pwm: add microchip soft ip corePWM driver
authorConor Dooley <conor.dooley@microchip.com>
Thu, 18 May 2023 12:29:20 +0000 (13:29 +0100)
committerThierry Reding <thierry.reding@gmail.com>
Fri, 23 Jun 2023 13:43:23 +0000 (15:43 +0200)
Add a driver that supports the Microchip FPGA "soft" PWM IP core.

Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
Reviewed-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
drivers/pwm/Kconfig
drivers/pwm/Makefile
drivers/pwm/pwm-microchip-core.c [new file with mode: 0644]

index 8df861b..41cdafb 100644 (file)
@@ -405,6 +405,16 @@ config PWM_MEDIATEK
          To compile this driver as a module, choose M here: the module
          will be called pwm-mediatek.
 
+config PWM_MICROCHIP_CORE
+       tristate "Microchip corePWM PWM support"
+       depends on SOC_MICROCHIP_POLARFIRE || COMPILE_TEST
+       depends on HAS_IOMEM && OF
+       help
+         PWM driver for Microchip FPGA soft IP core.
+
+         To compile this driver as a module, choose M here: the module
+         will be called pwm-microchip-core.
+
 config PWM_MXS
        tristate "Freescale MXS PWM support"
        depends on ARCH_MXS || COMPILE_TEST
index 19899b9..fce34f7 100644 (file)
@@ -35,6 +35,7 @@ obj-$(CONFIG_PWM_LPSS_PCI)    += pwm-lpss-pci.o
 obj-$(CONFIG_PWM_LPSS_PLATFORM)        += pwm-lpss-platform.o
 obj-$(CONFIG_PWM_MESON)                += pwm-meson.o
 obj-$(CONFIG_PWM_MEDIATEK)     += pwm-mediatek.o
+obj-$(CONFIG_PWM_MICROCHIP_CORE)       += pwm-microchip-core.o
 obj-$(CONFIG_PWM_MTK_DISP)     += pwm-mtk-disp.o
 obj-$(CONFIG_PWM_MXS)          += pwm-mxs.o
 obj-$(CONFIG_PWM_NTXEC)                += pwm-ntxec.o
diff --git a/drivers/pwm/pwm-microchip-core.c b/drivers/pwm/pwm-microchip-core.c
new file mode 100644 (file)
index 0000000..8750b57
--- /dev/null
@@ -0,0 +1,507 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * corePWM driver for Microchip "soft" FPGA IP cores.
+ *
+ * Copyright (c) 2021-2023 Microchip Corporation. All rights reserved.
+ * Author: Conor Dooley <conor.dooley@microchip.com>
+ * Documentation:
+ * https://www.microsemi.com/document-portal/doc_download/1245275-corepwm-hb
+ *
+ * Limitations:
+ * - If the IP block is configured without "shadow registers", all register
+ *   writes will take effect immediately, causing glitches on the output.
+ *   If shadow registers *are* enabled, setting the "SYNC_UPDATE" register
+ *   notifies the core that it needs to update the registers defining the
+ *   waveform from the contents of the "shadow registers". Otherwise, changes
+ *   will take effective immediately, even for those channels.
+ *   As setting the period/duty cycle takes 4 register writes, there is a window
+ *   in which this races against the start of a new period.
+ * - The IP block has no concept of a duty cycle, only rising/falling edges of
+ *   the waveform. Unfortunately, if the rising & falling edges registers have
+ *   the same value written to them the IP block will do whichever of a rising
+ *   or a falling edge is possible. I.E. a 50% waveform at twice the requested
+ *   period. Therefore to get a 0% waveform, the output is set the max high/low
+ *   time depending on polarity.
+ *   If the duty cycle is 0%, and the requested period is less than the
+ *   available period resolution, this will manifest as a ~100% waveform (with
+ *   some output glitches) rather than 50%.
+ * - The PWM period is set for the whole IP block not per channel. The driver
+ *   will only change the period if no other PWM output is enabled.
