#include "v8.h"
#include "macro-assembler.h"
#include "register-allocator-inl.h"
-#include "codegen.h"
+#include "codegen-inl.h"
+#include "codegen-x64-inl.h"
+
// TEST
#include "compiler.h"
void CodeGenerator::TestCodeGenerator() {
// Compile a function from a string, and run it.
Handle<JSFunction> test_function = Compiler::Compile(
- Factory::NewStringFromAscii(CStrVector("42")),
+ Factory::NewStringFromAscii(CStrVector("39; 42;")),
Factory::NewStringFromAscii(CStrVector("CodeGeneratorTestScript")),
0,
0,
0,
NULL,
&pending_exceptions);
+ // Function compiles and runs, but returns a JSFunction object.
CHECK(result->IsSmi());
CHECK_EQ(42, Smi::cast(*result)->value());
}
void CodeGenerator::GenCode(FunctionLiteral* function) {
// Record the position for debugging purposes.
CodeForFunctionPosition(function);
- // ZoneList<Statement*>* body = fun->body();
+ ZoneList<Statement*>* body = function->body();
// Initialize state.
ASSERT(scope_ == NULL);
allocator_->Initialize();
frame_->Enter();
- Result return_register = allocator_->Allocate(rax);
+ // Allocate space for locals and initialize them.
+ frame_->AllocateStackSlots();
+ // Initialize the function return target after the locals are set
+ // up, because it needs the expected frame height from the frame.
+ function_return_.set_direction(JumpTarget::BIDIRECTIONAL);
+ function_return_is_shadowed_ = false;
+
+ VisitStatements(body);
+ }
+ // Adjust for function-level loop nesting.
+ loop_nesting_ -= function->loop_nesting();
- __ movq(return_register.reg(), Immediate(0x54)); // Smi 42
+ // Code generation state must be reset.
+ ASSERT(state_ == NULL);
+ ASSERT(loop_nesting() == 0);
+ ASSERT(!function_return_is_shadowed_);
+ function_return_.Unuse();
+ DeleteFrame();
- GenerateReturnSequence(&return_register);
+ // Process any deferred code using the register allocator.
+ if (!HasStackOverflow()) {
+ HistogramTimerScope deferred_timer(&Counters::deferred_code_generation);
+ JumpTarget::set_compiling_deferred_code(true);
+ ProcessDeferred();
+ JumpTarget::set_compiling_deferred_code(false);
}
+
+ // There is no need to delete the register allocator, it is a
+ // stack-allocated local.
+ allocator_ = NULL;
+ scope_ = NULL;
}
void CodeGenerator::GenerateReturnSequence(Result* return_value) {
UNIMPLEMENTED();
}
-void CodeGenerator::VisitStatements(ZoneList<Statement*>* a) {
- UNIMPLEMENTED();
+#ifdef DEBUG
+bool CodeGenerator::HasValidEntryRegisters() {
+ return (allocator()->count(rax) == (frame()->is_used(rax) ? 1 : 0))
+ && (allocator()->count(rbx) == (frame()->is_used(rbx) ? 1 : 0))
+ && (allocator()->count(rcx) == (frame()->is_used(rcx) ? 1 : 0))
+ && (allocator()->count(rdx) == (frame()->is_used(rdx) ? 1 : 0))
+ && (allocator()->count(rdi) == (frame()->is_used(rdi) ? 1 : 0))
+ && (allocator()->count(r8) == (frame()->is_used(r8) ? 1 : 0))
+ && (allocator()->count(r9) == (frame()->is_used(r9) ? 1 : 0))
+ && (allocator()->count(r11) == (frame()->is_used(r11) ? 1 : 0))
+ && (allocator()->count(r14) == (frame()->is_used(r14) ? 1 : 0))
+ && (allocator()->count(r15) == (frame()->is_used(r15) ? 1 : 0))
+ && (allocator()->count(r13) == (frame()->is_used(r13) ? 1 : 0))
+ && (allocator()->count(r12) == (frame()->is_used(r12) ? 1 : 0));
}
+#endif
+
+
+void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) {
+ ASSERT(!in_spilled_code());
+ for (int i = 0; has_valid_frame() && i < statements->length(); i++) {
+ Visit(statements->at(i));
+ }
+}
+
void CodeGenerator::VisitBlock(Block* a) {
UNIMPLEMENTED();
UNIMPLEMENTED();
}
-void CodeGenerator::VisitExpressionStatement(ExpressionStatement* a) {
- UNIMPLEMENTED();
+
+void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) {
+ ASSERT(!in_spilled_code());
+ Comment cmnt(masm_, "[ ExpressionStatement");
+ CodeForStatementPosition(node);
+ Expression* expression = node->expression();
+ expression->MarkAsStatement();
+ Load(expression);
+ // Remove the lingering expression result from the top of stack.
+ frame_->Drop();
}
+
void CodeGenerator::VisitEmptyStatement(EmptyStatement* a) {
UNIMPLEMENTED();
}
UNIMPLEMENTED();
}
-void CodeGenerator::VisitReturnStatement(ReturnStatement* a) {
- UNIMPLEMENTED();
+
+void CodeGenerator::VisitReturnStatement(ReturnStatement* node) {
+ ASSERT(!in_spilled_code());
+ Comment cmnt(masm_, "[ ReturnStatement");
+
+ CodeForStatementPosition(node);
+ Load(node->expression());
+ Result return_value = frame_->Pop();
+ /* if (function_return_is_shadowed_) {
+ function_return_.Jump(&return_value);
+ } else {
+ frame_->PrepareForReturn();
+ if (function_return_.is_bound()) {
+ // If the function return label is already bound we reuse the
+ // code by jumping to the return site.
