* If the owning (remote) CPU is still in the middle of schedule() with
* this task as prev, wait until its done referencing the task.
*
- * Pairs with the smp_store_release() in finish_lock_switch().
+ * Pairs with the smp_store_release() in finish_task().
*
* This ensures that tasks getting woken will be fully ordered against
* their previous state and preserve Program Order.
#endif /* CONFIG_PREEMPT_NOTIFIERS */
+static inline void prepare_task(struct task_struct *next)
+{
+#ifdef CONFIG_SMP
+ /*
+ * Claim the task as running, we do this before switching to it
+ * such that any running task will have this set.
+ */
+ next->on_cpu = 1;
+#endif
+}
+
+static inline void finish_task(struct task_struct *prev)
+{
+#ifdef CONFIG_SMP
+ /*
+ * After ->on_cpu is cleared, the task can be moved to a different CPU.
+ * We must ensure this doesn't happen until the switch is completely
+ * finished.
+ *
+ * In particular, the load of prev->state in finish_task_switch() must
+ * happen before this.
+ *
+ * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
+ */
+ smp_store_release(&prev->on_cpu, 0);
+#endif
+}
+
+static inline void finish_lock_switch(struct rq *rq)
+{
+#ifdef CONFIG_DEBUG_SPINLOCK
+ /* this is a valid case when another task releases the spinlock */
+ rq->lock.owner = current;
+#endif
+ /*
+ * If we are tracking spinlock dependencies then we have to
+ * fix up the runqueue lock - which gets 'carried over' from
+ * prev into current:
+ */
+ spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
+
+ raw_spin_unlock_irq(&rq->lock);
+}
+
/**
* prepare_task_switch - prepare to switch tasks
* @rq: the runqueue preparing to switch
sched_info_switch(rq, prev, next);
perf_event_task_sched_out(prev, next);
fire_sched_out_preempt_notifiers(prev, next);
- prepare_lock_switch(rq, next);
+ prepare_task(next);
prepare_arch_switch(next);
}
* the scheduled task must drop that reference.
*
* We must observe prev->state before clearing prev->on_cpu (in
- * finish_lock_switch), otherwise a concurrent wakeup can get prev
+ * finish_task), otherwise a concurrent wakeup can get prev
* running on another CPU and we could rave with its RUNNING -> DEAD
* transition, resulting in a double drop.
*/
* to use.
*/
smp_mb__after_unlock_lock();
- finish_lock_switch(rq, prev);
+ finish_task(prev);
+ finish_lock_switch(rq);
finish_arch_post_lock_switch();
fire_sched_in_preempt_notifiers(current);
# define finish_arch_post_lock_switch() do { } while (0)
#endif
-static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
-{
-#ifdef CONFIG_SMP
- /*
- * We can optimise this out completely for !SMP, because the
- * SMP rebalancing from interrupt is the only thing that cares
- * here.
- */
- next->on_cpu = 1;
-#endif
-}
-
-static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
-{
-#ifdef CONFIG_SMP
- /*
- * After ->on_cpu is cleared, the task can be moved to a different CPU.
- * We must ensure this doesn't happen until the switch is completely
- * finished.
- *
- * In particular, the load of prev->state in finish_task_switch() must
- * happen before this.
- *
- * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
- */
- smp_store_release(&prev->on_cpu, 0);
-#endif
-#ifdef CONFIG_DEBUG_SPINLOCK
- /* this is a valid case when another task releases the spinlock */
- rq->lock.owner = current;
-#endif
- /*
- * If we are tracking spinlock dependencies then we have to
- * fix up the runqueue lock - which gets 'carried over' from
- * prev into current:
- */
- spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
-
- raw_spin_unlock_irq(&rq->lock);
-}
-
/*
* wake flags
*/