if (RC == &NVPTX::Float64RegsRegClass) {
return ".f64";
} else if (RC == &NVPTX::Int64RegsRegClass) {
- return ".s64";
+ // We use untyped (.b) integer registers here as NVCC does.
+ // Correctness of generated code does not depend on register type,
+ // but using .s/.u registers runs into ptxas bug that prevents
+ // assembly of otherwise valid PTX into SASS. Despite PTX ISA
+ // specifying only argument size for fp16 instructions, ptxas does
+ // not allow using .s16 or .u16 arguments for .fp16
+ // instructions. At the same time it allows using .s32/.u32
+ // arguments for .fp16v2 instructions:
+ //
+ // .reg .b16 rb16
+ // .reg .s16 rs16
+ // add.f16 rb16,rb16,rb16; // OK
+ // add.f16 rs16,rs16,rs16; // Arguments mismatch for instruction 'add'
+ // but:
+ // .reg .b32 rb32
+ // .reg .s32 rs32
+ // add.f16v2 rb32,rb32,rb32; // OK
+ // add.f16v2 rs32,rs32,rs32; // OK
+ return ".b64";
} else if (RC == &NVPTX::Int32RegsRegClass) {
- return ".s32";
+ return ".b32";
} else if (RC == &NVPTX::Int16RegsRegClass) {
- return ".s16";
+ return ".b16";
} else if (RC == &NVPTX::Int1RegsRegClass) {
return ".pred";
} else if (RC == &NVPTX::SpecialRegsRegClass) {
--- /dev/null
+; Verify register types we generate in PTX.
+; RUN: llc -O0 < %s -march=nvptx -mcpu=sm_20 | FileCheck %s
+; RUN: llc -O0 < %s -march=nvptx64 -mcpu=sm_20 | FileCheck %s
+; RUN: llc -O0 < %s -march=nvptx -mcpu=sm_20 | FileCheck %s -check-prefixes=NO8BIT
+; RUN: llc -O0 < %s -march=nvptx64 -mcpu=sm_20 | FileCheck %s -check-prefixes=NO8BIT
+
+; CHECK-LABEL: .visible .func func()
+; NO8BIT-LABEL: .visible .func func()
+define void @func() {
+entry:
+ %s8 = alloca i8, align 1
+ %u8 = alloca i8, align 1
+ %s16 = alloca i16, align 2
+ %u16 = alloca i16, align 2
+; Both 8- and 16-bit integers are packed into 16-bit registers.
+; CHECK-DAG: .reg .b16 %rs<
+; We should not generate 8-bit registers.
+; NO8BIT-NOT: .reg .{{[bsu]}}8
+ %s32 = alloca i32, align 4
+ %u32 = alloca i32, align 4
+; CHECK-DAG: .reg .b32 %r<
+ %s64 = alloca i64, align 8
+ %u64 = alloca i64, align 8
+; CHECK-DAG: .reg .b64 %rd<
+ %f32 = alloca float, align 4
+; CHECK-DAG: .reg .f32 %f<
+ %f64 = alloca double, align 8
+; CHECK-DAG: .reg .f64 %fd<
+
+; Verify that we use correct register types.
+ store i8 1, i8* %s8, align 1
+; CHECK: mov.u16 [[R1:%rs[0-9]]], 1;
+; CHECK-NEXT: st.u8 {{.*}}, [[R1]]
+ store i8 2, i8* %u8, align 1
+; CHECK: mov.u16 [[R2:%rs[0-9]]], 2;
+; CHECK-NEXT: st.u8 {{.*}}, [[R2]]
+ store i16 3, i16* %s16, align 2
+; CHECK: mov.u16 [[R3:%rs[0-9]]], 3;
+; CHECK-NEXT: st.u16 {{.*}}, [[R3]]
+ store i16 4, i16* %u16, align 2
+; CHECK: mov.u16 [[R4:%rs[0-9]]], 4;
+; CHECK-NEXT: st.u16 {{.*}}, [[R4]]
+ store i32 5, i32* %s32, align 4
+; CHECK: mov.u32 [[R5:%r[0-9]]], 5;
+; CHECK-NEXT: st.u32 {{.*}}, [[R5]]
+ store i32 6, i32* %u32, align 4
+; CHECK: mov.u32 [[R6:%r[0-9]]], 6;
+; CHECK-NEXT: st.u32 {{.*}}, [[R6]]
+ store i64 7, i64* %s64, align 8
+; CHECK: mov.u64 [[R7:%rd[0-9]]], 7;
+; CHECK-NEXT: st.u64 {{.*}}, [[R7]]
+ store i64 8, i64* %u64, align 8
+; CHECK: mov.u64 [[R8:%rd[0-9]]], 8;
+; CHECK-NEXT: st.u64 {{.*}}, [[R8]]
+
+; FP constants are stored via integer registers, but that's an
+; implementation detail that's irrelevant here.
+ store float 9.000000e+00, float* %f32, align 4
+ store double 1.000000e+01, double* %f64, align 8
+; Instead, we force a load into a register and then verify register type.
+ %f32v = load volatile float, float* %f32, align 4
+; CHECK: ld.volatile.f32 %f{{[0-9]+}}
+ %f64v = load volatile double, double* %f64, align 8
+; CHECK: ld.volatile.f64 %fd{{[0-9]+}}
+ ret void
+; CHECK: ret;
+; NO8BIT: ret;
+}
+