+ function_return_.Jump(&return_value);
+ } else {
+ function_return_.Bind(&return_value);
+ GenerateReturnSequence(&return_value);
+ }
+ }
+ */
+ GenerateReturnSequence(&return_value);
}
+
void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* a) {
UNIMPLEMENTED();
}
UNIMPLEMENTED();
}
-void CodeGenerator::VisitSlot(Slot* a) {
- UNIMPLEMENTED();
+void CodeGenerator::VisitSlot(Slot* node) {
+ Comment cmnt(masm_, "[ Slot");
+ LoadFromSlot(node, typeof_state());
}
-void CodeGenerator::VisitVariableProxy(VariableProxy* a) {
- UNIMPLEMENTED();
+
+void CodeGenerator::VisitVariableProxy(VariableProxy* node) {
+ Comment cmnt(masm_, "[ VariableProxy");
+ Variable* var = node->var();
+ Expression* expr = var->rewrite();
+ if (expr != NULL) {
+ Visit(expr);
+ } else {
+ ASSERT(var->is_global());
+ Reference ref(this, node);
+ // ref.GetValue(typeof_state());
+ }
}
-void CodeGenerator::VisitLiteral(Literal* a) {
- UNIMPLEMENTED();
+
+void CodeGenerator::VisitLiteral(Literal* node) {
+ Comment cmnt(masm_, "[ Literal");
+ frame_->Push(node->handle());
}
+
void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* a) {
UNIMPLEMENTED();
}
UNIMPLEMENTED();
}
-void CodeGenerator::VisitAssignment(Assignment* a) {
- UNIMPLEMENTED();
+
+void CodeGenerator::VisitAssignment(Assignment* node) {
+ Comment cmnt(masm_, "[ Assignment");
+ CodeForStatementPosition(node);
+
+ { Reference target(this, node->target());
+ if (target.is_illegal()) {
+ // Fool the virtual frame into thinking that we left the assignment's
+ // value on the frame.
+ frame_->Push(Smi::FromInt(0));
+ return;
+ }
+ Variable* var = node->target()->AsVariableProxy()->AsVariable();
+
+ if (node->starts_initialization_block()) {
+ ASSERT(target.type() == Reference::NAMED ||
+ target.type() == Reference::KEYED);
+ // Change to slow case in the beginning of an initialization
+ // block to avoid the quadratic behavior of repeatedly adding
+ // fast properties.
+
+ // The receiver is the argument to the runtime call. It is the
+ // first value pushed when the reference was loaded to the
+ // frame.
+ frame_->PushElementAt(target.size() - 1);
+ // Result ignored = frame_->CallRuntime(Runtime::kToSlowProperties, 1);
+ }
+ if (node->op() == Token::ASSIGN ||
+ node->op() == Token::INIT_VAR ||
+ node->op() == Token::INIT_CONST) {
+ Load(node->value());
+
+ } else {
+ // TODO(X64): Make compound assignments work.
+ /*
+ Literal* literal = node->value()->AsLiteral();
+ bool overwrite_value =
+ (node->value()->AsBinaryOperation() != NULL &&
+ node->value()->AsBinaryOperation()->ResultOverwriteAllowed());
+ Variable* right_var = node->value()->AsVariableProxy()->AsVariable();
+ // There are two cases where the target is not read in the right hand
+ // side, that are easy to test for: the right hand side is a literal,
+ // or the right hand side is a different variable. TakeValue invalidates
+ // the target, with an implicit promise that it will be written to again
+ // before it is read.
+ if (literal != NULL || (right_var != NULL && right_var != var)) {
+ target.TakeValue(NOT_INSIDE_TYPEOF);
+ } else {
+ target.GetValue(NOT_INSIDE_TYPEOF);
+ }
+ */
+ Load(node->value());
+ /*
+ GenericBinaryOperation(node->binary_op(),
+ node->type(),
+ overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
+ */
+ }
+
+ if (var != NULL &&
+ var->mode() == Variable::CONST &&
+ node->op() != Token::INIT_VAR && node->op() != Token::INIT_CONST) {
+ // Assignment ignored - leave the value on the stack.
+ } else {
+ CodeForSourcePosition(node->position());
+ if (node->op() == Token::INIT_CONST) {
+ // Dynamic constant initializations must use the function context
+ // and initialize the actual constant declared. Dynamic variable
+ // initializations are simply assignments and use SetValue.
+ target.SetValue(CONST_INIT);
+ } else {
+ target.SetValue(NOT_CONST_INIT);
+ }
+ if (node->ends_initialization_block()) {
+ ASSERT(target.type() == Reference::NAMED ||
+ target.type() == Reference::KEYED);
+ // End of initialization block. Revert to fast case. The
+ // argument to the runtime call is the receiver, which is the
+ // first value pushed as part of the reference, which is below
+ // the lhs value.
+ frame_->PushElementAt(target.size());
+ // Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1);
+ }
+ }
+ }
}
+
void CodeGenerator::VisitThrow(Throw* a) {
- UNIMPLEMENTED();
+ // UNIMPLEMENTED();
}
void CodeGenerator::VisitProperty(Property* a) {
UNIMPLEMENTED();
}
+// -----------------------------------------------------------------------------
+// CodeGenerator implementation of Expressions
+
+void CodeGenerator::Load(Expression* x, TypeofState typeof_state) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ ASSERT(!in_spilled_code());
+ JumpTarget true_target;
+ JumpTarget false_target;
+ ControlDestination dest(&true_target, &false_target, true);
+ LoadCondition(x, typeof_state, &dest, false);
+
+ if (dest.false_was_fall_through()) {
+ // The false target was just bound.
+ JumpTarget loaded;
+ frame_->Push(Factory::false_value());
+ // There may be dangling jumps to the true target.
+ if (true_target.is_linked()) {
+ loaded.Jump();
+ true_target.Bind();
+ frame_->Push(Factory::true_value());
+ loaded.Bind();
+ }
+
+ } else if (dest.is_used()) {
+ // There is true, and possibly false, control flow (with true as
+ // the fall through).
