ValueMap is a wrapper around a :ref:`DenseMap <dss_densemap>` mapping
``Value*``\ s (or subclasses) to another type. When a Value is deleted or
RAUW'ed, ValueMap will update itself so the new version of the key is mapped to
-the same value, just as if the key were a WeakTrackingVH. You can configure
-exactly how this happens, and what else happens on these two events, by passing
-a ``Config`` parameter to the ValueMap template.
+the same value, just as if the key were a WeakVH. You can configure exactly how
+this happens, and what else happens on these two events, by passing a ``Config``
+parameter to the ValueMap template.
.. _dss_intervalmap:
/// \brief Vector of weak value handles to calls of the @llvm.assume
/// intrinsic.
- SmallVector<WeakTrackingVH, 4> AssumeHandles;
+ SmallVector<WeakVH, 4> AssumeHandles;
class AffectedValueCallbackVH final : public CallbackVH {
AssumptionCache *AC;
/// \brief A map of values about which an assumption might be providing
/// information to the relevant set of assumptions.
using AffectedValuesMap =
- DenseMap<AffectedValueCallbackVH, SmallVector<WeakTrackingVH, 1>,
- AffectedValueCallbackVH::DMI>;
+ DenseMap<AffectedValueCallbackVH, SmallVector<WeakVH, 1>,
+ AffectedValueCallbackVH::DMI>;
AffectedValuesMap AffectedValues;
/// Get the vector of assumptions which affect a value from the cache.
- SmallVector<WeakTrackingVH, 1> &getOrInsertAffectedValues(Value *V);
+ SmallVector<WeakVH, 1> &getOrInsertAffectedValues(Value *V);
/// Copy affected values in the cache for OV to be affected values for NV.
void copyAffectedValuesInCache(Value *OV, Value *NV);
/// FIXME: We should replace this with pointee_iterator<filter_iterator<...>>
/// when we can write that to filter out the null values. Then caller code
/// will become simpler.
- MutableArrayRef<WeakTrackingVH> assumptions() {
+ MutableArrayRef<WeakVH> assumptions() {
if (!Scanned)
scanFunction();
return AssumeHandles;
}
/// \brief Access the list of assumptions which affect this value.
- MutableArrayRef<WeakTrackingVH> assumptionsFor(const Value *V) {
+ MutableArrayRef<WeakVH> assumptionsFor(const Value *V) {
if (!Scanned)
scanFunction();
auto AVI = AffectedValues.find_as(const_cast<Value *>(V));
if (AVI == AffectedValues.end())
- return MutableArrayRef<WeakTrackingVH>();
+ return MutableArrayRef<WeakVH>();
return AVI->second;
}
LazyCallGraph::SCC *C = &InitialC;
// Collect value handles for all of the indirect call sites.
- SmallVector<WeakTrackingVH, 8> CallHandles;
+ SmallVector<WeakVH, 8> CallHandles;
// Struct to track the counts of direct and indirect calls in each function
// of the SCC.
// Put value handles on all of the indirect calls and return the number of
// direct calls for each function in the SCC.
auto ScanSCC = [](LazyCallGraph::SCC &C,
- SmallVectorImpl<WeakTrackingVH> &CallHandles) {
+ SmallVectorImpl<WeakVH> &CallHandles) {
assert(CallHandles.empty() && "Must start with a clear set of handles.");
SmallVector<CallCount, 4> CallCounts;
++Count.Direct;
} else {
++Count.Indirect;
- CallHandles.push_back(WeakTrackingVH(&I));
+ CallHandles.push_back(WeakVH(&I));
}
}
}
"Cannot have changed the size of the SCC!");
// Check whether any of the handles were devirtualized.
- auto IsDevirtualizedHandle = [&](WeakTrackingVH &CallH) {
+ auto IsDevirtualizedHandle = [&](WeakVH &CallH) {
if (!CallH)
return false;
auto CS = CallSite(CallH);
public:
/// \brief A pair of the calling instruction (a call or invoke)
/// and the call graph node being called.
- typedef std::pair<WeakTrackingVH, CallGraphNode *> CallRecord;
+ typedef std::pair<WeakVH, CallGraphNode *> CallRecord;
public:
typedef std::vector<CallRecord> CalledFunctionsVector;
/// OperandValToReplace - The Value of the operand in the user instruction
/// that this IVStrideUse is representing.
- WeakTrackingVH OperandValToReplace;
+ WeakVH OperandValToReplace;
/// PostIncLoops - The set of loops for which Expr has been adjusted to
/// use post-inc mode. This corresponds with SCEVExpander's post-inc concept.
: public InstVisitor<ObjectSizeOffsetEvaluator, SizeOffsetEvalType> {
typedef IRBuilder<TargetFolder> BuilderTy;
- typedef std::pair<WeakTrackingVH, WeakTrackingVH> WeakEvalType;
+ typedef std::pair<WeakVH, WeakVH> WeakEvalType;
typedef DenseMap<const Value*, WeakEvalType> CacheMapTy;
typedef SmallPtrSet<const Value*, 8> PtrSetTy;
/// replace congruent phis with their most canonical representative. Return
/// the number of phis eliminated.
unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT,
- SmallVectorImpl<WeakTrackingVH> &DeadInsts,
+ SmallVectorImpl<WeakVH> &DeadInsts,
const TargetTransformInfo *TTI = nullptr);
/// Insert code to directly compute the specified SCEV expression into the
///
/// This is to avoid having a vtable for the light-weight handle pointers. The
/// fully general Callback version does have a vtable.
