (PtrStepSz<T>) dst, maximum<T>(), WithOutMask(), stream);
}
- template void vmax4<uint>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
- template void vmax4<int>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
-
- template void vmax2<uint>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
- template void vmax2<int>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
-
template void maxMat<uchar >(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
template void maxMat<schar >(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
template void maxMat<ushort>(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
namespace arithm
{
- template <typename T, typename D>
- void vadd4(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
-
- template <typename T, typename D>
- void vadd2(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
+ void addMat_v4(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
+ void addMat_v2(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
template <typename T, typename D>
void addMat(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, PtrStepb mask, cudaStream_t stream);
}
};
- typedef void (*vfunc_t)(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
- static const vfunc_t vfuncs4[4][4] =
- {
- {
- vadd4<unsigned int, unsigned int>,
- vadd4<unsigned int, int>,
- 0,
- 0
- },
- {
- vadd4<int, unsigned int>,
- vadd4<int, int>,
- 0,
- 0
- },
- {
- 0,
- 0,
- 0,
- 0
- },
- {
- 0,
- 0,
- 0,
- 0
- }
- };
- static const vfunc_t vfuncs2[4][4] =
- {
- {
- 0,
- 0,
- 0,
- 0
- },
- {
- 0,
- 0,
- 0,
- 0
- },
- {
- 0,
- 0,
- vadd2<unsigned int, unsigned int>,
- vadd2<unsigned int, int>
- },
- {
- 0,
- 0,
- vadd2<int, unsigned int>,
- vadd2<int, int>
- }
- };
-
if (dtype < 0)
dtype = src1.depth();
PtrStepSzb src2_(src1.rows, src1.cols * cn, src2.data, src2.step);
PtrStepSzb dst_(src1.rows, src1.cols * cn, dst.data, dst.step);
- if (mask.empty() && sdepth < CV_32S && ddepth < CV_32S)
+ if (mask.empty() && (sdepth == CV_8U || sdepth == CV_16U) && ddepth == sdepth)
{
const intptr_t src1ptr = reinterpret_cast<intptr_t>(src1_.data);
const intptr_t src2ptr = reinterpret_cast<intptr_t>(src2_.data);
const bool isAllAligned = (src1ptr & 31) == 0 && (src2ptr & 31) == 0 && (dstptr & 31) == 0;
- if (deviceSupports(FEATURE_SET_COMPUTE_20) && isAllAligned)
+ if (isAllAligned)
{
- const vfunc_t vfunc4 = vfuncs4[sdepth][ddepth];
- const vfunc_t vfunc2 = vfuncs2[sdepth][ddepth];
-
- if (vfunc4 != 0 && (src1_.cols & 3) == 0)
+ if (sdepth == CV_8U && (src1_.cols & 3) == 0)
{
const int vcols = src1_.cols >> 2;
- vfunc4(PtrStepSzb(src1_.rows, vcols, src1_.data, src1_.step),
- PtrStepSzb(src1_.rows, vcols, src2_.data, src2_.step),
- PtrStepSzb(src1_.rows, vcols, dst_.data, dst_.step),
- stream);
+ addMat_v4(PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src1_.data, src1_.step),
+ PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src2_.data, src2_.step),
+ PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) dst_.data, dst_.step),
+ stream);
return;
}
-
- if (vfunc2 != 0 && (src1_.cols & 1) == 0)
+ else if (sdepth == CV_16U && (src1_.cols & 1) == 0)
{
const int vcols = src1_.cols >> 1;
- vfunc2(PtrStepSzb(src1_.rows, vcols, src1_.data, src1_.step),
- PtrStepSzb(src1_.rows, vcols, src2_.data, src2_.step),
- PtrStepSzb(src1_.rows, vcols, dst_.data, dst_.step),
- stream);
+ addMat_v2(PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src1_.data, src1_.step),
+ PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src2_.data, src2_.step),
+ PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) dst_.data, dst_.step),
+ stream);
return;
}
namespace arithm
{
- template <typename T, typename D>
- void vsub4(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
-
- template <typename T, typename D>
- void vsub2(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
+ void subMat_v4(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
+ void subMat_v2(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
template <typename T, typename D>