+ JumpTarget loaded;
+ frame_->Push(Factory::true_value());
+ if (false_target.is_linked()) {
+ loaded.Jump();
+ false_target.Bind();
+ frame_->Push(Factory::false_value());
+ loaded.Bind();
+ }
+
+ } else {
+ // We have a valid value on top of the frame, but we still may
+ // have dangling jumps to the true and false targets from nested
+ // subexpressions (eg, the left subexpressions of the
+ // short-circuited boolean operators).
+ ASSERT(has_valid_frame());
+ if (true_target.is_linked() || false_target.is_linked()) {
+ JumpTarget loaded;
+ loaded.Jump(); // Don't lose the current TOS.
+ if (true_target.is_linked()) {
+ true_target.Bind();
+ frame_->Push(Factory::true_value());
+ if (false_target.is_linked()) {
+ loaded.Jump();
+ }
+ }
+ if (false_target.is_linked()) {
+ false_target.Bind();
+ frame_->Push(Factory::false_value());
+ }
+ loaded.Bind();
+ }
+ }
+
+ ASSERT(has_valid_frame());
+ ASSERT(frame_->height() == original_height + 1);
+}
+
+
+// Emit code to load the value of an expression to the top of the
+// frame. If the expression is boolean-valued it may be compiled (or
+// partially compiled) into control flow to the control destination.
+// If force_control is true, control flow is forced.
+void CodeGenerator::LoadCondition(Expression* x,
+ TypeofState typeof_state,
+ ControlDestination* dest,
+ bool force_control) {
+ ASSERT(!in_spilled_code());
+ int original_height = frame_->height();
+
+ { CodeGenState new_state(this, typeof_state, dest);
+ Visit(x);
+
+ // If we hit a stack overflow, we may not have actually visited
+ // the expression. In that case, we ensure that we have a
+ // valid-looking frame state because we will continue to generate
+ // code as we unwind the C++ stack.
+ //
+ // It's possible to have both a stack overflow and a valid frame
+ // state (eg, a subexpression overflowed, visiting it returned
+ // with a dummied frame state, and visiting this expression
+ // returned with a normal-looking state).
+ if (HasStackOverflow() &&
+ !dest->is_used() &&
+ frame_->height() == original_height) {
+ dest->Goto(true);
+ }
+ }
+
+ if (force_control && !dest->is_used()) {
+ // Convert the TOS value into flow to the control destination.
+ // TODO(X64): Make control flow to control destinations work.
+ // ToBoolean(dest);
+ }
+
+ ASSERT(!(force_control && !dest->is_used()));
+ ASSERT(dest->is_used() || frame_->height() == original_height + 1);
+}
+
+
+void CodeGenerator::LoadUnsafeSmi(Register target, Handle<Object> value) {
+ UNIMPLEMENTED();
+ // TODO(X64): Implement security policy for loads of smis.
+}
+
+
+bool CodeGenerator::IsUnsafeSmi(Handle<Object> value) {
+ return false;
+}
+
+//------------------------------------------------------------------------------
+// CodeGenerator implementation of variables, lookups, and stores.
+
+Reference::Reference(CodeGenerator* cgen, Expression* expression)
+ : cgen_(cgen), expression_(expression), type_(ILLEGAL) {
+ cgen->LoadReference(this);
+}
+
+
+Reference::~Reference() {
+ cgen_->UnloadReference(this);
+}
+
+
+void CodeGenerator::LoadReference(Reference* ref) {
+ // References are loaded from both spilled and unspilled code. Set the
+ // state to unspilled to allow that (and explicitly spill after
+ // construction at the construction sites).
+ bool was_in_spilled_code = in_spilled_code_;
+ in_spilled_code_ = false;
+
+ Comment cmnt(masm_, "[ LoadReference");
+ Expression* e = ref->expression();
+ Property* property = e->AsProperty();
+ Variable* var = e->AsVariableProxy()->AsVariable();
+
+ if (property != NULL) {
+ // The expression is either a property or a variable proxy that rewrites
+ // to a property.
+ Load(property->obj());
+ // We use a named reference if the key is a literal symbol, unless it is
+ // a string that can be legally parsed as an integer. This is because
+ // otherwise we will not get into the slow case code that handles [] on
+ // String objects.
+ Literal* literal = property->key()->AsLiteral();
+ uint32_t dummy;
+ if (literal != NULL &&
+ literal->handle()->IsSymbol() &&
+ !String::cast(*(literal->handle()))->AsArrayIndex(&dummy)) {
+ ref->set_type(Reference::NAMED);
+ } else {
+ Load(property->key());
+ ref->set_type(Reference::KEYED);
+ }
+ } else if (var != NULL) {
+ // The expression is a variable proxy that does not rewrite to a
+ // property. Global variables are treated as named property references.
+ if (var->is_global()) {
+ LoadGlobal();
+ ref->set_type(Reference::NAMED);
+ } else {
+ ASSERT(var->slot() != NULL);
+ ref->set_type(Reference::SLOT);
+ }
+ } else {
+ // Anything else is a runtime error.
+ Load(e);
+ // frame_->CallRuntime(Runtime::kThrowReferenceError, 1);
+ }
+
+ in_spilled_code_ = was_in_spilled_code;
+}
+
+
+void CodeGenerator::UnloadReference(Reference* ref) {
+ // Pop a reference from the stack while preserving TOS.
+ Comment cmnt(masm_, "[ UnloadReference");
+ frame_->Nip(ref->size());
+}
+
+
+void Reference::SetValue(InitState init_state) {
+ ASSERT(cgen_->HasValidEntryRegisters());
+ ASSERT(!is_illegal());
+ MacroAssembler* masm = cgen_->masm();
+ switch (type_) {
+ case SLOT: {
+ Comment cmnt(masm, "[ Store to Slot");
+ Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
+ ASSERT(slot != NULL);
+ cgen_->StoreToSlot(slot, init_state);
+ break;
+ }
+ // TODO(X64): Make cases other than SLOT work.