+ */
+
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/err.h>
+#include <linux/io.h>
+#include <linux/ktime.h>
+#include <linux/math.h>
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/pwm.h>
+
+#define MCHPCOREPWM_PRESCALE_MAX       0xff
+#define MCHPCOREPWM_PERIOD_STEPS_MAX   0xfe
+#define MCHPCOREPWM_PERIOD_MAX         0xff00
+
+#define MCHPCOREPWM_PRESCALE   0x00
+#define MCHPCOREPWM_PERIOD     0x04
+#define MCHPCOREPWM_EN(i)      (0x08 + 0x04 * (i)) /* 0x08, 0x0c */
+#define MCHPCOREPWM_POSEDGE(i) (0x10 + 0x08 * (i)) /* 0x10, 0x18, ..., 0x88 */
+#define MCHPCOREPWM_NEGEDGE(i) (0x14 + 0x08 * (i)) /* 0x14, 0x1c, ..., 0x8c */
+#define MCHPCOREPWM_SYNC_UPD   0xe4
+#define MCHPCOREPWM_TIMEOUT_MS 100u
+
+struct mchp_core_pwm_chip {
+       struct pwm_chip chip;
+       struct clk *clk;
+       void __iomem *base;
+       struct mutex lock; /* protects the shared period */
+       ktime_t update_timestamp;
+       u32 sync_update_mask;
+       u16 channel_enabled;
+};
+
+static inline struct mchp_core_pwm_chip *to_mchp_core_pwm(struct pwm_chip *chip)
+{
+       return container_of(chip, struct mchp_core_pwm_chip, chip);
+}
+
+static void mchp_core_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm,
+                                bool enable, u64 period)
+{
+       struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
+       u8 channel_enable, reg_offset, shift;
+
+       /*
+        * There are two adjacent 8 bit control regs, the lower reg controls
+        * 0-7 and the upper reg 8-15. Check if the pwm is in the upper reg
+        * and if so, offset by the bus width.
+        */
+       reg_offset = MCHPCOREPWM_EN(pwm->hwpwm >> 3);
+       shift = pwm->hwpwm & 7;
+
+       channel_enable = readb_relaxed(mchp_core_pwm->base + reg_offset);
+       channel_enable &= ~(1 << shift);
+       channel_enable |= (enable << shift);
+
+       writel_relaxed(channel_enable, mchp_core_pwm->base + reg_offset);
+       mchp_core_pwm->channel_enabled &= ~BIT(pwm->hwpwm);
+       mchp_core_pwm->channel_enabled |= enable << pwm->hwpwm;
+
+       /*
+        * The updated values will not appear on the bus until they have been
+        * applied to the waveform at the beginning of the next period.
+        * This is a NO-OP if the channel does not have shadow registers.
+        */
+       if (mchp_core_pwm->sync_update_mask & (1 << pwm->hwpwm))
+               mchp_core_pwm->update_timestamp = ktime_add_ns(ktime_get(), period);
+}
+
+static void mchp_core_pwm_wait_for_sync_update(struct mchp_core_pwm_chip *mchp_core_pwm,
+                                              unsigned int channel)
+{
+       /*
+        * If a shadow register is used for this PWM channel, and iff there is
+        * a pending update to the waveform, we must wait for it to be applied
+        * before attempting to read its state. Reading the registers yields
+        * the currently implemented settings & the new ones are only readable
+        * once the current period has ended.
+        */
+
+       if (mchp_core_pwm->sync_update_mask & (1 << channel)) {
+               ktime_t current_time = ktime_get();
+               s64 remaining_ns;
+               u32 delay_us;
+
+               remaining_ns = ktime_to_ns(ktime_sub(mchp_core_pwm->update_timestamp,
+                                                    current_time));
+
+               /*
+                * If the update has gone through, don't bother waiting for
+                * obvious reasons. Otherwise wait around for an appropriate
+                * amount of time for the update to go through.
+                */
+               if (remaining_ns <= 0)
+                       return;
+
+               delay_us = DIV_ROUND_UP_ULL(remaining_ns, NSEC_PER_USEC);
+               fsleep(delay_us);
+       }
+}
+
+static u64 mchp_core_pwm_calc_duty(const struct pwm_state *state, u64 clk_rate,
+                                  u8 prescale, u8 period_steps)
+{
+       u64 duty_steps, tmp;
+
+       /*
+        * Calculate the duty cycle in multiples of the prescaled period:
+        * duty_steps = duty_in_ns / step_in_ns
+        * step_in_ns = (prescale * NSEC_PER_SEC) / clk_rate
+        * The code below is rearranged slightly to only divide once.
