fix security bug
authorcaryclark <caryclark@google.com>
Thu, 26 May 2016 16:01:47 +0000 (09:01 -0700)
committerCommit bot <commit-bot@chromium.org>
Thu, 26 May 2016 16:01:47 +0000 (09:01 -0700)
This fix is a tradeoff. It changes intersection to
treat a case where one coincident run is intersected at one point
and the other edge is not as continuing to be a span.

The old code tried to treat this as a single point.
The old code is probably right, but this change alone
made the data structures inconsistent. Later, extending
the coincident runs would fail by incorrectly discarding
the single point intersection.

As a result, this fixes the security test and one other, but
makes a different test fail. Isolating the failure uncovered
a reduced case that fails with and without the change, so
there are more serious problems here. Those problems are
addressed in a separate CL.

Many of the test edits below remove ill-thought out debugging
messaging that fire off global state, which isn't usable
in a multi-threaded test environment.

In the end, with this fix, all existing tests (modulo one
new failure and one new non-failure) pass in debug and
in the extended release test suites.

TBR=reed@google.com
BUG=614248
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2018513003

Review-Url: https://codereview.chromium.org/2018513003

src/pathops/SkPathOpsTSect.h
tests/PathOpsExtendedTest.cpp
tests/PathOpsExtendedTest.h
tests/PathOpsFuzz763Test.cpp
tests/PathOpsOpCircleThreadedTest.cpp
tests/PathOpsOpCubicThreadedTest.cpp
tests/PathOpsOpLoopThreadedTest.cpp
tests/PathOpsOpTest.cpp
tests/PathOpsSimplifyQuadThreadedTest.cpp
tests/PathOpsSimplifyTest.cpp
tools/pathops_visualizer.htm

index 01ab8c65904b9098c613bce41afbcca9fc90766a..cf63b334d54108033694924bdf8d6f90778b62a4 100644 (file)
@@ -512,7 +512,7 @@ int SkTSpan<TCurve, OppCurve>::hullCheck(const SkTSpan<OppCurve, TCurve>* opp,
         }
         fIsLinear = true;
         fIsLine = fPart.controlsInside();
-        return ptsInCommon ? 2 : -1;
+        return ptsInCommon ? 1 : -1;
     } else {  // hull is not linear; check set true if intersected at the end points
         return ((int) ptsInCommon) << 1;  // 0 or 2
     }
index c96cbcdae5ff11ddbf2285f9f2a862337d85a44d..b5bf5b8d9f083dba08e926bc17321589e4a62eb3 100644 (file)
@@ -299,8 +299,6 @@ int comparePaths(skiatest::Reporter* reporter, const char* filename, const SkPat
     return errors2x2 > MAX_ERRORS ? errors2x2 : 0;
 }
 
-const int gTestFirst = 41;
-static int gTestNo = gTestFirst;
 static SkTDArray<SkPathOp> gTestOp;
 
 static void showPathOpPath(const char* testName, const SkPath& one, const SkPath& two,
@@ -310,10 +308,9 @@ static void showPathOpPath(const char* testName, const SkPath& one, const SkPath
     if (!testName) {
         testName = "xOp";
     }
-    SkDebugf("static void %s%d%s(skiatest::Reporter* reporter, const char* filename) {\n",
-        testName, gTestNo, opSuffixes[shapeOp]);
+    SkDebugf("static void %s_%s(skiatest::Reporter* reporter, const char* filename) {\n",
+        testName, opSuffixes[shapeOp]);
     *gTestOp.append() = shapeOp;
-    ++gTestNo;
     SkDebugf("    SkPath path, pathB;\n");
     SkPathOpsDebug::ShowOnePath(a, "path", false);
     SkPathOpsDebug::ShowOnePath(b, "pathB", false);
@@ -322,15 +319,6 @@ static void showPathOpPath(const char* testName, const SkPath& one, const SkPath
     drawAsciiPaths(scaledOne, scaledTwo, true);
 }
 
-void ShowTestArray(const char* testName) {
-    if (!testName) {
-        testName = "xOp";
-    }
-    for (int x = gTestFirst; x < gTestNo; ++x) {
-        SkDebugf("    TEST(%s%d%s),\n", testName, x, opSuffixes[gTestOp[x - gTestFirst]]);
-    }
-}
-
 SK_DECLARE_STATIC_MUTEX(compareDebugOut3);
 
 static int comparePaths(skiatest::Reporter* reporter, const char* testName, const SkPath& one,
index f8d74098ce45ed93beba64e41d3cd592ae8295ab..17073833cb79a1c25dfc9852282a4fc601db1df2 100644 (file)
@@ -58,7 +58,6 @@ void RunTestSet(skiatest::Reporter* reporter, TestDesc tests[], size_t count,
                 void (*firstTest)(skiatest::Reporter* , const char* filename),
                 void (*skipTest)(skiatest::Reporter* , const char* filename),
                 void (*stopTest)(skiatest::Reporter* , const char* filename), bool reverse);
-void ShowTestArray(const char* testName);
 void ShowTestName(PathOpsThreadState* data, int a, int b, int c, int d);
 void ShowFunctionHeader(const char* name);
 void ShowPath(const SkPath& path, const char* pathName);
index 55525734fcf1cc845e9fb537d1a013786bd4c47e..7bc88ab5a5d7a248419b7dee16baa0113a51660c 100755 (executable)
@@ -254,7 +254,7 @@ static void fuzz763_378c(skiatest::Reporter* reporter, const char* filename) {
     path.quadTo(-39.8065f, 18.9507f, -43.0072f, 19.8086f);
     path.close();
     SkPath path2(path);
-    testPathOpCheck(reporter, path1, path2, (SkPathOp) 2, filename, FLAGS_runFail);
+    testPathOp(reporter, path1, path2, (SkPathOp) 2, filename);
 }
 
 static void fuzz763_378d(skiatest::Reporter* reporter, const char* filename) {
@@ -932,7 +932,8 @@ path.quadTo(SkBits2Float(0x42240000), SkBits2Float(0x41ed7d86), SkBits2Float(0x4
 path.close();
 
     SkPath path2(path);
-    testPathOp(reporter, path1, path2, (SkPathOp) 2, filename);
+    // FIXME: This should not fail; trading adding this failure for fixing security bug
+    testPathOpCheck(reporter, path1, path2, (SkPathOp) 2, filename, FLAGS_runFail);
 }
 
 static void fuzz763_24588(skiatest::Reporter* reporter, const char* filename) {
@@ -2416,10 +2417,10 @@ static struct TestDesc tests[] = {
     TEST(fuzz763_35322),
     TEST(fuzz763_8712),
     TEST(fuzz763_8712a),
+    TEST(fuzz763_4713),
     TEST(fuzz763_4014),
     TEST(fuzz763_4014a),
     TEST(fuzz763_1404),
-    TEST(fuzz763_4713),
     TEST(fuzz763_378),
     TEST(fuzz763_378b),
     TEST(fuzz763_378d),
index 30b16035899e0974056227019005dead0515e015..fac767720bdababeb575ac791000b6563e1a16c3 100644 (file)
@@ -79,5 +79,4 @@ DEF_TEST(PathOpsOpCircleThreaded, reporter) {
     }
 finish:
     testRunner.render();
-    ShowTestArray("circleOp");
 }
index 991d4e764c2e628898316c0aa46ae6dd9978469c..2c0c3d372ddce6f0e3a553ec2695f6f3068a38c6 100644 (file)
@@ -96,5 +96,4 @@ DEF_TEST(PathOpsOpCubicsThreaded, reporter) {
     }
 finish:
     testRunner.render();
-    ShowTestArray("cubicOp");
 }
index 7b4b7ce7cf488a1af1ec84f6a94d3206afa58870..56c5068d7aaff7f216dcf982c9a7883eef6f3ad1 100644 (file)
@@ -108,5 +108,4 @@ DEF_TEST(PathOpsOpLoopsThreaded, reporter) {
     }
 finish:
     testRunner.render();
-    ShowTestArray("loopOp");
 }
index 2af941498d9ec30aefdb82c29d52660109ea8431..00a8f524770a06b34f008efc57044c0f2560e1eb 100644 (file)
@@ -5191,6 +5191,26 @@ path.close();
     testPathOp(reporter, path1, path2, (SkPathOp) 2, filename);
 }
 
+static void fuzzX_392(skiatest::Reporter* reporter, const char* filename) {
+    SkPath path;
+    path.setFillType(SkPath::kEvenOdd_FillType);
+path.moveTo(SkBits2Float(0x41e80000), SkBits2Float(0x43bde212));  // 29, 379.766f
+path.lineTo(SkBits2Float(0x41e80000), SkBits2Float(0x43bdc7ef));  // 29, 379.562f
+path.conicTo(SkBits2Float(0x42a5861e), SkBits2Float(0x43c61f86), SkBits2Float(0x430b0610), SkBits2Float(0x43c61f86), SkBits2Float(0x3f7d23f3));  // 82.7619f, 396.246f, 139.024f, 396.246f, 0.98883f
+path.conicTo(SkBits2Float(0x42a58e20), SkBits2Float(0x43c61f86), SkBits2Float(0x41e80000), SkBits2Float(0x43bde212), SkBits2Float(0x3f7d2cf5));  // 82.7776f, 396.246f, 29, 379.766f, 0.988967f
+path.close();
+
+    SkPath path1(path);
+    path.setFillType(SkPath::kWinding_FillType);
+path.moveTo(SkBits2Float(0xc36c7bd8), SkBits2Float(0xc3a31d72));  // -236.484f, -326.23f
+path.lineTo(SkBits2Float(0xc367a4ae), SkBits2Float(0xc3a31d72));  // -231.643f, -326.23f
+path.lineTo(SkBits2Float(0x430b0610), SkBits2Float(0x43c61f86));  // 139.024f, 396.246f
+path.lineTo(SkBits2Float(0xc36c7bd8), SkBits2Float(0x43c61f86));  // -236.484f, 396.246f
+
+    SkPath path2(path);
+    testPathOp(reporter, path1, path2, kIntersect_SkPathOp, filename);
+}
+
 static void (*skipTest)(skiatest::Reporter* , const char* filename) = 0;
 static void (*firstTest)(skiatest::Reporter* , const char* filename) = 0;
 static void (*stopTest)(skiatest::Reporter* , const char* filename) = 0;
@@ -5198,6 +5218,7 @@ static void (*stopTest)(skiatest::Reporter* , const char* filename) = 0;
 #define TEST(name) { name, #name }
 
 static struct TestDesc tests[] = {
+    TEST(fuzzX_392),
     TEST(crbug_526025),
     TEST(fuzz38),
     TEST(cubics44d),
index 8ab84d7d8f4ce6c99c5372a0ec59c8bf73a2144f..9e9c0103d5eb0c3add173d6a9b55a462ba1579df 100644 (file)
@@ -95,5 +95,4 @@ DEF_TEST(PathOpsSimplifyQuadsThreaded, reporter) {
     }
 finish:
     testRunner.render();
-    ShowTestArray("testQuads");
 }
index 70835d7e8a51c3bc021c7b8aeb1ef87abb5247dd..a3f415ff891856fdfb7ee065559ecc3d7d26c751 100644 (file)
@@ -5067,11 +5067,49 @@ path.close();
     REPORTER_ASSERT(reporter, !Simplify(path, &path));
 }
 
+// FIXME: this should not fail -- it was isolated looking for the root cause to fuzz763_4713
+// it fails with and without that change
+static void fuzz763_4713_b(skiatest::Reporter* reporter, const char* filename) {
+    SkPath path;
+    path.setFillType((SkPath::FillType) 0);
+path.moveTo(SkBits2Float(0x42240000), SkBits2Float(0x42040000));
+path.quadTo(SkBits2Float(0x42240000), SkBits2Float(0x4211413d), SkBits2Float(0x421aa09e), SkBits2Float(0x421aa09e));
+path.quadTo(SkBits2Float(0x4211413d), SkBits2Float(0x42240000), SkBits2Float(0x42040000), SkBits2Float(0x42240000));
+path.quadTo(SkBits2Float(0x41ed7d86), SkBits2Float(0x42240000), SkBits2Float(0x41dabec3), SkBits2Float(0x421aa09e));
+path.quadTo(SkBits2Float(0x41c80000), SkBits2Float(0x4211413d), SkBits2Float(0x41c80000), SkBits2Float(0x42040000));
+path.quadTo(SkBits2Float(0x41c80000), SkBits2Float(0x41ed7d86), SkBits2Float(0x41dabec3), SkBits2Float(0x41dabec3));
+path.quadTo(SkBits2Float(0x41ed7d86), SkBits2Float(0x41c80000), SkBits2Float(0x42040000), SkBits2Float(0x41c80000));
+path.quadTo(SkBits2Float(0x4211413d), SkBits2Float(0x41c80000), SkBits2Float(0x421aa09e), SkBits2Float(0x41dabec3));
+path.quadTo(SkBits2Float(0x42240000), SkBits2Float(0x41ed7d86), SkBits2Float(0x42240000), SkBits2Float(0x42040000));
+path.close();
+
+path.moveTo(SkBits2Float(0x4204f72e), SkBits2Float(0x41c56cd2));
+path.quadTo(SkBits2Float(0x42123842), SkBits2Float(0x41c52adf), SkBits2Float(0x421baed7), SkBits2Float(0x41d7bac6));
+path.quadTo(SkBits2Float(0x4225256d), SkBits2Float(0x41ea4aad), SkBits2Float(0x42254667), SkBits2Float(0x4202666b));
+path.quadTo(SkBits2Float(0x42256760), SkBits2Float(0x420fa77f), SkBits2Float(0x421c1f6c), SkBits2Float(0x42191e14));
+path.quadTo(SkBits2Float(0x421bff97), SkBits2Float(0x42193e89), SkBits2Float(0x421bdf6b), SkBits2Float(0x42195eb8));
+path.quadTo(SkBits2Float(0x421bbff6), SkBits2Float(0x42197f32), SkBits2Float(0x421ba03b), SkBits2Float(0x42199f57));
+path.quadTo(SkBits2Float(0x421b605e), SkBits2Float(0x4219e00a), SkBits2Float(0x421b1fa8), SkBits2Float(0x421a1f22));
+path.quadTo(SkBits2Float(0x421ae0f1), SkBits2Float(0x421a604b), SkBits2Float(0x421aa09e), SkBits2Float(0x421aa09e));
+path.quadTo(SkBits2Float(0x4211413d), SkBits2Float(0x42240000), SkBits2Float(0x42040000), SkBits2Float(0x42240000));
+path.quadTo(SkBits2Float(0x41ed7d86), SkBits2Float(0x42240000), SkBits2Float(0x41dabec3), SkBits2Float(0x421aa09e));
+path.quadTo(SkBits2Float(0x41c80000), SkBits2Float(0x4211413d), SkBits2Float(0x41c80000), SkBits2Float(0x42040000));
+path.quadTo(SkBits2Float(0x41c80000), SkBits2Float(0x41ed7d86), SkBits2Float(0x41dabec3), SkBits2Float(0x41dabec3));
+path.quadTo(SkBits2Float(0x41db19b1), SkBits2Float(0x41da63d5), SkBits2Float(0x41db755b), SkBits2Float(0x41da0a9b));
+path.quadTo(SkBits2Float(0x41dbce01), SkBits2Float(0x41d9ae59), SkBits2Float(0x41dc285e), SkBits2Float(0x41d952ce));
+path.quadTo(SkBits2Float(0x41dc55b6), SkBits2Float(0x41d924df), SkBits2Float(0x41dc82cd), SkBits2Float(0x41d8f7cd));
+path.quadTo(SkBits2Float(0x41dcaf1e), SkBits2Float(0x41d8ca01), SkBits2Float(0x41dcdc4c), SkBits2Float(0x41d89bf0));
+path.quadTo(SkBits2Float(0x41ef6c33), SkBits2Float(0x41c5aec5), SkBits2Float(0x4204f72e), SkBits2Float(0x41c56cd2));
+path.close();
+testSimplifyCheck(reporter, path, filename, false);
+}
+
 static void (*skipTest)(skiatest::Reporter* , const char* filename) = 0;
 static void (*firstTest)(skiatest::Reporter* , const char* filename) = 0;
 static void (*stopTest)(skiatest::Reporter* , const char* filename) = 0;
 
 static TestDesc tests[] = {
+    TEST(fuzz763_4713_b),
     TEST(fuzz_59),
     TEST(fuzz_twister2),
     TEST(fuzz_twister),
index aa442c9b9f1ec47c4adae072c089eb4c7814f6fd..076f5914eac70d98e969defa7c13ccf12257426f 100644 (file)
 <head>
 <div height="0" hidden="true">
 