+ /*
+ case NAMED: {
+ Comment cmnt(masm, "[ Store to named Property");
+ cgen_->frame()->Push(GetName());
+ Result answer = cgen_->frame()->CallStoreIC();
+ cgen_->frame()->Push(&answer);
+ break;
+ }
+
+ case KEYED: {
+ Comment cmnt(masm, "[ Store to keyed Property");
+
+ // Generate inlined version of the keyed store if the code is in
+ // a loop and the key is likely to be a smi.
+ Property* property = expression()->AsProperty();
+ ASSERT(property != NULL);
+ SmiAnalysis* key_smi_analysis = property->key()->type();
+
+ if (cgen_->loop_nesting() > 0 && key_smi_analysis->IsLikelySmi()) {
+ Comment cmnt(masm, "[ Inlined store to keyed Property");
+
+ // Get the receiver, key and value into registers.
+ Result value = cgen_->frame()->Pop();
+ Result key = cgen_->frame()->Pop();
+ Result receiver = cgen_->frame()->Pop();
+
+ Result tmp = cgen_->allocator_->Allocate();
+ ASSERT(tmp.is_valid());
+
+ // Determine whether the value is a constant before putting it
+ // in a register.
+ bool value_is_constant = value.is_constant();
+
+ // Make sure that value, key and receiver are in registers.
+ value.ToRegister();
+ key.ToRegister();
+ receiver.ToRegister();
+
+ DeferredReferenceSetKeyedValue* deferred =
+ new DeferredReferenceSetKeyedValue(value.reg(),
+ key.reg(),
+ receiver.reg());
+
+ // Check that the value is a smi if it is not a constant. We
+ // can skip the write barrier for smis and constants.
+ if (!value_is_constant) {
+ __ test(value.reg(), Immediate(kSmiTagMask));
+ deferred->Branch(not_zero);
+ }
+
+ // Check that the key is a non-negative smi.
+ __ test(key.reg(), Immediate(kSmiTagMask | 0x80000000));
+ deferred->Branch(not_zero);
+
+ // Check that the receiver is not a smi.
+ __ test(receiver.reg(), Immediate(kSmiTagMask));
+ deferred->Branch(zero);
+
+ // Check that the receiver is a JSArray.
+ __ mov(tmp.reg(),
+ FieldOperand(receiver.reg(), HeapObject::kMapOffset));
+ __ movzx_b(tmp.reg(),
+ FieldOperand(tmp.reg(), Map::kInstanceTypeOffset));
+ __ cmp(tmp.reg(), JS_ARRAY_TYPE);
+ deferred->Branch(not_equal);
+
+ // Check that the key is within bounds. Both the key and the
+ // length of the JSArray are smis.
+ __ cmp(key.reg(),
+ FieldOperand(receiver.reg(), JSArray::kLengthOffset));
+ deferred->Branch(greater_equal);
+
+ // Get the elements array from the receiver and check that it
+ // is not a dictionary.
+ __ mov(tmp.reg(),
+ FieldOperand(receiver.reg(), JSObject::kElementsOffset));
+ // Bind the deferred code patch site to be able to locate the
+ // fixed array map comparison. When debugging, we patch this
+ // comparison to always fail so that we will hit the IC call
+ // in the deferred code which will allow the debugger to
+ // break for fast case stores.
+ __ bind(deferred->patch_site());
+ __ cmp(FieldOperand(tmp.reg(), HeapObject::kMapOffset),
+ Immediate(Factory::fixed_array_map()));
+ deferred->Branch(not_equal);
+
+ // Store the value.
+ __ mov(Operand(tmp.reg(),
+ key.reg(),
+ times_2,
+ Array::kHeaderSize - kHeapObjectTag),
+ value.reg());
+ __ IncrementCounter(&Counters::keyed_store_inline, 1);
+
+ deferred->BindExit();
+
+ cgen_->frame()->Push(&receiver);
+ cgen_->frame()->Push(&key);
+ cgen_->frame()->Push(&value);
+ } else {
+ Result answer = cgen_->frame()->CallKeyedStoreIC();
+ // Make sure that we do not have a test instruction after the
+ // call. A test instruction after the call is used to
+ // indicate that we have generated an inline version of the
+ // keyed store.
+ __ nop();
+ cgen_->frame()->Push(&answer);
+ }
+ break;
+ }
+ */
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) {
+ // Currently, this assertion will fail if we try to assign to
+ // a constant variable that is constant because it is read-only
+ // (such as the variable referring to a named function expression).
+ // We need to implement assignments to read-only variables.
+ // Ideally, we should do this during AST generation (by converting
+ // such assignments into expression statements); however, in general
+ // we may not be able to make the decision until past AST generation,
+ // that is when the entire program is known.
+ ASSERT(slot != NULL);
+ int index = slot->index();
+ switch (slot->type()) {
+ case Slot::PARAMETER:
+ return frame_->ParameterAt(index);
+
+ case Slot::LOCAL:
+ return frame_->LocalAt(index);
+
+ case Slot::CONTEXT: {
+ // Follow the context chain if necessary.
+ ASSERT(!tmp.is(rsi)); // do not overwrite context register
+ Register context = rsi;
+ int chain_length = scope()->ContextChainLength(slot->var()->scope());
+ for (int i = 0; i < chain_length; i++) {
+ // Load the closure.
+ // (All contexts, even 'with' contexts, have a closure,
+ // and it is the same for all contexts inside a function.
+ // There is no need to go to the function context first.)
+ __ movq(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
+ // Load the function context (which is the incoming, outer context).
+ __ movq(tmp, FieldOperand(tmp, JSFunction::kContextOffset));
+ context = tmp;
+ }
+ // We may have a 'with' context now. Get the function context.
+ // (In fact this mov may never be the needed, since the scope analysis
+ // may not permit a direct context access in this case and thus we are
+ // always at a function context. However it is safe to dereference be-
+ // cause the function context of a function context is itself. Before
+ // deleting this mov we should try to create a counter-example first,
+ // though...)