+        */
+       tmp = (((u64)prescale) + 1) * NSEC_PER_SEC;
+       duty_steps = mul_u64_u64_div_u64(state->duty_cycle, clk_rate, tmp);
+
+       return duty_steps;
+}
+
+static void mchp_core_pwm_apply_duty(struct pwm_chip *chip, struct pwm_device *pwm,
+                                    const struct pwm_state *state, u64 duty_steps,
+                                    u16 period_steps)
+{
+       struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
+       u8 posedge, negedge;
+       u8 first_edge = 0, second_edge = duty_steps;
+
+       /*
+        * Setting posedge == negedge doesn't yield a constant output,
+        * so that's an unsuitable setting to model duty_steps = 0.
+        * In that case set the unwanted edge to a value that never
+        * triggers.
+        */
+       if (duty_steps == 0)
+               first_edge = period_steps + 1;
+
+       if (state->polarity == PWM_POLARITY_INVERSED) {
+               negedge = first_edge;
+               posedge = second_edge;
+       } else {
+               posedge = first_edge;
+               negedge = second_edge;
+       }
+
+       /*
+        * Set the sync bit which ensures that periods that already started are
+        * completed unaltered. At each counter reset event the values are
+        * updated from the shadow registers.
+        */
+       writel_relaxed(posedge, mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm));
+       writel_relaxed(negedge, mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm));
+}
+
+static int mchp_core_pwm_calc_period(const struct pwm_state *state, unsigned long clk_rate,
+                                    u16 *prescale, u16 *period_steps)
+{
+       u64 tmp;
+
+       /*
+        * Calculate the period cycles and prescale values.
+        * The registers are each 8 bits wide & multiplied to compute the period
+        * using the formula:
+        *           (prescale + 1) * (period_steps + 1)
+        * period = -------------------------------------
+        *                      clk_rate
+        * so the maximum period that can be generated is 0x10000 times the
+        * period of the input clock.
+        * However, due to the design of the "hardware", it is not possible to
+        * attain a 100% duty cycle if the full range of period_steps is used.
+        * Therefore period_steps is restricted to 0xfe and the maximum multiple
+        * of the clock period attainable is (0xff + 1) * (0xfe + 1) = 0xff00
+        *
+        * The prescale and period_steps registers operate similarly to
+        * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that
+        * in the register plus one.
+        * It's therefore not possible to set a period lower than 1/clk_rate, so
+        * if tmp is 0, abort. Without aborting, we will set a period that is
+        * greater than that requested and, more importantly, will trigger the
+        * neg-/pos-edge issue described in the limitations.
+        */
+       tmp = mul_u64_u64_div_u64(state->period, clk_rate, NSEC_PER_SEC);
+       if (tmp >= MCHPCOREPWM_PERIOD_MAX) {
+               *prescale = MCHPCOREPWM_PRESCALE_MAX;
+               *period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX;
+
+               return 0;
+       }
+
+       /*
+        * There are multiple strategies that could be used to choose the
+        * prescale & period_steps values.
+        * Here the idea is to pick values so that the selection of duty cycles
+        * is as finegrain as possible, while also keeping the period less than
+        * that requested.
+        *
+        * A simple way to satisfy the first condition is to always set
+        * period_steps to its maximum value. This neatly also satisfies the
+        * second condition too, since using the maximum value of period_steps
+        * to calculate prescale actually calculates its upper bound.
+        * Integer division will ensure a round down, so the period will thereby
+        * always be less than that requested.
+        *
+        * The downside of this approach is a significant degree of inaccuracy,
+        * especially as tmp approaches integer multiples of
+        * MCHPCOREPWM_PERIOD_STEPS_MAX.
+        *
+        * As we must produce a period less than that requested, and for the
+        * sake of creating a simple algorithm, disallow small values of tmp
+        * that would need special handling.
+        */
+       if (tmp < MCHPCOREPWM_PERIOD_STEPS_MAX + 1)
+               return -EINVAL;
+
+       /*
+        * This "optimal" value for prescale is be calculated using the maximum
+        * permitted value of period_steps, 0xfe.