-Skia UnitTests: --match PathOpsSkp$ --resourcePath resources\ SK_DEBUG
-
-<div id="reduced">
-seg=1 {{{{377.218994f, -141.981003f}, {40.578701f, -201.339996f}, {23.1854992f, -102.697998f}}}, 0.707107008f}
-seg=2 {{{23.1854992f, -102.697998f}, {377.218994f, -141.981003f}}}
-seg=3 {{{{306.588013f, -227.983994f}, {212.464996f, -262.242004f}, {95.5512009f, 58.9763985f}}}, 0.707107008f}
-seg=4 {{{95.5512009f, 58.9763985f}, {306.588013f, -227.983994f}}}
-debugShowConicLineIntersection wtTs[0]=0 {{{{306.588013,-227.983994}, {212.464996,-262.242004}, {95.5512009,58.9763985}}}, 0.707107008} {{306.588013,-227.983994}} wtTs[1]=1 {{95.5512009,58.9763985}} wnTs[0]=1 {{{95.5512009,58.9763985}, {306.588013,-227.983994}}} wnTs[1]=0
-debugShowConicIntersection no intersect {{{{306.588013,-227.983994}, {212.464996,-262.242004}, {95.5512009,58.9763985}}}, 0.707107008} {{{{377.218994,-141.981003}, {40.578701,-201.339996}, {23.1854992,-102.697998}}}, 0.707107008}
-debugShowConicLineIntersection wtTs[0]=0.602960898 {{{{306.588013,-227.983994}, {212.464996,-262.242004}, {95.5512009,58.9763985}}}, 0.707107008} {{180.284241,-120.129433}} wnTs[0]=0.44374 {{{23.1854992,-102.697998}, {377.218994,-141.981003}}}
-addT insert t=0.602960898 segID=3 spanID=9
-addT insert t=0.443739761 segID=2 spanID=10
-debugShowConicLineIntersection wtTs[0]=0.245788566 {{{{377.218994,-141.981003}, {40.578701,-201.339996}, {23.1854992,-102.697998}}}, 0.707107008} {{254.22023,-156.776138}} wnTs[0]=0.751855 {{{95.5512009,58.9763985}, {306.588013,-227.983994}}}
-addT insert t=0.751854746 segID=4 spanID=11
-addT insert t=0.245788566 segID=1 spanID=12
-debugShowLineIntersection wtTs[0]=0.64393017 {{{95.5512009,58.9763985}, {306.588013,-227.983994}}} {{231.444168,-125.806053}} wnTs[0]=0.588246 {{{23.1854992,-102.697998}, {377.218994,-141.981003}}}
-addT insert t=0.64393017 segID=4 spanID=13
-addT insert t=0.588245674 segID=2 spanID=14
-debugShowConicLineIntersection wtTs[0]=0 {{{{377.218994,-141.981003}, {40.578701,-201.339996}, {23.1854992,-102.697998}}}, 0.707107008} {{377.218994,-141.981003}} wtTs[1]=1 {{23.1854992,-102.697998}} wnTs[0]=1 {{{23.1854992,-102.697998}, {377.218994,-141.981003}}} wnTs[1]=0
-sortAngles [3] tStart=0.602960898 [9]
-after [3/1] 5/1 tStart=0.602960898 tEnd=0 < [2/9] 17/17 tStart=0.443739761 tEnd=0 < [3/2] 21/21 tStart=0.602960898 tEnd=1  T 4
-afterPart {{{{180.284241,-120.129433}, {257.850781,-245.722913}, {306.588013,-227.983994}}}, 1.02163982} id=3
-afterPart {{{180.284241,-120.129433}, {23.1854992,-102.697998}}} id=2
-afterPart {{{{180.284241,-120.129433}, {132.69398,-43.0726727}, {95.5512009,58.9763985}}}, 0.497736931} id=3
-after [3/1] 5/1 tStart=0.602960898 tEnd=0 < [2/10] 1/1 tStart=0.443739761 tEnd=0.588245674 < [2/9] 17/17 tStart=0.443739761 tEnd=0  F 12
-afterPart {{{{180.284241,-120.129433}, {257.850781,-245.722913}, {306.588013,-227.983994}}}, 1.02163982} id=3
-afterPart {{{180.284241,-120.129433}, {231.444168,-125.806053}}} id=2
-afterPart {{{180.284241,-120.129433}, {23.1854992,-102.697998}}} id=2
-after [2/9] 17/17 tStart=0.443739761 tEnd=0 < [2/10] 1/1 tStart=0.443739761 tEnd=0.588245674 < [3/2] 21/21 tStart=0.602960898 tEnd=1  F 4
-afterPart {{{180.284241,-120.129433}, {23.1854992,-102.697998}}} id=2
-afterPart {{{180.284241,-120.129433}, {231.444168,-125.806053}}} id=2
-afterPart {{{{180.284241,-120.129433}, {132.69398,-43.0726727}, {95.5512009,58.9763985}}}, 0.497736931} id=3
-after [3/2] 21/21 tStart=0.602960898 tEnd=1 < [2/10] 1/1 tStart=0.443739761 tEnd=0.588245674 < [3/1] 5/1 tStart=0.602960898 tEnd=0  T 11
-afterPart {{{{180.284241,-120.129433}, {132.69398,-43.0726727}, {95.5512009,58.9763985}}}, 0.497736931} id=3
-afterPart {{{180.284241,-120.129433}, {231.444168,-125.806053}}} id=2
-afterPart {{{{180.284241,-120.129433}, {257.850781,-245.722913}, {306.588013,-227.983994}}}, 1.02163982} id=3
-sortAngles [4] tStart=0.64393017 [13]
-after [4/3] 21/21 tStart=0.64393017 tEnd=0 < [2/11] 17/17 tStart=0.588245674 tEnd=0.443739761 < [4/4] 5/5 tStart=0.64393017 tEnd=0.751854746  F 4
-afterPart {{{231.444168,-125.806053}, {95.5512009,58.9763985}}} id=4
-afterPart {{{231.444168,-125.806053}, {180.284241,-120.129433}}} id=2
-afterPart {{{231.444168,-125.806053}, {254.22023,-156.776138}}} id=4
-after [4/3] 21/21 tStart=0.64393017 tEnd=0 < [2/12] 1/1 tStart=0.588245674 tEnd=1 < [4/4] 5/5 tStart=0.64393017 tEnd=0.751854746  T 4
-afterPart {{{231.444168,-125.806053}, {95.5512009,58.9763985}}} id=4
-afterPart {{{231.444168,-125.806053}, {377.218994,-141.981003}}} id=2
-afterPart {{{231.444168,-125.806053}, {254.22023,-156.776138}}} id=4
-sortAngles [4] tStart=0.751854746 [11]
-after [4/5] 21/21 tStart=0.751854746 tEnd=0.64393017 < [1/7] 29/29 tStart=0.245788566 tEnd=0 < [4/6] 5/5 tStart=0.751854746 tEnd=1  T 4
-afterPart {{{254.22023,-156.776138}, {231.444168,-125.806053}}} id=4
-afterPart {{{{254.22023,-156.776138}, {314.172616,-153.097823}, {377.218994,-141.981003}}}, 0.580018938} id=1
-afterPart {{{254.22023,-156.776138}, {306.588013,-227.983994}}} id=4
-after [4/5] 21/21 tStart=0.751854746 tEnd=0.64393017 < [1/8] 13/17 tStart=0.245788566 tEnd=1 < [1/7] 29/29 tStart=0.245788566 tEnd=0  F 4
-afterPart {{{254.22023,-156.776138}, {231.444168,-125.806053}}} id=4
-afterPart {{{{254.22023,-156.776138}, {35.0915133,-170.22053}, {23.1854992,-102.697998}}}, 0.920844734} id=1
-afterPart {{{{254.22023,-156.776138}, {314.172616,-153.097823}, {377.218994,-141.981003}}}, 0.580018938} id=1
-after [1/7] 29/29 tStart=0.245788566 tEnd=0 < [1/8] 13/17 tStart=0.245788566 tEnd=1 < [4/6] 5/5 tStart=0.751854746 tEnd=1  F 4
-afterPart {{{{254.22023,-156.776138}, {314.172616,-153.097823}, {377.218994,-141.981003}}}, 0.580018938} id=1
-afterPart {{{{254.22023,-156.776138}, {35.0915133,-170.22053}, {23.1854992,-102.697998}}}, 0.920844734} id=1
-afterPart {{{254.22023,-156.776138}, {306.588013,-227.983994}}} id=4
-after [4/6] 5/5 tStart=0.751854746 tEnd=1 < [1/8] 13/17 tStart=0.245788566 tEnd=1 < [4/5] 21/21 tStart=0.751854746 tEnd=0.64393017  T 4
-afterPart {{{254.22023,-156.776138}, {306.588013,-227.983994}}} id=4
-afterPart {{{{254.22023,-156.776138}, {35.0915133,-170.22053}, {23.1854992,-102.697998}}}, 0.920844734} id=1
-afterPart {{{254.22023,-156.776138}, {231.444168,-125.806053}}} id=4
-sortAngles [1] tStart=0.245788566 [12]
-sortAngles [2] tStart=0.443739761 [10]
-sortAngles [2] tStart=0.588245674 [14]
-sortableTop dir=kTop seg=3 t=0.301480449 pt=(252.731339,-209.870193)
-sortableTop [0] valid=1 operand=0 span=5 ccw=0 seg=3 {{{{306.588013f, -227.983994f}, {212.464996f, -262.242004f}, {95.5512009f, 58.9763985f}}}, 0.707107008f} t=0.301480449 pt=(252.731339,-209.870193) slope=(-84.4303791,69.255817)
-markWinding id=3 (306.588013,-227.983994 212.464996,-262.242004 95.5512009,58.9763985) t=0 [5] (306.588013,-227.983994) tEnd=0.602960898 newWindSum=1 newOppSum=0 oppSum=0 windSum=1 windValue=1 oppValue=0
-markWinding id=3 (306.588013,-227.983994 212.464996,-262.242004 95.5512009,58.9763985) t=0 [5] (306.588013,-227.983994) tEnd=0.602960898 newWindSum=1 newOppSum=0 oppSum=0 windSum=1 windValue=1 oppValue=0
-markWinding id=4 (95.5512009,58.9763985 306.588013,-227.983994) t=0.751854746 [11] (254.22023,-156.776138) tEnd=1 newWindSum=1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
-findNextWinding simple
-markDone id=3 (306.588013,-227.983994 212.464996,-262.242004 95.5512009,58.9763985) t=0 [5] (306.588013,-227.983994) tEnd=0.602960898 newWindSum=1 newOppSum=0 oppSum=0 windSum=1 windValue=1 oppValue=0
-bridgeWinding current id=3 from=(180.284241,-120.129433) to=(306.588013,-227.983994)
-path.moveTo(180.284241,-120.129433);
-path.conicTo(257.850769,-245.722916, 306.588013,-227.983994, 1.02163982);
-markWinding id=1 (377.218994,-141.981003 40.578701,-201.339996 23.1854992,-102.697998) t=0.245788566 [12] (254.22023,-156.776138) tEnd=1 newWindSum=2 windSum=? windValue=1
-markWinding id=2 (23.1854992,-102.697998 377.218994,-141.981003) t=0 [3] (23.1854992,-102.697998) tEnd=0.443739761 newWindSum=2 windSum=? windValue=1
-markAngle last seg=2 span=10 windSum=?
-markWinding id=4 (95.5512009,58.9763985 306.588013,-227.983994) t=0.64393017 [13] (231.444168,-125.806053) tEnd=0.751854746 newWindSum=2 windSum=? windValue=1
-markAngle last seg=4 span=13 windSum=2
-markWinding id=1 (377.218994,-141.981003 40.578701,-201.339996 23.1854992,-102.697998) t=0 [1] (377.218994,-141.981003) tEnd=0.245788566 newWindSum=1 windSum=? windValue=1
-markWinding id=2 (23.1854992,-102.697998 377.218994,-141.981003) t=0.588245674 [14] (231.444168,-125.806053) tEnd=1 newWindSum=1 windSum=? windValue=1
-markAngle last seg=2 span=14 windSum=1
-findNextWinding
-dumpOne [4/6] next=1/8 sect=5/5  s=0.751854746 [11] e=1 [8] sgn=-1 windVal=1 windSum=1 oppVal=0 oppSum=0
-dumpOne [1/8] next=4/5 sect=13/17  s=0.245788566 [12] e=1 [2] sgn=-1 windVal=1 windSum=2
-dumpOne [4/5] next=1/7 sect=21/21  s=0.751854746 [11] e=0.64393017 [13] sgn=1 windVal=1 windSum=2
-dumpOne [1/7] next=4/6 sect=29/29  s=0.245788566 [12] e=0 [1] sgn=1 windVal=1 windSum=1
-markDone id=1 (377.218994,-141.981003 40.578701,-201.339996 23.1854992,-102.697998) t=0.245788566 [12] (254.22023,-156.776138) tEnd=1 newWindSum=2 newOppSum=? oppSum=? windSum=2 windValue=1 oppValue=0
-markDone id=2 (23.1854992,-102.697998 377.218994,-141.981003) t=0 [3] (23.1854992,-102.697998) tEnd=0.443739761 newWindSum=2 newOppSum=? oppSum=? windSum=2 windValue=1 oppValue=0
-findNextWinding chase.append segment=2 span=10 windSum=-2147483647
-markDone id=4 (95.5512009,58.9763985 306.588013,-227.983994) t=0.64393017 [13] (231.444168,-125.806053) tEnd=0.751854746 newWindSum=2 newOppSum=? oppSum=? windSum=2 windValue=1 oppValue=0
-findNextWinding chase.append segment=4 span=13 windSum=2
-findNextWinding chase.append segment=2 span=14 windSum=1
-markDone id=4 (95.5512009,58.9763985 306.588013,-227.983994) t=0.751854746 [11] (254.22023,-156.776138) tEnd=1 newWindSum=1 newOppSum=0 oppSum=0 windSum=1 windValue=1 oppValue=0
-findNextWinding from:[4] to:[1] start=50334624 end=1606415336
-bridgeWinding current id=4 from=(306.588013,-227.983994) to=(254.22023,-156.776138)
-findNextWinding simple
-markDone id=1 (377.218994,-141.981003 40.578701,-201.339996 23.1854992,-102.697998) t=0 [1] (377.218994,-141.981003) tEnd=0.245788566 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=1 oppValue=0
-bridgeWinding current id=1 from=(254.22023,-156.776138) to=(377.218994,-141.981003)
-path.lineTo(254.22023,-156.776138);
-path.conicTo(314.172607,-153.097824, 377.218994,-141.981003, 0.580018938);
-markWinding id=2 (23.1854992,-102.697998 377.218994,-141.981003) t=0.443739761 [10] (180.284241,-120.129433) tEnd=0.588245674 newWindSum=2 windSum=? windValue=1
-markAngle last seg=2 span=10 windSum=2
-markWinding id=4 (95.5512009,58.9763985 306.588013,-227.983994) t=0 [7] (95.5512009,58.9763985) tEnd=0.64393017 newWindSum=1 windSum=? windValue=1
-markWinding id=3 (306.588013,-227.983994 212.464996,-262.242004 95.5512009,58.9763985) t=0.602960898 [9] (180.284241,-120.129433) tEnd=1 newWindSum=1 windSum=? windValue=1
-markAngle last seg=3 span=9 windSum=1
-findNextWinding
-dumpOne [2/12] next=4/4 sect=1/1  s=0.588245674 [14] e=1 [4] sgn=-1 windVal=1 windSum=1
-dumpOne [4/4] next=2/11 sect=5/5  s=0.64393017 [13] e=0.751854746 [11] sgn=-1 windVal=1 windSum=2 done
-dumpOne [2/11] next=4/3 sect=17/17  s=0.588245674 [14] e=0.443739761 [10] sgn=1 windVal=1 windSum=2
-dumpOne [4/3] next=2/12 sect=21/21  s=0.64393017 [13] e=0 [7] sgn=1 windVal=1 windSum=1
-markDone id=2 (23.1854992,-102.697998 377.218994,-141.981003) t=0.443739761 [10] (180.284241,-120.129433) tEnd=0.588245674 newWindSum=2 newOppSum=? oppSum=? windSum=2 windValue=1 oppValue=0
-findNextWinding chase.append segment=3 span=9 windSum=1
-markDone id=2 (23.1854992,-102.697998 377.218994,-141.981003) t=0.588245674 [14] (231.444168,-125.806053) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=1 oppValue=0
-findNextWinding from:[2] to:[4] start=50334760 end=50333904
-bridgeWinding current id=2 from=(377.218994,-141.981003) to=(231.444168,-125.806053)
-findNextWinding simple
-markDone id=4 (95.5512009,58.9763985 306.588013,-227.983994) t=0 [7] (95.5512009,58.9763985) tEnd=0.64393017 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=1 oppValue=0
-bridgeWinding current id=4 from=(231.444168,-125.806053) to=(95.5512009,58.9763985)
-path.lineTo(231.444168,-125.806053);
-findNextWinding
-dumpOne [3/2] next=2/10 sect=21/21  s=0.602960898 [9] e=1 [6] sgn=-1 windVal=1 windSum=1
-dumpOne [2/10] next=3/1 sect=1/1  s=0.443739761 [10] e=0.588245674 [14] sgn=-1 windVal=1 windSum=2 done
-dumpOne [3/1] next=2/9 sect=5/1  s=0.602960898 [9] e=0 [5] sgn=1 windVal=1 windSum=1 oppVal=0 oppSum=0 done
-dumpOne [2/9] next=3/2 sect=17/17  s=0.443739761 [10] e=0 [3] sgn=1 windVal=1 windSum=2 done
-markDone id=3 (306.588013,-227.983994 212.464996,-262.242004 95.5512009,58.9763985) t=0.602960898 [9] (180.284241,-120.129433) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=1 oppValue=0
-findNextWinding from:[3] to:[2] start=50334352 end=50333208
-bridgeWinding current id=3 from=(95.5512009,58.9763985) to=(180.284241,-120.129433)
-path.lineTo(95.5512009,58.9763985);
