auto span = rle->spans;
- for (uint32_t i = 0; i < rle->size; ++i) {
+ for (uint32_t i = 0; i < rle->size; ++i, ++span) {
if (span->coverage == 255) {
fillFetchLinear(fill, surface->buffer + span->y * surface->stride + span->x, span->y, span->x, span->len);
} else {
dst[i] = ALPHA_BLEND(buf[i], span->coverage) + ALPHA_BLEND(dst[i], ialpha);
}
}
- ++span;
}
return true;
}
-static bool _rasterTranslucentRadialGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill)
+static bool _translucentRadialGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill)
{
if (fill->radial.a < FLT_EPSILON) return false;
- auto buf = static_cast<uint32_t*>(alloca(surface->w * sizeof(uint32_t)));
- if (!buf) return false;
+ auto span = rle->spans;
+ auto buffer = static_cast<uint32_t*>(alloca(surface->w * sizeof(uint32_t)));
+ if (!buffer) return false;
+
+ for (uint32_t i = 0; i < rle->size; ++i, ++span) {
+ auto dst = &surface->buffer[span->y * surface->stride + span->x];
+ fillFetchRadial(fill, buffer, span->y, span->x, span->len);
+ if (span->coverage == 255) {
+ for (uint32_t i = 0; i < span->len; ++i) {
+ dst[i] = buffer[i] + ALPHA_BLEND(dst[i], 255 - surface->blender.alpha(buffer[i]));
+ }
+ } else {
+ for (uint32_t i = 0; i < span->len; ++i) {
+ auto tmp = ALPHA_BLEND(buffer[i], span->coverage);
+ dst[i] = tmp + ALPHA_BLEND(dst[i], 255 - surface->blender.alpha(tmp));
+ }
+ }
+ }
+ return true;
+}
+
+
+static bool _translucentRadialGradientRleAlphaMask(SwSurface* surface, const SwRleData* rle, const SwFill* fill)
+{
+ if (fill->radial.a < FLT_EPSILON) return false;
auto span = rle->spans;
+ auto cbuffer = surface->compositor->image.data;
+ auto buffer = static_cast<uint32_t*>(alloca(surface->w * sizeof(uint32_t)));
+ if (!buffer) return false;
- if (surface->compositor) {
- auto method = surface->compositor->method;
- auto cbuffer = surface->compositor->image.data;
-
- if (method == CompositeMethod::AlphaMask) {
- for (uint32_t i = 0; i < rle->size; ++i, ++span) {
- fillFetchRadial(fill, buf, span->y, span->x, span->len);
- auto dst = &surface->buffer[span->y * surface->stride + span->x];
- auto cmp = &cbuffer[span->y * surface->stride + span->x];
- auto src = buf;
- if (span->coverage == 255) {
- for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
- auto tmp = ALPHA_BLEND(*src, surface->blender.alpha(*cmp));
- *dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp));
- }
- } else {
- auto ialpha = 255 - span->coverage;
- for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
- auto tmp = ALPHA_BLEND(*src, surface->blender.alpha(*cmp));
- tmp = ALPHA_BLEND(tmp, span->coverage) + ALPHA_BLEND(*dst, ialpha);
- *dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp));
- }
- }
+ for (uint32_t i = 0; i < rle->size; ++i, ++span) {
+ fillFetchRadial(fill, buffer, span->y, span->x, span->len);
+ auto dst = &surface->buffer[span->y * surface->stride + span->x];
+ auto cmp = &cbuffer[span->y * surface->stride + span->x];
+ auto src = buffer;
+ if (span->coverage == 255) {
+ for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
+ auto tmp = ALPHA_BLEND(*src, surface->blender.alpha(*cmp));
+ *dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp));
}
- return true;
- } else if (method == CompositeMethod::InvAlphaMask) {
- for (uint32_t i = 0; i < rle->size; ++i, ++span) {
- fillFetchRadial(fill, buf, span->y, span->x, span->len);
- auto dst = &surface->buffer[span->y * surface->stride + span->x];
- auto cmp = &cbuffer[span->y * surface->stride + span->x];