- enum HandleBaseKind { Assert, Callback, Tracking, Weak, WeakTracking };
+ enum HandleBaseKind {
+ Assert,
+ Callback,
+ Tracking,
+ Weak
+ };
ValueHandleBase(const ValueHandleBase &RHS)
: ValueHandleBase(RHS.PrevPair.getInt(), RHS) {}
}
private:
- PointerIntPair<ValueHandleBase**, 3, HandleBaseKind> PrevPair;
+ PointerIntPair<ValueHandleBase**, 2, HandleBaseKind> PrevPair;
ValueHandleBase *Next;
Value* V;
void AddToUseList();
};
-/// \brief A nullable Value handle that is nullable.
+/// \brief Value handle that is nullable, but tries to track the Value.
///
-/// This is a value handle that points to a value, and nulls itself
-/// out if that value is deleted.
+/// This is a value handle that tries hard to point to a Value, even across
+/// RAUW operations, but will null itself out if the value is destroyed. this
+/// is useful for advisory sorts of information, but should not be used as the
+/// key of a map (since the map would have to rearrange itself when the pointer
+/// changes).
class WeakVH : public ValueHandleBase {
public:
WeakVH() : ValueHandleBase(Weak) {}
WeakVH(Value *P) : ValueHandleBase(Weak, P) {}
WeakVH(const WeakVH &RHS)
- : ValueHandleBase(Weak, RHS) {}
+ : ValueHandleBase(Weak, RHS) {}
WeakVH &operator=(const WeakVH &RHS) = default;
static SimpleType getSimplifiedValue(const WeakVH &WVH) { return WVH; }
};
-/// \brief Value handle that is nullable, but tries to track the Value.
-///
-/// This is a value handle that tries hard to point to a Value, even across
-/// RAUW operations, but will null itself out if the value is destroyed. this
-/// is useful for advisory sorts of information, but should not be used as the
-/// key of a map (since the map would have to rearrange itself when the pointer
-/// changes).
-class WeakTrackingVH : public ValueHandleBase {
-public:
- WeakTrackingVH() : ValueHandleBase(WeakTracking) {}
- WeakTrackingVH(Value *P) : ValueHandleBase(WeakTracking, P) {}
- WeakTrackingVH(const WeakTrackingVH &RHS)
- : ValueHandleBase(WeakTracking, RHS) {}
-
- WeakTrackingVH &operator=(const WeakTrackingVH &RHS) = default;
-
- Value *operator=(Value *RHS) {
- return ValueHandleBase::operator=(RHS);
- }
- Value *operator=(const ValueHandleBase &RHS) {
- return ValueHandleBase::operator=(RHS);
- }
-
- operator Value*() const {
- return getValPtr();
- }
-};
-
-// Specialize simplify_type to allow WeakTrackingVH to participate in
-// dyn_cast, isa, etc.
-template <> struct simplify_type<WeakTrackingVH> {
- typedef Value *SimpleType;
- static SimpleType getSimplifiedValue(WeakTrackingVH &WVH) { return WVH; }
-};
-template <> struct simplify_type<const WeakTrackingVH> {
- typedef Value *SimpleType;
- static SimpleType getSimplifiedValue(const WeakTrackingVH &WVH) {
- return WVH;
- }
-};
-
/// \brief Value handle that asserts if the Value is deleted.
///
/// This is a Value Handle that points to a value and asserts out if the value
///
/// Called when this->getValPtr() is destroyed, inside ~Value(), so you
/// may call any non-virtual Value method on getValPtr(), but no subclass
- /// methods. If WeakTrackingVH were implemented as a CallbackVH, it would use
- /// this method to call setValPtr(NULL). AssertingVH would use this method to
+ /// methods. If WeakVH were implemented as a CallbackVH, it would use this
+ /// method to call setValPtr(NULL). AssertingVH would use this method to
/// cause an assertion failure.
///
/// All implementations must remove the reference from this object to the
/// \brief Callback for Value RAUW.
///
/// Called when this->getValPtr()->replaceAllUsesWith(new_value) is called,
- /// _before_ any of the uses have actually been replaced. If WeakTrackingVH
- /// were implemented as a CallbackVH, it would use this method to call
+ /// _before_ any of the uses have actually been replaced. If WeakVH were
+ /// implemented as a CallbackVH, it would use this method to call
/// setValPtr(new_value). AssertingVH would do nothing in this method.
virtual void allUsesReplacedWith(Value *) {}
};
// foo(a + b);
// if (p2)
// bar(a + b);
- DenseMap<const SCEV *, SmallVector<WeakTrackingVH, 2>> SeenExprs;
+ DenseMap<const SCEV *, SmallVector<WeakVH, 2>> SeenExprs;
};
} // namespace llvm
/// All cloned call sites that have operand bundles attached are appended to
/// this vector. This vector may contain nulls or undefs if some of the
/// originally inserted callsites were DCE'ed after they were cloned.
- std::vector<WeakTrackingVH> OperandBundleCallSites;
+ std::vector<WeakVH> OperandBundleCallSites;
ClonedCodeInfo() = default;
};
/// InlinedCalls - InlineFunction fills this in with callsites that were
/// inlined from the callee. This is only filled in if CG is non-null.
- SmallVector<WeakTrackingVH, 8> InlinedCalls;
+ SmallVector<WeakVH, 8> InlinedCalls;
/// All of the new call sites inlined into the caller.