-path.conicTo(132.693985,-43.0726738, 180.284241,-120.129433, 0.497736931);
+Skia UnitTests: --match Simplify$ --resourcePath resources\ SK_DEBUG
+
+<div id="fuzz763_4713_b">
+seg=1 {{{41, 33}, {41, 36.3137093f}, {38.6568527f, 38.6568527f}}}
+seg=2 {{{38.6568527f, 38.6568527f}, {36.3137093f, 41}, {33, 41}}}
+seg=3 {{{33, 41}, {29.6862907f, 41}, {27.3431454f, 38.6568527f}}}
+seg=4 {{{27.3431454f, 38.6568527f}, {25, 36.3137093f}, {25, 33}}}
+seg=5 {{{25, 33}, {25, 29.6862907f}, {27.3431454f, 27.3431454f}}}
+seg=6 {{{27.3431454f, 27.3431454f}, {29.6862907f, 25}, {33, 25}}}
+seg=7 {{{33, 25}, {36.3137093f, 25}, {38.6568527f, 27.3431454f}}}
+seg=8 {{{38.6568527f, 27.3431454f}, {41, 29.6862907f}, {41, 33}}}
+seg=9 {{{33.2413864f, 24.6781349f}, {36.5549393f, 24.6459332f}, {38.920742f, 26.966198f}}}
+seg=10 {{{38.920742f, 26.966198f}, {41.2865486f, 29.2864628f}, {41.3187523f, 32.6000175f}}}
+seg=11 {{{41.3187523f, 32.6000175f}, {41.3509521f, 35.9135704f}, {39.0306854f, 38.2793732f}}}
+seg=12 {{{39.0306854f, 38.2793732f}, {38.9995995f, 38.3110695f}, {38.9681816f, 38.3424988f}}}
+seg=13 {{{38.9681816f, 38.3424988f}, {38.9374619f, 38.3742142f}, {38.9064751f, 38.4056053f}}}
+seg=14 {{{38.9064751f, 38.4056053f}, {38.8441086f, 38.4687881f}, {38.7809143f, 38.5304031f}}}
+seg=15 {{{38.7809143f, 38.5304031f}, {38.7196693f, 38.5940361f}, {38.6568527f, 38.6568527f}}}
+seg=16 {{{38.6568527f, 38.6568527f}, {36.3137093f, 41}, {33, 41}}}
+seg=17 {{{33, 41}, {29.6862907f, 41}, {27.3431454f, 38.6568527f}}}
+seg=18 {{{27.3431454f, 38.6568527f}, {25, 36.3137093f}, {25, 33}}}
+seg=19 {{{25, 33}, {25, 29.6862907f}, {27.3431454f, 27.3431454f}}}
+seg=20 {{{27.3431454f, 27.3431454f}, {27.3875446f, 27.2987461f}, {27.4323025f, 27.2551785f}}}
+seg=21 {{{27.4323025f, 27.2551785f}, {27.4755878f, 27.2101307f}, {27.5197105f, 27.165432f}}}
+seg=22 {{{27.5197105f, 27.165432f}, {27.541851f, 27.1430035f}, {27.5638676f, 27.1209965f}}}
+seg=23 {{{27.5638676f, 27.1209965f}, {27.5855064f, 27.0986347f}, {27.6075668f, 27.0761414f}}}
+seg=24 {{{27.6075668f, 27.0761414f}, {29.9278316f, 24.7103367f}, {33.2413864f, 24.6781349f}}}
+debugShowQuadIntersection wtTs[0]=1 {{{33.2413864,24.6781349}, {36.5549393,24.6459332}, {38.920742,26.966198}}} {{38.920742,26.966198}} wnTs[0]=0 {{{38.920742,26.966198}, {41.2865486,29.2864628}, {41.3187523,32.6000175}}}
+debugShowQuadIntersection wtTs[0]=0 {{{33.2413864,24.6781349}, {36.5549393,24.6459332}, {38.920742,26.966198}}} {{33.2413864,24.6781349}} wnTs[0]=1 {{{27.6075668,27.0761414}, {29.9278316,24.7103367}, {33.2413864,24.6781349}}}
+debugShowQuadIntersection wtTs[0]=1 {{{38.920742,26.966198}, {41.2865486,29.2864628}, {41.3187523,32.6000175}}} {{41.3187523,32.6000175}} wnTs[0]=0 {{{41.3187523,32.6000175}, {41.3509521,35.9135704}, {39.0306854,38.2793732}}}
+debugShowQuadIntersection wtTs[0]=1 {{{41.3187523,32.6000175}, {41.3509521,35.9135704}, {39.0306854,38.2793732}}} {{39.0306854,38.2793732}} wnTs[0]=0 {{{39.0306854,38.2793732}, {38.9995995,38.3110695}, {38.9681816,38.3424988}}}
+debugShowQuadIntersection wtTs[0]=1 {{{39.0306854,38.2793732}, {38.9995995,38.3110695}, {38.9681816,38.3424988}}} {{38.9681816,38.3424988}} wnTs[0]=0 {{{38.9681816,38.3424988}, {38.9374619,38.3742142}, {38.9064751,38.4056053}}}
+debugShowQuadIntersection wtTs[0]=1 {{{38.9681816,38.3424988}, {38.9374619,38.3742142}, {38.9064751,38.4056053}}} {{38.9064751,38.4056053}} wnTs[0]=0 {{{38.9064751,38.4056053}, {38.8441086,38.4687881}, {38.7809143,38.5304031}}}
+debugShowQuadIntersection wtTs[0]=1 {{{38.9064751,38.4056053}, {38.8441086,38.4687881}, {38.7809143,38.5304031}}} {{38.7809143,38.5304031}} wnTs[0]=0 {{{38.7809143,38.5304031}, {38.7196693,38.5940361}, {38.6568527,38.6568527}}}
+debugShowQuadIntersection wtTs[0]=1 {{{38.7809143,38.5304031}, {38.7196693,38.5940361}, {38.6568527,38.6568527}}} {{38.6568527,38.6568527}} wnTs[0]=0 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}}
+debugShowQuadIntersection wtTs[0]=1 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}} {{33,41}} wnTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527}}}
+debugShowQuadIntersection wtTs[0]=1 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527}}} {{27.3431454,38.6568527}} wnTs[0]=0 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}}
+debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}} {{25,33}} wnTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}}
+debugShowQuadIntersection wtTs[0]=1 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}} {{27.3431454,27.3431454}} wnTs[0]=0 {{{27.3431454,27.3431454}, {27.3875446,27.2987461}, {27.4323025,27.2551785}}}
+debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,27.3431454}, {27.3875446,27.2987461}, {27.4323025,27.2551785}}} {{27.4323025,27.2551785}} wnTs[0]=0 {{{27.4323025,27.2551785}, {27.4755878,27.2101307}, {27.5197105,27.165432}}}
+debugShowQuadIntersection wtTs[0]=1 {{{27.4323025,27.2551785}, {27.4755878,27.2101307}, {27.5197105,27.165432}}} {{27.5197105,27.165432}} wnTs[0]=0 {{{27.5197105,27.165432}, {27.541851,27.1430035}, {27.5638676,27.1209965}}}
+debugShowQuadIntersection wtTs[0]=1 {{{27.5197105,27.165432}, {27.541851,27.1430035}, {27.5638676,27.1209965}}} {{27.5638676,27.1209965}} wnTs[0]=0 {{{27.5638676,27.1209965}, {27.5855064,27.0986347}, {27.6075668,27.0761414}}}
+debugShowQuadIntersection wtTs[0]=1 {{{27.5638676,27.1209965}, {27.5855064,27.0986347}, {27.6075668,27.0761414}}} {{27.6075668,27.0761414}} wnTs[0]=0 {{{27.6075668,27.0761414}, {29.9278316,24.7103367}, {33.2413864,24.6781349}}}
+id=1 1=(0,0.5) [2] 3=(0.5,1) [2] id=2 2=(0,1) [3,1]
+id=1 1=(0,0.5) [2] 3=(0.5,1) [4] id=2 2=(0,0.5) [1] 4=(0.5,1) [3]
+id=1 3=(0.5,1) [4] id=2 4=(0.5,1) [3]
+id=1 (empty) id=2 (empty)
+debugShowQuadIntersection no intersect {{{33.2413864,24.6781349}, {36.5549393,24.6459332}, {38.920742,26.966198}}} {{{33,25}, {36.3137093,25}, {38.6568527,27.3431454}}}
+id=1 1=(0,1) [4,2] id=2 2=(0,0.5) [1] 4=(0.5,1) [1]
+id=1 (empty) id=2 (empty)
+debugShowQuadIntersection no intersect {{{38.920742,26.966198}, {41.2865486,29.2864628}, {41.3187523,32.6000175}}} {{{38.6568527,27.3431454}, {41,29.6862907}, {41,33}}}
+id=1 1=(0,0.5) [2] 3=(0.5,1) [2] id=2 2=(0,1) [3,1]
+id=1 1=(0,0.5) [2] 3=(0.5,1) [4,2] id=2 2=(0,0.5) [3,1] 4=(0.5,1) [3]
+id=1 3=(0.5,1) [4,2] id=2 2=(0,0.5) [3] 4=(0.5,1) [3]
+id=1 3=(0.5,1) [6,4] id=2 6=(0.25,0.5) [3] 4=(0.5,1) [3]
+id=1 3=(0.5,0.75) [4] 7=(0.75,1) [4] id=2 4=(0.5,1) [7,3]
+id=1 7=(0.75,1) [8,4] id=2 4=(0.5,0.75) [7] 8=(0.75,1) [7]
+id=1 7=(0.75,1) [10,8] id=2 10=(0.625,0.75) [7] 8=(0.75,1) [7]
+id=1 9=(0.875,1) [8] id=2 8=(0.75,1) [9]
+id=1 (empty) id=2 (empty)
+debugShowQuadIntersection no intersect {{{41.3187523,32.6000175}, {41.3509521,35.9135704}, {39.0306854,38.2793732}}} {{{41,33}, {41,36.3137093}, {38.6568527,38.6568527}}}
+debugShowQuadIntersection no intersect {{{41.3187523,32.6000175}, {41.3509521,35.9135704}, {39.0306854,38.2793732}}} {{{38.6568527,27.3431454}, {41,29.6862907}, {41,33}}}
+id=1 1=(0,1) [4] id=2 4=(0.5,1) [1]
+id=1 1=(0,1) [6] id=2 6=(0.75,1) [1]
+id=1 (empty) id=2 (empty)
+debugShowQuadIntersection no intersect {{{39.0306854,38.2793732}, {38.9995995,38.3110695}, {38.9681816,38.3424988}}} {{{41,33}, {41,36.3137093}, {38.6568527,38.6568527}}}
+id=1 1=(0,1) [4] id=2 4=(0.5,1) [1]
+id=1 1=(0,1) [6] id=2 6=(0.75,1) [1]
+id=1 1=(0,1) [8] id=2 8=(0.875,1) [1]
+id=1 (empty) id=2 (empty)
+debugShowQuadIntersection no intersect {{{38.9681816,38.3424988}, {38.9374619,38.3742142}, {38.9064751,38.4056053}}} {{{41,33}, {41,36.3137093}, {38.6568527,38.6568527}}}
+id=1 1=(0,1) [4] id=2 4=(0.5,1) [1]
+id=1 1=(0,1) [6] id=2 6=(0.75,1) [1]
+id=1 1=(0,1) [8] id=2 8=(0.875,1) [1]
+id=1 1=(0,1) [10] id=2 10=(0.9375,1) [1]
+id=1 1=(0,1) [12,10] id=2 10=(0.9375,0.96875) [1] 12=(0.96875,1) [1]
+id=1 1=(0,1) [14,12,10] id=2 10=(0.9375,0.953125) [1] 14=(0.953125,0.96875) [1] 12=(0.96875,1) [1]
+id=1 1=(0,1) [14,12,10] id=2 10=(0.9375,0.953125) [1] 14=(0.953125,0.96875) [1] 12=(0.96875,0.984375) [1]
+id=1 3=(0.5,1) [12] id=2 12=(0.96875,0.984375) [3]
+id=1 3=(0.5,1) [12] id=2 12=(0.96875,0.976563) [3]
+id=1 5=(0.75,1) [12] id=2 12=(0.96875,0.976563) [5]
+id=1 5=(0.75,1) [20,12] id=2 12=(0.96875,0.972656) [5] 20=(0.972656,0.976563) [5]
+id=1 7=(0.875,1) [20] id=2 20=(0.972656,0.976563) [7]
+id=1 7=(0.875,1) [20] id=2 20=(0.972656,0.974609) [7]
+id=1 (empty) id=2 (empty)
+debugShowQuadIntersection no intersect {{{38.9064751,38.4056053}, {38.8441086,38.4687881}, {38.7809143,38.5304031}}} {{{41,33}, {41,36.3137093}, {38.6568527,38.6568527}}}
+id=1 1=(0,1) [4] id=2 4=(0.5,1) [1]
+id=1 1=(0,1) [6] id=2 6=(0.75,1) [1]
+id=1 1=(0,1) [8] id=2 8=(0.875,1) [1]
+id=1 1=(0,1) [10] id=2 10=(0.9375,1) [1]
+id=1 1=(0,1) [12] id=2 12=(0.96875,1) [1]
+id=1 1=(0,1) [14,12] id=2 12=(0.96875,0.984375) [1] 14=(0.984375,1) [1]
+id=1 1=(0,0.5) [14,12] 3=(0.5,1) [14] id=2 12=(0.96875,0.984375) [1] 14=(0.984375,1) [3,1]
+id=1 1=(0,0.5) [16,14,12] 3=(0.5,1) [14] id=2 12=(0.96875,0.976563) [1] 16=(0.976563,0.984375) [1] 14=(0.984375,1) [3,1]
+id=1 1=(0,0.5) [16,14,12] 3=(0.5,1) [18,14] id=2 12=(0.96875,0.976563) [1] 16=(0.976563,0.984375) [1] 14=(0.984375,0.992188) [3,1] 18=(0.992188,1) [3]
+id=1 1=(0,0.25) [16,12] 5=(0.25,0.5) [14,16] 3=(0.5,1) [18,14] id=2 12=(0.96875,0.976563) [1] 16=(0.976563,0.984375) [5,1] 14=(0.984375,0.992188) [5,3] 18=(0.992188,1) [3]
+id=1 1=(0,0.25) [16,12] 5=(0.25,0.5) [14,16] 3=(0.5,0.75) [18,14] 7=(0.75,1) [18] id=2 12=(0.96875,0.976563) [1] 16=(0.976563,0.984375) [5,1] 14=(0.984375,0.992188) [5,3] 18=(0.992188,1) [7,3]
+id=1 1=(0,0.25) [20,16] 5=(0.25,0.5) [14,16] 3=(0.5,0.75) [18,14] 7=(0.75,1) [18] id=2 20=(0.972656,0.976563) [1] 16=(0.976563,0.984375) [5,1] 14=(0.984375,0.992188) [5,3] 18=(0.992188,1) [7,3]
+id=1 1=(0,0.25) [20,16] 5=(0.25,0.5) [22,14,16] 3=(0.5,0.75) [18,14] 7=(0.75,1) [18] id=2 20=(0.972656,0.976563) [1] 16=(0.976563,0.980469) [5,1] 22=(0.980469,0.984375) [5] 14=(0.984375,0.992188) [5,3] 18=(0.992188,1) [7,3]
+id=1 1=(0,0.25) [20,16] 5=(0.25,0.5) [22,14,16] 3=(0.5,0.75) [24,18,14] 7=(0.75,1) [18] id=2 20=(0.972656,0.976563) [1] 16=(0.976563,0.980469) [5,1] 22=(0.980469,0.984375) [5] 14=(0.984375,0.988281) [5,3] 24=(0.988281,0.992188) [3] 18=(0.992188,1) [7,3]
+id=1 1=(0,0.25) [20,16] 5=(0.25,0.5) [22,14,16] 3=(0.5,0.75) [24,18,14] 7=(0.75,1) [26,18] id=2 20=(0.972656,0.976563) [1] 16=(0.976563,0.980469) [5,1] 22=(0.980469,0.984375) [5] 14=(0.984375,0.988281) [5,3] 24=(0.988281,0.992188) [3] 18=(0.992188,0.996094) [7,3] 26=(0.996094,1) [7]
+id=1 1=(0,0.125) [20] 9=(0.125,0.25) [16,20] 5=(0.25,0.5) [22,14,16] 3=(0.5,0.75) [24,18,14] 7=(0.75,1) [26,18] id=2 20=(0.972656,0.976563) [9,1] 16=(0.976563,0.980469) [9,5] 22=(0.980469,0.984375) [5] 14=(0.984375,0.988281) [5,3] 24=(0.988281,0.992188) [3] 18=(0.992188,0.996094) [7,3] 26=(0.996094,1) [7]
+id=1 1=(0,0.125) [20] 9=(0.125,0.25) [16,20] 5=(0.25,0.375) [22,16] 11=(0.375,0.5) [14,22] 3=(0.5,0.75) [24,18,14] 7=(0.75,1) [26,18] id=2 20=(0.972656,0.976563) [9,1] 16=(0.976563,0.980469) [9,5] 22=(0.980469,0.984375) [11,5] 14=(0.984375,0.988281) [11,3] 24=(0.988281,0.992188) [3] 18=(0.992188,0.996094) [7,3] 26=(0.996094,1) [7]
+id=1 1=(0,0.125) [20] 9=(0.125,0.25) [16,20] 5=(0.25,0.375) [22,16] 11=(0.375,0.5) [14,22] 3=(0.5,0.625) [24,14] 13=(0.625,0.75) [18,24] 7=(0.75,1) [26,18] id=2 20=(0.972656,0.976563) [9,1] 16=(0.976563,0.980469) [9,5] 22=(0.980469,0.984375) [11,5] 14=(0.984375,0.988281) [11,3] 24=(0.988281,0.992188) [13,3] 18=(0.992188,0.996094) [13,7] 26=(0.996094,1) [7]
+id=1 1=(0,0.125) [20] 9=(0.125,0.25) [16,20] 5=(0.25,0.375) [22,16] 11=(0.375,0.5) [14,22] 3=(0.5,0.625) [24,14] 13=(0.625,0.75) [18,24] 7=(0.75,0.875) [26,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.976563) [9,1] 16=(0.976563,0.980469) [9,5] 22=(0.980469,0.984375) [11,5] 14=(0.984375,0.988281) [11,3] 24=(0.988281,0.992188) [13,3] 18=(0.992188,0.996094) [13,7] 26=(0.996094,1) [15,7]
+id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [28,16] 5=(0.25,0.375) [22,16] 11=(0.375,0.5) [14,22] 3=(0.5,0.625) [24,14] 13=(0.625,0.75) [18,24] 7=(0.75,0.875) [26,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609,0.976563) [1,9] 16=(0.976563,0.980469) [9,5] 22=(0.980469,0.984375) [11,5] 14=(0.984375,0.988281) [11,3] 24=(0.988281,0.992188) [13,3] 18=(0.992188,0.996094) [13,7] 26=(0.996094,1) [15,7]
+id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [30,22] 11=(0.375,0.5) [14,22] 3=(0.5,0.625) [24,14] 13=(0.625,0.75) [18,24] 7=(0.75,0.875) [26,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609,0.976563) [1,9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(0.980469,0.984375) [11,5] 14=(0.984375,0.988281) [11,3] 24=(0.988281,0.992188) [13,3] 18=(0.992188,0.996094) [13,7] 26=(0.996094,1) [15,7]
+id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [32,30,22] 11=(0.375,0.5) [32,14] 3=(0.5,0.625) [24,14] 13=(0.625,0.75) [18,24] 7=(0.75,0.875) [26,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609,0.976563) [1,9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(0.980469,0.982422) [5] 32=(0.982422,0.984375) [5,11] 14=(0.984375,0.988281) [11,3] 24=(0.988281,0.992188) [13,3] 18=(0.992188,0.996094) [13,7] 26=(0.996094,1) [15,7]
