/* Wrappers around error_report which make sure to dump as much
* information from libssh2 as possible.
*/
-static void
+static void GCC_FMT_ATTR(2, 3)
session_error_report(BDRVSSHState *s, const char *fs, ...)
{
va_list args;
error_printf("\n");
}
-static void
+static void GCC_FMT_ATTR(2, 3)
sftp_error_report(BDRVSSHState *s, const char *fs, ...)
{
va_list args;
}
/* host_key_check=md5:xx:yy:zz:... */
- if (strlen(host_key_check) >= 4 &&
- strncmp(host_key_check, "md5:", 4) == 0) {
+ if (strncmp(host_key_check, "md5:", 4) == 0) {
return check_host_key_hash(s, &host_key_check[4],
LIBSSH2_HOSTKEY_HASH_MD5, 16);
}
/* host_key_check=sha1:xx:yy:zz:... */
- if (strlen(host_key_check) >= 5 &&
- strncmp(host_key_check, "sha1:", 5) == 0) {
+ if (strncmp(host_key_check, "sha1:", 5) == 0) {
return check_host_key_hash(s, &host_key_check[5],
LIBSSH2_HOSTKEY_HASH_SHA1, 20);
}
CONTEXT tcgContext;
if (SuspendThread(cpu->hThread) == (DWORD)-1) {
- fprintf(stderr, "qemu:%s: GetLastError:%d\n", __func__,
+ fprintf(stderr, "qemu:%s: GetLastError:%lu\n", __func__,
GetLastError());
exit(1);
}
cpu_signal(0);
if (ResumeThread(cpu->hThread) == (DWORD)-1) {
- fprintf(stderr, "qemu:%s: GetLastError:%d\n", __func__,
+ fprintf(stderr, "qemu:%s: GetLastError:%lu\n", __func__,
GetLastError());
exit(1);
}
CONFIG_SERIAL_PCI=y
CONFIG_IPACK=y
CONFIG_WDT_IB6300ESB=y
+CONFIG_PCI_TESTDEV=y
--- /dev/null
+pci-test is a device used for testing low level IO
+
+device implements up to two BARs: BAR0 and BAR1.
+Each BAR can be memory or IO. Guests must detect
+BAR type and act accordingly.
+
+Each BAR size is up to 4K bytes.
+Each BAR starts with the following header:
+
+typedef struct PCITestDevHdr {
+ uint8_t test; <- write-only, starts a given test number
+ uint8_t width_type; <- read-only, type and width of access for a given test.
+ 1,2,4 for byte,word or long write.
+ any other value if test not supported on this BAR
+ uint8_t pad0[2];
+ uint32_t offset; <- read-only, offset in this BAR for a given test
+ uint32_t data; <- read-only, data to use for a given test
+ uint32_t count; <- for debugging. number of writes detected.
+ uint8_t name[]; <- for debugging. 0-terminated ASCII string.
+} PCITestDevHdr;
+
+All registers are little endian.
+
+device is expected to always implement tests 0 to N on each BAR, and to add new
+tests with higher numbers. In this way a guest can scan test numbers until it
+detects an access type that it does not support on this BAR, then stop.
addr = bitband_addr(opaque, offset) & ~1;
mask = (1 << ((offset >> 2) & 15));
mask = tswap16(mask);
- cpu_physical_memory_read(addr, (uint8_t *)&v, 2);
+ cpu_physical_memory_read(addr, &v, 2);
return (v & mask) != 0;
}
addr = bitband_addr(opaque, offset) & ~1;
mask = (1 << ((offset >> 2) & 15));
mask = tswap16(mask);
- cpu_physical_memory_read(addr, (uint8_t *)&v, 2);
+ cpu_physical_memory_read(addr, &v, 2);
if (value & 1)
v |= mask;
else
v &= ~mask;
- cpu_physical_memory_write(addr, (uint8_t *)&v, 2);
+ cpu_physical_memory_write(addr, &v, 2);
}
static uint32_t bitband_readl(void *opaque, hwaddr offset)
addr = bitband_addr(opaque, offset) & ~3;
mask = (1 << ((offset >> 2) & 31));
mask = tswap32(mask);
- cpu_physical_memory_read(addr, (uint8_t *)&v, 4);
+ cpu_physical_memory_read(addr, &v, 4);
return (v & mask) != 0;
}
addr = bitband_addr(opaque, offset) & ~3;