+ __ movq(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
+ return ContextOperand(tmp, index);
+ }
+
+ default:
+ UNREACHABLE();
+ return Operand(rsp, 0);
+ }
+}
+
+
+Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot,
+ Result tmp,
+ JumpTarget* slow) {
+ UNIMPLEMENTED();
+ return Operand(rsp, 0);
+}
+
+
+void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) {
+ if (slot->type() == Slot::LOOKUP) {
+ ASSERT(slot->var()->is_dynamic());
+
+ JumpTarget slow;
+ JumpTarget done;
+ Result value;
+
+ // Generate fast-case code for variables that might be shadowed by
+ // eval-introduced variables. Eval is used a lot without
+ // introducing variables. In those cases, we do not want to
+ // perform a runtime call for all variables in the scope
+ // containing the eval.
+ if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) {
+ value = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, &slow);
+ // If there was no control flow to slow, we can exit early.
+ if (!slow.is_linked()) {
+ frame_->Push(&value);
+ return;
+ }
+
+ done.Jump(&value);
+
+ } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) {
+ Slot* potential_slot = slot->var()->local_if_not_shadowed()->slot();
+ // Only generate the fast case for locals that rewrite to slots.
+ // This rules out argument loads.
+ if (potential_slot != NULL) {
+ // Allocate a fresh register to use as a temp in
+ // ContextSlotOperandCheckExtensions and to hold the result
+ // value.
+ value = allocator_->Allocate();
+ ASSERT(value.is_valid());
+ __ movq(value.reg(),
+ ContextSlotOperandCheckExtensions(potential_slot,
+ value,
+ &slow));
+ if (potential_slot->var()->mode() == Variable::CONST) {
+ __ movq(kScratchRegister, Factory::the_hole_value(),
+ RelocInfo::EMBEDDED_OBJECT);
+ __ cmpq(value.reg(), kScratchRegister);
+ done.Branch(not_equal, &value);
+ __ movq(value.reg(), Factory::undefined_value(),
+ RelocInfo::EMBEDDED_OBJECT);
+ }
+ // There is always control flow to slow from
+ // ContextSlotOperandCheckExtensions so we have to jump around
+ // it.
+ done.Jump(&value);
+ }
+ }
+
+ slow.Bind();
+ // A runtime call is inevitable. We eagerly sync frame elements
+ // to memory so that we can push the arguments directly into place
+ // on top of the frame.
+ frame_->SyncRange(0, frame_->element_count() - 1);
+ frame_->EmitPush(rsi);
+ __ movq(kScratchRegister, slot->var()->name(), RelocInfo::EMBEDDED_OBJECT);
+ frame_->EmitPush(kScratchRegister);
+ if (typeof_state == INSIDE_TYPEOF) {
+ // value =
+ // frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
+ } else {
+ // value = frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
+ }
+
+ done.Bind(&value);
+ frame_->Push(&value);
+
+ } else if (slot->var()->mode() == Variable::CONST) {
+ // Const slots may contain 'the hole' value (the constant hasn't been
+ // initialized yet) which needs to be converted into the 'undefined'
+ // value.
+ //
+ // We currently spill the virtual frame because constants use the
+ // potentially unsafe direct-frame access of SlotOperand.
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ Load const");
+ JumpTarget exit;
+ __ movq(rcx, SlotOperand(slot, rcx));
+ __ movq(kScratchRegister, Factory::the_hole_value(),
+ RelocInfo::EMBEDDED_OBJECT);
+ __ cmpq(rcx, kScratchRegister);
+ exit.Branch(not_equal);
+ __ movq(rcx, Factory::undefined_value(), RelocInfo::EMBEDDED_OBJECT);
+ exit.Bind();
+ frame_->EmitPush(rcx);
+
+ } else if (slot->type() == Slot::PARAMETER) {
+ frame_->PushParameterAt(slot->index());
+
+ } else if (slot->type() == Slot::LOCAL) {
+ frame_->PushLocalAt(slot->index());
+
+ } else {
+ // The other remaining slot types (LOOKUP and GLOBAL) cannot reach
+ // here.
+ //
+ // The use of SlotOperand below is safe for an unspilled frame
+ // because it will always be a context slot.
+ ASSERT(slot->type() == Slot::CONTEXT);
+ Result temp = allocator_->Allocate();
+ ASSERT(temp.is_valid());
+ __ movq(temp.reg(), SlotOperand(slot, temp.reg()));
+ frame_->Push(&temp);
+ }
+}
+
+
+void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) {
+ // TODO(X64): Enable more types of slot.
+
+ if (slot->type() == Slot::LOOKUP) {
+ UNIMPLEMENTED();
+ /*
+ ASSERT(slot->var()->is_dynamic());
+
+ // For now, just do a runtime call. Since the call is inevitable,
+ // we eagerly sync the virtual frame so we can directly push the
+ // arguments into place.
+ frame_->SyncRange(0, frame_->element_count() - 1);
+
+ frame_->EmitPush(esi);
+ frame_->EmitPush(Immediate(slot->var()->name()));
+
+ Result value;
+ if (init_state == CONST_INIT) {
+ // Same as the case for a normal store, but ignores attribute
+ // (e.g. READ_ONLY) of context slot so that we can initialize const
+ // properties (introduced via eval("const foo = (some expr);")). Also,
+ // uses the current function context instead of the top context.
+ //
+ // Note that we must declare the foo upon entry of eval(), via a
+ // context slot declaration, but we cannot initialize it at the same
+ // time, because the const declaration may be at the end of the eval
+ // code (sigh...) and the const variable may have been used before
+ // (where its value is 'undefined'). Thus, we can only do the
+ // initialization when we actually encounter the expression and when
+ // the expression operands are defined and valid, and thus we need the
+ // split into 2 operations: declaration of the context slot followed
+ // by initialization.