+id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [32,30,22] 11=(0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [18,24] 7=(0.75,0.875) [26,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609,0.976563) [1,9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(0.980469,0.982422) [5] 32=(0.982422,0.984375) [5,11] 14=(0.984375,0.986328) [11] 34=(0.986328,0.988281) [3,11] 24=(0.988281,0.992188) [13,3] 18=(0.992188,0.996094) [13,7] 26=(0.996094,1) [15,7]
+id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [32,30,22] 11=(0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [26,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609,0.976563) [1,9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(0.980469,0.982422) [5] 32=(0.982422,0.984375) [5,11] 14=(0.984375,0.986328) [11] 34=(0.986328,0.988281) [3,11] 24=(0.988281,0.990234) [13,3] 36=(0.990234,0.992188) [13] 18=(0.992188,0.996094) [13,7] 26=(0.996094,1) [15,7]
+id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [32,30,22] 11=(0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [38,26,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609,0.976563) [1,9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(0.980469,0.982422) [5] 32=(0.982422,0.984375) [5,11] 14=(0.984375,0.986328) [11] 34=(0.986328,0.988281) [3,11] 24=(0.988281,0.990234) [13,3] 36=(0.990234,0.992188) [13] 18=(0.992188,0.994141) [13,7] 38=(0.994141,0.996094) [7] 26=(0.996094,1) [15,7]
+id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [32,30,22] 11=(0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [38,26,18] 15=(0.875,1) [40,26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609,0.976563) [1,9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(0.980469,0.982422) [5] 32=(0.982422,0.984375) [5,11] 14=(0.984375,0.986328) [11] 34=(0.986328,0.988281) [3,11] 24=(0.988281,0.990234) [13,3] 36=(0.990234,0.992188) [13] 18=(0.992188,0.994141) [13,7] 38=(0.994141,0.996094) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,1) [15]
+setPerp t=0.974609375 cPt=(38.7743301,38.5372393) == oppT=0.0537252999 fPerpPt=(38.774329,38.5372382)
+setPerp t=0.9765625 cPt=(38.7654006,38.5464847) == oppT=0.126456412 fPerpPt=(38.7653995,38.5464837)
+setPerp t=0.0625 cPt=(38.7732525,38.5383541) == oppT=0.974845025 fPerpPt=(38.7732537,38.5383551)
+setPerp t=0.974609375 cPt=(38.7743301,38.5372393) == oppT=0.0537252999 fPerpPt=(38.774329,38.5372382)
+setPerp t=0 cPt=(38.7809143,38.5304031) == oppT=0.973166462 fPerpPt=(38.7809154,38.5304042)
+setPerp t=0.974609375 cPt=(38.7743301,38.5372393) == oppT=0.0537252999 fPerpPt=(38.774329,38.5372382)
+setPerp t=0.9765625 cPt=(38.7654006,38.5464847) == oppT=0.126456412 fPerpPt=(38.7653995,38.5464837)
+setPerp t=0.0625 cPt=(38.7732525,38.5383541) == oppT=0.974845025 fPerpPt=(38.7732537,38.5383551)
+setPerp t=0.125 cPt=(38.7655785,38.5462986) == oppT=0.976523392 fPerpPt=(38.7655796,38.5462997)
+id=1 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [32,30,22] 11=(0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [38,26,18] 15=(0.875,1) [40,26] id=2 28=(0.974609,0.976563) [9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(0.980469,0.982422) [5] 32=(0.982422,0.984375) [5,11] 14=(0.984375,0.986328) [11] 34=(0.986328,0.988281) [3,11] 24=(0.988281,0.990234) [13,3] 36=(0.990234,0.992188) [13] 18=(0.992188,0.994141) [13,7] 38=(0.994141,0.996094) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,1) [15]
+setPerp t=0.974609375 cPt=(38.7743301,38.5372393) == oppT=0.0537252999 fPerpPt=(38.774329,38.5372382)
+setPerp t=0.9765625 cPt=(38.7654006,38.5464847) == oppT=0.126456412 fPerpPt=(38.7653995,38.5464837)
+setPerp t=0.125 cPt=(38.7655785,38.5462986) == oppT=0.976523392 fPerpPt=(38.7655796,38.5462997)
+setPerp t=0.9765625 cPt=(38.7654006,38.5464847) == oppT=0.126456412 fPerpPt=(38.7653995,38.5464837)
+setPerp t=0.978515625 cPt=(38.7564533,38.5557228) == oppT=0.199197443 fPerpPt=(38.7564523,38.5557218)
+setPerp t=0.1875 cPt=(38.7578922,38.5542368) == oppT=0.978201562 fPerpPt=(38.7578932,38.5542378)
+setPerp t=0.9765625 cPt=(38.7654006,38.5464847) == oppT=0.126456412 fPerpPt=(38.7653995,38.5464837)
+setPerp t=0.978515625 cPt=(38.7564533,38.5557228) == oppT=0.199197443 fPerpPt=(38.7564523,38.5557218)
+setPerp t=0.1875 cPt=(38.7578922,38.5542368) == oppT=0.978201562 fPerpPt=(38.7578932,38.5542378)
+setPerp t=0.978515625 cPt=(38.7564533,38.5557228) == oppT=0.199197443 fPerpPt=(38.7564523,38.5557218)
+setPerp t=0.98046875 cPt=(38.7474881,38.5649534) == oppT=0.271948381 fPerpPt=(38.7474871,38.5649525)
+setPerp t=0.25 cPt=(38.7501936,38.5621686) == oppT=0.979879536 fPerpPt=(38.7501946,38.5621695)
+id=1 5=(0.25,0.375) [32,30,22] 11=(0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [38,26,18] 15=(0.875,1) [40,26] id=2 30=(0.978516,0.980469) [5] 22=(0.980469,0.982422) [5] 32=(0.982422,0.984375) [5,11] 14=(0.984375,0.986328) [11] 34=(0.986328,0.988281) [3,11] 24=(0.988281,0.990234) [13,3] 36=(0.990234,0.992188) [13] 18=(0.992188,0.994141) [13,7] 38=(0.994141,0.996094) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,1) [15]
+setPerp t=0.978515625 cPt=(38.7564533,38.5557228) == oppT=0.199197443 fPerpPt=(38.7564523,38.5557218)
+setPerp t=0.98046875 cPt=(38.7474881,38.5649534) == oppT=0.271948381 fPerpPt=(38.7474871,38.5649525)
+setPerp t=0.25 cPt=(38.7501936,38.5621686) == oppT=0.979879536 fPerpPt=(38.7501946,38.5621695)
+setPerp t=0.98046875 cPt=(38.7474881,38.5649534) == oppT=0.271948381 fPerpPt=(38.7474871,38.5649525)
+setPerp t=0.982421875 cPt=(38.738505,38.5741767) == oppT=0.344709216 fPerpPt=(38.7385041,38.5741759)
+setPerp t=0.3125 cPt=(38.7424827,38.570094) == oppT=0.981557313 fPerpPt=(38.7424836,38.5700949)
+setPerp t=0.98046875 cPt=(38.7474881,38.5649534) == oppT=0.271948381 fPerpPt=(38.7474871,38.5649525)
+setPerp t=0.982421875 cPt=(38.738505,38.5741767) == oppT=0.344709216 fPerpPt=(38.7385041,38.5741759)
+setPerp t=0.3125 cPt=(38.7424827,38.570094) == oppT=0.981557313 fPerpPt=(38.7424836,38.5700949)
+setPerp t=0.982421875 cPt=(38.738505,38.5741767) == oppT=0.344709216 fPerpPt=(38.7385041,38.5741759)
+setPerp t=0.984375 cPt=(38.729504,38.5833925) == oppT=0.417479935 fPerpPt=(38.7295033,38.5833918)
+setPerp t=0.375 cPt=(38.7347596,38.5780131) == oppT=0.983234895 fPerpPt=(38.7347604,38.5780138)
+id=1 11=(0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [38,26,18] 15=(0.875,1) [40,26] id=2 32=(0.982422,0.984375) [11] 14=(0.984375,0.986328) [11] 34=(0.986328,0.988281) [3,11] 24=(0.988281,0.990234) [13,3] 36=(0.990234,0.992188) [13] 18=(0.992188,0.994141) [13,7] 38=(0.994141,0.996094) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,1) [15]
+setPerp t=0.982421875 cPt=(38.738505,38.5741767) == oppT=0.344709216 fPerpPt=(38.7385041,38.5741759)
+setPerp t=0.984375 cPt=(38.729504,38.5833925) == oppT=0.417479935 fPerpPt=(38.7295033,38.5833918)
+setPerp t=0.375 cPt=(38.7347596,38.5780131) == oppT=0.983234895 fPerpPt=(38.7347604,38.5780138)
+setPerp t=0.984375 cPt=(38.729504,38.5833925) == oppT=0.417479935 fPerpPt=(38.7295033,38.5833918)
+setPerp t=0.986328125 cPt=(38.7204852,38.592601) == oppT=0.490260525 fPerpPt=(38.7204846,38.5926004)
+setPerp t=0.4375 cPt=(38.7270241,38.5859257) == oppT=0.984912281 fPerpPt=(38.7270248,38.5859264)
+setPerp t=0.984375 cPt=(38.729504,38.5833925) == oppT=0.417479935 fPerpPt=(38.7295033,38.5833918)
+setPerp t=0.986328125 cPt=(38.7204852,38.592601) == oppT=0.490260525 fPerpPt=(38.7204846,38.5926004)
+setPerp t=0.4375 cPt=(38.7270241,38.5859257) == oppT=0.984912281 fPerpPt=(38.7270248,38.5859264)
+setPerp t=0.986328125 cPt=(38.7204852,38.592601) == oppT=0.490260525 fPerpPt=(38.7204846,38.5926004)
+setPerp t=0.98828125 cPt=(38.7114485,38.601802) == oppT=0.563050975 fPerpPt=(38.711448,38.6018015)
+setPerp t=0.5 cPt=(38.7192764,38.593832) == oppT=0.986589471 fPerpPt=(38.719277,38.5938326)
+id=1 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [38,26,18] 15=(0.875,1) [40,26] id=2 34=(0.986328,0.988281) [3] 24=(0.988281,0.990234) [13,3] 36=(0.990234,0.992188) [13] 18=(0.992188,0.994141) [13,7] 38=(0.994141,0.996094) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,1) [15]
+setPerp t=0.986328125 cPt=(38.7204852,38.592601) == oppT=0.490260525 fPerpPt=(38.7204846,38.5926004)
+setPerp t=0.98828125 cPt=(38.7114485,38.601802) == oppT=0.563050975 fPerpPt=(38.711448,38.6018015)
+setPerp t=0.5 cPt=(38.7192764,38.593832) == oppT=0.986589471 fPerpPt=(38.719277,38.5938326)
+setPerp t=0.5625 cPt=(38.7115164,38.6017319) == oppT=0.988266467 fPerpPt=(38.7115169,38.6017324)
+setPerp t=0.98828125 cPt=(38.7114485,38.601802) == oppT=0.563050975 fPerpPt=(38.711448,38.6018015)
+setPerp t=0.990234375 cPt=(38.7023939,38.6109956) == oppT=0.635851272 fPerpPt=(38.7023935,38.6109953)
+setPerp t=0.625 cPt=(38.7037442,38.6096255) == oppT=0.989943268 fPerpPt=(38.7037445,38.6096258)
+setPerp t=0.986328125 cPt=(38.7204852,38.592601) == oppT=0.490260525 fPerpPt=(38.7204846,38.5926004)
+setPerp t=0.98828125 cPt=(38.7114485,38.601802) == oppT=0.563050975 fPerpPt=(38.711448,38.6018015)
+setPerp t=0.5625 cPt=(38.7115164,38.6017319) == oppT=0.988266467 fPerpPt=(38.7115169,38.6017324)
+id=1 13=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [38,26,18] 15=(0.875,1) [40,26] id=2 24=(0.988281,0.990234) [13] 36=(0.990234,0.992188) [13] 18=(0.992188,0.994141) [13,7] 38=(0.994141,0.996094) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,1) [15]
+setPerp t=0.990234375 cPt=(38.7023939,38.6109956) == oppT=0.635851272 fPerpPt=(38.7023935,38.6109953)
+setPerp t=0.9921875 cPt=(38.6933214,38.6201819) == oppT=0.708661403 fPerpPt=(38.6933211,38.6201816)
+setPerp t=0.6875 cPt=(38.6959596,38.6175126) == oppT=0.991619875 fPerpPt=(38.6959599,38.6175129)
+setPerp t=0.98828125 cPt=(38.7114485,38.601802) == oppT=0.563050975 fPerpPt=(38.711448,38.6018015)
+setPerp t=0.990234375 cPt=(38.7023939,38.6109956) == oppT=0.635851272 fPerpPt=(38.7023935,38.6109953)
+setPerp t=0.625 cPt=(38.7037442,38.6096255) == oppT=0.989943268 fPerpPt=(38.7037445,38.6096258)
+setPerp t=0.9921875 cPt=(38.6933214,38.6201819) == oppT=0.708661403 fPerpPt=(38.6933211,38.6201816)
+setPerp t=0.994140625 cPt=(38.684231,38.6293607) == oppT=0.781481354 fPerpPt=(38.6842309,38.6293605)
+setPerp t=0.75 cPt=(38.6881628,38.6253934) == oppT=0.993296287 fPerpPt=(38.688163,38.6253936)
+setPerp t=0.990234375 cPt=(38.7023939,38.6109956) == oppT=0.635851272 fPerpPt=(38.7023935,38.6109953)
+setPerp t=0.9921875 cPt=(38.6933214,38.6201819) == oppT=0.708661403 fPerpPt=(38.6933211,38.6201816)
+setPerp t=0.6875 cPt=(38.6959596,38.6175126) == oppT=0.991619875 fPerpPt=(38.6959599,38.6175129)
+id=1 7=(0.75,0.875) [38,26,18] 15=(0.875,1) [40,26] id=2 18=(0.992188,0.994141) [7] 38=(0.994141,0.996094) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,1) [15]
+setPerp t=0.994140625 cPt=(38.684231,38.6293607) == oppT=0.781481354 fPerpPt=(38.6842309,38.6293605)
+setPerp t=0.99609375 cPt=(38.6751228,38.6385321) == oppT=0.854311113 fPerpPt=(38.6751227,38.638532)
+setPerp t=0.8125 cPt=(38.6803537,38.6332678) == oppT=0.994972505 fPerpPt=(38.6803538,38.6332679)
+setPerp t=0.9921875 cPt=(38.6933214,38.6201819) == oppT=0.708661403 fPerpPt=(38.6933211,38.6201816)
+setPerp t=0.994140625 cPt=(38.684231,38.6293607) == oppT=0.781481354 fPerpPt=(38.6842309,38.6293605)
+setPerp t=0.75 cPt=(38.6881628,38.6253934) == oppT=0.993296287 fPerpPt=(38.688163,38.6253936)
+setPerp t=0.99609375 cPt=(38.6751228,38.6385321) == oppT=0.854311113 fPerpPt=(38.6751227,38.638532)
+setPerp t=0.998046875 cPt=(38.6659967,38.6476961) == oppT=0.927150666 fPerpPt=(38.6659967,38.6476961)
+setPerp t=0.875 cPt=(38.6725323,38.6411358) == oppT=0.99664853 fPerpPt=(38.6725324,38.6411359)
+setPerp t=0.994140625 cPt=(38.684231,38.6293607) == oppT=0.781481354 fPerpPt=(38.6842309,38.6293605)
+setPerp t=0.99609375 cPt=(38.6751228,38.6385321) == oppT=0.854311113 fPerpPt=(38.6751227,38.638532)
+setPerp t=0.8125 cPt=(38.6803537,38.6332678) == oppT=0.994972505 fPerpPt=(38.6803538,38.6332679)
+id=1 15=(0.875,1) [40,26] id=2 26=(0.996094,0.998047) [15] 40=(0.998047,1) [15]
+setPerp t=0.998046875 cPt=(38.6659967,38.6476961) == oppT=0.927150666 fPerpPt=(38.6659967,38.6476961)
+setPerp t=1 cPt=(38.6568527,38.6568527) == oppT=1 fPerpPt=(38.6568527,38.6568527)
+setPerp t=0.9375 cPt=(38.6646987,38.6489975) == oppT=0.998324361 fPerpPt=(38.6646987,38.6489975)
+setPerp t=0.99609375 cPt=(38.6751228,38.6385321) == oppT=0.854311113 fPerpPt=(38.6751227,38.638532)
+setPerp t=0.998046875 cPt=(38.6659967,38.6476961) == oppT=0.927150666 fPerpPt=(38.6659967,38.6476961)
+setPerp t=0.875 cPt=(38.6725323,38.6411358) == oppT=0.99664853 fPerpPt=(38.6725324,38.6411359)
+id=1 31=(0.9375,1) [40] id=2 40=(0.998047,1) [31]
+setPerp t=0.9375 cPt=(38.6646987,38.6489975) == oppT=0.998324361 fPerpPt=(38.6646987,38.6489975)
+setPerp t=1 cPt=(38.6568527,38.6568527) == oppT=1 fPerpPt=(38.6568527,38.6568527)
+setPerp t=0.999023438 cPt=(38.6614269,38.6522753) == oppT=0.963574111 fPerpPt=(38.6614269,38.6522753)
+id=1 31=(1,1) [42] id=2 42=(1,1) [31]
+debugShowQuadIntersection wtTs[0]=1 {{{38.7809143,38.5304031}, {38.7196693,38.5940361}, {38.6568527,38.6568527}}} {{38.6568527,38.6568527}} wnTs[0]=1 {{{41,33}, {41,36.3137093}, {38.6568527,38.6568527}}}