mask = (1 << ((offset >> 2) & 31));
mask = tswap32(mask);
- cpu_physical_memory_read(addr, (uint8_t *)&v, 4);
+ cpu_physical_memory_read(addr, &v, 4);
if (value & 1)
v |= mask;
else
v &= ~mask;
- cpu_physical_memory_write(addr, (uint8_t *)&v, 4);
+ cpu_physical_memory_write(addr, &v, 4);
}
static const MemoryRegionOps bitband_ops = {
int cmdline_size;
cmdline_size = strlen(info->kernel_cmdline);
- cpu_physical_memory_write(p + 8, (void *)info->kernel_cmdline,
+ cpu_physical_memory_write(p + 8, info->kernel_cmdline,
cmdline_size + 1);
cmdline_size = (cmdline_size >> 2) + 1;
WRITE_WORD(p, cmdline_size + 2);
}
s = info->kernel_cmdline;
if (s) {
- cpu_physical_memory_write(p, (void *)s, strlen(s) + 1);
+ cpu_physical_memory_write(p, s, strlen(s) + 1);
} else {
WRITE_WORD(p, 0);
}
cpu_to_le16s(&desc->buffer_size);
cpu_to_le32s(&desc->buffer);
cpu_to_le32s(&desc->next);
- cpu_physical_memory_write(addr, (void *)desc, sizeof(*desc));
+ cpu_physical_memory_write(addr, desc, sizeof(*desc));
}
static void eth_rx_desc_get(uint32_t addr, mv88w8618_rx_desc *desc)
{
- cpu_physical_memory_read(addr, (void *)desc, sizeof(*desc));
+ cpu_physical_memory_read(addr, desc, sizeof(*desc));
le32_to_cpus(&desc->cmdstat);
le16_to_cpus(&desc->bytes);
le16_to_cpus(&desc->buffer_size);
cpu_to_le16s(&desc->bytes);
cpu_to_le32s(&desc->buffer);
cpu_to_le32s(&desc->next);
- cpu_physical_memory_write(addr, (void *)desc, sizeof(*desc));
+ cpu_physical_memory_write(addr, desc, sizeof(*desc));
}
static void eth_tx_desc_get(uint32_t addr, mv88w8618_tx_desc *desc)
{
- cpu_physical_memory_read(addr, (void *)desc, sizeof(*desc));
+ cpu_physical_memory_read(addr, desc, sizeof(*desc));
le32_to_cpus(&desc->cmdstat);
le16_to_cpus(&desc->res);
le16_to_cpus(&desc->bytes);
(4 << 0); /* BASEADDRESS */
cpu_physical_memory_write(0x6800a078, /* GPMC_CONFIG7_0 */
- (void *) &config7, sizeof(config7));
+ &config7, sizeof(config7));
}
/* Setup sequence done by the bootloader */
/* PRCM setup */
#define omap_writel(addr, val) \
buf = (val); \
- cpu_physical_memory_write(addr, (void *) &buf, sizeof(buf))
+ cpu_physical_memory_write(addr, &buf, sizeof(buf))
omap_writel(0x48008060, 0x41); /* PRCM_CLKSRC_CTRL */
omap_writel(0x48008070, 1); /* PRCM_CLKOUT_CTRL */
uint8_t ret;
OMAP_8B_REG(addr);
- cpu_physical_memory_read(addr, (void *) &ret, 1);
+ cpu_physical_memory_read(addr, &ret, 1);
return ret;
}
uint8_t val8 = value;
OMAP_8B_REG(addr);
- cpu_physical_memory_write(addr, (void *) &val8, 1);
+ cpu_physical_memory_write(addr, &val8, 1);
}
uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
uint16_t ret;
OMAP_16B_REG(addr);
- cpu_physical_memory_read(addr, (void *) &ret, 2);
+ cpu_physical_memory_read(addr, &ret, 2);
return ret;
}
uint16_t val16 = value;
OMAP_16B_REG(addr);
- cpu_physical_memory_write(addr, (void *) &val16, 2);
+ cpu_physical_memory_write(addr, &val16, 2);
}
uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
uint32_t ret;
OMAP_32B_REG(addr);
- cpu_physical_memory_read(addr, (void *) &ret, 4);
+ cpu_physical_memory_read(addr, &ret, 4);
return ret;
}
uint32_t value)
{
OMAP_32B_REG(addr);
- cpu_physical_memory_write(addr, (void *) &value, 4);
+ cpu_physical_memory_write(addr, &value, 4);
}
/* MPU OS timers */
if (block_size > 4096) {
return;
}
- cpu_physical_memory_read(s->target_buffer + s->play_pos, (void *)buf,
- block_size);
