#include "llvm/Linker/Linker.h"
#include "llvm-c/Linker.h"
+#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
//===----------------------------------------------------------------------===//
namespace {
-typedef SmallPtrSet<StructType *, 32> TypeSet;
-
class TypeMapTy : public ValueMapTypeRemapper {
/// This is a mapping from a source type to a destination type to use.
DenseMap<Type*, Type*> MappedTypes;
SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
public:
- TypeMapTy(TypeSet &Set) : DstStructTypesSet(Set) {}
+ TypeMapTy(Linker::IdentifiedStructTypeSet &DstStructTypesSet)
+ : DstStructTypesSet(DstStructTypesSet) {}
- TypeSet &DstStructTypesSet;
+ Linker::IdentifiedStructTypeSet &DstStructTypesSet;
/// Indicate that the specified type in the destination module is conceptually
/// equivalent to the specified type in the source module.
void addTypeMapping(Type *DstTy, Type *SrcTy);
/// Return the mapped type to use for the specified input type from the
/// source module.
Type *get(Type *SrcTy);
+ Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
+
+ void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
FunctionType *get(FunctionType *T) {
return cast<FunctionType>(get((Type *)T));
DstResolvedOpaqueTypes.clear();
}
-Type *TypeMapTy::get(Type *Ty) {
-#ifndef NDEBUG
- for (auto &Pair : MappedTypes) {
- assert(!(Pair.first != Ty && Pair.second == Ty) &&
- "mapping to a source type");
+void TypeMapTy::finishType(StructType *DTy, StructType *STy,
+ ArrayRef<Type *> ETypes) {
+ DTy->setBody(ETypes, STy->isPacked());
+
+ // Steal STy's name.
+ if (STy->hasName()) {
+ SmallString<16> TmpName = STy->getName();
+ STy->setName("");
+ DTy->setName(TmpName);
}
-#endif
+ DstStructTypesSet.addNonOpaque(DTy);
+}
+
+Type *TypeMapTy::get(Type *Ty) {
+ SmallPtrSet<StructType *, 8> Visited;
+ return get(Ty, Visited);
+}
+
+Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
// If we already have an entry for this type, return it.
Type **Entry = &MappedTypes[Ty];
if (*Entry)
return *Entry;
- // If this is not a named struct type, then just map all of the elements and
- // then rebuild the type from inside out.
- if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
- // If there are no element types to map, then the type is itself. This is
- // true for the anonymous {} struct, things like 'float', integers, etc.
- if (Ty->getNumContainedTypes() == 0)
- return *Entry = Ty;
+ // These are types that LLVM itself will unique.
+ bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
- // Remap all of the elements, keeping track of whether any of them change.
- bool AnyChange = false;
- SmallVector<Type*, 4> ElementTypes;
- ElementTypes.resize(Ty->getNumContainedTypes());
- for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
- ElementTypes[I] = get(Ty->getContainedType(I));
- AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
+#ifndef NDEBUG
+ if (!IsUniqued) {
+ for (auto &Pair : MappedTypes) {
+ assert(!(Pair.first != Ty && Pair.second == Ty) &&
+ "mapping to a source type");
}
+ }
+#endif
- // If we found our type while recursively processing stuff, just use it.
- Entry = &MappedTypes[Ty];
- if (*Entry)
- return *Entry;
+ if (!IsUniqued && !Visited.insert(cast<StructType>(Ty)).second) {
+ StructType *DTy = StructType::create(Ty->getContext());
+ return *Entry = DTy;
+ }
- // If all of the element types mapped directly over, then the type is usable
- // as-is.
- if (!AnyChange)
- return *Entry = Ty;
+ // If this is not a recursive type, then just map all of the elements and
+ // then rebuild the type from inside out.
+ SmallVector<Type *, 4> ElementTypes;
+
+ // If there are no element types to map, then the type is itself. This is
+ // true for the anonymous {} struct, things like 'float', integers, etc.
+ if (Ty->getNumContainedTypes() == 0 && IsUniqued)
+ return *Entry = Ty;
+
+ // Remap all of the elements, keeping track of whether any of them change.
+ bool AnyChange = false;
+ ElementTypes.resize(Ty->getNumContainedTypes());
+ for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
+ ElementTypes[I] = get(Ty->getContainedType(I), Visited);
+ AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
+ }
- // Otherwise, rebuild a modified type.