+debugShowQuadIntersection wtTs[0]=1 {{{38.7809143,38.5304031}, {38.7196693,38.5940361}, {38.6568527,38.6568527}}} {{38.6568527,38.6568527}} wnTs[0]=0 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}}
+debugShowQuadIntersection wtTs[0]=0 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}} {{38.6568527,38.6568527}} wnTs[0]=1 {{{41,33}, {41,36.3137093}, {38.6568527,38.6568527}}}
+id=1 1=(0,1) [4,2] id=2 2=(0,0.5) [1] 4=(0.5,1) [1]
+id=1 1=(0,0.5) [4,2] 3=(0.5,1) [2,4] id=2 2=(0,0.5) [3,1] 4=(0.5,1) [3,1]
+id=1 1=(0,0.5) [4,2] 3=(0.5,1) [6,2,4] id=2 2=(0,0.5) [3,1] 4=(0.5,0.75) [3,1] 6=(0.75,1) [3]
+id=1 1=(0,0.5) [4,2] 3=(0.5,0.75) [6,2,4] 5=(0.75,1) [4,6] id=2 2=(0,0.5) [3,1] 4=(0.5,0.75) [5,3,1] 6=(0.75,1) [5,3]
+id=1 1=(0,0.5) [8,4,2] 3=(0.5,0.75) [8,6,4] 5=(0.75,1) [4,6] id=2 2=(0,0.25) [1] 8=(0.25,0.5) [1,3] 4=(0.5,0.75) [5,3,1] 6=(0.75,1) [5,3]
+id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [8,6,4] 5=(0.75,1) [4,6] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.75) [7,5,3] 6=(0.75,1) [5,3]
+id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [8,6,4] 5=(0.75,1) [10,4,6] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.75) [7,5,3] 6=(0.75,0.875) [5,3] 10=(0.875,1) [5]
+id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [8,6,4] 5=(0.75,0.875) [10,4,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.75) [7,5,3] 6=(0.75,0.875) [9,5,3] 10=(0.875,1) [9,5]
+id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [12,8,6,4] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.625) [7,3] 12=(0.625,0.75) [3,5] 6=(0.75,0.875) [9,5,3] 10=(0.875,1) [9,5]
+id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.625) [12,8,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.625) [11,7,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
+id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [14,2,4,8] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.375) [7,1] 14=(0.375,0.5) [3,7] 4=(0.5,0.625) [11,7,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
+id=1 1=(0,0.25) [8,2] 7=(0.25,0.375) [14,2,8] 13=(0.375,0.5) [8,4,14] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.375) [13,7,1] 14=(0.375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
+id=1 1=(0,0.25) [16,8,2] 7=(0.25,0.375) [16,14,8] 13=(0.375,0.5) [8,4,14] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.125) [1] 16=(0.125,0.25) [1,7] 8=(0.25,0.375) [13,7,1] 14=(0.375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
+id=1 1=(0,0.125) [16,2] 15=(0.125,0.25) [2,8,16] 7=(0.25,0.375) [16,14,8] 13=(0.375,0.5) [8,4,14] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.125) [15,1] 16=(0.125,0.25) [15,1,7] 8=(0.25,0.375) [15,13,7] 14=(0.375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
+id=1 1=(0,0.125) [16,2] 15=(0.125,0.25) [2,8,16] 7=(0.25,0.375) [16,14,8] 13=(0.375,0.5) [8,4,14] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [18,6,10] id=2 2=(0,0.125) [15,1] 16=(0.125,0.25) [15,1,7] 8=(0.25,0.375) [15,13,7] 14=(0.375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,0.9375) [9,5] 18=(0.9375,1) [9]
+setPerp t=0 cPt=(38.6568527,38.6568527) == oppT=0 fPerpPt=(38.6568527,38.6568527)
+setPerp t=0.125 cPt=(38.0559018,39.2060279) == oppT=0.125 fPerpPt=(38.0559018,39.2060279)
+setPerp t=0.25 cPt=(37.4246206,39.6819797) == oppT=0.25 fPerpPt=(37.4246206,39.6819797)
+setPerp t=0.375 cPt=(36.7630093,40.0847081) == oppT=0.375 fPerpPt=(36.7630093,40.0847081)
+setPerp t=0.5 cPt=(36.0710678,40.4142132) == oppT=0.5 fPerpPt=(36.0710678,40.4142132)
+setPerp t=0.625 cPt=(35.3487961,40.6704949) == oppT=0.625 fPerpPt=(35.3487961,40.6704949)
+setPerp t=0.75 cPt=(34.5961943,40.8535533) == oppT=0.75 fPerpPt=(34.5961943,40.8535533)
+setPerp t=0.875 cPt=(33.8132622,40.9633883) == oppT=0.875 fPerpPt=(33.8132622,40.9633883)
+setPerp t=0.9375 cPt=(33.4104224,40.9908471) == oppT=0.9375 fPerpPt=(33.4104224,40.9908471)
+setPerp t=1 cPt=(33,41) == oppT=1 fPerpPt=(33,41)
+setPerp t=0 cPt=(38.6568527,38.6568527) == oppT=0 fPerpPt=(38.6568527,38.6568527)
+setPerp t=1 cPt=(33,41) == oppT=1 fPerpPt=(33,41)
+id=1 (empty) id=2 (empty)
+debugShowQuadIntersection wtTs[0]=0 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}} {{38.6568527,38.6568527}} wtTs[1]=1 {{33,41}} wnTs[0]=0 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}} wnTs[1]=1
+debugShowQuadIntersection wtTs[0]=1 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}} {{33,41}} wnTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527}}}
+debugShowQuadIntersection wtTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527}}} {{33,41}} wnTs[0]=1 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}}
+id=1 1=(0,1) [4,2] id=2 2=(0,0.5) [1] 4=(0.5,1) [1]
+id=1 1=(0,0.5) [4,2] 3=(0.5,1) [2,4] id=2 2=(0,0.5) [3,1] 4=(0.5,1) [3,1]
+id=1 1=(0,0.5) [6,4,2] 3=(0.5,1) [6,4] id=2 2=(0,0.25) [1] 6=(0.25,0.5) [1,3] 4=(0.5,1) [3,1]
+id=1 1=(0,0.25) [6,2] 5=(0.25,0.5) [2,4,6] 3=(0.5,1) [6,4] id=2 2=(0,0.25) [5,1] 6=(0.25,0.5) [5,1,3] 4=(0.5,1) [5,3]
+id=1 1=(0,0.25) [6,2] 5=(0.25,0.5) [2,4,6] 3=(0.5,1) [8,6,4] id=2 2=(0,0.25) [5,1] 6=(0.25,0.5) [5,1,3] 4=(0.5,0.75) [5,3] 8=(0.75,1) [3]
+id=1 1=(0,0.25) [6,2] 5=(0.25,0.5) [2,4,6] 3=(0.5,0.75) [8,6,4] 7=(0.75,1) [4,8] id=2 2=(0,0.25) [5,1] 6=(0.25,0.5) [5,1,3] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3]
+id=1 1=(0,0.25) [10,6,2] 5=(0.25,0.5) [10,4,6] 3=(0.5,0.75) [8,6,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [1] 10=(0.125,0.25) [1,5] 6=(0.25,0.5) [5,1,3] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3]
+id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.5) [10,4,6] 3=(0.5,0.75) [8,6,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.5) [9,5,3] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3]
+id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.5) [12,10,4,6] 3=(0.5,0.75) [12,8,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [9,5] 12=(0.375,0.5) [3,5] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3]
+id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.375,0.5) [6,4,12] 3=(0.5,0.75) [12,8,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.75) [11,7,3] 8=(0.75,1) [7,3]
+id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.375,0.5) [6,4,12] 3=(0.5,0.75) [14,12,8,4] 7=(0.75,1) [14,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [11,3] 14=(0.625,0.75) [3,7] 8=(0.75,1) [7,3]
+id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.375,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,1) [14,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,1) [13,7]
+id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.375,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,1) [16,14,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,0.875) [13,7] 16=(0.875,1) [7]
+id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.375,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,0.875) [16,14,8] 15=(0.875,1) [8,16] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,0.875) [15,13,7] 16=(0.875,1) [15,7]
+id=1 1=(0,0.125) [18,10,2] 9=(0.125,0.25) [18,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.375,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,0.875) [16,14,8] 15=(0.875,1) [8,16] id=2 2=(0,0.0625) [1] 18=(0.0625,0.125) [1,9] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,0.875) [15,13,7] 16=(0.875,1) [15,7]
+setPerp t=0 cPt=(33,41) == oppT=0 fPerpPt=(33,41)
+setPerp t=0.0625 cPt=(32.5895776,40.9908471) == oppT=0.0625 fPerpPt=(32.5895776,40.9908471)
+setPerp t=0.125 cPt=(32.1867377,40.9633883) == oppT=0.125 fPerpPt=(32.1867377,40.9633883)
+setPerp t=0.25 cPt=(31.4038056,40.8535533) == oppT=0.25 fPerpPt=(31.4038056,40.8535533)
+setPerp t=0.375 cPt=(30.6512036,40.6704949) == oppT=0.375 fPerpPt=(30.6512036,40.6704949)
+setPerp t=0.5 cPt=(29.9289317,40.4142132) == oppT=0.5 fPerpPt=(29.9289317,40.4142132)
+setPerp t=0.625 cPt=(29.2369899,40.0847081) == oppT=0.625 fPerpPt=(29.2369899,40.0847081)
+setPerp t=0.75 cPt=(28.5753783,39.6819797) == oppT=0.75 fPerpPt=(28.5753783,39.6819797)
+setPerp t=0.875 cPt=(27.9440968,39.2060279) == oppT=0.875 fPerpPt=(27.9440968,39.2060279)
+setPerp t=1 cPt=(27.3431454,38.6568527) == oppT=1 fPerpPt=(27.3431454,38.6568527)
+setPerp t=0 cPt=(33,41) == oppT=0 fPerpPt=(33,41)
+setPerp t=1 cPt=(27.3431454,38.6568527) == oppT=1 fPerpPt=(27.3431454,38.6568527)
+id=1 (empty) id=2 (empty)
+debugShowQuadIntersection wtTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527}}} {{33,41}} wtTs[1]=1 {{27.3431454,38.6568527}} wnTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527}}} wnTs[1]=1
+debugShowQuadIntersection wtTs[0]=1 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527}}} {{27.3431454,38.6568527}} wnTs[0]=0 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}}
+debugShowQuadIntersection wtTs[0]=0 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}} {{27.3431454,38.6568527}} wnTs[0]=1 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527}}}
+id=1 1=(0,1) [4,2] id=2 2=(0,0.5) [1] 4=(0.5,1) [1]
+id=1 1=(0,0.5) [4,2] 3=(0.5,1) [2,4] id=2 2=(0,0.5) [3,1] 4=(0.5,1) [3,1]
+id=1 1=(0,0.5) [4,2] 3=(0.5,1) [6,2,4] id=2 2=(0,0.5) [3,1] 4=(0.5,0.75) [3,1] 6=(0.75,1) [3]
+id=1 1=(0,0.5) [4,2] 3=(0.5,0.75) [6,2,4] 5=(0.75,1) [4,6] id=2 2=(0,0.5) [3,1] 4=(0.5,0.75) [5,3,1] 6=(0.75,1) [5,3]
+id=1 1=(0,0.5) [8,4,2] 3=(0.5,0.75) [8,6,4] 5=(0.75,1) [4,6] id=2 2=(0,0.25) [1] 8=(0.25,0.5) [1,3] 4=(0.5,0.75) [5,3,1] 6=(0.75,1) [5,3]
+id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [8,6,4] 5=(0.75,1) [4,6] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.75) [7,5,3] 6=(0.75,1) [5,3]
+id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [8,6,4] 5=(0.75,1) [10,4,6] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.75) [7,5,3] 6=(0.75,0.875) [5,3] 10=(0.875,1) [5]
+id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [8,6,4] 5=(0.75,0.875) [10,4,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.75) [7,5,3] 6=(0.75,0.875) [9,5,3] 10=(0.875,1) [9,5]
+id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [12,8,6,4] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.625) [7,3] 12=(0.625,0.75) [3,5] 6=(0.75,0.875) [9,5,3] 10=(0.875,1) [9,5]
+id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.625) [12,8,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.625) [11,7,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
+id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [14,2,4,8] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.375) [7,1] 14=(0.375,0.5) [3,7] 4=(0.5,0.625) [11,7,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
+id=1 1=(0,0.25) [8,2] 7=(0.25,0.375) [14,2,8] 13=(0.375,0.5) [8,4,14] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.375) [13,7,1] 14=(0.375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
+id=1 1=(0,0.25) [16,8,2] 7=(0.25,0.375) [16,14,8] 13=(0.375,0.5) [8,4,14] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.125) [1] 16=(0.125,0.25) [1,7] 8=(0.25,0.375) [13,7,1] 14=(0.375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
+id=1 1=(0,0.125) [16,2] 15=(0.125,0.25) [2,8,16] 7=(0.25,0.375) [16,14,8] 13=(0.375,0.5) [8,4,14] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.125) [15,1] 16=(0.125,0.25) [15,1,7] 8=(0.25,0.375) [15,13,7] 14=(0.375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
+id=1 1=(0,0.125) [16,2] 15=(0.125,0.25) [2,8,16] 7=(0.25,0.375) [16,14,8] 13=(0.375,0.5) [8,4,14] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [18,6,10] id=2 2=(0,0.125) [15,1] 16=(0.125,0.25) [15,1,7] 8=(0.25,0.375) [15,13,7] 14=(0.375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,0.9375) [9,5] 18=(0.9375,1) [9]
+setPerp t=0 cPt=(27.3431454,38.6568527) == oppT=0 fPerpPt=(27.3431454,38.6568527)
+setPerp t=0.125 cPt=(26.7939707,38.0559018) == oppT=0.125 fPerpPt=(26.7939707,38.0559018)
+setPerp t=0.25 cPt=(26.3180193,37.4246206) == oppT=0.25 fPerpPt=(26.3180193,37.4246206)
+setPerp t=0.375 cPt=(25.9152912,36.7630093) == oppT=0.375 fPerpPt=(25.9152912,36.7630093)
+setPerp t=0.5 cPt=(25.5857863,36.0710678) == oppT=0.5 fPerpPt=(25.5857863,36.0710678)
+setPerp t=0.625 cPt=(25.3295048,35.3487961) == oppT=0.625 fPerpPt=(25.3295048,35.3487961)
+setPerp t=0.75 cPt=(25.1464466,34.5961943) == oppT=0.75 fPerpPt=(25.1464466,34.5961943)
+setPerp t=0.875 cPt=(25.0366116,33.8132622) == oppT=0.875 fPerpPt=(25.0366116,33.8132622)
+setPerp t=0.9375 cPt=(25.0091529,33.4104224) == oppT=0.9375 fPerpPt=(25.0091529,33.4104224)
+setPerp t=1 cPt=(25,33) == oppT=1 fPerpPt=(25,33)
+setPerp t=0 cPt=(27.3431454,38.6568527) == oppT=0 fPerpPt=(27.3431454,38.6568527)
+setPerp t=1 cPt=(25,33) == oppT=1 fPerpPt=(25,33)
+id=1 (empty) id=2 (empty)
+debugShowQuadIntersection wtTs[0]=0 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}} {{27.3431454,38.6568527}} wtTs[1]=1 {{25,33}} wnTs[0]=0 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}} wnTs[1]=1
+debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}} {{25,33}} wnTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}}
+debugShowQuadIntersection wtTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}} {{25,33}} wnTs[0]=1 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}}
+id=1 1=(0,1) [4,2] id=2 2=(0,0.5) [1] 4=(0.5,1) [1]
+id=1 1=(0,0.5) [4,2] 3=(0.5,1) [2,4] id=2 2=(0,0.5) [3,1] 4=(0.5,1) [3,1]