+ value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3);
+ } else {
+ value = frame_->CallRuntime(Runtime::kStoreContextSlot, 3);
+ }
+ // Storing a variable must keep the (new) value on the expression
+ // stack. This is necessary for compiling chained assignment
+ // expressions.
+ frame_->Push(&value);
+ */
+ } else {
+ ASSERT(!slot->var()->is_dynamic());
+
+ JumpTarget exit;
+ if (init_state == CONST_INIT) {
+ ASSERT(slot->var()->mode() == Variable::CONST);
+ // Only the first const initialization must be executed (the slot
+ // still contains 'the hole' value). When the assignment is executed,
+ // the code is identical to a normal store (see below).
+ //
+ // We spill the frame in the code below because the direct-frame
+ // access of SlotOperand is potentially unsafe with an unspilled
+ // frame.
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ Init const");
+ __ movq(rcx, SlotOperand(slot, rcx));
+ __ movq(kScratchRegister, Factory::the_hole_value(),
+ RelocInfo::EMBEDDED_OBJECT);
+ __ cmpq(rcx, kScratchRegister);
+ exit.Branch(not_equal);
+ }
+
+ // We must execute the store. Storing a variable must keep the (new)
+ // value on the stack. This is necessary for compiling assignment
+ // expressions.
+ //
+ // Note: We will reach here even with slot->var()->mode() ==
+ // Variable::CONST because of const declarations which will initialize
+ // consts to 'the hole' value and by doing so, end up calling this code.
+ if (slot->type() == Slot::PARAMETER) {
+ frame_->StoreToParameterAt(slot->index());
+ } else if (slot->type() == Slot::LOCAL) {
+ frame_->StoreToLocalAt(slot->index());
+ } else {
+ // The other slot types (LOOKUP and GLOBAL) cannot reach here.
+ //
+ // The use of SlotOperand below is safe for an unspilled frame
+ // because the slot is a context slot.
+ /*
+ ASSERT(slot->type() == Slot::CONTEXT);
+ frame_->Dup();
+ Result value = frame_->Pop();
+ value.ToRegister();
+ Result start = allocator_->Allocate();
+ ASSERT(start.is_valid());
+ __ mov(SlotOperand(slot, start.reg()), value.reg());
+ // RecordWrite may destroy the value registers.
+ //
+ // TODO(204): Avoid actually spilling when the value is not
+ // needed (probably the common case).
+ frame_->Spill(value.reg());
+ int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
+ Result temp = allocator_->Allocate();
+ ASSERT(temp.is_valid());
+ __ RecordWrite(start.reg(), offset, value.reg(), temp.reg());
+ // The results start, value, and temp are unused by going out of
+ // scope.
+ */
+ }
+
+ exit.Bind();
+ }
+}
+
+
+Result CodeGenerator::LoadFromGlobalSlotCheckExtensions(
+ Slot* slot,
+ TypeofState typeof_state,
+ JumpTarget* slow) {
+ UNIMPLEMENTED();
+ return Result(rax);
+}
+
+
+void CodeGenerator::LoadGlobal() {
+ if (in_spilled_code()) {
+ frame_->EmitPush(GlobalObject());
+ } else {
+ Result temp = allocator_->Allocate();
+ __ movq(temp.reg(), GlobalObject());
+ frame_->Push(&temp);
+ }
+}
+
#undef __
+
// End of CodeGenerator implementation.
// -----------------------------------------------------------------------------
// Store the function in the frame. The frame owns the register
// reference now (ie, it can keep it in rdi or spill it later).
Push(rdi);
- // SyncElementAt(element_count() - 1);
+ SyncElementAt(element_count() - 1);
cgen()->allocator()->Unuse(rdi);
}
// Avoid using the leave instruction here, because it is too
// short. We need the return sequence to be a least the size of a
// call instruction to support patching the exit code in the
- // debugger. See VisitReturnStatement for the full return sequence.
+ // debugger. See GenerateReturnSequence for the full return sequence.
// TODO(X64): A patched call will be very long now. Make sure we
// have enough room.
__ movq(rsp, rbp);
}
+void VirtualFrame::AllocateStackSlots() {
+ int count = local_count();
+ if (count > 0) {
+ Comment cmnt(masm(), "[ Allocate space for locals");
+ // The locals are initialized to a constant (the undefined value), but
+ // we sync them with the actual frame to allocate space for spilling
+ // them later. First sync everything above the stack pointer so we can
+ // use pushes to allocate and initialize the locals.
+ SyncRange(stack_pointer_ + 1, element_count() - 1);
+ Handle<Object> undefined = Factory::undefined_value();
+ FrameElement initial_value =
+ FrameElement::ConstantElement(undefined, FrameElement::SYNCED);
+ __ movq(kScratchRegister, undefined, RelocInfo::EMBEDDED_OBJECT);
+ for (int i = 0; i < count; i++) {
+ elements_.Add(initial_value);
+ stack_pointer_++;
+ __ push(kScratchRegister);
+ }
+ }
+}
+
+
void VirtualFrame::EmitPop(Register reg) {
ASSERT(stack_pointer_ == element_count() - 1);
stack_pointer_--;
}
-void VirtualFrame::Drop(int a) {
- UNIMPLEMENTED();
+void VirtualFrame::Drop(int count) {
+ ASSERT(height() >= count);
+ int num_virtual_elements = (element_count() - 1) - stack_pointer_;
+
+ // Emit code to lower the stack pointer if necessary.
+ if (num_virtual_elements < count) {
+ int num_dropped = count - num_virtual_elements;
+ stack_pointer_ -= num_dropped;
+ __ addq(rsp, Immediate(num_dropped * kPointerSize));
+ }
+
+ // Discard elements from the virtual frame and free any registers.