///
/// simplifyUsersOfIV - Simplify instructions that use this induction variable
/// by using ScalarEvolution to analyze the IV's recurrence.
bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
- LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead,
+ LoopInfo *LI, SmallVectorImpl<WeakVH> &Dead,
IVVisitor *V = nullptr);
/// SimplifyLoopIVs - Simplify users of induction variables within this
/// loop. This does not actually change or add IVs.
bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
- LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead);
+ LoopInfo *LI, SmallVectorImpl<WeakVH> &Dead);
} // end namespace llvm
class Value;
class Instruction;
-typedef ValueMap<const Value *, WeakTrackingVH> ValueToValueMapTy;
+typedef ValueMap<const Value *, WeakVH> ValueToValueMapTy;
/// This is a class that can be implemented by clients to remap types when
/// cloning constants and instructions.
struct SLPVectorizerPass : public PassInfoMixin<SLPVectorizerPass> {
typedef SmallVector<StoreInst *, 8> StoreList;
typedef MapVector<Value *, StoreList> StoreListMap;
- typedef SmallVector<WeakTrackingVH, 8> WeakTrackingVHList;
- typedef MapVector<Value *, WeakTrackingVHList> WeakTrackingVHListMap;
+ typedef SmallVector<WeakVH, 8> WeakVHList;
+ typedef MapVector<Value *, WeakVHList> WeakVHListMap;
ScalarEvolution *SE = nullptr;
TargetTransformInfo *TTI = nullptr;
StoreListMap Stores;
/// The getelementptr instructions in a basic block organized by base pointer.
- WeakTrackingVHListMap GEPs;
+ WeakVHListMap GEPs;
};
}
cl::desc("Enable verification of assumption cache"),
cl::init(false));
-SmallVector<WeakTrackingVH, 1> &
-AssumptionCache::getOrInsertAffectedValues(Value *V) {
+SmallVector<WeakVH, 1> &AssumptionCache::getOrInsertAffectedValues(Value *V) {
// Try using find_as first to avoid creating extra value handles just for the
// purpose of doing the lookup.
auto AVI = AffectedValues.find_as(V);
if (AVI != AffectedValues.end())
return AVI->second;
- auto AVIP = AffectedValues.insert(
- {AffectedValueCallbackVH(V, this), SmallVector<WeakTrackingVH, 1>()});
+ auto AVIP = AffectedValues.insert({
+ AffectedValueCallbackVH(V, this), SmallVector<WeakVH, 1>()});
return AVIP.first->second;
}
// Get the set of call sites currently in the function.
for (CallGraphNode::iterator I = CGN->begin(), E = CGN->end(); I != E; ) {
// If this call site is null, then the function pass deleted the call
- // entirely and the WeakTrackingVH nulled it out.
+ // entirely and the WeakVH nulled it out.
if (!I->first ||
// If we've already seen this call site, then the FunctionPass RAUW'd
// one call with another, which resulted in two "uses" in the edge
if (NumIndirectRemoved > NumIndirectAdded &&
NumDirectRemoved < NumDirectAdded)
DevirtualizedCall = true;
-
+
// After scanning this function, if we still have entries in callsites, then
- // they are dangling pointers. WeakTrackingVH should save us for this, so
- // abort if this happens.
+ // they are dangling pointers. WeakVH should save us for this, so abort if
+ // this happens.
assert(CallSites.empty() && "Dangling pointers found in call sites map");
// Periodically do an explicit clear to remove tombstones when processing
///
/// This does not depend on any SCEVExpander state but should be used in
/// the same context that SCEVExpander is used.
-unsigned
-SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
- SmallVectorImpl<WeakTrackingVH> &DeadInsts,
- const TargetTransformInfo *TTI) {
+unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
+ SmallVectorImpl<WeakVH> &DeadInsts,
+ const TargetTransformInfo *TTI) {
// Find integer phis in order of increasing width.
SmallVector<PHINode*, 8> Phis;
for (auto &I : *L->getHeader()) {
if (Idx >= size())
resize(Idx + 1);
- WeakTrackingVH &OldV = ValuePtrs[Idx];
+ WeakVH &OldV = ValuePtrs[Idx];
if (!OldV) {
OldV = V;
return;
class Constant;
class BitcodeReaderValueList {
- std::vector<WeakTrackingVH> ValuePtrs;
+ std::vector<WeakVH> ValuePtrs;
/// As we resolve forward-referenced constants, we add information about them
/// to this vector. This allows us to resolve them in bulk instead of
ConstantInt *RetVal =
lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true);
// Substituting this can cause recursive simplifications, which can
- // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case
- // this happens.
+ // invalidate our iterator. Use a WeakVH to hold onto it in case this
+ // happens.
Value *CurValue = &*CurInstIterator;
- WeakTrackingVH IterHandle(CurValue);
+ WeakVH IterHandle(CurValue);
replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
// using it.
if (Repl->use_empty()) {
// This can cause recursive deletion, which can invalidate our iterator.
- // Use a WeakTrackingVH to hold onto it in case this happens.
+ // Use a WeakVH to hold onto it in case this happens.
Value *CurValue = &*CurInstIterator;
- WeakTrackingVH IterHandle(CurValue);
+ WeakVH IterHandle(CurValue);
BasicBlock *BB = CurInstIterator->getParent();
RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
break;
case Weak:
- case WeakTracking:
- // WeakTracking and Weak just go to null, which unlinks them
- // from the list.
+ // Weak just goes to null, which will unlink it from the list.
Entry->operator=(nullptr);
break;
case Callback:
switch (Entry->getKind()) {
case Assert:
- case Weak:
- // Asserting and Weak handles do not follow RAUW implicitly.
+ // Asserting handle does not follow RAUW implicitly.
break;
case Tracking:
- // Tracking goes to new value like a WeakTrackingVH. Note that this may
- // make it something incompatible with its templated type. We don't want
- // to have a virtual (or inline) interface to handle this though, so
- // instead we make the TrackingVH accessors guarantee that a client never
- // sees this value.
+ // Tracking goes to new value like a WeakVH. Note that this may make it
+ // something incompatible with its templated type. We don't want to have a
+ // virtual (or inline) interface to handle this though, so instead we make
+ // the TrackingVH accessors guarantee that a client never sees this value.
LLVM_FALLTHROUGH;
- case WeakTracking:
- // WeakTracking goes to the new value, which will unlink it from Old's
- // list.