+ cpu_physical_memory_read(s->target_buffer + s->play_pos, buf, block_size);
mem_buffer = buf;
if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE) {
if (s->playback_mode & MP_AUDIO_MONO) {
#include "hw/hw.h"
#include "sysemu/blockdev.h"
#include "hw/ssi.h"
-#include "hw/devices.h"
#ifndef M25P80_ERR_DEBUG
#define M25P80_ERR_DEBUG 0
continue;
}
- cpu_physical_memory_read(descptr, (void *)&desc, sizeof(desc));
+ cpu_physical_memory_read(descptr, &desc, sizeof(desc));
s->dma_ch[i].descriptor = tswap32(desc.fdaddr);
s->dma_ch[i].source = tswap32(desc.fsaddr);
s->dma_ch[i].id = tswap32(desc.fidr);
if ((s->chan[ch].descr & DDADR_BREN) && (s->chan[ch].state & DCSR_CMPST))
daddr += 32;
- cpu_physical_memory_read(daddr, (uint8_t *) desc, 16);
+ cpu_physical_memory_read(daddr, desc, 16);
s->chan[ch].descr = desc[DDADR];
s->chan[ch].src = desc[DSADR];
s->chan[ch].dest = desc[DTADR];
{
struct SDesc *d = &s->desc;
- cpu_physical_memory_read(addr, (void *) d, sizeof *d);
+ cpu_physical_memory_read(addr, d, sizeof *d);
/* Convert from LE into host endianness. */
d->buffer_address = le64_to_cpu(d->buffer_address);
d->nxtdesc = cpu_to_le64(d->nxtdesc);
d->control = cpu_to_le32(d->control);
d->status = cpu_to_le32(d->status);
- cpu_physical_memory_write(addr, (void *) d, sizeof *d);
+ cpu_physical_memory_write(addr, d, sizeof *d);
}
static void stream_update_irq(struct Stream *s)
void sl_bootparam_write(hwaddr ptr)
{
- cpu_physical_memory_write(ptr, (void *)&zaurus_bootparam,
+ cpu_physical_memory_write(ptr, &zaurus_bootparam,
sizeof(struct sl_param_info));
}
}
}
- cpu_physical_memory_write(addr, (void *)fdt, fdt_size);
+ cpu_physical_memory_write(addr, fdt, fdt_size);
#else
/* We lack libfdt so we cannot manipulate the fdt. Just pass on the blob
to the kernel. */
common-obj-$(CONFIG_ISA_DEBUG) += debugexit.o
common-obj-$(CONFIG_SGA) += sga.o
common-obj-$(CONFIG_ISA_TESTDEV) += pc-testdev.o
+common-obj-$(CONFIG_PCI_TESTDEV) += pci-testdev.o
obj-$(CONFIG_VMPORT) += vmport.o
DBDMA_DPRINTF("dbdma_cmdptr_load 0x%08x\n",
ch->regs[DBDMA_CMDPTR_LO]);
cpu_physical_memory_read(ch->regs[DBDMA_CMDPTR_LO],
- (uint8_t*)&ch->current, sizeof(dbdma_cmd));
+ &ch->current, sizeof(dbdma_cmd));
}
static void dbdma_cmdptr_save(DBDMA_channel *ch)
le16_to_cpu(ch->current.xfer_status),
le16_to_cpu(ch->current.res_count));
cpu_physical_memory_write(ch->regs[DBDMA_CMDPTR_LO],
- (uint8_t*)&ch->current, sizeof(dbdma_cmd));
+ &ch->current, sizeof(dbdma_cmd));
}
static void kill_channel(DBDMA_channel *ch)
return;
}
- cpu_physical_memory_read(addr, (uint8_t*)&val, len);
+ cpu_physical_memory_read(addr, &val, len);
if (len == 2)
val = (val << 16) | (current->cmd_dep & 0x0000ffff);
else if (len == 1)
val >>= 24;
- cpu_physical_memory_write(addr, (uint8_t*)&val, len);
+ cpu_physical_memory_write(addr, &val, len);
if (conditional_wait(ch))
goto wait;
hwaddr dma_ptr =
get_dma_address(s->regs[R_MESHBASE],
s->gp_regs[GPR_X], s->gp_regs[GPR_Y]);
- cpu_physical_memory_write(dma_ptr, (uint8_t *)&a, 4);
- cpu_physical_memory_write(dma_ptr + 4, (uint8_t *)&b, 4);
+ cpu_physical_memory_write(dma_ptr, &a, 4);
+ cpu_physical_memory_write(dma_ptr + 4, &b, 4);
s->regs[R_LASTDMA] = dma_ptr + 4;
D_EXEC(qemu_log("VECTOUT a=%08x b=%08x dma=%08x\n", a, b, dma_ptr));
trace_milkymist_pfpu_vectout(a, b, dma_ptr);
--- /dev/null
+/*
+ * QEMU PCI test device
+ *
+ * Copyright (c) 2012 Red Hat Inc.