+ for (int i = 0; i < count; i++) {
+ FrameElement dropped = elements_.RemoveLast();
+ if (dropped.is_register()) {
+ Unuse(dropped.reg());
+ }
+ }
}
-int VirtualFrame::InvalidateFrameSlotAt(int a) {
- UNIMPLEMENTED();
- return -1;
+
+int VirtualFrame::InvalidateFrameSlotAt(int index) {
+ FrameElement original = elements_[index];
+
+ // Is this element the backing store of any copies?
+ int new_backing_index = kIllegalIndex;
+ if (original.is_copied()) {
+ // Verify it is copied, and find first copy.
+ for (int i = index + 1; i < element_count(); i++) {
+ if (elements_[i].is_copy() && elements_[i].index() == index) {
+ new_backing_index = i;
+ break;
+ }
+ }
+ }
+
+ if (new_backing_index == kIllegalIndex) {
+ // No copies found, return kIllegalIndex.
+ if (original.is_register()) {
+ Unuse(original.reg());
+ }
+ elements_[index] = FrameElement::InvalidElement();
+ return kIllegalIndex;
+ }
+
+ // This is the backing store of copies.
+ Register backing_reg;
+ if (original.is_memory()) {
+ Result fresh = cgen()->allocator()->Allocate();
+ ASSERT(fresh.is_valid());
+ Use(fresh.reg(), new_backing_index);
+ backing_reg = fresh.reg();
+ __ movq(backing_reg, Operand(rbp, fp_relative(index)));
+ } else {
+ // The original was in a register.
+ backing_reg = original.reg();
+ set_register_location(backing_reg, new_backing_index);
+ }
+ // Invalidate the element at index.
+ elements_[index] = FrameElement::InvalidElement();
+ // Set the new backing element.
+ if (elements_[new_backing_index].is_synced()) {
+ elements_[new_backing_index] =
+ FrameElement::RegisterElement(backing_reg, FrameElement::SYNCED);
+ } else {
+ elements_[new_backing_index] =
+ FrameElement::RegisterElement(backing_reg, FrameElement::NOT_SYNCED);
+ }
+ // Update the other copies.
+ for (int i = new_backing_index + 1; i < element_count(); i++) {
+ if (elements_[i].is_copy() && elements_[i].index() == index) {
+ elements_[i].set_index(new_backing_index);
+ elements_[new_backing_index].set_copied();
+ }
+ }
+ return new_backing_index;
+}
+
+
+void VirtualFrame::StoreToFrameSlotAt(int index) {
+ // Store the value on top of the frame to the virtual frame slot at
+ // a given index. The value on top of the frame is left in place.
+ // This is a duplicating operation, so it can create copies.
+ ASSERT(index >= 0);
+ ASSERT(index < element_count());
+
+ int top_index = element_count() - 1;
+ FrameElement top = elements_[top_index];
+ FrameElement original = elements_[index];
+ if (top.is_copy() && top.index() == index) return;
+ ASSERT(top.is_valid());
+
+ InvalidateFrameSlotAt(index);
+
+ // InvalidateFrameSlotAt can potentially change any frame element, due
+ // to spilling registers to allocate temporaries in order to preserve
+ // the copy-on-write semantics of aliased elements. Reload top from
+ // the frame.
+ top = elements_[top_index];
+
+ if (top.is_copy()) {
+ // There are two cases based on the relative positions of the
+ // stored-to slot and the backing slot of the top element.
+ int backing_index = top.index();
+ ASSERT(backing_index != index);
+ if (backing_index < index) {
+ // 1. The top element is a copy of a slot below the stored-to
+ // slot. The stored-to slot becomes an unsynced copy of that
+ // same backing slot.
+ elements_[index] = CopyElementAt(backing_index);
+ } else {
+ // 2. The top element is a copy of a slot above the stored-to
+ // slot. The stored-to slot becomes the new (unsynced) backing
+ // slot and both the top element and the element at the former
+ // backing slot become copies of it. The sync state of the top
+ // and former backing elements is preserved.
+ FrameElement backing_element = elements_[backing_index];
+ ASSERT(backing_element.is_memory() || backing_element.is_register());
+ if (backing_element.is_memory()) {
+ // Because sets of copies are canonicalized to be backed by
+ // their lowest frame element, and because memory frame
+ // elements are backed by the corresponding stack address, we
+ // have to move the actual value down in the stack.
+ //
+ // TODO(209): considering allocating the stored-to slot to the
+ // temp register. Alternatively, allow copies to appear in
+ // any order in the frame and lazily move the value down to
+ // the slot.
+ __ movq(kScratchRegister, Operand(rbp, fp_relative(backing_index)));
+ __ movq(Operand(rbp, fp_relative(index)), kScratchRegister);
+ } else {
+ set_register_location(backing_element.reg(), index);
+ if (backing_element.is_synced()) {
+ // If the element is a register, we will not actually move
+ // anything on the stack but only update the virtual frame
+ // element.
+ backing_element.clear_sync();
+ }
+ }
+ elements_[index] = backing_element;
+
+ // The old backing element becomes a copy of the new backing
+ // element.
+ FrameElement new_element = CopyElementAt(index);
+ elements_[backing_index] = new_element;
+ if (backing_element.is_synced()) {
+ elements_[backing_index].set_sync();
+ }
+
+ // All the copies of the old backing element (including the top
+ // element) become copies of the new backing element.
+ for (int i = backing_index + 1; i < element_count(); i++) {
+ if (elements_[i].is_copy() && elements_[i].index() == backing_index) {
+ elements_[i].set_index(index);
+ }
+ }
+ }
+ return;
+ }
+
+ // Move the top element to the stored-to slot and replace it (the
+ // top element) with a copy.
+ elements_[index] = top;
+ if (top.is_memory()) {
+ // TODO(209): consider allocating the stored-to slot to the temp
+ // register. Alternatively, allow copies to appear in any order
+ // in the frame and lazily move the value down to the slot.
+ FrameElement new_top = CopyElementAt(index);
+ new_top.set_sync();
+ elements_[top_index] = new_top;
+
+ // The sync state of the former top element is correct (synced).