+ case Weak:
+ // Weak goes to the new value, which will unlink it from Old's list.
Entry->operator=(New);
break;
case Callback:
for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
switch (Entry->getKind()) {
case Tracking:
- case WeakTracking:
+ case Weak:
dbgs() << "After RAUW from " << *Old->getType() << " %"
<< Old->getName() << " to " << *New->getType() << " %"
<< New->getName() << "\n";
void insertElse(BranchInst *Term);
- Value *
- handleLoopCondition(Value *Cond, PHINode *Broken, llvm::Loop *L,
- BranchInst *Term,
- SmallVectorImpl<WeakTrackingVH> &LoopPhiConditions);
+ Value *handleLoopCondition(Value *Cond, PHINode *Broken,
+ llvm::Loop *L, BranchInst *Term,
+ SmallVectorImpl<WeakVH> &LoopPhiConditions);
void handleLoop(BranchInst *Term);
/// \brief Recursively handle the condition leading to a loop
Value *SIAnnotateControlFlow::handleLoopCondition(
- Value *Cond, PHINode *Broken, llvm::Loop *L, BranchInst *Term,
- SmallVectorImpl<WeakTrackingVH> &LoopPhiConditions) {
+ Value *Cond, PHINode *Broken,
+ llvm::Loop *L, BranchInst *Term,
+ SmallVectorImpl<WeakVH> &LoopPhiConditions) {
// Only search through PHI nodes which are inside the loop. If we try this
// with PHI nodes that are outside of the loop, we end up inserting new PHI
NewPhi->setIncomingValue(i, PhiArg);
}
- LoopPhiConditions.push_back(WeakTrackingVH(Phi));
+ LoopPhiConditions.push_back(WeakVH(Phi));
return Ret;
}
BasicBlock *Target = Term->getSuccessor(1);
PHINode *Broken = PHINode::Create(Int64, 0, "phi.broken", &Target->front());
- SmallVector<WeakTrackingVH, 8> LoopPhiConditions;
+ SmallVector<WeakVH, 8> LoopPhiConditions;
Value *Cond = Term->getCondition();
Term->setCondition(BoolTrue);
Value *Arg = handleLoopCondition(Cond, Broken, L, Term, LoopPhiConditions);
Term->setCondition(CallInst::Create(Loop, Arg, "", Term));
- for (WeakTrackingVH Val : reverse(LoopPhiConditions)) {
+ for (WeakVH Val : reverse(LoopPhiConditions)) {
if (PHINode *Cond = cast_or_null<PHINode>(Val))
eraseIfUnused(Cond);
}
static bool replaceConstantExprOp(ConstantExpr *CE, Pass *P) {
do {
- SmallVector<WeakTrackingVH, 8> WUsers(CE->user_begin(), CE->user_end());
+ SmallVector<WeakVH,8> WUsers(CE->user_begin(), CE->user_end());
std::sort(WUsers.begin(), WUsers.end());
WUsers.erase(std::unique(WUsers.begin(), WUsers.end()), WUsers.end());
while (!WUsers.empty())
- if (WeakTrackingVH WU = WUsers.pop_back_val()) {
+ if (WeakVH WU = WUsers.pop_back_val()) {
if (PHINode *PN = dyn_cast<PHINode>(WU)) {
for (int I = 0, E = PN->getNumIncomingValues(); I < E; ++I)
if (PN->getIncomingValue(I) == CE) {
}
static bool rewriteNonInstructionUses(GlobalVariable *GV, Pass *P) {
- SmallVector<WeakTrackingVH, 8> WUsers;
+ SmallVector<WeakVH,8> WUsers;
for (User *U : GV->users())
if (!isa<Instruction>(U))
- WUsers.push_back(WeakTrackingVH(U));
+ WUsers.push_back(WeakVH(U));
while (!WUsers.empty())
- if (WeakTrackingVH WU = WUsers.pop_back_val()) {
+ if (WeakVH WU = WUsers.pop_back_val()) {
ConstantExpr *CE = dyn_cast<ConstantExpr>(WU);
if (!CE || !replaceConstantExprOp(CE, P))
return false;
// we delete a constant array, we may also be holding pointer to one of its
// elements (or an element of one of its elements if we're dealing with an
// array of arrays) in the worklist.
- SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
+ SmallVector<WeakVH, 8> WorkList(V->user_begin(), V->user_end());
while (!WorkList.empty()) {
Value *UV = WorkList.pop_back_val();
if (!UV)
/// A work queue of functions that may have been modified and should be
/// analyzed again.
- std::vector<WeakTrackingVH> Deferred;
+ std::vector<WeakVH> Deferred;
/// Checks the rules of order relation introduced among functions set.
/// Returns true, if sanity check has been passed, and false if failed.
- bool doSanityCheck(std::vector<WeakTrackingVH> &Worklist);
+ bool doSanityCheck(std::vector<WeakVH> &Worklist);
/// Insert a ComparableFunction into the FnTree, or merge it away if it's
/// equal to one that's already present.
return new MergeFunctions();
}
-bool MergeFunctions::doSanityCheck(std::vector<WeakTrackingVH> &Worklist) {
+bool MergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) {
if (const unsigned Max = NumFunctionsForSanityCheck) {
unsigned TripleNumber = 0;
bool Valid = true;
dbgs() << "MERGEFUNC-SANITY: Started for first " << Max << " functions.\n";
unsigned i = 0;
- for (std::vector<WeakTrackingVH>::iterator I = Worklist.begin(),
- E = Worklist.end();
+ for (std::vector<WeakVH>::iterator I = Worklist.begin(), E = Worklist.end();
I != E && i < Max; ++I, ++i) {
unsigned j = i;
- for (std::vector<WeakTrackingVH>::iterator J = I; J != E && j < Max;
- ++J, ++j) {
+ for (std::vector<WeakVH>::iterator J = I; J != E && j < Max; ++J, ++j) {
Function *F1 = cast<Function>(*I);
Function *F2 = cast<Function>(*J);
int Res1 = FunctionComparator(F1, F2, &GlobalNumbers).compare();
continue;
unsigned k = j;
- for (std::vector<WeakTrackingVH>::iterator K = J; K != E && k < Max;
+ for (std::vector<WeakVH>::iterator K = J; K != E && k < Max;
++k, ++K, ++TripleNumber) {
if (K == J)
continue;
// consider merging it. Otherwise it is dropped and never considered again.