void subMat(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, PtrStepb mask, cudaStream_t stream);
}
};
- typedef void (*vfunc_t)(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
- static const vfunc_t vfuncs4[4][4] =
- {
- {
- vsub4<unsigned int, unsigned int>,
- vsub4<unsigned int, int>,
- 0,
- 0
- },
- {
- vsub4<int, unsigned int>,
- vsub4<int, int>,
- 0,
- 0
- },
- {
- 0,
- 0,
- 0,
- 0
- },
- {
- 0,
- 0,
- 0,
- 0
- }
- };
- static const vfunc_t vfuncs2[4][4] =
- {
- {
- 0,
- 0,
- 0,
- 0
- },
- {
- 0,
- 0,
- 0,
- 0
- },
- {
- 0,
- 0,
- vsub2<unsigned int, unsigned int>,
- vsub2<unsigned int, int>
- },
- {
- 0,
- 0,
- vsub2<int, unsigned int>,
- vsub2<int, int>
- }
- };
-
if (dtype < 0)
dtype = src1.depth();
PtrStepSzb src2_(src1.rows, src1.cols * cn, src2.data, src2.step);
PtrStepSzb dst_(src1.rows, src1.cols * cn, dst.data, dst.step);
- if (mask.empty() && sdepth < CV_32S && ddepth < CV_32S)
+ if (mask.empty() && (sdepth == CV_8U || sdepth == CV_16U) && ddepth == sdepth)
{
const intptr_t src1ptr = reinterpret_cast<intptr_t>(src1_.data);
const intptr_t src2ptr = reinterpret_cast<intptr_t>(src2_.data);
const bool isAllAligned = (src1ptr & 31) == 0 && (src2ptr & 31) == 0 && (dstptr & 31) == 0;
- if (deviceSupports(FEATURE_SET_COMPUTE_20) && isAllAligned)
+ if (isAllAligned)
{
- const vfunc_t vfunc4 = vfuncs4[sdepth][ddepth];
- const vfunc_t vfunc2 = vfuncs2[sdepth][ddepth];
-
- if (vfunc4 != 0 && (src1_.cols & 3) == 0)
+ if (sdepth == CV_8U && (src1_.cols & 3) == 0)
{
const int vcols = src1_.cols >> 2;
- vfunc4(PtrStepSzb(src1_.rows, vcols, src1_.data, src1_.step),
- PtrStepSzb(src1_.rows, vcols, src2_.data, src2_.step),
- PtrStepSzb(src1_.rows, vcols, dst_.data, dst_.step),
- stream);
+ subMat_v4(PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src1_.data, src1_.step),
+ PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src2_.data, src2_.step),
+ PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) dst_.data, dst_.step),
+ stream);
return;
}
-
- if (vfunc2 != 0 && (src1_.cols & 1) == 0)
+ else if (sdepth == CV_16U && (src1_.cols & 1) == 0)
{
const int vcols = src1_.cols >> 1;
- vfunc2(PtrStepSzb(src1_.rows, vcols, src1_.data, src1_.step),
- PtrStepSzb(src1_.rows, vcols, src2_.data, src2_.step),
- PtrStepSzb(src1_.rows, vcols, dst_.data, dst_.step),
- stream);
+ subMat_v2(PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src1_.data, src1_.step),
+ PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src2_.data, src2_.step),
+ PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) dst_.data, dst_.step),
+ stream);
return;
}
namespace arithm
{
- template <typename T>
- void vabsDiff4(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
-
- template <typename T>
- void vabsDiff2(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
+ void absDiffMat_v4(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
+ void absDiffMat_v2(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
template <typename T>
void absDiffMat(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
absDiffMat<float>,
absDiffMat<double>
};
- static const func_t vfuncs4[] =
- {
- vabsDiff4<unsigned int>,
- vabsDiff4<int>,
- 0,
- 0
- };
- static const func_t vfuncs2[] =
- {
- 0,
- 0,
- vabsDiff2<unsigned int>,
- vabsDiff2<int>
- };
const int depth = src1.depth();
const int cn = src1.channels();
PtrStepSzb src2_(src1.rows, src1.cols * cn, src2.data, src2.step);
PtrStepSzb dst_(src1.rows, src1.cols * cn, dst.data, dst.step);
- if (depth < CV_32S)
+ if (depth == CV_8U || depth == CV_16U)
{
const intptr_t src1ptr = reinterpret_cast<intptr_t>(src1_.data);
const intptr_t src2ptr = reinterpret_cast<intptr_t>(src2_.data);
const bool isAllAligned = (src1ptr & 31) == 0 && (src2ptr & 31) == 0 && (dstptr & 31) == 0;
- if (deviceSupports(FEATURE_SET_COMPUTE_20) && isAllAligned)
+ if (isAllAligned)
{
- const func_t vfunc4 = vfuncs4[depth];
- const func_t vfunc2 = vfuncs2[depth];
-
- if (vfunc4 != 0 && (src1_.cols & 3) == 0)
+ if (depth == CV_8U && (src1_.cols & 3) == 0)
{
const int vcols = src1_.cols >> 2;
- vfunc4(PtrStepSzb(src1_.rows, vcols, src1_.data, src1_.step),
