# N.B. input image must be in CIFAR-10 format
# as described at http://www.cs.toronto.edu/~kriz/cifar.html
input: "data"
-input_dim: 1
-input_dim: 3
-input_dim: 32
-input_dim: 32
+input_shape {
+ dim: 1
+ dim: 3
+ dim: 32
+ dim: 32
+}
layer {
name: "conv1"
type: "Convolution"
name: "CIFAR10_quick_test"
input: "data"
-input_dim: 1
-input_dim: 3
-input_dim: 32
-input_dim: 32
+input_shape {
+ dim: 1
+ dim: 3
+ dim: 32
+ dim: 32
+}
layer {
name: "conv1"
type: "Convolution"
name: "LeNet"
input: "data"
-input_dim: 64
-input_dim: 1
-input_dim: 28
-input_dim: 28
+input_shape {
+ dim: 64
+ dim: 1
+ dim: 28
+ dim: 28
+}
layer {
name: "conv1"
type: "Convolution"
# Fully convolutional network version of CaffeNet.
name: "CaffeNetConv"
input: "data"
-input_dim: 1
-input_dim: 3
-input_dim: 451
-input_dim: 451
+input_shape {
+ dim: 1
+ dim: 3
+ dim: 451
+ dim: 451
+}
layer {
name: "conv1"
type: "Convolution"
# Simple single-layer network to showcase editing model parameters.
name: "convolution"
input: "data"
-input_dim: 1
-input_dim: 1
-input_dim: 100
-input_dim: 100
+input_shape {
+ dim: 1
+ dim: 1
+ dim: 100
+ dim: 100
+}
layer {
name: "conv"
type: "Convolution"
name: "mnist_siamese"
input: "data"
-input_dim: 10000
-input_dim: 1
-input_dim: 28
-input_dim: 28
+input_shape {
+ dim: 10000
+ dim: 1
+ dim: 28
+ dim: 28
+}
layer {
name: "conv1"
type: "Convolution"
name: "AlexNet"
input: "data"
-input_dim: 10
-input_dim: 3
-input_dim: 227
-input_dim: 227
+input_shape {
+ dim: 10
+ dim: 3
+ dim: 227
+ dim: 227
+}
layer {
name: "conv1"
type: "Convolution"
name: "GoogleNet"
input: "data"
-input_dim: 10
-input_dim: 3
-input_dim: 224
-input_dim: 224
+input_shape {
+ dim: 10
+ dim: 3
+ dim: 224
+ dim: 224
+}
layer {
name: "conv1/7x7_s2"
type: "Convolution"
name: "CaffeNet"
input: "data"
-input_dim: 10
-input_dim: 3
-input_dim: 227
-input_dim: 227
+input_shape {
+ dim: 10
+ dim: 3
+ dim: 227
+ dim: 227
+}
layer {
name: "conv1"
type: "Convolution"
name: "R-CNN-ilsvrc13"
input: "data"
-input_dim: 10
-input_dim: 3
-input_dim: 227
-input_dim: 227
+input_shape {
+ dim: 10
+ dim: 3
+ dim: 227
+ dim: 227
+}
layer {
name: "conv1"
type: "Convolution"
name: "FlickrStyleCaffeNet"
input: "data"
-input_dim: 10
-input_dim: 3
-input_dim: 227
-input_dim: 227
+input_shape {
+ dim: 10
+ dim: 3
+ dim: 227
+ dim: 227
+}
layer {
name: "conv1"
type: "Convolution"