+id=1 1=(0,0.5) [6,4,2] 3=(0.5,1) [6,4] id=2 2=(0,0.25) [1] 6=(0.25,0.5) [1,3] 4=(0.5,1) [3,1]
+id=1 1=(0,0.25) [6,2] 5=(0.25,0.5) [2,4,6] 3=(0.5,1) [6,4] id=2 2=(0,0.25) [5,1] 6=(0.25,0.5) [5,1,3] 4=(0.5,1) [5,3]
+id=1 1=(0,0.25) [6,2] 5=(0.25,0.5) [2,4,6] 3=(0.5,1) [8,6,4] id=2 2=(0,0.25) [5,1] 6=(0.25,0.5) [5,1,3] 4=(0.5,0.75) [5,3] 8=(0.75,1) [3]
+id=1 1=(0,0.25) [6,2] 5=(0.25,0.5) [2,4,6] 3=(0.5,0.75) [8,6,4] 7=(0.75,1) [4,8] id=2 2=(0,0.25) [5,1] 6=(0.25,0.5) [5,1,3] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3]
+id=1 1=(0,0.25) [10,6,2] 5=(0.25,0.5) [10,4,6] 3=(0.5,0.75) [8,6,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [1] 10=(0.125,0.25) [1,5] 6=(0.25,0.5) [5,1,3] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3]
+id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.5) [10,4,6] 3=(0.5,0.75) [8,6,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.5) [9,5,3] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3]
+id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.5) [12,10,4,6] 3=(0.5,0.75) [12,8,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [9,5] 12=(0.375,0.5) [3,5] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3]
+id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.375,0.5) [6,4,12] 3=(0.5,0.75) [12,8,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.75) [11,7,3] 8=(0.75,1) [7,3]
+id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.375,0.5) [6,4,12] 3=(0.5,0.75) [14,12,8,4] 7=(0.75,1) [14,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [11,3] 14=(0.625,0.75) [3,7] 8=(0.75,1) [7,3]
+id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.375,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,1) [14,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,1) [13,7]
+id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.375,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,1) [16,14,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,0.875) [13,7] 16=(0.875,1) [7]
+id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.375,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,0.875) [16,14,8] 15=(0.875,1) [8,16] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,0.875) [15,13,7] 16=(0.875,1) [15,7]
+id=1 1=(0,0.125) [18,10,2] 9=(0.125,0.25) [18,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.375,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,0.875) [16,14,8] 15=(0.875,1) [8,16] id=2 2=(0,0.0625) [1] 18=(0.0625,0.125) [1,9] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,0.875) [15,13,7] 16=(0.875,1) [15,7]
+setPerp t=0 cPt=(25,33) == oppT=0 fPerpPt=(25,33)
+setPerp t=0.0625 cPt=(25.0091529,32.5895776) == oppT=0.0625 fPerpPt=(25.0091529,32.5895776)
+setPerp t=0.125 cPt=(25.0366116,32.1867377) == oppT=0.125 fPerpPt=(25.0366116,32.1867377)
+setPerp t=0.25 cPt=(25.1464466,31.4038056) == oppT=0.25 fPerpPt=(25.1464466,31.4038056)
+setPerp t=0.375 cPt=(25.3295048,30.6512036) == oppT=0.375 fPerpPt=(25.3295048,30.6512036)
+setPerp t=0.5 cPt=(25.5857863,29.9289317) == oppT=0.5 fPerpPt=(25.5857863,29.9289317)
+setPerp t=0.625 cPt=(25.9152912,29.2369899) == oppT=0.625 fPerpPt=(25.9152912,29.2369899)
+setPerp t=0.75 cPt=(26.3180193,28.5753783) == oppT=0.75 fPerpPt=(26.3180193,28.5753783)
+setPerp t=0.875 cPt=(26.7939707,27.9440968) == oppT=0.875 fPerpPt=(26.7939707,27.9440968)
+setPerp t=1 cPt=(27.3431454,27.3431454) == oppT=1 fPerpPt=(27.3431454,27.3431454)
+setPerp t=0 cPt=(25,33) == oppT=0 fPerpPt=(25,33)
+setPerp t=1 cPt=(27.3431454,27.3431454) == oppT=1 fPerpPt=(27.3431454,27.3431454)
+id=1 (empty) id=2 (empty)
+debugShowQuadIntersection wtTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}} {{25,33}} wtTs[1]=1 {{27.3431454,27.3431454}} wnTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}} wnTs[1]=1
+debugShowQuadIntersection wtTs[0]=1 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}} {{27.3431454,27.3431454}} wnTs[0]=0 {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}}
+debugShowQuadIntersection wtTs[0]=0 {{{27.3431454,27.3431454}, {27.3875446,27.2987461}, {27.4323025,27.2551785}}} {{27.3431454,27.3431454}} wnTs[0]=1 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}}
+id=1 1=(0,1) [2] id=2 2=(0,0.5) [1]
+id=1 1=(0,1) [2] id=2 2=(0,0.25) [1]
+id=1 1=(0,1) [2] id=2 2=(0,0.125) [1]
+id=1 1=(0,1) [2] id=2 2=(0,0.0625) [1]
+id=1 1=(0,1) [2] id=2 2=(0,0.03125) [1]
+id=1 1=(0,1) [14,2] id=2 2=(0,0.015625) [1] 14=(0.015625,0.03125) [1]
+id=1 1=(0,0.5) [2] 3=(0.5,1) [2,14] id=2 2=(0,0.015625) [3,1] 14=(0.015625,0.03125) [3]
+id=1 1=(0,0.5) [2] 3=(0.5,1) [2,14] id=2 2=(0,0.015625) [3,1] 14=(0.015625,0.0234375) [3]
+id=1 1=(0,0.5) [18,2] 3=(0.5,1) [18,14] id=2 2=(0,0.0078125) [1] 18=(0.0078125,0.015625) [1,3] 14=(0.015625,0.0234375) [3]
+id=1 1=(0,0.5) [18,2] 3=(0.5,0.75) [18] 5=(0.75,1) [14,18] id=2 2=(0,0.0078125) [1] 18=(0.0078125,0.015625) [5,1,3] 14=(0.015625,0.0234375) [5]
+id=1 1=(0,0.25) [2] 7=(0.25,0.5) [2,18] 3=(0.5,0.75) [18] 5=(0.75,1) [14,18] id=2 2=(0,0.0078125) [7,1] 18=(0.0078125,0.015625) [7,5,3] 14=(0.015625,0.0234375) [5]
+id=1 1=(0,0.25) [2] 7=(0.25,0.5) [2,18] 3=(0.5,0.75) [18] 5=(0.75,1) [14,18] id=2 2=(0,0.0078125) [7,1] 18=(0.0078125,0.015625) [7,5,3] 14=(0.015625,0.0195313) [5]
+id=1 1=(0,0.25) [2] 7=(0.25,0.5) [2,18] 3=(0.5,0.75) [22,18] 5=(0.75,1) [22,14] id=2 2=(0,0.0078125) [7,1] 18=(0.0078125,0.0117188) [7,3] 22=(0.0117188,0.015625) [3,5] 14=(0.015625,0.0195313) [5]
+id=1 1=(0,0.25) [24,2] 7=(0.25,0.5) [24,18] 3=(0.5,0.75) [22,18] 5=(0.75,1) [22,14] id=2 2=(0,0.00390625) [1] 24=(0.00390625,0.0078125) [1,7] 18=(0.0078125,0.0117188) [7,3] 22=(0.0117188,0.015625) [3,5] 14=(0.015625,0.0195313) [5]
+id=1 1=(0,0.25) [24,2] 7=(0.25,0.5) [24,18] 3=(0.5,0.75) [22,18] 5=(0.75,0.875) [22,14] 9=(0.875,1) [14] id=2 2=(0,0.00390625) [1] 24=(0.00390625,0.0078125) [1,7] 18=(0.0078125,0.0117188) [7,3] 22=(0.0117188,0.015625) [3,5] 14=(0.015625,0.0195313) [9,5]
+id=1 1=(0,0.25) [24,2] 7=(0.25,0.5) [24,18] 3=(0.5,0.625) [22,18] 11=(0.625,0.75) [22] 5=(0.75,0.875) [22,14] 9=(0.875,1) [14] id=2 2=(0,0.00390625) [1] 24=(0.00390625,0.0078125) [1,7] 18=(0.0078125,0.0117188) [7,3] 22=(0.0117188,0.015625) [11,3,5] 14=(0.015625,0.0195313) [9,5]
+id=1 1=(0,0.25) [24,2] 7=(0.25,0.375) [24] 13=(0.375,0.5) [18,24] 3=(0.5,0.625) [22,18] 11=(0.625,0.75) [22] 5=(0.75,0.875) [22,14] 9=(0.875,1) [14] id=2 2=(0,0.00390625) [1] 24=(0.00390625,0.0078125) [13,1,7] 18=(0.0078125,0.0117188) [13,3] 22=(0.0117188,0.015625) [11,3,5] 14=(0.015625,0.0195313) [9,5]
+id=1 1=(0,0.125) [2] 15=(0.125,0.25) [2,24] 7=(0.25,0.375) [24] 13=(0.375,0.5) [18,24] 3=(0.5,0.625) [22,18] 11=(0.625,0.75) [22] 5=(0.75,0.875) [22,14] 9=(0.875,1) [14] id=2 2=(0,0.00390625) [15,1] 24=(0.00390625,0.0078125) [15,13,7] 18=(0.0078125,0.0117188) [13,3] 22=(0.0117188,0.015625) [11,3,5] 14=(0.015625,0.0195313) [9,5]
+setPerp t=0.875 cPt=(27.4211186,27.2660834) == oppT=0.0165816271 fPerpPt=(27.4211186,27.2660833)
+setPerp t=1 cPt=(27.4323025,27.2551785) == oppT=0.0189506978 fPerpPt=(27.4323024,27.2551784)
+setPerp t=0.017578125 cPt=(27.4258215,27.2614932) == oppT=0.927578956 fPerpPt=(27.4258215,27.2614932)
+setPerp t=0.75 cPt=(27.409946,27.2770143) == oppT=0.0142126233 fPerpPt=(27.4099459,27.2770142)
+setPerp t=0.875 cPt=(27.4211186,27.2660834) == oppT=0.0165816271 fPerpPt=(27.4211186,27.2660833)
+setPerp t=0.015625 cPt=(27.4166056,27.2704941) == oppT=0.824524193 fPerpPt=(27.4166057,27.2704942)
+setPerp t=0.875 cPt=(27.4211186,27.2660834) == oppT=0.0165816271 fPerpPt=(27.4211186,27.2660833)
+setPerp t=1 cPt=(27.4323025,27.2551785) == oppT=0.0189506978 fPerpPt=(27.4323024,27.2551784)
+setPerp t=0.017578125 cPt=(27.4258215,27.2614932) == oppT=0.927578956 fPerpPt=(27.4258215,27.2614932)
+id=1 1=(0,0.125) [2] 15=(0.125,0.25) [2,24] 7=(0.25,0.375) [24] 13=(0.375,0.5) [18,24] 3=(0.5,0.625) [22,18] 11=(0.625,0.75) [22] 5=(0.75,0.875) [22] id=2 2=(0,0.00390625) [15,1] 24=(0.00390625,0.0078125) [15,13,7] 18=(0.0078125,0.0117188) [13,3] 22=(0.0117188,0.015625) [11,3,5]
+setPerp t=0.625 cPt=(27.3987845,27.2879711) == oppT=0.0118436864 fPerpPt=(27.3987845,27.2879711)
+setPerp t=0.75 cPt=(27.409946,27.2770143) == oppT=0.0142126233 fPerpPt=(27.4099459,27.2770142)
+setPerp t=0.013671875 cPt=(27.4073972,27.279513) == oppT=0.721467031 fPerpPt=(27.4073972,27.279513)
+setPerp t=0.5 cPt=(27.3876343,27.298954) == oppT=0.00947481625 fPerpPt=(27.3876342,27.298954)
+setPerp t=0.625 cPt=(27.3987845,27.2879711) == oppT=0.0118436864 fPerpPt=(27.3987845,27.2879711)
+setPerp t=0.01171875 cPt=(27.3981961,27.2885497) == oppT=0.618407471 fPerpPt=(27.3981962,27.2885497)
+setPerp t=0.75 cPt=(27.409946,27.2770143) == oppT=0.0142126233 fPerpPt=(27.4099459,27.2770142)
+setPerp t=0.875 cPt=(27.4211186,27.2660834) == oppT=0.0165816271 fPerpPt=(27.4211186,27.2660833)
+setPerp t=0.015625 cPt=(27.4166056,27.2704941) == oppT=0.824524193 fPerpPt=(27.4166057,27.2704942)
+setPerp t=0.625 cPt=(27.3987845,27.2879711) == oppT=0.0118436864 fPerpPt=(27.3987845,27.2879711)
+setPerp t=0.75 cPt=(27.409946,27.2770143) == oppT=0.0142126233 fPerpPt=(27.4099459,27.2770142)
+setPerp t=0.013671875 cPt=(27.4073972,27.279513) == oppT=0.721467031 fPerpPt=(27.4073972,27.279513)
+id=1 1=(0,0.125) [2] 15=(0.125,0.25) [2,24] 7=(0.25,0.375) [24] 13=(0.375,0.5) [18,24] 3=(0.5,0.625) [18] id=2 2=(0,0.00390625) [15,1] 24=(0.00390625,0.0078125) [15,13,7] 18=(0.0078125,0.0117188) [13,3]
+setPerp t=0.375 cPt=(27.3764952,27.3099629) == oppT=0.00710601267 fPerpPt=(27.3764952,27.3099628)
+setPerp t=0.5 cPt=(27.3876343,27.298954) == oppT=0.00947481625 fPerpPt=(27.3876342,27.298954)
+setPerp t=0.0078125 cPt=(27.3798163,27.3066767) == oppT=0.412281177 fPerpPt=(27.3798163,27.3066768)
+setPerp t=0.5 cPt=(27.3876343,27.298954) == oppT=0.00947481625 fPerpPt=(27.3876342,27.298954)
+setPerp t=0.625 cPt=(27.3987845,27.2879711) == oppT=0.0118436864 fPerpPt=(27.3987845,27.2879711)
+setPerp t=0.009765625 cPt=(27.3890025,27.2976043) == oppT=0.515345519 fPerpPt=(27.3890025,27.2976043)
+setPerp t=0.5 cPt=(27.3876343,27.298954) == oppT=0.00947481625 fPerpPt=(27.3876342,27.298954)
+setPerp t=0.625 cPt=(27.3987845,27.2879711) == oppT=0.0118436864 fPerpPt=(27.3987845,27.2879711)
+setPerp t=0.009765625 cPt=(27.3890025,27.2976043) == oppT=0.515345519 fPerpPt=(27.3890025,27.2976043)
+setPerp t=0.01171875 cPt=(27.3981961,27.2885497) == oppT=0.618407471 fPerpPt=(27.3981962,27.2885497)
+id=1 1=(0,0.125) [2] 15=(0.125,0.25) [2,24] 7=(0.25,0.375) [24] 13=(0.375,0.5) [24] id=2 2=(0,0.00390625) [15,1] 24=(0.00390625,0.0078125) [15,13,7]
+setPerp t=0.125 cPt=(27.3542508,27.3320585) == oppT=0.00236860468 fPerpPt=(27.3542508,27.3320585)
+setPerp t=0.25 cPt=(27.3653674,27.3209977) == oppT=0.00473727552 fPerpPt=(27.3653674,27.3209977)
+setPerp t=0.00390625 cPt=(27.361466,27.3248753) == oppT=0.206145343 fPerpPt=(27.361466,27.3248753)
+setPerp t=0.25 cPt=(27.3653674,27.3209977) == oppT=0.00473727552 fPerpPt=(27.3653674,27.3209977)
+setPerp t=0.375 cPt=(27.3764952,27.3099629) == oppT=0.00710601267 fPerpPt=(27.3764952,27.3099628)
+setPerp t=0.005859375 cPt=(27.3706374,27.3157671) == oppT=0.309214451 fPerpPt=(27.3706374,27.3157671)
+setPerp t=0.25 cPt=(27.3653674,27.3209977) == oppT=0.00473727552 fPerpPt=(27.3653674,27.3209977)
+setPerp t=0.375 cPt=(27.3764952,27.3099629) == oppT=0.00710601267 fPerpPt=(27.3764952,27.3099628)
+setPerp t=0.005859375 cPt=(27.3706374,27.3157671) == oppT=0.309214451 fPerpPt=(27.3706374,27.3157671)
+setPerp t=0.375 cPt=(27.3764952,27.3099629) == oppT=0.00710601267 fPerpPt=(27.3764952,27.3099628)
+setPerp t=0.5 cPt=(27.3876343,27.298954) == oppT=0.00947481625 fPerpPt=(27.3876342,27.298954)
+setPerp t=0.0078125 cPt=(27.3798163,27.3066767) == oppT=0.412281177 fPerpPt=(27.3798163,27.3066768)
+id=1 1=(0,0.125) [2] 15=(0.125,0.25) [2] id=2 2=(0,0.00390625) [15,1]
+setPerp t=0.125 cPt=(27.3542508,27.3320585) == oppT=0.00236860468 fPerpPt=(27.3542508,27.3320585)
+setPerp t=0.25 cPt=(27.3653674,27.3209977) == oppT=0.00473727552 fPerpPt=(27.3653674,27.3209977)
+setPerp t=0.00390625 cPt=(27.361466,27.3248753) == oppT=0.206145343 fPerpPt=(27.361466,27.3248753)
+id=1 1=(0,0.125) [34,2] id=2 2=(0,0.00195313) [1] 34=(0.00195313,0.00390625) [1]
+id=1 1=(0,0.0625) [2] 17=(0.0625,0.125) [2,34] id=2 2=(0,0.00195313) [17,1] 34=(0.00195313,0.00390625) [17]
+id=1 1=(0,0.0625) [2] 17=(0.0625,0.125) [2,34] id=2 2=(0,0.00195313) [17,1] 34=(0.00195313,0.00292969) [17]
+id=1 1=(0,0.0625) [38,2] 17=(0.0625,0.125) [38,34] id=2 2=(0,0.000976563) [1] 38=(0.000976563,0.00195313) [1,17] 34=(0.00195313,0.00292969) [17]
+setPerp t=0.001953125 cPt=(27.352302,27.3340014) == oppT=0.103073858 fPerpPt=(27.352302,27.3340014)
+setPerp t=0.0029296875 cPt=(27.3568831,27.3294361) == oppT=0.154609898 fPerpPt=(27.3568831,27.3294361)
+setPerp t=0.125 cPt=(27.3542508,27.3320585) == oppT=0.00236860468 fPerpPt=(27.3542508,27.3320585)
+id=1 1=(0,0.0625) [38,2] 17=(0.0625,0.09375) [38] 19=(0.09375,0.125) [38] id=2 2=(0,0.000976563) [1] 38=(0.000976563,0.00195313) [19,1,17]
+id=1 1=(0,0.03125) [2] 21=(0.03125,0.0625) [2,38] 17=(0.0625,0.09375) [38] 19=(0.09375,0.125) [38] id=2 2=(0,0.000976563) [21,1] 38=(0.000976563,0.00195313) [21,19,17]
+setPerp t=0.09375 cPt=(27.3514734,27.3348278) == oppT=0.00177644731 fPerpPt=(27.3514734,27.3348278)
