* @param[in] multiplier Real multiplier.
* @param[out] quant_multiplier Integer multiplier.
* @param[out] shift bit shift. A negative value indicates a left shift, while a positive value indicates a right shift
+ * @param[in] ignore_epsilon When true, ignore pre-defined epsilon value. Defaults to false
*
* @return a status
*/
-Status calculate_quantized_multiplier(float multiplier, int32_t *quant_multiplier, int32_t *shift);
+Status calculate_quantized_multiplier(float multiplier, int32_t *quant_multiplier, int32_t *shift, bool ignore_epsilon = false);
/** Calculate quantized representation of multiplier with value less than one.
*
* @param[in] multiplier Real multiplier.
* @param[out] quant_multiplier Integer multiplier.
* @param[out] right_shift Right bit shift.
+ * @param[in] ignore_epsilon When true, ignore pre-defined epsilon value. Defaults to false
*
* @return a status
*/
-Status calculate_quantized_multiplier_less_than_one(float multiplier, int32_t *quant_multiplier, int32_t *right_shift);
+Status calculate_quantized_multiplier_less_than_one(float multiplier, int32_t *quant_multiplier, int32_t *right_shift, bool ignore_epsilon = false);
/** Calculate quantized representation of multiplier having value greater than one.
*
* @param[in] multiplier Real multiplier.
_forget_intermediate_scale(0.0f),
_cell_intermediate_scale(0.0f),
_output_intermediate_scale(0.0f),
- _hidden_state_zero(0.0f),
- _hidden_state_scale(0),
+ _hidden_state_zero(0),
+ _hidden_state_scale(0.0f),
_has_peephole_opt(false),
_has_projection(false),
_has_cifg_opt(true),
float _forget_intermediate_scale;
float _cell_intermediate_scale;
float _output_intermediate_scale;
- float _hidden_state_zero;
- int32_t _hidden_state_scale;
+ int32_t _hidden_state_zero;
+ float _hidden_state_scale;
bool _has_peephole_opt;
bool _has_projection;
bool _has_cifg_opt;
constexpr int64_t fixed_point_one_Q0 = (1LL << 31);
constexpr float epsilon = 0.00001f;
-Status calculate_quantized_multiplier(float multiplier, int32_t *quant_multiplier, int32_t *shift)
+Status calculate_quantized_multiplier(float multiplier, int32_t *quant_multiplier, int32_t *shift, bool ignore_epsilon)
{
if(multiplier >= 1.f)
{
}
else
{
- return calculate_quantized_multiplier_less_than_one(multiplier, quant_multiplier, shift);
+ return calculate_quantized_multiplier_less_than_one(multiplier, quant_multiplier, shift, ignore_epsilon);
}
}
Status calculate_quantized_multiplier_less_than_one(float multiplier,
int32_t *quant_multiplier,
- int32_t *right_shift)
+ int32_t *right_shift,
+ bool ignore_epsilon)
{
+ const float internal_epsilon = ignore_epsilon ? 0.0f : epsilon;
+
ARM_COMPUTE_RETURN_ERROR_ON(quant_multiplier == nullptr);
ARM_COMPUTE_RETURN_ERROR_ON(right_shift == nullptr);
- ARM_COMPUTE_RETURN_ERROR_ON(multiplier < -epsilon);
- ARM_COMPUTE_RETURN_ERROR_ON(multiplier > 1.0f + epsilon);
- if(std::fabs(0.0f - multiplier) < epsilon)
+ ARM_COMPUTE_RETURN_ERROR_ON(multiplier < -internal_epsilon);
+ ARM_COMPUTE_RETURN_ERROR_ON(multiplier > 1.0f + internal_epsilon);
+ if(std::fabs(0.0f - multiplier) < internal_epsilon)
{
*quant_multiplier = 0;
*right_shift = 0;
q_fixed /= 2;
--*right_shift;
}
+
+ if(ignore_epsilon && *right_shift > 31)
+ {
+ *right_shift = 0;
+ q_fixed = 0;
+ }
+
ARM_COMPUTE_RETURN_ERROR_ON(*right_shift < 0);
ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > std::numeric_limits<int32_t>::max());
*quant_multiplier = static_cast<int32_t>(q_fixed);
_output_gate.allocator()->allocate();
_input_gate.allocator()->allocate();
const float hidden_state_scale = std::pow(2, -15) / lstm_params.hidden_state_scale() * std::pow(2, -15);
- quantization::calculate_quantized_multiplier(hidden_state_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift);
+ quantization::calculate_quantized_multiplier(hidden_state_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift, /* ignore_epsilon */ true);
gemmlowp_info.gemmlowp_offset = lstm_params.hidden_state_zero();
gemmlowp_info.output_data_type = output_state_in->info()->data_type();
_hidden_outstage.configure(&_hidden_mul_res, nullptr, output_state_out, gemmlowp_info);
const TensorInfo hidden_mul_res(TensorShape(num_units, batch_size), 1, DataType::S32);
ARM_COMPUTE_RETURN_ON_ERROR(NEPixelWiseMultiplicationKernel::validate(&output_gate_info, &input_gate_info, &hidden_mul_res, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO));
const float hidden_state_scale = std::pow(2, -15) / lstm_params.hidden_state_scale() * std::pow(2, -15);
- ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(hidden_state_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift));
+ ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(hidden_state_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift, /* ignore_epsilon */ true));
gemmlowp_info.gemmlowp_offset = lstm_params.hidden_state_zero();
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpOutputStage::validate(&hidden_mul_res, nullptr, output_state_out, gemmlowp_info));