+ // Emit code to move the value down in the frame.
+ __ movq(kScratchRegister, Operand(rsp, 0));
+ __ movq(Operand(rbp, fp_relative(index)), kScratchRegister);
+ } else if (top.is_register()) {
+ set_register_location(top.reg(), index);
+ // The stored-to slot has the (unsynced) register reference and
+ // the top element becomes a copy. The sync state of the top is
+ // preserved.
+ FrameElement new_top = CopyElementAt(index);
+ if (top.is_synced()) {
+ new_top.set_sync();
+ elements_[index].clear_sync();
+ }
+ elements_[top_index] = new_top;
+ } else {
+ // The stored-to slot holds the same value as the top but
+ // unsynced. (We do not have copies of constants yet.)
+ ASSERT(top.is_constant());
+ elements_[index].clear_sync();
+ }
}
+
void VirtualFrame::MergeTo(VirtualFrame* a) {
UNIMPLEMENTED();
}
+
Result VirtualFrame::Pop() {
- UNIMPLEMENTED();
- return Result(NULL);
+ FrameElement element = elements_.RemoveLast();
+ int index = element_count();
+ ASSERT(element.is_valid());
+
+ bool pop_needed = (stack_pointer_ == index);
+ if (pop_needed) {
+ stack_pointer_--;
+ if (element.is_memory()) {
+ Result temp = cgen()->allocator()->Allocate();
+ ASSERT(temp.is_valid());
+ temp.set_static_type(element.static_type());
+ __ pop(temp.reg());
+ return temp;
+ }
+
+ __ addq(rsp, Immediate(kPointerSize));
+ }
+ ASSERT(!element.is_memory());
+
+ // The top element is a register, constant, or a copy. Unuse
+ // registers and follow copies to their backing store.
+ if (element.is_register()) {
+ Unuse(element.reg());
+ } else if (element.is_copy()) {
+ ASSERT(element.index() < index);
+ index = element.index();
+ element = elements_[index];
+ }
+ ASSERT(!element.is_copy());
+
+ // The element is memory, a register, or a constant.
+ if (element.is_memory()) {
+ // Memory elements could only be the backing store of a copy.
+ // Allocate the original to a register.
+ ASSERT(index <= stack_pointer_);
+ Result temp = cgen()->allocator()->Allocate();
+ ASSERT(temp.is_valid());
+ Use(temp.reg(), index);
+ FrameElement new_element =
+ FrameElement::RegisterElement(temp.reg(), FrameElement::SYNCED);
+ // Preserve the copy flag on the element.
+ if (element.is_copied()) new_element.set_copied();
+ new_element.set_static_type(element.static_type());
+ elements_[index] = new_element;
+ __ movq(temp.reg(), Operand(rbp, fp_relative(index)));
+ return Result(temp.reg(), element.static_type());
+ } else if (element.is_register()) {
+ return Result(element.reg(), element.static_type());
+ } else {
+ ASSERT(element.is_constant());
+ return Result(element.handle());
+ }
}
+
Result VirtualFrame::RawCallStub(CodeStub* a) {
UNIMPLEMENTED();
return Result(NULL);
UNIMPLEMENTED();
}
-void VirtualFrame::SyncElementByPushing(int a) {
- UNIMPLEMENTED();
+
+void VirtualFrame::SyncElementByPushing(int index) {
+ // Sync an element of the frame that is just above the stack pointer
+ // by pushing it.
+ ASSERT(index == stack_pointer_ + 1);
+ stack_pointer_++;
+ FrameElement element = elements_[index];
+
+ switch (element.type()) {
+ case FrameElement::INVALID:
+ __ push(Immediate(Smi::FromInt(0)));
+ break;
+
+ case FrameElement::MEMORY:
+ // No memory elements exist above the stack pointer.
+ UNREACHABLE();
+ break;
+
+ case FrameElement::REGISTER:
+ __ push(element.reg());
+ break;
+
+ case FrameElement::CONSTANT:
+ if (element.handle()->IsSmi()) {
+ if (CodeGeneratorScope::Current()->IsUnsafeSmi(element.handle())) {
+ CodeGeneratorScope::Current()->LoadUnsafeSmi(kScratchRegister,
+ element.handle());
+ } else {
+ CodeGeneratorScope::Current()->masm()->
+ movq(kScratchRegister, element.handle(), RelocInfo::NONE);
+ }
+ } else {
+ CodeGeneratorScope::Current()->masm()->
+ movq(kScratchRegister,
+ element.handle(),
+ RelocInfo::EMBEDDED_OBJECT);
+ }
+ __ push(kScratchRegister);
+ break;
+
+ case FrameElement::COPY: {
+ int backing_index = element.index();
+ FrameElement backing = elements_[backing_index];
+ ASSERT(backing.is_memory() || backing.is_register());
+ if (backing.is_memory()) {
+ __ push(Operand(rbp, fp_relative(backing_index)));
+ } else {
+ __ push(backing.reg());
+ }
+ break;
+ }
+ }
+ elements_[index].set_sync();
}
-void VirtualFrame::SyncRange(int a, int b) {
- UNIMPLEMENTED();
+
+// Clear the dirty bits for the range of elements in
+// [min(stack_pointer_ + 1,begin), end].
+void VirtualFrame::SyncRange(int begin, int end) {
+ ASSERT(begin >= 0);
+ ASSERT(end < element_count());
+ // Sync elements below the range if they have not been materialized
+ // on the stack.
+ int start = Min(begin, stack_pointer_ + 1);
+
+ // If positive we have to adjust the stack pointer.
+ int delta = end - stack_pointer_;
+ if (delta > 0) {
+ stack_pointer_ = end;
+ __ subq(rsp, Immediate(delta * kPointerSize));
+ }
+
+ for (int i = start; i <= end; i++) {
+ if (!elements_[i].is_synced()) SyncElementBelowStackPointer(i);
+ }
}