- switch (Ty->getTypeID()) {
- default:
- llvm_unreachable("unknown derived type to remap");
- case Type::ArrayTyID:
- return *Entry = ArrayType::get(ElementTypes[0],
- cast<ArrayType>(Ty)->getNumElements());
- case Type::VectorTyID:
- return *Entry = VectorType::get(ElementTypes[0],
- cast<VectorType>(Ty)->getNumElements());
- case Type::PointerTyID:
- return *Entry = PointerType::get(
- ElementTypes[0], cast<PointerType>(Ty)->getAddressSpace());
- case Type::FunctionTyID:
- return *Entry = FunctionType::get(ElementTypes[0],
- makeArrayRef(ElementTypes).slice(1),
- cast<FunctionType>(Ty)->isVarArg());
- case Type::StructTyID:
- // Note that this is only reached for anonymous structs.
- return *Entry = StructType::get(Ty->getContext(), ElementTypes,
- cast<StructType>(Ty)->isPacked());
+ // If we found our type while recursively processing stuff, just use it.
+ Entry = &MappedTypes[Ty];
+ if (*Entry) {
+ if (auto *DTy = dyn_cast<StructType>(*Entry)) {
+ if (DTy->isOpaque()) {
+ auto *STy = cast<StructType>(Ty);
+ finishType(DTy, STy, ElementTypes);
+ }
}
+ return *Entry;
}
- // Otherwise, this is an unmapped named struct. If the struct can be directly
- // mapped over, just use it as-is. This happens in a case when the linked-in
- // module has something like:
- // %T = type {%T*, i32}
- // @GV = global %T* null
- // where T does not exist at all in the destination module.
- //
- // The other case we watch for is when the type is not in the destination
- // module, but that it has to be rebuilt because it refers to something that
- // is already mapped. For example, if the destination module has:
- // %A = type { i32 }
- // and the source module has something like
- // %A' = type { i32 }
- // %B = type { %A'* }
- // @GV = global %B* null
- // then we want to create a new type: "%B = type { %A*}" and have it take the
- // pristine "%B" name from the source module.
- //
- // To determine which case this is, we have to recursively walk the type graph
- // speculating that we'll be able to reuse it unmodified. Only if this is
- // safe would we map the entire thing over. Because this is an optimization,
- // and is not required for the prettiness of the linked module, we just skip
- // it and always rebuild a type here.
- StructType *STy = cast<StructType>(Ty);
-
- // If the type is opaque, we can just use it directly.
- if (STy->isOpaque()) {
- // A named structure type from src module is used. Add it to the Set of
- // identified structs in the destination module.
- DstStructTypesSet.insert(STy);
- return *Entry = STy;
- }
+ // If all of the element types mapped directly over and the type is not
+ // a nomed struct, then the type is usable as-is.
+ if (!AnyChange && IsUniqued)
+ return *Entry = Ty;
+
+ // Otherwise, rebuild a modified type.
+ switch (Ty->getTypeID()) {
+ default:
+ llvm_unreachable("unknown derived type to remap");
+ case Type::ArrayTyID:
+ return *Entry = ArrayType::get(ElementTypes[0],
+ cast<ArrayType>(Ty)->getNumElements());
+ case Type::VectorTyID:
+ return *Entry = VectorType::get(ElementTypes[0],
+ cast<VectorType>(Ty)->getNumElements());
+ case Type::PointerTyID:
+ return *Entry = PointerType::get(ElementTypes[0],
+ cast<PointerType>(Ty)->getAddressSpace());
+ case Type::FunctionTyID:
+ return *Entry = FunctionType::get(ElementTypes[0],
+ makeArrayRef(ElementTypes).slice(1),
+ cast<FunctionType>(Ty)->isVarArg());
+ case Type::StructTyID: {
+ auto *STy = cast<StructType>(Ty);
+ bool IsPacked = STy->isPacked();
+ if (IsUniqued)
+ return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
+
+ // If the type is opaque, we can just use it directly.
+ if (STy->isOpaque()) {
+ DstStructTypesSet.addOpaque(STy);
+ return *Entry = Ty;
+ }
- // Otherwise we create a new type.
- StructType *DTy = StructType::create(STy->getContext());
- // A new identified structure type was created. Add it to the set of
- // identified structs in the destination module.
- DstStructTypesSet.insert(DTy);
- *Entry = DTy;
+ if (StructType *OldT =
+ DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
+ STy->setName("");
+ return *Entry = OldT;
+ }
- SmallVector<Type*, 4> ElementTypes;
- ElementTypes.resize(STy->getNumElements());
- for (unsigned I = 0, E = ElementTypes.size(); I != E; ++I)
- ElementTypes[I] = get(STy->getElementType(I));
- DTy->setBody(ElementTypes, STy->isPacked());
+ if (!AnyChange) {
+ DstStructTypesSet.addNonOpaque(STy);
+ return *Entry = Ty;
+ }
- // Steal STy's name.