+        *
+        *                period * clk_rate
+        * prescale = ------------------------- - 1
+        *            NSEC_PER_SEC * (0xfe + 1)
+        *
+        *
+        *  period * clk_rate
+        * ------------------- was precomputed as `tmp`
+        *    NSEC_PER_SEC
+        */
+       *prescale = ((u16)tmp) / (MCHPCOREPWM_PERIOD_STEPS_MAX + 1) - 1;
+
+       /*
+        * period_steps can be computed from prescale:
+        *                      period * clk_rate
+        * period_steps = ----------------------------- - 1
+        *                NSEC_PER_SEC * (prescale + 1)
+        *
+        * However, in this approximation, we simply use the maximum value that
+        * was used to compute prescale.
+        */
+       *period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX;
+
+       return 0;
+}
+
+static int mchp_core_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
+                                     const struct pwm_state *state)
+{
+       struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
+       bool period_locked;
+       unsigned long clk_rate;
+       u64 duty_steps;
+       u16 prescale, period_steps;
+       int ret;
+
+       if (!state->enabled) {
+               mchp_core_pwm_enable(chip, pwm, false, pwm->state.period);
+               return 0;
+       }
+
+       /*
+        * If clk_rate is too big, the following multiplication might overflow.
+        * However this is implausible, as the fabric of current FPGAs cannot
+        * provide clocks at a rate high enough.
+        */
+       clk_rate = clk_get_rate(mchp_core_pwm->clk);
+       if (clk_rate >= NSEC_PER_SEC)
+               return -EINVAL;
+
+       ret = mchp_core_pwm_calc_period(state, clk_rate, &prescale, &period_steps);
+       if (ret)
+               return ret;
+
+       /*
+        * If the only thing that has changed is the duty cycle or the polarity,
+        * we can shortcut the calculations and just compute/apply the new duty
+        * cycle pos & neg edges
+        * As all the channels share the same period, do not allow it to be
+        * changed if any other channels are enabled.
+        * If the period is locked, it may not be possible to use a period
+        * less than that requested. In that case, we just abort.
+        */
+       period_locked = mchp_core_pwm->channel_enabled & ~(1 << pwm->hwpwm);
+
+       if (period_locked) {
+               u16 hw_prescale;
+               u16 hw_period_steps;
+
+               hw_prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
+               hw_period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
+
+               if ((period_steps + 1) * (prescale + 1) <
+                   (hw_period_steps + 1) * (hw_prescale + 1))
+                       return -EINVAL;
+
+               /*
+                * It is possible that something could have set the period_steps
+                * register to 0xff, which would prevent us from setting a 100%
+                * or 0% relative duty cycle, as explained above in
+                * mchp_core_pwm_calc_period().
+                * The period is locked and we cannot change this, so we abort.
+                */
+               if (hw_period_steps == MCHPCOREPWM_PERIOD_STEPS_MAX)
+                       return -EINVAL;
+
+               prescale = hw_prescale;
+               period_steps = hw_period_steps;
+       }
+
+       duty_steps = mchp_core_pwm_calc_duty(state, clk_rate, prescale, period_steps);
+
+       /*
+        * Because the period is not per channel, it is possible that the
+        * requested duty cycle is longer than the period, in which case cap it
+        * to the period, IOW a 100% duty cycle.
+        */
+       if (duty_steps > period_steps)
+               duty_steps = period_steps + 1;
+
+       if (!period_locked) {
+               writel_relaxed(prescale, mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
+               writel_relaxed(period_steps, mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
+       }
+
+       mchp_core_pwm_apply_duty(chip, pwm, state, duty_steps, period_steps);
+
+       mchp_core_pwm_enable(chip, pwm, true, pwm->state.period);
+
+       return 0;
+}
+
+static int mchp_core_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
+                              const struct pwm_state *state)
+{
+       struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
+       int ret;
+
+       mutex_lock(&mchp_core_pwm->lock);
+
+       mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm);
+
+       ret = mchp_core_pwm_apply_locked(chip, pwm, state);
+
+       mutex_unlock(&mchp_core_pwm->lock);
+
+       return ret;
+}
+
+static int mchp_core_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
+                                  struct pwm_state *state)
+{
+       struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
+       u64 rate;
+       u16 prescale, period_steps;
+       u8 duty_steps, posedge, negedge;
+
+       mutex_lock(&mchp_core_pwm->lock);
+
+       mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm);
+
+       if (mchp_core_pwm->channel_enabled & (1 << pwm->hwpwm))
+               state->enabled = true;
+       else
+               state->enabled = false;
+
+       rate = clk_get_rate(mchp_core_pwm->clk);
+
+       /*
+        * Calculating the period:
+        * The registers are each 8 bits wide & multiplied to compute the period
+        * using the formula:
+        *           (prescale + 1) * (period_steps + 1)
+        * period = -------------------------------------
+        *                      clk_rate
+        *
+        * Note:
+        * The prescale and period_steps registers operate similarly to
+        * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that
+        * in the register plus one.