+ * Author: Michael S. Tsirkin <mst@redhat.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+#include "hw/hw.h"
+#include "hw/pci/pci.h"
+#include "qemu/event_notifier.h"
+#include "qemu/osdep.h"
+
+typedef struct PCITestDevHdr {
+ uint8_t test;
+ uint8_t width;
+ uint8_t pad0[2];
+ uint32_t offset;
+ uint8_t data;
+ uint8_t pad1[3];
+ uint32_t count;
+ uint8_t name[];
+} PCITestDevHdr;
+
+typedef struct IOTest {
+ MemoryRegion *mr;
+ EventNotifier notifier;
+ bool hasnotifier;
+ unsigned size;
+ bool match_data;
+ PCITestDevHdr *hdr;
+ unsigned bufsize;
+} IOTest;
+
+#define IOTEST_DATAMATCH 0xFA
+#define IOTEST_NOMATCH 0xCE
+
+#define IOTEST_IOSIZE 128
+#define IOTEST_MEMSIZE 2048
+
+static const char *iotest_test[] = {
+ "no-eventfd",
+ "wildcard-eventfd",
+ "datamatch-eventfd"
+};
+
+static const char *iotest_type[] = {
+ "mmio",
+ "portio"
+};
+
+#define IOTEST_TEST(i) (iotest_test[((i) % ARRAY_SIZE(iotest_test))])
+#define IOTEST_TYPE(i) (iotest_type[((i) / ARRAY_SIZE(iotest_test))])
+#define IOTEST_MAX_TEST (ARRAY_SIZE(iotest_test))
+#define IOTEST_MAX_TYPE (ARRAY_SIZE(iotest_type))
+#define IOTEST_MAX (IOTEST_MAX_TEST * IOTEST_MAX_TYPE)
+
+enum {
+ IOTEST_ACCESS_NAME,
+ IOTEST_ACCESS_DATA,
+ IOTEST_ACCESS_MAX,
+};
+
+#define IOTEST_ACCESS_TYPE uint8_t
+#define IOTEST_ACCESS_WIDTH (sizeof(uint8_t))
+
+typedef struct PCITestDevState {
+ PCIDevice dev;
+ MemoryRegion mmio;
+ MemoryRegion portio;
+ IOTest *tests;
+ int current;
+} PCITestDevState;
+
+#define IOTEST_IS_MEM(i) (strcmp(IOTEST_TYPE(i), "portio"))
+#define IOTEST_REGION(d, i) (IOTEST_IS_MEM(i) ? &(d)->mmio : &(d)->portio)
+#define IOTEST_SIZE(i) (IOTEST_IS_MEM(i) ? IOTEST_MEMSIZE : IOTEST_IOSIZE)
+#define IOTEST_PCI_BAR(i) (IOTEST_IS_MEM(i) ? PCI_BASE_ADDRESS_SPACE_MEMORY : \
+ PCI_BASE_ADDRESS_SPACE_IO)
+
+static int pci_testdev_start(IOTest *test)
+{
+ test->hdr->count = 0;
+ if (!test->hasnotifier) {
+ return 0;
+ }
+ event_notifier_test_and_clear(&test->notifier);
+ memory_region_add_eventfd(test->mr,
+ le32_to_cpu(test->hdr->offset),
+ test->size,
+ test->match_data,
+ test->hdr->data,
+ &test->notifier);
+ return 0;
+}
+
+static void pci_testdev_stop(IOTest *test)
+{
+ if (!test->hasnotifier) {
+ return;
+ }
+ memory_region_del_eventfd(test->mr,
+ le32_to_cpu(test->hdr->offset),
+ test->size,
+ test->match_data,
+ test->hdr->data,
+ &test->notifier);
+}
+
+static void
+pci_testdev_reset(PCITestDevState *d)
+{
+ if (d->current == -1) {
+ return;
+ }
+ pci_testdev_stop(&d->tests[d->current]);
+ d->current = -1;
+}
+
+static void pci_testdev_inc(IOTest *test, unsigned inc)
+{
+ uint32_t c = le32_to_cpu(test->hdr->count);
+ test->hdr->count = cpu_to_le32(c + inc);
+}
+
+static void
+pci_testdev_write(void *opaque, hwaddr addr, uint64_t val,
+ unsigned size, int type)
+{
+ PCITestDevState *d = opaque;
+ IOTest *test;
+ int t, r;
+
+ if (addr == offsetof(PCITestDevHdr, test)) {
+ pci_testdev_reset(d);
+ if (val >= IOTEST_MAX_TEST) {
+ return;
+ }
+ t = type * IOTEST_MAX_TEST + val;
+ r = pci_testdev_start(&d->tests[t]);
+ if (r < 0) {
+ return;
+ }
+ d->current = t;
+ return;
+ }
+ if (d->current < 0) {
+ return;
+ }
+ test = &d->tests[d->current];
+ if (addr != le32_to_cpu(test->hdr->offset)) {
+ return;
+ }
+ if (test->match_data && test->size != size) {
+ return;
+ }
+ if (test->match_data && val != test->hdr->data) {
+ return;
+ }
+ pci_testdev_inc(test, 1);
+}
+
+static uint64_t
+pci_testdev_read(void *opaque, hwaddr addr, unsigned size)
+{
+ PCITestDevState *d = opaque;
+ const char *buf;
+ IOTest *test;
+ if (d->current < 0) {
+ return 0;
+ }
+ test = &d->tests[d->current];
+ buf = (const char *)test->hdr;
+ if (addr + size >= test->bufsize) {
+ return 0;
+ }
+ if (test->hasnotifier) {
+ event_notifier_test_and_clear(&test->notifier);