+setPerp t=0.125 cPt=(27.3542508,27.3320585) == oppT=0.00236860468 fPerpPt=(27.3542508,27.3320585)
+setPerp t=0.001953125 cPt=(27.352302,27.3340014) == oppT=0.103073858 fPerpPt=(27.352302,27.3340014)
+id=1 1=(0,0.03125) [2] 21=(0.03125,0.0625) [2,38] 17=(0.0625,0.09375) [40,38] id=2 2=(0,0.000976563) [21,1] 38=(0.000976563,0.00146484) [21,17] 40=(0.00146484,0.00195313) [17]
+id=1 1=(0,0.03125) [42,2] 21=(0.03125,0.0625) [42,38] 17=(0.0625,0.09375) [40,38] id=2 2=(0,0.000488281) [1] 42=(0.000488281,0.000976563) [1,21] 38=(0.000976563,0.00146484) [21,17] 40=(0.00146484,0.00195313) [17]
+setPerp t=0.00146484375 cPt=(27.3500121,27.3362857) == oppT=0.0773056159 fPerpPt=(27.3500121,27.3362857)
+setPerp t=0.001953125 cPt=(27.352302,27.3340014) == oppT=0.103073858 fPerpPt=(27.352302,27.3340014)
+setPerp t=0.078125 cPt=(27.3500849,27.3362131) == oppT=0.00148037018 fPerpPt=(27.3500849,27.3362131)
+setPerp t=0.00146484375 cPt=(27.3500121,27.3362857) == oppT=0.0773056159 fPerpPt=(27.3500121,27.3362857)
+setPerp t=0.001953125 cPt=(27.352302,27.3340014) == oppT=0.103073858 fPerpPt=(27.352302,27.3340014)
+setPerp t=0.078125 cPt=(27.3500849,27.3362131) == oppT=0.00148037018 fPerpPt=(27.3500849,27.3362131)
+setPerp t=0.09375 cPt=(27.3514734,27.3348278) == oppT=0.00177644731 fPerpPt=(27.3514734,27.3348278)
+id=1 1=(0,0.03125) [42,2] 21=(0.03125,0.0625) [42,38] 17=(0.0625,0.078125) [38] id=2 2=(0,0.000488281) [1] 42=(0.000488281,0.000976563) [1,21] 38=(0.000976563,0.00146484) [21,17]
+id=1 1=(0,0.03125) [42,2] 21=(0.03125,0.046875) [42] 25=(0.046875,0.0625) [38,42] 17=(0.0625,0.078125) [38] id=2 2=(0,0.000488281) [1] 42=(0.000488281,0.000976563) [25,1,21] 38=(0.000976563,0.00146484) [25,17]
+id=1 1=(0,0.015625) [2] 27=(0.015625,0.03125) [2,42] 21=(0.03125,0.046875) [42] 25=(0.046875,0.0625) [38,42] 17=(0.0625,0.078125) [38] id=2 2=(0,0.000488281) [27,1] 42=(0.000488281,0.000976563) [27,25,21] 38=(0.000976563,0.00146484) [25,17]
+setPerp t=0.0625 cPt=(27.3486967,27.3375987) == oppT=0.00118429408 fPerpPt=(27.3486967,27.3375987)
+setPerp t=0.078125 cPt=(27.3500849,27.3362131) == oppT=0.00148037018 fPerpPt=(27.3500849,27.3362131)
+setPerp t=0.00122070313 cPt=(27.3488674,27.3374283) == oppT=0.0644214392 fPerpPt=(27.3488674,27.3374283)
+setPerp t=0.00146484375 cPt=(27.3500121,27.3362857) == oppT=0.0773056159 fPerpPt=(27.3500121,27.3362857)
+id=1 1=(0,0.015625) [2] 27=(0.015625,0.03125) [2,42] 21=(0.03125,0.046875) [42] 25=(0.046875,0.0625) [38,42] 17=(0.0625,0.078125) [38] id=2 2=(0,0.000488281) [27,1] 42=(0.000488281,0.000976563) [27,25,21] 38=(0.000976563,0.0012207) [25,17]
+id=1 1=(0,0.015625) [2] 27=(0.015625,0.03125) [2,42] 21=(0.03125,0.046875) [46,42] 25=(0.046875,0.0625) [46,38] 17=(0.0625,0.078125) [38] id=2 2=(0,0.000488281) [27,1] 42=(0.000488281,0.000732422) [27,21] 46=(0.000732422,0.000976563) [21,25] 38=(0.000976563,0.0012207) [25,17]
+id=1 1=(0,0.015625) [48,2] 27=(0.015625,0.03125) [48,42] 21=(0.03125,0.046875) [46,42] 25=(0.046875,0.0625) [46,38] 17=(0.0625,0.078125) [38] id=2 2=(0,0.000244141) [1] 48=(0.000244141,0.000488281) [1,27] 42=(0.000488281,0.000732422) [27,21] 46=(0.000732422,0.000976563) [21,25] 38=(0.000976563,0.0012207) [25,17]
+id=1 1=(0,0.015625) [48,2] 27=(0.015625,0.03125) [48,42] 21=(0.03125,0.046875) [46,42] 25=(0.046875,0.0625) [46,38] 17=(0.0625,0.0703125) [38] id=2 2=(0,0.000244141) [1] 48=(0.000244141,0.000488281) [1,27] 42=(0.000488281,0.000732422) [27,21] 46=(0.000732422,0.000976563) [21,25] 38=(0.000976563,0.0012207) [25,17]
+id=1 1=(0,0.015625) [48,2] 27=(0.015625,0.03125) [48,42] 21=(0.03125,0.046875) [46,42] 25=(0.046875,0.0546875) [46,38] 31=(0.0546875,0.0625) [38] 17=(0.0625,0.0703125) [38] id=2 2=(0,0.000244141) [1] 48=(0.000244141,0.000488281) [1,27] 42=(0.000488281,0.000732422) [27,21] 46=(0.000732422,0.000976563) [21,25] 38=(0.000976563,0.0012207) [31,25,17]
+id=1 1=(0,0.015625) [48,2] 27=(0.015625,0.03125) [48,42] 21=(0.03125,0.0390625) [46,42] 33=(0.0390625,0.046875) [46] 25=(0.046875,0.0546875) [46,38] 31=(0.0546875,0.0625) [38] 17=(0.0625,0.0703125) [38] id=2 2=(0,0.000244141) [1] 48=(0.000244141,0.000488281) [1,27] 42=(0.000488281,0.000732422) [27,21] 46=(0.000732422,0.000976563) [33,21,25] 38=(0.000976563,0.0012207) [31,25,17]
+id=1 1=(0,0.015625) [48,2] 27=(0.015625,0.0234375) [48] 35=(0.0234375,0.03125) [42,48] 21=(0.03125,0.0390625) [46,42] 33=(0.0390625,0.046875) [46] 25=(0.046875,0.0546875) [46,38] 31=(0.0546875,0.0625) [38] 17=(0.0625,0.0703125) [38] id=2 2=(0,0.000244141) [1] 48=(0.000244141,0.000488281) [35,1,27] 42=(0.000488281,0.000732422) [35,21] 46=(0.000732422,0.000976563) [33,21,25] 38=(0.000976563,0.0012207) [31,25,17]
+id=1 1=(0,0.0078125) [2] 37=(0.0078125,0.015625) [2,48] 27=(0.015625,0.0234375) [48] 35=(0.0234375,0.03125) [42,48] 21=(0.03125,0.0390625) [46,42] 33=(0.0390625,0.046875) [46] 25=(0.046875,0.0546875) [46,38] 31=(0.0546875,0.0625) [38] 17=(0.0625,0.0703125) [38] id=2 2=(0,0.000244141) [37,1] 48=(0.000244141,0.000488281) [37,35,27] 42=(0.000488281,0.000732422) [35,21] 46=(0.000732422,0.000976563) [33,21,25] 38=(0.000976563,0.0012207) [31,25,17]
+setPerp t=0.0546875 cPt=(27.3480026,27.3382917) == oppT=0.00103625641 fPerpPt=(27.3480026,27.3382917)
+setPerp t=0.0625 cPt=(27.3486967,27.3375987) == oppT=0.00118429408 fPerpPt=(27.3486967,27.3375987)
+setPerp t=0.00109863281 cPt=(27.3482951,27.3379997) == oppT=0.057979337 fPerpPt=(27.3482951,27.3379997)
+setPerp t=0.046875 cPt=(27.3473086,27.3389848) == oppT=0.00088821901 fPerpPt=(27.3473086,27.3389848)
+setPerp t=0.0546875 cPt=(27.3480026,27.3382917) == oppT=0.00103625641 fPerpPt=(27.3480026,27.3382917)
+setPerp t=0.0009765625 cPt=(27.3477228,27.3385711) == oppT=0.0515372255 fPerpPt=(27.3477228,27.3385711)
+setPerp t=0.0625 cPt=(27.3486967,27.3375987) == oppT=0.00118429408 fPerpPt=(27.3486967,27.3375987)
+setPerp t=0.0703125 cPt=(27.3493908,27.3369058) == oppT=0.001332332 fPerpPt=(27.3493908,27.3369058)
+setPerp t=0.00122070313 cPt=(27.3488674,27.3374283) == oppT=0.0644214392 fPerpPt=(27.3488674,27.3374283)
+setPerp t=0.0546875 cPt=(27.3480026,27.3382917) == oppT=0.00103625641 fPerpPt=(27.3480026,27.3382917)
+setPerp t=0.0625 cPt=(27.3486967,27.3375987) == oppT=0.00118429408 fPerpPt=(27.3486967,27.3375987)
+setPerp t=0.00109863281 cPt=(27.3482951,27.3379997) == oppT=0.057979337 fPerpPt=(27.3482951,27.3379997)
+id=1 1=(0,0.0078125) [2] 37=(0.0078125,0.015625) [2,48] 27=(0.015625,0.0234375) [48] 35=(0.0234375,0.03125) [42,48] 21=(0.03125,0.0390625) [46,42] 33=(0.0390625,0.046875) [46] 25=(0.046875,0.0546875) [46] id=2 2=(0,0.000244141) [37,1] 48=(0.000244141,0.000488281) [37,35,27] 42=(0.000488281,0.000732422) [35,21] 46=(0.000732422,0.000976563) [33,21,25]
+setPerp t=0.046875 cPt=(27.3473086,27.3389848) == oppT=0.00088821901 fPerpPt=(27.3473086,27.3389848)
+setPerp t=0.0546875 cPt=(27.3480026,27.3382917) == oppT=0.00103625641 fPerpPt=(27.3480026,27.3382917)
+setPerp t=0.0009765625 cPt=(27.3477228,27.3385711) == oppT=0.0515372255 fPerpPt=(27.3477228,27.3385711)
+id=1 1=(0,0.0078125) [2] 37=(0.0078125,0.015625) [2,48] 27=(0.015625,0.0234375) [48] 35=(0.0234375,0.03125) [42,48] 21=(0.03125,0.0390625) [46,42] 33=(0.0390625,0.046875) [52,46] id=2 2=(0,0.000244141) [37,1] 48=(0.000244141,0.000488281) [37,35,27] 42=(0.000488281,0.000732422) [35,21] 46=(0.000732422,0.000854492) [33,21] 52=(0.000854492,0.000976563) [33]
+id=1 1=(0,0.0078125) [2] 37=(0.0078125,0.015625) [2,48] 27=(0.015625,0.0234375) [48] 35=(0.0234375,0.03125) [42,48] 21=(0.03125,0.0390625) [54,46,42] 33=(0.0390625,0.046875) [52,46] id=2 2=(0,0.000244141) [37,1] 48=(0.000244141,0.000488281) [37,35,27] 42=(0.000488281,0.000610352) [35,21] 54=(0.000610352,0.000732422) [21] 46=(0.000732422,0.000854492) [33,21] 52=(0.000854492,0.000976563) [33]
+id=1 1=(0,0.0078125) [2] 37=(0.0078125,0.015625) [2,48] 27=(0.015625,0.0234375) [56,48] 35=(0.0234375,0.03125) [56,42] 21=(0.03125,0.0390625) [54,46,42] 33=(0.0390625,0.046875) [52,46] id=2 2=(0,0.000244141) [37,1] 48=(0.000244141,0.000366211) [37,27] 56=(0.000366211,0.000488281) [27,35] 42=(0.000488281,0.000610352) [35,21] 54=(0.000610352,0.000732422) [21] 46=(0.000732422,0.000854492) [33,21] 52=(0.000854492,0.000976563) [33]
+id=1 1=(0,0.0078125) [58,2] 37=(0.0078125,0.015625) [58,48] 27=(0.015625,0.0234375) [56,48] 35=(0.0234375,0.03125) [56,42] 21=(0.03125,0.0390625) [54,46,42] 33=(0.0390625,0.046875) [52,46] id=2 2=(0,0.00012207) [1] 58=(0.00012207,0.000244141) [1,37] 48=(0.000244141,0.000366211) [37,27] 56=(0.000366211,0.000488281) [27,35] 42=(0.000488281,0.000610352) [35,21] 54=(0.000610352,0.000732422) [21] 46=(0.000732422,0.000854492) [33,21] 52=(0.000854492,0.000976563) [33]
+setPerp t=0.000854492188 cPt=(27.3471505,27.3391427) == oppT=0.0450951047 fPerpPt=(27.3471505,27.3391427)
+setPerp t=0.0009765625 cPt=(27.3477228,27.3385711) == oppT=0.0515372255 fPerpPt=(27.3477228,27.3385711)
+setPerp t=0.046875 cPt=(27.3473086,27.3389848) == oppT=0.00088821901 fPerpPt=(27.3473086,27.3389848)
+id=1 1=(0,0.0078125) [58,2] 37=(0.0078125,0.015625) [58,48] 27=(0.015625,0.0234375) [56,48] 35=(0.0234375,0.03125) [56,42] 21=(0.03125,0.0390625) [54,46,42] 33=(0.0390625,0.0429688) [46] 39=(0.0429688,0.046875) [46] id=2 2=(0,0.00012207) [1] 58=(0.00012207,0.000244141) [1,37] 48=(0.000244141,0.000366211) [37,27] 56=(0.000366211,0.000488281) [27,35] 42=(0.000488281,0.000610352) [35,21] 54=(0.000610352,0.000732422) [21] 46=(0.000732422,0.000854492) [39,33,21]
+id=1 1=(0,0.0078125) [58,2] 37=(0.0078125,0.015625) [58,48] 27=(0.015625,0.0234375) [56,48] 35=(0.0234375,0.03125) [56,42] 21=(0.03125,0.0351563) [54,42] 41=(0.0351563,0.0390625) [46,54] 33=(0.0390625,0.0429688) [46] 39=(0.0429688,0.046875) [46] id=2 2=(0,0.00012207) [1] 58=(0.00012207,0.000244141) [1,37] 48=(0.000244141,0.000366211) [37,27] 56=(0.000366211,0.000488281) [27,35] 42=(0.000488281,0.000610352) [35,21] 54=(0.000610352,0.000732422) [41,21] 46=(0.000732422,0.000854492) [41,39,33]
+id=1 1=(0,0.0078125) [58,2] 37=(0.0078125,0.015625) [58,48] 27=(0.015625,0.0234375) [56,48] 35=(0.0234375,0.0273438) [56,42] 43=(0.0273438,0.03125) [42] 21=(0.03125,0.0351563) [54,42] 41=(0.0351563,0.0390625) [46,54] 33=(0.0390625,0.0429688) [46] 39=(0.0429688,0.046875) [46] id=2 2=(0,0.00012207) [1] 58=(0.00012207,0.000244141) [1,37] 48=(0.000244141,0.000366211) [37,27] 56=(0.000366211,0.000488281) [27,35] 42=(0.000488281,0.000610352) [43,35,21] 54=(0.000610352,0.000732422) [41,21] 46=(0.000732422,0.000854492) [41,39,33]
+id=1 1=(0,0.0078125) [58,2] 37=(0.0078125,0.015625) [58,48] 27=(0.015625,0.0195313) [56,48] 45=(0.0195313,0.0234375) [56] 35=(0.0234375,0.0273438) [56,42] 43=(0.0273438,0.03125) [42] 21=(0.03125,0.0351563) [54,42] 41=(0.0351563,0.0390625) [46,54] 33=(0.0390625,0.0429688) [46] 39=(0.0429688,0.046875) [46] id=2 2=(0,0.00012207) [1] 58=(0.00012207,0.000244141) [1,37] 48=(0.000244141,0.000366211) [37,27] 56=(0.000366211,0.000488281) [45,27,35] 42=(0.000488281,0.000610352) [43,35,21] 54=(0.000610352,0.000732422) [41,21] 46=(0.000732422,0.000854492) [41,39,33]
+id=1 1=(0,0.0078125) [58,2] 37=(0.0078125,0.0117188) [58] 47=(0.0117188,0.015625) [48,58] 27=(0.015625,0.0195313) [56,48] 45=(0.0195313,0.0234375) [56] 35=(0.0234375,0.0273438) [56,42] 43=(0.0273438,0.03125) [42] 21=(0.03125,0.0351563) [54,42] 41=(0.0351563,0.0390625) [46,54] 33=(0.0390625,0.0429688) [46] 39=(0.0429688,0.046875) [46] id=2 2=(0,0.00012207) [1] 58=(0.00012207,0.000244141) [47,1,37] 48=(0.000244141,0.000366211) [47,27] 56=(0.000366211,0.000488281) [45,27,35] 42=(0.000488281,0.000610352) [43,35,21] 54=(0.000610352,0.000732422) [41,21] 46=(0.000732422,0.000854492) [41,39,33]
+id=1 1=(0,0.00390625) [2] 49=(0.00390625,0.0078125) [2,58] 37=(0.0078125,0.0117188) [58] 47=(0.0117188,0.015625) [48,58] 27=(0.015625,0.0195313) [56,48] 45=(0.0195313,0.0234375) [56] 35=(0.0234375,0.0273438) [56,42] 43=(0.0273438,0.03125) [42] 21=(0.03125,0.0351563) [54,42] 41=(0.0351563,0.0390625) [46,54] 33=(0.0390625,0.0429688) [46] 39=(0.0429688,0.046875) [46] id=2 2=(0,0.00012207) [49,1] 58=(0.00012207,0.000244141) [49,47,37] 48=(0.000244141,0.000366211) [47,27] 56=(0.000366211,0.000488281) [45,27,35] 42=(0.000488281,0.000610352) [43,35,21] 54=(0.000610352,0.000732422) [41,21] 46=(0.000732422,0.000854492) [41,39,33]
+setPerp t=0.03515625 cPt=(27.3462676,27.3400246) == oppT=0.000666163387 fPerpPt=(27.3462676,27.3400246)
+setPerp t=0.0390625 cPt=(27.3466146,27.3396779) == oppT=0.000740181863 fPerpPt=(27.3466146,27.3396779)
+setPerp t=0.000732421875 cPt=(27.3465782,27.3397143) == oppT=0.0386529746 fPerpPt=(27.3465782,27.3397143)
+setPerp t=0.0390625 cPt=(27.3466146,27.3396779) == oppT=0.000740181863 fPerpPt=(27.3466146,27.3396779)
+setPerp t=0.04296875 cPt=(27.3469616,27.3393313) == oppT=0.000814200404 fPerpPt=(27.3469616,27.3393313)
+setPerp t=0.000793457031 cPt=(27.3468644,27.3394285) == oppT=0.0418740408 fPerpPt=(27.3468644,27.3394285)
+setPerp t=0.0390625 cPt=(27.3466146,27.3396779) == oppT=0.000740181863 fPerpPt=(27.3466146,27.3396779)
+setPerp t=0.04296875 cPt=(27.3469616,27.3393313) == oppT=0.000814200404 fPerpPt=(27.3469616,27.3393313)
+setPerp t=0.000793457031 cPt=(27.3468644,27.3394285) == oppT=0.0418740408 fPerpPt=(27.3468644,27.3394285)