- PtrStepSzb(src1_.rows, vcols, src2_.data, src2_.step),
- PtrStepSzb(src1_.rows, vcols, dst_.data, dst_.step),
- stream);
+ absDiffMat_v4(PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src1_.data, src1_.step),
+ PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src2_.data, src2_.step),
+ PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) dst_.data, dst_.step),
+ stream);
return;
}
-
- if (vfunc2 != 0 && (src1_.cols & 1) == 0)
+ else if (depth == CV_16U && (src1_.cols & 1) == 0)
{
const int vcols = src1_.cols >> 1;
- vfunc2(PtrStepSzb(src1_.rows, vcols, src1_.data, src1_.step),
- PtrStepSzb(src1_.rows, vcols, src2_.data, src2_.step),
- PtrStepSzb(src1_.rows, vcols, dst_.data, dst_.step),
- stream);
+ absDiffMat_v2(PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src1_.data, src1_.step),
+ PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src2_.data, src2_.step),
+ PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) dst_.data, dst_.step),
+ stream);
return;
}
namespace arithm
{
+ void cmpMatEq_v4(PtrStepSz<uint> src1, PtrStepSz<uint> src2, PtrStepSz<uint> dst, cudaStream_t stream);
+ void cmpMatNe_v4(PtrStepSz<uint> src1, PtrStepSz<uint> src2, PtrStepSz<uint> dst, cudaStream_t stream);
+ void cmpMatLt_v4(PtrStepSz<uint> src1, PtrStepSz<uint> src2, PtrStepSz<uint> dst, cudaStream_t stream);
+ void cmpMatLe_v4(PtrStepSz<uint> src1, PtrStepSz<uint> src2, PtrStepSz<uint> dst, cudaStream_t stream);
+
template <typename T> void cmpMatEq(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
template <typename T> void cmpMatNe(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
template <typename T> void cmpMatLt(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
{cmpMatEq<double> , cmpMatNe<double> , cmpMatLt<double> , cmpMatLe<double> }
};
+ typedef void (*func_v4_t)(PtrStepSz<uint> src1, PtrStepSz<uint> src2, PtrStepSz<uint> dst, cudaStream_t stream);
+ static const func_v4_t funcs_v4[] =
+ {
+ cmpMatEq_v4, cmpMatNe_v4, cmpMatLt_v4, cmpMatLe_v4
+ };
+
const int depth = src1.depth();
const int cn = src1.channels();
PtrStepSzb src2_(src1.rows, src1.cols * cn, psrc2[cmpop]->data, psrc2[cmpop]->step);
PtrStepSzb dst_(src1.rows, src1.cols * cn, dst.data, dst.step);
+ if (depth == CV_8U && (src1_.cols & 3) == 0)
+ {
+ const intptr_t src1ptr = reinterpret_cast<intptr_t>(src1_.data);
+ const intptr_t src2ptr = reinterpret_cast<intptr_t>(src2_.data);
+ const intptr_t dstptr = reinterpret_cast<intptr_t>(dst_.data);
+
+ const bool isAllAligned = (src1ptr & 31) == 0 && (src2ptr & 31) == 0 && (dstptr & 31) == 0;
+
+ if (isAllAligned)
+ {
+ const int vcols = src1_.cols >> 2;
+
+ funcs_v4[code](PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src1_.data, src1_.step),
+ PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src2_.data, src2_.step),
+ PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) dst_.data, dst_.step),
+ stream);
+
+ return;
+ }
+ }
+
const func_t func = funcs[depth][code];
func(src1_, src2_, dst_, stream);
namespace arithm
{
- template <typename T> void vmin4(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
- template <typename T> void vmin2(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
+ void minMat_v4(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
+ void minMat_v2(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
template <typename T> void minMat(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
template <typename T> void minScalar(PtrStepSzb src1, double src2, PtrStepSzb dst, cudaStream_t stream);
- template <typename T> void vmax4(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
- template <typename T> void vmax2(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
+ void maxMat_v4(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
+ void maxMat_v2(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
template <typename T> void maxMat(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
template <typename T> void maxScalar(PtrStepSzb src1, double src2, PtrStepSzb dst, cudaStream_t stream);
}
minMat<float>,