+ }
+ return buf[addr];
+}
+
+static void
+pci_testdev_mmio_write(void *opaque, hwaddr addr, uint64_t val,
+ unsigned size)
+{
+ pci_testdev_write(opaque, addr, val, size, 0);
+}
+
+static void
+pci_testdev_pio_write(void *opaque, hwaddr addr, uint64_t val,
+ unsigned size)
+{
+ pci_testdev_write(opaque, addr, val, size, 1);
+}
+
+static const MemoryRegionOps pci_testdev_mmio_ops = {
+ .read = pci_testdev_read,
+ .write = pci_testdev_mmio_write,
+ .endianness = DEVICE_LITTLE_ENDIAN,
+ .impl = {
+ .min_access_size = 1,
+ .max_access_size = 1,
+ },
+};
+
+static const MemoryRegionOps pci_testdev_pio_ops = {
+ .read = pci_testdev_read,
+ .write = pci_testdev_pio_write,
+ .endianness = DEVICE_LITTLE_ENDIAN,
+ .impl = {
+ .min_access_size = 1,
+ .max_access_size = 1,
+ },
+};
+
+static int pci_testdev_init(PCIDevice *pci_dev)
+{
+ PCITestDevState *d = DO_UPCAST(PCITestDevState, dev, pci_dev);
+ uint8_t *pci_conf;
+ char *name;
+ int r, i;
+
+ pci_conf = d->dev.config;
+
+ pci_conf[PCI_INTERRUPT_PIN] = 0; /* no interrupt pin */
+
+ memory_region_init_io(&d->mmio, &pci_testdev_mmio_ops, d,
+ "pci-testdev-mmio", IOTEST_MEMSIZE * 2);
+ memory_region_init_io(&d->portio, &pci_testdev_pio_ops, d,
+ "pci-testdev-portio", IOTEST_IOSIZE * 2);
+ pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio);
+ pci_register_bar(&d->dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->portio);
+
+ d->current = -1;
+ d->tests = g_malloc0(IOTEST_MAX * sizeof *d->tests);
+ for (i = 0; i < IOTEST_MAX; ++i) {
+ IOTest *test = &d->tests[i];
+ name = g_strdup_printf("%s-%s", IOTEST_TYPE(i), IOTEST_TEST(i));
+ test->bufsize = sizeof(PCITestDevHdr) + strlen(name) + 1;
+ test->hdr = g_malloc0(test->bufsize);
+ memcpy(test->hdr->name, name, strlen(name) + 1);
+ g_free(name);
+ test->hdr->offset = cpu_to_le32(IOTEST_SIZE(i) + i * IOTEST_ACCESS_WIDTH);
+ test->size = IOTEST_ACCESS_WIDTH;
+ test->match_data = strcmp(IOTEST_TEST(i), "wildcard-eventfd");
+ test->hdr->test = i;
+ test->hdr->data = test->match_data ? IOTEST_DATAMATCH : IOTEST_NOMATCH;
+ test->hdr->width = IOTEST_ACCESS_WIDTH;
+ test->mr = IOTEST_REGION(d, i);
+ if (!strcmp(IOTEST_TEST(i), "no-eventfd")) {
+ test->hasnotifier = false;
+ continue;
+ }
+ r = event_notifier_init(&test->notifier, 0);
+ assert(r >= 0);
+ test->hasnotifier = true;
+ }
+
+ return 0;
+}
+
+static void
+pci_testdev_uninit(PCIDevice *dev)
+{
+ PCITestDevState *d = DO_UPCAST(PCITestDevState, dev, dev);
+ int i;
+
+ pci_testdev_reset(d);
+ for (i = 0; i < IOTEST_MAX; ++i) {
+ if (d->tests[i].hasnotifier) {
+ event_notifier_cleanup(&d->tests[i].notifier);
+ }
+ g_free(d->tests[i].hdr);
+ }
+ g_free(d->tests);
+ memory_region_destroy(&d->mmio);
+ memory_region_destroy(&d->portio);
+}
+
+static void qdev_pci_testdev_reset(DeviceState *dev)
+{
+ PCITestDevState *d = DO_UPCAST(PCITestDevState, dev.qdev, dev);
+ pci_testdev_reset(d);
+}
+
+static void pci_testdev_class_init(ObjectClass *klass, void *data)
+{
+ DeviceClass *dc = DEVICE_CLASS(klass);
+ PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
+
+ k->init = pci_testdev_init;
+ k->exit = pci_testdev_uninit;
+ k->vendor_id = PCI_VENDOR_ID_REDHAT;
+ k->device_id = PCI_DEVICE_ID_REDHAT_TEST;
+ k->revision = 0x00;
+ k->class_id = PCI_CLASS_OTHERS;
+ dc->desc = "PCI Test Device";
+ dc->reset = qdev_pci_testdev_reset;
+}
+
+static const TypeInfo pci_testdev_info = {
+ .name = "pci-testdev",
+ .parent = TYPE_PCI_DEVICE,
+ .instance_size = sizeof(PCITestDevState),
+ .class_init = pci_testdev_class_init,
+};
+
+static void pci_testdev_register_types(void)
+{
+ type_register_static(&pci_testdev_info);
+}
+
+type_init(pci_testdev_register_types)
static void mcf_fec_read_bd(mcf_fec_bd *bd, uint32_t addr)
{