- if (STy->hasName()) {
- SmallString<16> TmpName = STy->getName();
- STy->setName("");
- DTy->setName(TmpName);
+ StructType *DTy = StructType::create(Ty->getContext());
+ finishType(DTy, STy, ElementTypes);
+ return *Entry = DTy;
+ }
}
-
- return DTy;
}
//===----------------------------------------------------------------------===//
Linker::DiagnosticHandlerFunction DiagnosticHandler;
public:
- ModuleLinker(Module *dstM, TypeSet &Set, Module *srcM,
+ ModuleLinker(Module *dstM, Linker::IdentifiedStructTypeSet &Set, Module *srcM,
Linker::DiagnosticHandlerFunction DiagnosticHandler)
: DstM(dstM), SrcM(srcM), TypeMap(Set),
ValMaterializer(TypeMap, DstM, LazilyLinkFunctions),
// we prefer to take the '%C' version. So we are then left with both
// '%C.1' and '%C' being used for the same types. This leads to some
// variables using one type and some using the other.
- if (TypeMap.DstStructTypesSet.count(DST))
+ if (TypeMap.DstStructTypesSet.hasType(DST))
TypeMap.addTypeMapping(DST, ST);
}
return false;
}
+Linker::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
+ : ETypes(E), IsPacked(P) {}
+
+Linker::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
+ : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
+
+bool Linker::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
+ if (IsPacked != That.IsPacked)
+ return false;
+ if (ETypes != That.ETypes)
+ return false;
+ return true;
+}
+
+bool Linker::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
+ return !this->operator==(That);
+}
+
+StructType *Linker::StructTypeKeyInfo::getEmptyKey() {
+ return DenseMapInfo<StructType *>::getEmptyKey();
+}
+
+StructType *Linker::StructTypeKeyInfo::getTombstoneKey() {
+ return DenseMapInfo<StructType *>::getTombstoneKey();
+}
+
+unsigned Linker::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
+ return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
+ Key.IsPacked);
+}
+
+unsigned Linker::StructTypeKeyInfo::getHashValue(const StructType *ST) {
+ return getHashValue(KeyTy(ST));
+}
+
+bool Linker::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
+ const StructType *RHS) {
+ if (RHS == getEmptyKey() || RHS == getTombstoneKey())
+ return false;
+ return LHS == KeyTy(RHS);
+}
+
+bool Linker::StructTypeKeyInfo::isEqual(const StructType *LHS,
+ const StructType *RHS) {
+ if (RHS == getEmptyKey())
+ return LHS == getEmptyKey();
+
+ if (RHS == getTombstoneKey())
+ return LHS == getTombstoneKey();
+
+ return KeyTy(LHS) == KeyTy(RHS);
+}
+
+void Linker::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
+ assert(!Ty->isOpaque());
+ bool &Entry = NonOpaqueStructTypes[Ty];
+ Entry = true;
+}
+
+void Linker::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
+ assert(Ty->isOpaque());
+ OpaqueStructTypes.insert(Ty);
+}
+
+StructType *
+Linker::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
+ bool IsPacked) {
+ Linker::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
+ auto I = NonOpaqueStructTypes.find_as(Key);
+ if (I == NonOpaqueStructTypes.end())
+ return nullptr;
+ return I->first;
+}
+
+bool Linker::IdentifiedStructTypeSet::hasType(StructType *Ty) {
+ if (Ty->isOpaque())
+ return OpaqueStructTypes.count(Ty);
+ auto I = NonOpaqueStructTypes.find(Ty);
+ if (I == NonOpaqueStructTypes.end())
+ return false;
+ return I->first == Ty;
+}
+
void Linker::init(Module *M, DiagnosticHandlerFunction DiagnosticHandler) {
this->Composite = M;
this->DiagnosticHandler = DiagnosticHandler;
TypeFinder StructTypes;
StructTypes.run(*M, true);
- IdentifiedStructTypes.insert(StructTypes.begin(), StructTypes.end());
+ for (StructType *Ty : StructTypes) {
+ if (Ty->isOpaque())
+ IdentifiedStructTypes.addOpaque(Ty);
+ else
+ IdentifiedStructTypes.addNonOpaque(Ty);
+ }
}
Linker::Linker(Module *M, DiagnosticHandlerFunction DiagnosticHandler) {