minMat<double>
};
- static const func_t vfuncs4[] =
- {
- vmin4<unsigned int>,
- vmin4<int>,
- 0,
- 0
- };
- static const func_t vfuncs2[] =
- {
- 0,
- 0,
- vmin2<unsigned int>,
- vmin2<int>
- };
const int depth = src1.depth();
const int cn = src1.channels();
PtrStepSzb src2_(src1.rows, src1.cols * cn, src2.data, src2.step);
PtrStepSzb dst_(src1.rows, src1.cols * cn, dst.data, dst.step);
- if (depth < CV_32S)
+ if (depth == CV_8U || depth == CV_16U)
{
const intptr_t src1ptr = reinterpret_cast<intptr_t>(src1_.data);
const intptr_t src2ptr = reinterpret_cast<intptr_t>(src2_.data);
const bool isAllAligned = (src1ptr & 31) == 0 && (src2ptr & 31) == 0 && (dstptr & 31) == 0;
- if (deviceSupports(FEATURE_SET_COMPUTE_20) && isAllAligned)
+ if (isAllAligned)
{
- const func_t vfunc4 = vfuncs4[depth];
- const func_t vfunc2 = vfuncs2[depth];
-
- if (vfunc4 != 0 && (src1_.cols & 3) == 0)
+ if (depth == CV_8U && (src1_.cols & 3) == 0)
{
const int vcols = src1_.cols >> 2;
- vfunc4(PtrStepSzb(src1_.rows, vcols, src1_.data, src1_.step),
- PtrStepSzb(src1_.rows, vcols, src2_.data, src2_.step),
- PtrStepSzb(src1_.rows, vcols, dst_.data, dst_.step),
- stream);
+ minMat_v4(PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src1_.data, src1_.step),
+ PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src2_.data, src2_.step),
+ PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) dst_.data, dst_.step),
+ stream);
return;
}
-
- if (vfunc2 != 0 && (src1_.cols & 1) == 0)
+ else if (depth == CV_16U && (src1_.cols & 1) == 0)
{
const int vcols = src1_.cols >> 1;
- vfunc2(PtrStepSzb(src1_.rows, vcols, src1_.data, src1_.step),
- PtrStepSzb(src1_.rows, vcols, src2_.data, src2_.step),
- PtrStepSzb(src1_.rows, vcols, dst_.data, dst_.step),
- stream);
+ minMat_v2(PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src1_.data, src1_.step),
+ PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src2_.data, src2_.step),
+ PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) dst_.data, dst_.step),
+ stream);
return;
}
maxMat<float>,
maxMat<double>
};
- static const func_t vfuncs4[] =
- {
- vmax4<unsigned int>,
- vmax4<int>,
- 0,
- 0
- };
- static const func_t vfuncs2[] =
- {
- 0,
- 0,
- vmax2<unsigned int>,
- vmax2<int>
- };
const int depth = src1.depth();
const int cn = src1.channels();
PtrStepSzb src2_(src1.rows, src1.cols * cn, src2.data, src2.step);
PtrStepSzb dst_(src1.rows, src1.cols * cn, dst.data, dst.step);
- if (depth < CV_32S)
+ if (depth == CV_8U || depth == CV_16U)
{
const intptr_t src1ptr = reinterpret_cast<intptr_t>(src1_.data);
const intptr_t src2ptr = reinterpret_cast<intptr_t>(src2_.data);
const bool isAllAligned = (src1ptr & 31) == 0 && (src2ptr & 31) == 0 && (dstptr & 31) == 0;
- if (deviceSupports(FEATURE_SET_COMPUTE_20) && isAllAligned)
+ if (isAllAligned)
{
- const func_t vfunc4 = vfuncs4[depth];
- const func_t vfunc2 = vfuncs2[depth];
-
- if (vfunc4 != 0 && (src1_.cols & 3) == 0)
+ if (depth == CV_8U && (src1_.cols & 3) == 0)
{
const int vcols = src1_.cols >> 2;
- vfunc4(PtrStepSzb(src1_.rows, vcols, src1_.data, src1_.step),
- PtrStepSzb(src1_.rows, vcols, src2_.data, src2_.step),
- PtrStepSzb(src1_.rows, vcols, dst_.data, dst_.step),
- stream);
+ maxMat_v4(PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src1_.data, src1_.step),
+ PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src2_.data, src2_.step),
+ PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) dst_.data, dst_.step),
+ stream);
return;
}
-
- if (vfunc2 != 0 && (src1_.cols & 1) == 0)
+ else if (depth == CV_16U && (src1_.cols & 1) == 0)
{
const int vcols = src1_.cols >> 1;
- vfunc2(PtrStepSzb(src1_.rows, vcols, src1_.data, src1_.step),
- PtrStepSzb(src1_.rows, vcols, src2_.data, src2_.step),
- PtrStepSzb(src1_.rows, vcols, dst_.data, dst_.step),
- stream);
+ maxMat_v2(PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src1_.data, src1_.step),
+ PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src2_.data, src2_.step),
+ PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) dst_.data, dst_.step),
+ stream);
return;
}