- cpu_physical_memory_read(addr, (uint8_t *)bd, sizeof(*bd));
+ cpu_physical_memory_read(addr, bd, sizeof(*bd));
be16_to_cpus(&bd->flags);
be16_to_cpus(&bd->length);
be32_to_cpus(&bd->data);
tmp.flags = cpu_to_be16(bd->flags);
tmp.length = cpu_to_be16(bd->length);
tmp.data = cpu_to_be32(bd->data);
- cpu_physical_memory_write(addr, (uint8_t *)&tmp, sizeof(tmp));
+ cpu_physical_memory_write(addr, &tmp, sizeof(tmp));
}
static void mcf_fec_update(mcf_fec_state *s)
if (kernel_cmdline != NULL) {
len = strlen(kernel_cmdline);
bdloc -= ((len + 255) & ~255);
- cpu_physical_memory_write(bdloc, (void *)kernel_cmdline, len + 1);
+ cpu_physical_memory_write(bdloc, kernel_cmdline, len + 1);
env->gpr[6] = bdloc;
env->gpr[7] = bdloc + len;
} else {
r = qemu_devtree_setprop_string(fdt, "/chosen", "bootargs", kernel_cmdline);
if (r < 0)
fprintf(stderr, "couldn't set /chosen/bootargs\n");
- cpu_physical_memory_write (addr, (void *)fdt, fdt_size);
+ cpu_physical_memory_write(addr, fdt, fdt_size);
#else
/* We lack libfdt so we cannot manipulate the fdt. Just pass on the blob
to the kernel. */
#define PCI_DEVICE_ID_REDHAT_SERIAL 0x0002
#define PCI_DEVICE_ID_REDHAT_SERIAL2 0x0003
#define PCI_DEVICE_ID_REDHAT_SERIAL4 0x0004
+#define PCI_DEVICE_ID_REDHAT_TEST 0x0005
#define PCI_DEVICE_ID_REDHAT_QXL 0x0100
#define FMT_PCIBUS PRIx64
uint32_t host_features);
typedef struct virtio_serial_conf virtio_serial_conf;
VirtIODevice *virtio_serial_init(DeviceState *dev, virtio_serial_conf *serial);
-VirtIODevice *virtio_balloon_init(DeviceState *dev);
typedef struct VirtIOSCSIConf VirtIOSCSIConf;
VirtIODevice *virtio_scsi_init(DeviceState *dev, VirtIOSCSIConf *conf);
typedef struct VirtIORNGConf VirtIORNGConf;
void virtio_net_exit(VirtIODevice *vdev);
void virtio_serial_exit(VirtIODevice *vdev);
-void virtio_balloon_exit(VirtIODevice *vdev);
void virtio_scsi_exit(VirtIODevice *vdev);
void virtio_rng_exit(VirtIODevice *vdev);
#include "config-host.h"
#include <inttypes.h>
#include <limits.h>
+#include <string.h>
#include "fpu/softfloat.h"
#ifdef CONFIG_MACHINE_BSWAP_H
#endif
#endif
-int kvm_set_ioeventfd_mmio(int fd, uint32_t adr, uint32_t val, bool assign,
- uint32_t size);
-
-int kvm_set_ioeventfd_pio_word(int fd, uint16_t adr, uint16_t val, bool assign);
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg);
int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg);
return ret;
}
+static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val,
+ bool assign, uint32_t size, bool datamatch)
+{
+ int ret;
+ struct kvm_ioeventfd iofd;
+
+ iofd.datamatch = datamatch ? val : 0;
+ iofd.addr = addr;
+ iofd.len = size;
+ iofd.flags = 0;
+ iofd.fd = fd;
+
+ if (!kvm_enabled()) {
+ return -ENOSYS;
+ }
+
+ if (datamatch) {
+ iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
+ }
+ if (!assign) {
+ iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
+ }
+
+ ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
+
+ if (ret < 0) {
+ return -errno;
+ }
+
+ return 0;
+}
+
+static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
+ bool assign, uint32_t size, bool datamatch)
+{
+ struct kvm_ioeventfd kick = {
+ .datamatch = datamatch ? val : 0,
+ .addr = addr,
+ .flags = KVM_IOEVENTFD_FLAG_PIO,
+ .len = size,
+ .fd = fd,
+ };
+ int r;
+ if (!kvm_enabled()) {
+ return -ENOSYS;
+ }
+ if (datamatch) {
+ kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
+ }
+ if (!assign) {
+ kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
+ }
+ r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
+ if (r < 0) {
+ return r;
+ }
+ return 0;
+}
+
+
static int kvm_check_many_ioeventfds(void)
{
/* Userspace can use ioeventfd for io notification. This requires a host
if (ioeventfds[i] < 0) {
break;
}
- ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
+ ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
if (ret < 0) {
close(ioeventfds[i]);
break;
ret = i == ARRAY_SIZE(ioeventfds);
while (i-- > 0) {
- kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
+ kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
close(ioeventfds[i]);
}
return ret;
int fd = event_notifier_get_fd(e);
int r;
- assert(match_data && section->size <= 8);
-
r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
- data, true, section->size);
+ data, true, section->size, match_data);
if (r < 0) {
abort();
}
int r;
r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
- data, false, section->size);
+ data, false, section->size, match_data);
if (r < 0) {
abort();
}
int fd = event_notifier_get_fd(e);
int r;
- assert(match_data && section->size == 2);
-
- r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
- data, true);
+ r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
+ data, true, section->size, match_data);
if (r < 0) {
abort();
}
int fd = event_notifier_get_fd(e);
int r;
- r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
- data, false);
+ r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
+ data, false, section->size, match_data);
if (r < 0) {
abort();
}
return r;
}
-
-int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
- uint32_t size)
-{
- int ret;
- struct kvm_ioeventfd iofd;
-
- iofd.datamatch = val;
- iofd.addr = addr;
- iofd.len = size;
- iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
- iofd.fd = fd;
-
- if (!kvm_enabled()) {
- return -ENOSYS;
- }
-
- if (!assign) {
- iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
- }
-
- ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
-
- if (ret < 0) {
- return -errno;
- }
-
- return 0;
-}
-
-int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
-{
- struct kvm_ioeventfd kick = {
- .datamatch = val,
- .addr = addr,
- .len = 2,
- .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
- .fd = fd,
- };
- int r;
- if (!kvm_enabled()) {
- return -ENOSYS;
- }
- if (!assign) {
- kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
- }
- r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
- if (r < 0) {
- return r;
- }
- return 0;
-}
-
int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
{
return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
}
#endif
-int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
-{
- return -ENOSYS;
-}
-
-int kvm_set_ioeventfd_mmio(int fd, uint32_t adr, uint32_t val, bool assign, uint32_t len)
-{
- return -ENOSYS;
-}
-
int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
{
return 1;
for (i = 0; i < nw; i++) {
v = 0;
for (j = 0; j < TARGET_ABI_BITS; j++) {
- v |= ((FD_ISSET(k, fds) != 0) << j);
+ v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
k++;
}
__put_user(v, &target_fds[i]);
if (target_to_host_sembuf(sops, ptr, nsops))
return -TARGET_EFAULT;
- return semop(semid, sops, nsops);
+ return get_errno(semop(semid, sops, nsops));
}
struct target_msqid_ds
#endif
#ifdef TARGET_NR_semop
case TARGET_NR_semop:
- ret = get_errno(do_semop(arg1, arg2, arg3));
+ ret = do_semop(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_semctl
if (gidsetsize == 0)
break;
if (!is_error(ret)) {
- target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 2, 0);
+ target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0);
if (!target_grouplist)
goto efault;
for(i = 0;i < ret; i++)
target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
- unlock_user(target_grouplist, arg2, gidsetsize * 2);
+ unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id));
}
}
break;
int i;
if (gidsetsize) {
grouplist = alloca(gidsetsize * sizeof(gid_t));
- target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 2, 1);
+ target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1);