- auto src = buf;
- if (span->coverage == 255) {
- for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
- auto tmp = ALPHA_BLEND(*src, 255 - surface->blender.alpha(*cmp));
- *dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp));
- }
- } else {
- auto ialpha = 255 - span->coverage;
- for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
- auto tmp = ALPHA_BLEND(*src, 255 - surface->blender.alpha(*cmp));
- tmp = ALPHA_BLEND(tmp, span->coverage) + ALPHA_BLEND(*dst, ialpha);
- *dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp));
- }
- }
+ } else {
+ auto ialpha = 255 - span->coverage;
+ for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
+ auto tmp = ALPHA_BLEND(*src, surface->blender.alpha(*cmp));
+ tmp = ALPHA_BLEND(tmp, span->coverage) + ALPHA_BLEND(*dst, ialpha);
+ *dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp));
}
- return true;
}
}
+ return true;
+}
- for (uint32_t i = 0; i < rle->size; ++i) {
+
+static bool _translucentRadialGradientRleInvAlphaMask(SwSurface* surface, const SwRleData* rle, const SwFill* fill)
+{
+ if (fill->radial.a < FLT_EPSILON) return false;
+
+ auto span = rle->spans;
+ auto cbuffer = surface->compositor->image.data;
+ auto buffer = static_cast<uint32_t*>(alloca(surface->w * sizeof(uint32_t)));
+ if (!buffer) return false;
+
+ for (uint32_t i = 0; i < rle->size; ++i, ++span) {
+ fillFetchRadial(fill, buffer, span->y, span->x, span->len);
auto dst = &surface->buffer[span->y * surface->stride + span->x];
- fillFetchRadial(fill, buf, span->y, span->x, span->len);
+ auto cmp = &cbuffer[span->y * surface->stride + span->x];
+ auto src = buffer;
if (span->coverage == 255) {
- for (uint32_t i = 0; i < span->len; ++i) {
- dst[i] = buf[i] + ALPHA_BLEND(dst[i], 255 - surface->blender.alpha(buf[i]));
+ for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
+ auto tmp = ALPHA_BLEND(*src, 255 - surface->blender.alpha(*cmp));
+ *dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp));
}
} else {
- for (uint32_t i = 0; i < span->len; ++i) {
- auto tmp = ALPHA_BLEND(buf[i], span->coverage);
- dst[i] = tmp + ALPHA_BLEND(dst[i], 255 - surface->blender.alpha(tmp));
+ auto ialpha = 255 - span->coverage;
+ for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
+ auto tmp = ALPHA_BLEND(*src, 255 - surface->blender.alpha(*cmp));
+ tmp = ALPHA_BLEND(tmp, span->coverage) + ALPHA_BLEND(*dst, ialpha);
+ *dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp));
}
}
- ++span;
}
return true;
}
+static bool _rasterTranslucentRadialGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill)
+{
+ if (!rle) return false;
+
+ if (surface->compositor) {
+ if (surface->compositor->method == CompositeMethod::AlphaMask) {
+ return _translucentRadialGradientRleAlphaMask(surface, rle, fill);
+ }
+ if (surface->compositor->method == CompositeMethod::InvAlphaMask) {
+ return _translucentRadialGradientRleInvAlphaMask(surface, rle, fill);
+ }
+ }
+ return _translucentRadialGradientRle(surface, rle, fill);
+}
+
+
static bool _rasterOpaqueRadialGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill)
{
if (fill->radial.a < FLT_EPSILON) return false;
auto span = rle->spans;
- for (uint32_t i = 0; i < rle->size; ++i) {
+ for (uint32_t i = 0; i < rle->size; ++i, ++span) {
auto dst = &surface->buffer[span->y * surface->stride + span->x];
if (span->coverage == 255) {
fillFetchRadial(fill, dst, span->y, span->x, span->len);
dst[i] = ALPHA_BLEND(buf[i], span->coverage) + ALPHA_BLEND(dst[i], ialpha);
}
}
- ++span;
}
return true;
}