if ((I != S && std::prev(I)->first == I->first) ||
(std::next(I) != IE && std::next(I)->first == I->first) ) {
- Deferred.push_back(WeakTrackingVH(I->second));
+ Deferred.push_back(WeakVH(I->second));
}
}
do {
- std::vector<WeakTrackingVH> Worklist;
+ std::vector<WeakVH> Worklist;
Deferred.swap(Worklist);
DEBUG(doSanityCheck(Worklist));
DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
// Insert functions and merge them.
- for (WeakTrackingVH &I : Worklist) {
+ for (WeakVH &I : Worklist) {
if (!I)
continue;
Function *F = cast<Function>(I);
return isAllocLikeFn(V, TLI) && V != AI;
}
-static bool isAllocSiteRemovable(Instruction *AI,
- SmallVectorImpl<WeakTrackingVH> &Users,
- const TargetLibraryInfo *TLI) {
+static bool
+isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
+ const TargetLibraryInfo *TLI) {
SmallVector<Instruction*, 4> Worklist;
Worklist.push_back(AI);
// If we have a malloc call which is only used in any amount of comparisons
// to null and free calls, delete the calls and replace the comparisons with
// true or false as appropriate.
- SmallVector<WeakTrackingVH, 64> Users;
+ SmallVector<WeakVH, 64> Users;
if (isAllocSiteRemovable(&MI, Users, &TLI)) {
for (unsigned i = 0, e = Users.size(); i != e; ++i) {
// Lowering all @llvm.objectsize calls first because they may
TargetLibraryInfo *TLI;
const TargetTransformInfo *TTI;
- SmallVector<WeakTrackingVH, 16> DeadInsts;
+ SmallVector<WeakVH, 16> DeadInsts;
bool Changed = false;
bool isValidRewrite(Value *FromVal, Value *ToVal);
Compare->getName());
// In the following deletions, PN may become dead and may be deleted.
- // Use a WeakTrackingVH to observe whether this happens.
- WeakTrackingVH WeakPH = PN;
+ // Use a WeakVH to observe whether this happens.
+ WeakVH WeakPH = PN;
// Delete the old floating point exit comparison. The branch starts using the
// new comparison.
//
BasicBlock *Header = L->getHeader();
- SmallVector<WeakTrackingVH, 8> PHIs;
+ SmallVector<WeakVH, 8> PHIs;
for (BasicBlock::iterator I = Header->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I)
PHIs.push_back(PN);
PHINode *WidePhi;
Instruction *WideInc;
const SCEV *WideIncExpr;
- SmallVectorImpl<WeakTrackingVH> &DeadInsts;
+ SmallVectorImpl<WeakVH> &DeadInsts;
SmallPtrSet<Instruction *,16> Widened;
SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
}
public:
- WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
- DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
- bool HasGuards)
- : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
- L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
- HasGuards(HasGuards), WidePhi(nullptr), WideInc(nullptr),
- WideIncExpr(nullptr), DeadInsts(DI) {
+ WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
+ ScalarEvolution *SEv, DominatorTree *DTree,
+ SmallVectorImpl<WeakVH> &DI, bool HasGuards) :
+ OrigPhi(WI.NarrowIV),
+ WideType(WI.WidestNativeType),
+ LI(LInfo),
+ L(LI->getLoopFor(OrigPhi->getParent())),
+ SE(SEv),
+ DT(DTree),
+ HasGuards(HasGuards),
+ WidePhi(nullptr),
+ WideInc(nullptr),
+ WideIncExpr(nullptr),
+ DeadInsts(DI) {
assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
}
Instruction *Inst = &*I++;
// Look for memset instructions, which may be optimized to a larger memset.
if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
- WeakTrackingVH InstPtr(&*I);
+ WeakVH InstPtr(&*I);
if (!processLoopMemSet(MSI, BECount))
continue;
MadeChange = true;
bool Changed = false;
// Copy blocks into a temporary array to avoid iterator invalidation issues
// as we remove them.
- SmallVector<WeakTrackingVH, 16> Blocks(L.blocks());
+ SmallVector<WeakVH, 16> Blocks(L.blocks());
for (auto &Block : Blocks) {
// Attempt to merge blocks in the trivial case. Don't modify blocks which
/// If any of the instructions is the specified set are trivially dead, delete
/// them and see if this makes any of their operands subsequently dead.
static bool
-DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
+DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
bool Changed = false;
while (!DeadInsts.empty()) {
void FinalizeChain(IVChain &Chain);
void CollectChains();
void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
- SmallVectorImpl<WeakTrackingVH> &DeadInsts);
+ SmallVectorImpl<WeakVH> &DeadInsts);
void CollectInterestingTypesAndFactors();
void CollectFixupsAndInitialFormulae();
const LSRUse &LU,
SCEVExpander &Rewriter) const;
- Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
- BasicBlock::iterator IP, SCEVExpander &Rewriter,
- SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
+ Value *Expand(const LSRUse &LU, const LSRFixup &LF,
+ const Formula &F,
+ BasicBlock::iterator IP,
+ SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakVH> &DeadInsts) const;
void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
- const Formula &F, SCEVExpander &Rewriter,
- SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
- void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
+ const Formula &F,
+ SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakVH> &DeadInsts) const;
+ void Rewrite(const LSRUse &LU, const LSRFixup &LF,
+ const Formula &F,
SCEVExpander &Rewriter,
- SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
+ SmallVectorImpl<WeakVH> &DeadInsts) const;
void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
public:
/// Generate an add or subtract for each IVInc in a chain to materialize the IV
/// user's operand from the previous IV user's operand.
void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
- SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
+ SmallVectorImpl<WeakVH> &DeadInsts) {
// Find the new IVOperand for the head of the chain. It may have been replaced
// by LSR.
const IVInc &Head = Chain.Incs[0];
/// Emit instructions for the leading candidate expression for this LSRUse (this
/// is called "expanding").
-Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
- const Formula &F, BasicBlock::iterator IP,
+Value *LSRInstance::Expand(const LSRUse &LU,
+ const LSRFixup &LF,
+ const Formula &F,
+ BasicBlock::iterator IP,
SCEVExpander &Rewriter,
- SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
+ SmallVectorImpl<WeakVH> &DeadInsts) const {
if (LU.RigidFormula)
return LF.OperandValToReplace;
/// Helper for Rewrite. PHI nodes are special because the use of their operands
/// effectively happens in their predecessor blocks, so the expression may need
/// to be expanded in multiple places.
-void LSRInstance::RewriteForPHI(
- PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
- SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
+void LSRInstance::RewriteForPHI(PHINode *PN,
+ const LSRUse &LU,
+ const LSRFixup &LF,
+ const Formula &F,
+ SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakVH> &DeadInsts) const {
DenseMap<BasicBlock *, Value *> Inserted;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
/// Emit instructions for the leading candidate expression for this LSRUse (this
/// is called "expanding"), and update the UserInst to reference the newly
/// expanded value.
-void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
- const Formula &F, SCEVExpander &Rewriter,
- SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
+void LSRInstance::Rewrite(const LSRUse &LU,
+ const LSRFixup &LF,
+ const Formula &F,
+ SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakVH> &DeadInsts) const {
// First, find an insertion point that dominates UserInst. For PHI nodes,
// find the nearest block which dominates all the relevant uses.
if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
const SmallVectorImpl<const Formula *> &Solution) {
// Keep track of instructions we may have made dead, so that
// we can remove them after we are done working.
- SmallVector<WeakTrackingVH, 16> DeadInsts;
+ SmallVector<WeakVH, 16> DeadInsts;
SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
"lsr");
// Remove any extra phis created by processing inner loops.
Changed |= DeleteDeadPHIs(L->getHeader());
if (EnablePhiElim && L->isLoopSimplifyForm()) {
- SmallVector<WeakTrackingVH, 16> DeadInsts;
+ SmallVector<WeakVH, 16> DeadInsts;
const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
SCEVExpander Rewriter(SE, DL, "lsr");
#ifndef NDEBUG
LoopProcessWorklist.push_back(NewLoop);
redoLoop = true;
- // Keep a WeakTrackingVH holding onto LIC. If the first call to
- // RewriteLoopBody deletes the instruction (for example by simplifying a PHI
- // that feeds into the condition that we're unswitching on), we don't rewrite
- // the second iteration.
- WeakTrackingVH LICHandle(LIC);
+ // Keep a WeakVH holding onto LIC. If the first call to RewriteLoopBody
+ // deletes the instruction (for example by simplifying a PHI that feeds into
+ // the condition that we're unswitching on), we don't rewrite the second
+ // iteration.
+ WeakVH LICHandle(LIC);
// Now we rewrite the original code to know that the condition is true and the
// new code to know that the condition is false.
Changed = true;
SE->forgetValue(&*I);
I->replaceAllUsesWith(NewI);
- // If SeenExprs constains I's WeakTrackingVH, that entry will be
- // replaced with nullptr.
+ // If SeenExprs constains I's WeakVH, that entry will be replaced with
+ // nullptr.
RecursivelyDeleteTriviallyDeadInstructions(&*I, TLI);
I = NewI->getIterator();
}
// Add the rewritten instruction to SeenExprs; the original instruction
// is deleted.
const SCEV *NewSCEV = SE->getSCEV(&*I);
- SeenExprs[NewSCEV].push_back(WeakTrackingVH(&*I));
+ SeenExprs[NewSCEV].push_back(WeakVH(&*I));
// Ideally, NewSCEV should equal OldSCEV because tryReassociate(I)
// is equivalent to I. However, ScalarEvolution::getSCEV may
// weaken nsw causing NewSCEV not to equal OldSCEV. For example, suppose
//
// This improvement is exercised in @reassociate_gep_nsw in nary-gep.ll.
if (NewSCEV != OldSCEV)
- SeenExprs[OldSCEV].push_back(WeakTrackingVH(&*I));
+ SeenExprs[OldSCEV].push_back(WeakVH(&*I));
}
}
}
// future instruction either. Therefore, we pop it out of the stack. This
// optimization makes the algorithm O(n).
while (!Candidates.empty()) {
- // Candidates stores WeakTrackingVHs, so a candidate can be nullptr if it's
- // removed during rewriting.
+ // Candidates stores WeakVHs, so a candidate can be nullptr if it's removed
+ // during rewriting.
if (Value *Candidate = Candidates.back()) {
Instruction *CandidateInstruction = cast<Instruction>(Candidate);
if (DT->dominates(CandidateInstruction, Dominatee))
/// Emit a tree of add instructions, summing Ops together
/// and returning the result. Insert the tree before I.
static Value *EmitAddTreeOfValues(Instruction *I,
- SmallVectorImpl<WeakTrackingVH> &Ops) {
+ SmallVectorImpl<WeakVH> &Ops){
if (Ops.size() == 1) return Ops.back();
Value *V1 = Ops.back();
? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
: BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
- SmallVector<WeakTrackingVH, 4> NewMulOps;
+ SmallVector<WeakVH, 4> NewMulOps;
for (unsigned i = 0; i != Ops.size(); ++i) {
// Only try to remove factors from expressions we're allowed to.