if (!target_grouplist) {
ret = -TARGET_EFAULT;
goto fail;
class msr(object):
def __init__(self):
try:
- self.f = file('/dev/cpu/0/msr')
+ self.f = open('/dev/cpu/0/msr', 'r', 0)
except:
- self.f = file('/dev/msr0')
+ self.f = open('/dev/msr0', 'r', 0)
def read(self, index, default = None):
import struct
self.f.seek(index)
print ' %-40s %s' % (self.bits[bits], fmt(v))
controls = [
+ Misc(
+ name = 'Basic VMX Information',
+ bits = {
+ (0, 31): 'Revision',
+ (32,44): 'VMCS size',
+ 48: 'VMCS restricted to 32 bit addresses',
+ 49: 'Dual-monitor support',
+ (50, 53): 'VMCS memory type',
+ 54: 'INS/OUTS instruction information',
+ 55: 'IA32_VMX_TRUE_*_CTLS support',
+ },
+ msr = MSR_IA32_VMX_BASIC,
+ ),
Control(
name = 'pin-based controls',
bits = {
3: 'NMI exiting',
5: 'Virtual NMIs',
6: 'Activate VMX-preemption timer',
+ 7: 'Process posted interrupts',
},
cap_msr = MSR_IA32_VMX_PINBASED_CTLS,
true_cap_msr = MSR_IA32_VMX_TRUE_PINBASED_CTLS,
0: 'Virtualize APIC accesses',
1: 'Enable EPT',
2: 'Descriptor-table exiting',
+ 3: 'Enable RDTSCP',
4: 'Virtualize x2APIC mode',
5: 'Enable VPID',
6: 'WBINVD exiting',
7: 'Unrestricted guest',
+ 8: 'APIC register emulation',
9: 'Virtual interrupt delivery',
10: 'PAUSE-loop exiting',
11: 'RDRAND exiting',
12: 'Enable INVPCID',
13: 'Enable VM functions',
+ 14: 'VMCS shadowing',
+ 18: 'EPT-violation #VE'
},
cap_msr = MSR_IA32_VMX_PROCBASED_CTLS2,
),
6: 'HLT activity state',
7: 'Shutdown activity state',
8: 'Wait-for-SIPI activity state',
+ 15: 'IA32_SMBASE support',
(16,24): 'Number of CR3-target values',
(25,27): 'MSR-load/store count recommenation',
28: 'IA32_SMM_MONITOR_CTL[2] can be set to 1',
- (32,62): 'MSEG revision identifier',
+ 29: 'VMWRITE to VM-exit information fields',
+ (32,63): 'MSEG revision identifier',
},
msr = MSR_IA32_VMX_MISC_CTLS,
),
#endif
uint64_t system_time_msr;
uint64_t wall_clock_msr;
+ uint64_t steal_time_msr;
uint64_t async_pf_en_msr;
uint64_t pv_eoi_en_msr;
static bool has_msr_async_pf_en;
static bool has_msr_pv_eoi_en;
static bool has_msr_misc_enable;
+static bool has_msr_kvm_steal_time;
static int lm_capable_kernel;
bool kvm_allows_irq0_override(void)
has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
+ has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
+
cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
for (i = 0; i <= limit; i++) {
kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
env->pv_eoi_en_msr);
}
+ if (has_msr_kvm_steal_time) {
+ kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
+ env->steal_time_msr);
+ }
if (hyperv_hypercall_available()) {
kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
if (has_msr_pv_eoi_en) {
msrs[n++].index = MSR_KVM_PV_EOI_EN;
}
+ if (has_msr_kvm_steal_time) {
+ msrs[n++].index = MSR_KVM_STEAL_TIME;
+ }
if (env->mcg_cap) {
msrs[n++].index = MSR_MCG_STATUS;
case MSR_KVM_PV_EOI_EN:
env->pv_eoi_en_msr = msrs[i].data;
break;
+ case MSR_KVM_STEAL_TIME:
+ env->steal_time_msr = msrs[i].data;
+ break;
}
}
return cpu->env.pv_eoi_en_msr != 0;
}
+static bool steal_time_msr_needed(void *opaque)
+{
+ CPUX86State *cpu = opaque;
+
+ return cpu->steal_time_msr != 0;
+}
+
+static const VMStateDescription vmstate_steal_time_msr = {
+ .name = "cpu/steal_time_msr",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .minimum_version_id_old = 1,
+ .fields = (VMStateField []) {
+ VMSTATE_UINT64(steal_time_msr, CPUX86State),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
static const VMStateDescription vmstate_async_pf_msr = {
.name = "cpu/async_pf_msr",
.version_id = 1,
} , {
.vmsd = &vmstate_pv_eoi_msr,
.needed = pv_eoi_msr_needed,
+ } , {
+ .vmsd = &vmstate_steal_time_msr,
+ .needed = steal_time_msr_needed,
} , {
.vmsd = &vmstate_fpop_ip_dp,
.needed = fpop_ip_dp_needed,