+        */
+       prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
+       period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
+
+       state->period = (period_steps + 1) * (prescale + 1);
+       state->period *= NSEC_PER_SEC;
+       state->period = DIV64_U64_ROUND_UP(state->period, rate);
+
+       posedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm));
+       negedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm));
+
+       mutex_unlock(&mchp_core_pwm->lock);
+
+       if (negedge == posedge) {
+               state->duty_cycle = state->period;
+               state->period *= 2;
+       } else {
+               duty_steps = abs((s16)posedge - (s16)negedge);
+               state->duty_cycle = duty_steps * (prescale + 1) * NSEC_PER_SEC;
+               state->duty_cycle = DIV64_U64_ROUND_UP(state->duty_cycle, rate);
+       }
+
+       state->polarity = negedge < posedge ? PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL;
+
+       return 0;
+}
+
+static const struct pwm_ops mchp_core_pwm_ops = {
+       .apply = mchp_core_pwm_apply,
+       .get_state = mchp_core_pwm_get_state,
+       .owner = THIS_MODULE,
+};
+
+static const struct of_device_id mchp_core_of_match[] = {
+       {
+               .compatible = "microchip,corepwm-rtl-v4",
+       },
+       { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, mchp_core_of_match);
+
+static int mchp_core_pwm_probe(struct platform_device *pdev)
+{
+       struct mchp_core_pwm_chip *mchp_core_pwm;
+       struct resource *regs;
+       int ret;
+
+       mchp_core_pwm = devm_kzalloc(&pdev->dev, sizeof(*mchp_core_pwm), GFP_KERNEL);
+       if (!mchp_core_pwm)
+               return -ENOMEM;
+
+       mchp_core_pwm->base = devm_platform_get_and_ioremap_resource(pdev, 0, &regs);
+       if (IS_ERR(mchp_core_pwm->base))
+               return PTR_ERR(mchp_core_pwm->base);
+
+       mchp_core_pwm->clk = devm_clk_get_enabled(&pdev->dev, NULL);
+       if (IS_ERR(mchp_core_pwm->clk))
+               return dev_err_probe(&pdev->dev, PTR_ERR(mchp_core_pwm->clk),
+                                    "failed to get PWM clock\n");
+
+       if (of_property_read_u32(pdev->dev.of_node, "microchip,sync-update-mask",
+                                &mchp_core_pwm->sync_update_mask))
+               mchp_core_pwm->sync_update_mask = 0;
+
+       mutex_init(&mchp_core_pwm->lock);
+
+       mchp_core_pwm->chip.dev = &pdev->dev;
+       mchp_core_pwm->chip.ops = &mchp_core_pwm_ops;
+       mchp_core_pwm->chip.npwm = 16;
+
+       mchp_core_pwm->channel_enabled = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(0));
+       mchp_core_pwm->channel_enabled |=
+               readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(1)) << 8;
+
+       /*
+        * Enable synchronous update mode for all channels for which shadow
+        * registers have been synthesised.
+        */
+       writel_relaxed(1U, mchp_core_pwm->base + MCHPCOREPWM_SYNC_UPD);
+       mchp_core_pwm->update_timestamp = ktime_get();
+
+       ret = devm_pwmchip_add(&pdev->dev, &mchp_core_pwm->chip);
+       if (ret)
+               return dev_err_probe(&pdev->dev, ret, "Failed to add pwmchip\n");
+
+       return 0;
+}
+
+static struct platform_driver mchp_core_pwm_driver = {
+       .driver = {
+               .name = "mchp-core-pwm",
+               .of_match_table = mchp_core_of_match,
+       },
+       .probe = mchp_core_pwm_probe,
+};
+module_platform_driver(mchp_core_pwm_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Conor Dooley <conor.dooley@microchip.com>");
+MODULE_DESCRIPTION("corePWM driver for Microchip FPGAs");