BinaryOperator *BOp =
bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
// Recursively deleting a PHI may cause multiple PHIs to be deleted
- // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
- SmallVector<WeakTrackingVH, 8> PHIs;
+ // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
+ SmallVector<WeakVH, 8> PHIs;
for (BasicBlock::iterator I = BB->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I)
PHIs.push_back(PN);
void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
BasicBlock::const_iterator StartingInst,
std::vector<const BasicBlock*> &ToClone){
- WeakTrackingVH &BBEntry = VMap[BB];
+ WeakVH &BBEntry = VMap[BB];
// Have we already cloned this block?
if (BBEntry) return;
// Make a second pass over the PHINodes now that all of them have been
// remapped into the new function, simplifying the PHINode and performing any
// recursive simplifications exposed. This will transparently update the
- // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
+ // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
// two PHINodes, the iteration over the old PHIs remains valid, and the
// mapping will just map us to the new node (which may not even be a PHI
// node).
// that can be removed.
BB->removePredecessor(Pred, true);
- WeakTrackingVH PhiIt = &BB->front();
+ WeakVH PhiIt = &BB->front();
while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
Value *OldPhiIt = PhiIt;
II->setAttributes(CI->getAttributes());
// Make sure that anything using the call now uses the invoke! This also
- // updates the CallGraph if present, because it uses a WeakTrackingVH.
+ // updates the CallGraph if present, because it uses a WeakVH.
CI->replaceAllUsesWith(II);
// Delete the original call
// Simplify any new induction variables in the partially unrolled loop.
if (SE && !CompletelyUnroll && Count > 1) {
- SmallVector<WeakTrackingVH, 16> DeadInsts;
+ SmallVector<WeakVH, 16> DeadInsts;
simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
// Aggressively clean up dead instructions that simplifyLoopIVs already
ScalarEvolution *SE;
DominatorTree *DT;
- SmallVectorImpl<WeakTrackingVH> &DeadInsts;
+ SmallVectorImpl<WeakVH> &DeadInsts;
bool Changed;
public:
SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
- LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead)
+ LoopInfo *LI,SmallVectorImpl<WeakVH> &Dead)
: L(Loop), LI(LI), SE(SE), DT(DT), DeadInsts(Dead), Changed(false) {
assert(LI && "IV simplification requires LoopInfo");
}
/// Simplify instructions that use this induction variable
/// by using ScalarEvolution to analyze the IV's recurrence.
bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
- LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead,
+ LoopInfo *LI, SmallVectorImpl<WeakVH> &Dead,
IVVisitor *V) {
SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Dead);
SIV.simplifyUsers(CurrIV, V);
/// Simplify users of induction variables within this
/// loop. This does not actually change or add IVs.
bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
- LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead) {
+ LoopInfo *LI, SmallVectorImpl<WeakVH> &Dead) {
bool Changed = false;
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead);
}
/// \brief Check that the Values in the slice in VL array are still existent in
-/// the WeakTrackingVH array.
+/// the WeakVH array.
/// Vectorization of part of the VL array may cause later values in the VL array
-/// to become invalid. We track when this has happened in the WeakTrackingVH
-/// array.
-static bool hasValueBeenRAUWed(ArrayRef<Value *> VL,
- ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin,
- unsigned SliceSize) {
+/// to become invalid. We track when this has happened in the WeakVH array.
+static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH,
+ unsigned SliceBegin, unsigned SliceSize) {
VL = VL.slice(SliceBegin, SliceSize);
VH = VH.slice(SliceBegin, SliceSize);
return !std::equal(VL.begin(), VL.end(), VH.begin());
return false;
// Keep track of values that were deleted by vectorizing in the loop below.
- SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end());
+ SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
bool Changed = false;
// Look for profitable vectorizable trees at all offsets, starting at zero.
bool Changed = false;
// Keep track of values that were deleted by vectorizing in the loop below.
- SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end());
+ SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
unsigned NextInst = 0, MaxInst = VL.size();
for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF;
namespace {
/// Tracks instructons and its children.
-class WeakTrackingVHWithLevel final : public CallbackVH {
+class WeakVHWithLevel final : public CallbackVH {
/// Operand index of the instruction currently beeing analized.
unsigned Level = 0;
/// Is this the instruction that should be vectorized, or are we now
bool IsInitial = true;
public:
- explicit WeakTrackingVHWithLevel() = default;
- WeakTrackingVHWithLevel(Value *V) : CallbackVH(V){};
+ explicit WeakVHWithLevel() = default;
+ WeakVHWithLevel(Value *V) : CallbackVH(V){};
/// Restart children analysis each time it is repaced by the new instruction.
void allUsesReplacedWith(Value *New) override {
setValPtr(New);
cast<Instruction>(getValPtr())->getNumOperands() > Level);
return cast<Instruction>(getValPtr())->getOperand(Level++);
}
- virtual ~WeakTrackingVHWithLevel() = default;
+ virtual ~WeakVHWithLevel() = default;
};
} // namespace
if (Root->getParent() != BB)
return false;
- SmallVector<WeakTrackingVHWithLevel, 8> Stack(1, Root);
+ SmallVector<WeakVHWithLevel, 8> Stack(1, Root);
SmallSet<Value *, 8> VisitedInstrs;
bool Res = false;
while (!Stack.empty()) {
SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
// Some of the candidates may have already been vectorized after we
- // initially collected them. If so, the WeakTrackingVHs will have
- // nullified the values, so remove them from the set of candidates.
+ // initially collected them. If so, the WeakVHs will have nullified the
+ // values, so remove them from the set of candidates.
Candidates.remove(nullptr);
// Remove from the set of candidates all pairs of getelementptrs with
+++ /dev/null
-; RUN: opt -S -licm -loop-unswitch < %s | FileCheck %s
-
-; This test checks for a crash. See PR32587.
-
-@global = external global i32
-
-declare i32 @f_1(i8, i32 returned)
-
-define i32 @f_0() {
-; CHECK-LABEL: @f_0(
-bb:
- br label %bb1
-
-bb1: ; preds = %bb3, %bb
- %tmp = load i32, i32* @global
- %tmp2 = select i1 false, i16 1, i16 0
- br label %bb3
-
-bb3: ; preds = %bb3, %bb1
- %tmp4 = phi i8 [ 0, %bb1 ], [ %tmp6, %bb3 ]
- %tmp5 = icmp eq i16 %tmp2, 0
- %tmp6 = select i1 %tmp5, i8 %tmp4, i8 1
- %tmp7 = tail call i32 @f_1(i8 %tmp6, i32 1)
- br i1 false, label %bb1, label %bb3
-}
// doesn't matter which method.
EXPECT_EQ(Type::getInt32Ty(Context), WVH->getType());
EXPECT_EQ(Type::getInt32Ty(Context), (*WVH).getType());
-
- WVH = BitcastV.get();
- BitcastV->replaceAllUsesWith(ConstantV);
- EXPECT_EQ(WVH, BitcastV.get());
- BitcastV.reset();
- EXPECT_EQ(WVH, nullptr);
}
-TEST_F(ValueHandle, WeakTrackingVH_BasicOperation) {
- WeakTrackingVH WVH(BitcastV.get());
- EXPECT_EQ(BitcastV.get(), WVH);
- WVH = ConstantV;
- EXPECT_EQ(ConstantV, WVH);
-
- // Make sure I can call a method on the underlying Value. It
- // doesn't matter which method.
- EXPECT_EQ(Type::getInt32Ty(Context), WVH->getType());
- EXPECT_EQ(Type::getInt32Ty(Context), (*WVH).getType());
-}
-
-TEST_F(ValueHandle, WeakTrackingVH_Comparisons) {
- WeakTrackingVH BitcastWVH(BitcastV.get());
- WeakTrackingVH ConstantWVH(ConstantV);
+TEST_F(ValueHandle, WeakVH_Comparisons) {
+ WeakVH BitcastWVH(BitcastV.get());
+ WeakVH ConstantWVH(ConstantV);
EXPECT_TRUE(BitcastWVH == BitcastWVH);
EXPECT_TRUE(BitcastV.get() == BitcastWVH);
EXPECT_EQ(BV >= CV, BitcastWVH >= ConstantV);
}
-TEST_F(ValueHandle, WeakTrackingVH_FollowsRAUW) {
- WeakTrackingVH WVH(BitcastV.get());
- WeakTrackingVH WVH_Copy(WVH);
- WeakTrackingVH WVH_Recreated(BitcastV.get());
+TEST_F(ValueHandle, WeakVH_FollowsRAUW) {
+ WeakVH WVH(BitcastV.get());
+ WeakVH WVH_Copy(WVH);
+ WeakVH WVH_Recreated(BitcastV.get());
BitcastV->replaceAllUsesWith(ConstantV);
EXPECT_EQ(ConstantV, WVH);
EXPECT_EQ(ConstantV, WVH_Copy);
EXPECT_EQ(ConstantV, WVH_Recreated);
}
-TEST_F(ValueHandle, WeakTrackingVH_NullOnDeletion) {
- WeakTrackingVH WVH(BitcastV.get());
- WeakTrackingVH WVH_Copy(WVH);
- WeakTrackingVH WVH_Recreated(BitcastV.get());
+TEST_F(ValueHandle, WeakVH_NullOnDeletion) {
+ WeakVH WVH(BitcastV.get());
+ WeakVH WVH_Copy(WVH);
+ WeakVH WVH_Recreated(BitcastV.get());
BitcastV.reset();
Value *null_value = nullptr;
EXPECT_EQ(null_value, WVH);
class DestroyingVH final : public CallbackVH {
public:
- std::unique_ptr<WeakTrackingVH> ToClear[2];
+ std::unique_ptr<WeakVH> ToClear[2];
DestroyingVH(Value *V) {
- ToClear[0].reset(new WeakTrackingVH(V));
+ ToClear[0].reset(new WeakVH(V));
setValPtr(V);
- ToClear[1].reset(new WeakTrackingVH(V));
+ ToClear[1].reset(new WeakVH(V));
}
void deleted() override {
ToClear[0].reset();
};
{
- WeakTrackingVH ShouldBeVisited1(BitcastV.get());
+ WeakVH ShouldBeVisited1(BitcastV.get());
DestroyingVH C(BitcastV.get());
- WeakTrackingVH ShouldBeVisited2(BitcastV.get());
+ WeakVH ShouldBeVisited2(BitcastV.get());
BitcastV->replaceAllUsesWith(ConstantV);
EXPECT_EQ(ConstantV, static_cast<Value*>(ShouldBeVisited1));
}
{
- WeakTrackingVH ShouldBeVisited1(BitcastV.get());
+ WeakVH ShouldBeVisited1(BitcastV.get());
DestroyingVH C(BitcastV.get());
- WeakTrackingVH ShouldBeVisited2(BitcastV.get());
+ WeakVH ShouldBeVisited2(BitcastV.get());
BitcastV.reset();
EXPECT_EQ(nullptr, static_cast<Value*>(ShouldBeVisited1));