+setPerp t=0.04296875 cPt=(27.3469616,27.3393313) == oppT=0.000814200404 fPerpPt=(27.3469616,27.3393313)
+setPerp t=0.046875 cPt=(27.3473086,27.3389848) == oppT=0.00088821901 fPerpPt=(27.3473086,27.3389848)
+setPerp t=0.000854492188 cPt=(27.3471505,27.3391427) == oppT=0.0450951047 fPerpPt=(27.3471505,27.3391427)
+id=1 1=(0,0.00390625) [2] 49=(0.00390625,0.0078125) [2,58] 37=(0.0078125,0.0117188) [58] 47=(0.0117188,0.015625) [48,58] 27=(0.015625,0.0195313) [56,48] 45=(0.0195313,0.0234375) [56] 35=(0.0234375,0.0273438) [56,42] 43=(0.0273438,0.03125) [42] 21=(0.03125,0.0351563) [54,42] 41=(0.0351563,0.0390625) [54] id=2 2=(0,0.00012207) [49,1] 58=(0.00012207,0.000244141) [49,47,37] 48=(0.000244141,0.000366211) [47,27] 56=(0.000366211,0.000488281) [45,27,35] 42=(0.000488281,0.000610352) [43,35,21] 54=(0.000610352,0.000732422) [41,21]
+setPerp t=0.03515625 cPt=(27.3462676,27.3400246) == oppT=0.000666163387 fPerpPt=(27.3462676,27.3400246)
+setPerp t=0.0390625 cPt=(27.3466146,27.3396779) == oppT=0.000740181863 fPerpPt=(27.3466146,27.3396779)
+setPerp t=0.000671386719 cPt=(27.3462921,27.3400001) == oppT=0.0354319062 fPerpPt=(27.3462921,27.3400001)
+setPerp t=0.03515625 cPt=(27.3462676,27.3400246) == oppT=0.000666163387 fPerpPt=(27.3462676,27.3400246)
+setPerp t=0.0390625 cPt=(27.3466146,27.3396779) == oppT=0.000740181863 fPerpPt=(27.3466146,27.3396779)
+setPerp t=0.000671386719 cPt=(27.3462921,27.3400001) == oppT=0.0354319062 fPerpPt=(27.3462921,27.3400001)
+setPerp t=0.000732421875 cPt=(27.3465782,27.3397143) == oppT=0.0386529746 fPerpPt=(27.3465782,27.3397143)
+id=1 1=(0,0.00390625) [2] 49=(0.00390625,0.0078125) [2,58] 37=(0.0078125,0.0117188) [58] 47=(0.0117188,0.015625) [48,58] 27=(0.015625,0.0195313) [56,48] 45=(0.0195313,0.0234375) [56] 35=(0.0234375,0.0273438) [56,42] 43=(0.0273438,0.03125) [42] 21=(0.03125,0.0351563) [54,42] id=2 2=(0,0.00012207) [49,1] 58=(0.00012207,0.000244141) [49,47,37] 48=(0.000244141,0.000366211) [47,27] 56=(0.000366211,0.000488281) [45,27,35] 42=(0.000488281,0.000610352) [43,35,21] 54=(0.000610352,0.000671387) [21]
+id=1 1=(0,0.00390625) [2] 49=(0.00390625,0.0078125) [2,58] 37=(0.0078125,0.0117188) [58] 47=(0.0117188,0.015625) [48,58] 27=(0.015625,0.0195313) [56,48] 45=(0.0195313,0.0234375) [56] 35=(0.0234375,0.0273438) [56,42] 43=(0.0273438,0.03125) [64,42] 21=(0.03125,0.0351563) [64,54] id=2 2=(0,0.00012207) [49,1] 58=(0.00012207,0.000244141) [49,47,37] 48=(0.000244141,0.000366211) [47,27] 56=(0.000366211,0.000488281) [45,27,35] 42=(0.000488281,0.000549316) [43,35] 64=(0.000549316,0.000610352) [21,43] 54=(0.000610352,0.000671387) [21]
+id=1 1=(0,0.00390625) [2] 49=(0.00390625,0.0078125) [2,58] 37=(0.0078125,0.0117188) [58] 47=(0.0117188,0.015625) [48,58] 27=(0.015625,0.0195313) [56,48] 45=(0.0195313,0.0234375) [66,56] 35=(0.0234375,0.0273438) [66,42] 43=(0.0273438,0.03125) [64,42] 21=(0.03125,0.0351563) [64,54] id=2 2=(0,0.00012207) [49,1] 58=(0.00012207,0.000244141) [49,47,37] 48=(0.000244141,0.000366211) [47,27] 56=(0.000366211,0.000427246) [45,27] 66=(0.000427246,0.000488281) [35,45] 42=(0.000488281,0.000549316) [43,35] 64=(0.000549316,0.000610352) [21,43] 54=(0.000610352,0.000671387) [21]
+setPerp t=0 cPt=(27.3431454,27.3431454) == oppT=0 fPerpPt=(27.3431454,27.3431454)
+setPerp t=0.00390625 cPt=(27.3434922,27.3427985) == oppT=7.40178961e-05 fPerpPt=(27.3434922,27.3427985)
+setPerp t=0.0078125 cPt=(27.3438391,27.3424517) == oppT=0.000148035857 fPerpPt=(27.3438391,27.3424517)
+setPerp t=0.01171875 cPt=(27.344186,27.3421049) == oppT=0.000222053882 fPerpPt=(27.344186,27.3421049)
+setPerp t=0.015625 cPt=(27.3445329,27.3417581) == oppT=0.000296071971 fPerpPt=(27.3445329,27.3417581)
+setPerp t=0.01953125 cPt=(27.3448799,27.3414113) == oppT=0.000370090126 fPerpPt=(27.3448799,27.3414113)
+setPerp t=0.0234375 cPt=(27.3452268,27.3410646) == oppT=0.000444108344 fPerpPt=(27.3452268,27.3410646)
+setPerp t=0.02734375 cPt=(27.3455737,27.3407179) == oppT=0.000518126627 fPerpPt=(27.3455737,27.3407179)
+setPerp t=0.03125 cPt=(27.3459207,27.3403712) == oppT=0.000592144975 fPerpPt=(27.3459207,27.3403712)
+setPerp t=0.03515625 cPt=(27.3462676,27.3400246) == oppT=0.000666163387 fPerpPt=(27.3462676,27.3400246)
+setPerp t=0 cPt=(27.3431454,27.3431454) == oppT=0 fPerpPt=(27.3431454,27.3431454)
+setPerp t=0.03515625 cPt=(27.3462676,27.3400246) == oppT=0.000666163387 fPerpPt=(27.3462676,27.3400246)
+id=1 (empty) id=2 (empty)
+debugShowQuadIntersection wtTs[0]=0 {{{27.3431454,27.3431454}, {27.3875446,27.2987461}, {27.4323025,27.2551785}}} {{27.3431454,27.3431454}} wtTs[1]=0.03515625 {{27.3462677,27.3400249}} wnTs[0]=0 {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}} wnTs[1]=0.000666163387
+SkOpSegment::addT insert t=0.03515625 segID=20 spanID=49
+SkOpSegment::addT insert t=0.000666163387 segID=6 spanID=50
+id=1 1=(0,1) [2] id=2 2=(0,0.5) [1]
+id=1 1=(0,1) [2] id=2 2=(0,0.25) [1]
+id=1 1=(0,1) [2] id=2 2=(0,0.125) [1]
+id=1 1=(0,1) [2] id=2 2=(0,0.0625) [1]
+id=1 1=(0,1) [12,2] id=2 2=(0,0.03125) [1] 12=(0.03125,0.0625) [1]
+id=1 1=(0,1) [12,2] id=2 2=(0,0.03125) [1] 12=(0.03125,0.046875) [1]
+id=1 1=(0,1) [16,12] id=2 16=(0.015625,0.03125) [1] 12=(0.03125,0.046875) [1]
+id=1 1=(0,0.5) [16] 3=(0.5,1) [16] id=2 16=(0.015625,0.03125) [3,1]
+id=1 1=(0,0.5) [18,16] id=2 16=(0.015625,0.0234375) [1] 18=(0.0234375,0.03125) [1]
+id=1 1=(0,0.25) [16] id=2 16=(0.015625,0.0234375) [1]
+id=1 1=(0,0.25) [20,16] id=2 16=(0.015625,0.0195313) [1] 20=(0.0195313,0.0234375) [1]
+id=1 1=(0,0.125) [20,16] id=2 16=(0.015625,0.0195313) [1] 20=(0.0195313,0.0234375) [1]
+setPerp t=0 cPt=(27.4323025,27.2551785) == oppT=0.0189506973 fPerpPt=(27.4323024,27.2551784)
+setPerp t=0.125 cPt=(27.4431369,27.243922) != oppT=0.0213231007 fPerpPt=(27.4435129,27.2442845)
+setPerp t=0.01953125 cPt=(27.4350447,27.2525101) != oppT=0.0306377854 fPerpPt=(27.4349556,27.2524185)
+id=1 1=(0,0.125) [16] id=2 16=(0.015625,0.0195313) [1]
+id=1 (empty) id=2 (empty)
+debugShowQuadIntersection no intersect {{{27.4323025,27.2551785}, {27.4755878,27.2101307}, {27.5197105,27.165432}}} {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}}
+debugShowQuadIntersection no intersect {{{27.5197105,27.165432}, {27.541851,27.1430035}, {27.5638676,27.1209965}}} {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}}
+id=1 (empty) id=2 (empty)
+debugShowQuadIntersection no intersect {{{27.5638676,27.1209965}, {27.5855064,27.0986347}, {27.6075668,27.0761414}}} {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}}
+id=1 1=(0,1) [4,2] id=2 2=(0,0.5) [1] 4=(0.5,1) [1]
+id=1 1=(0,0.5) [2] 3=(0.5,1) [4] id=2 2=(0,0.5) [1] 4=(0.5,1) [3]
+id=1 1=(0,0.5) [2] id=2 2=(0,0.5) [1]
+id=1 1=(0,0.5) [8,2] id=2 2=(0,0.25) [1] 8=(0.25,0.5) [1]
+id=1 1=(0,0.25) [2] id=2 2=(0,0.25) [1]
+id=1 1=(0,0.25) [10,2] id=2 2=(0,0.125) [1] 10=(0.125,0.25) [1]
+id=1 (empty) id=2 (empty)
+debugShowQuadIntersection no intersect {{{27.6075668,27.0761414}, {29.9278316,24.7103367}, {33.2413864,24.6781349}}} {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}}
+debugShowQuadIntersection no intersect {{{27.6075668,27.0761414}, {29.9278316,24.7103367}, {33.2413864,24.6781349}}} {{{33,25}, {36.3137093,25}, {38.6568527,27.3431454}}}
+debugShowQuadIntersection wtTs[0]=1 {{{41,33}, {41,36.3137093}, {38.6568527,38.6568527}}} {{38.6568527,38.6568527}} wnTs[0]=0 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}}
+debugShowQuadIntersection wtTs[0]=0 {{{41,33}, {41,36.3137093}, {38.6568527,38.6568527}}} {{41,33}} wnTs[0]=1 {{{38.6568527,27.3431454}, {41,29.6862907}, {41,33}}}
+debugShowQuadIntersection wtTs[0]=1 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}} {{33,41}} wnTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527}}}
+debugShowQuadIntersection wtTs[0]=1 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527}}} {{27.3431454,38.6568527}} wnTs[0]=0 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}}
+debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}} {{25,33}} wnTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}}
+debugShowQuadIntersection wtTs[0]=1 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}} {{27.3431454,27.3431454}} wnTs[0]=0 {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}}
+debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}} {{33,25}} wnTs[0]=0 {{{33,25}, {36.3137093,25}, {38.6568527,27.3431454}}}
+debugShowQuadIntersection wtTs[0]=1 {{{33,25}, {36.3137093,25}, {38.6568527,27.3431454}}} {{38.6568527,27.3431454}} wnTs[0]=0 {{{38.6568527,27.3431454}, {41,29.6862907}, {41,33}}}
+SkOpSegment::markDone id=6 (27.3431454,27.3431454 29.6862907,25 33,25) t=0 [11] (27.3431454,27.3431454) tEnd=0.000666163387 newWindSum=? newOppSum=? oppSum=? windSum=? windValue=0 oppValue=0
+SkOpSegment::markDone id=5 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 [9] (25,33) tEnd=1 newWindSum=? newOppSum=? oppSum=? windSum=? windValue=0 oppValue=0
+SkOpSegment::markDone id=4 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 [7] (27.3431454,38.6568527) tEnd=1 newWindSum=? newOppSum=? oppSum=? windSum=? windValue=0 oppValue=0
+SkOpSegment::markDone id=3 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 [5] (33,41) tEnd=1 newWindSum=? newOppSum=? oppSum=? windSum=? windValue=0 oppValue=0
+SkOpSegment::markDone id=2 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 [3] (38.6568527,38.6568527) tEnd=1 newWindSum=? newOppSum=? oppSum=? windSum=? windValue=0 oppValue=0
+SkOpSegment::sortAngles [15] tStart=1 [30]
+SkOpAngle::after [15/1] 4/5 tStart=1 tEnd=0 < [16/2] 21/17 tStart=0 tEnd=1 < [1/13] 1/5 tStart=1 tEnd=0  T 5
+SkOpAngle::afterPart {{{38.6568527,38.6568527}, {38.7196693,38.5940361}, {38.7809143,38.5304031}}} id=15
+SkOpAngle::afterPart {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}} id=16
+SkOpAngle::afterPart {{{38.6568527,38.6568527}, {41,36.3137093}, {41,33}}} id=1
+SkOpSegment::sortAngles [16] tStart=0 [31]
+SkOpSegment::sortAngles [16] tStart=1 [32]
+SkOpSegment::sortAngles [17] tStart=0 [33]
+SkOpSegment::sortAngles [17] tStart=1 [34]
+SkOpSegment::sortAngles [18] tStart=0 [35]
+SkOpSegment::sortAngles [18] tStart=1 [36]
+SkOpSegment::sortAngles [19] tStart=0 [37]
+SkOpSegment::sortAngles [19] tStart=1 [38]
+SkOpSegment::sortAngles [20] tStart=0 [39]
+SkOpSegment::sortAngles [20] tStart=0.03515625 [49]
+SkOpAngle::after [20/11] 17/17 tStart=0.03515625 tEnd=0 < [6/14] 1/1 tStart=0.000666163387 tEnd=1 < [20/12] 1/1 tStart=0.03515625 tEnd=1  F 11
+SkOpAngle::afterPart {{{27.3462677,27.3400249}, {27.3447063,27.3415846}, {27.3431454,27.3431454}}} id=20
+SkOpAngle::afterPart {{{27.3462677,27.3400249}, {29.6884986,25}, {33,25}}} id=6
+SkOpAngle::afterPart {{{27.3462677,27.3400249}, {27.3891352,27.2971979}, {27.4323025,27.2551785}}} id=20
+SkOpSegment::sortAngles [1] tStart=1 [2]
+SkOpSegment::sortAngles [6] tStart=0.000666163387 [50]
+SkOpCoincidence::debugShowCoincidence - id=20 t=0 tEnd=0.03515625
+SkOpCoincidence::debugShowCoincidence + id=6 t=0 tEnd=0.000666163387
+SkOpCoincidence::debugShowCoincidence - id=19 t=0 tEnd=1
+SkOpCoincidence::debugShowCoincidence + id=5 t=0 tEnd=1
+SkOpCoincidence::debugShowCoincidence - id=18 t=0 tEnd=1
+SkOpCoincidence::debugShowCoincidence + id=4 t=0 tEnd=1
+SkOpCoincidence::debugShowCoincidence - id=17 t=0 tEnd=1
+SkOpCoincidence::debugShowCoincidence + id=3 t=0 tEnd=1
+SkOpCoincidence::debugShowCoincidence - id=16 t=0 tEnd=1
+SkOpCoincidence::debugShowCoincidence + id=2 t=0 tEnd=1
+SkOpSegment::debugShowActiveSpans id=9 (33.2413864,24.6781349 36.5549393,24.6459332 38.920742,26.966198) t=0 (33.2413864,24.6781349) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=10 (38.920742,26.966198 41.2865486,29.2864628 41.3187523,32.6000175) t=0 (38.920742,26.966198) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=11 (41.3187523,32.6000175 41.3509521,35.9135704 39.0306854,38.2793732) t=0 (41.3187523,32.6000175) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=12 (39.0306854,38.2793732 38.9995995,38.3110695 38.9681816,38.3424988) t=0 (39.0306854,38.2793732) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=13 (38.9681816,38.3424988 38.9374619,38.3742142 38.9064751,38.4056053) t=0 (38.9681816,38.3424988) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=14 (38.9064751,38.4056053 38.8441086,38.4687881 38.7809143,38.5304031) t=0 (38.9064751,38.4056053) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=15 (38.7809143,38.5304031 38.7196693,38.5940361 38.6568527,38.6568527) t=0 (38.7809143,38.5304031) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=16 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 (38.6568527,38.6568527) tEnd=1 windSum=? windValue=2
+SkOpSegment::debugShowActiveSpans id=17 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 (33,41) tEnd=1 windSum=? windValue=2
+SkOpSegment::debugShowActiveSpans id=18 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 (27.3431454,38.6568527) tEnd=1 windSum=? windValue=2
+SkOpSegment::debugShowActiveSpans id=19 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 (25,33) tEnd=1 windSum=? windValue=2
+SkOpSegment::debugShowActiveSpans id=20 (27.3431454,27.3431454 27.3875446,27.2987461 27.4323025,27.2551785) t=0 (27.3431454,27.3431454) tEnd=0.03515625 windSum=? windValue=2
+SkOpSegment::debugShowActiveSpans id=20 (27.3431454,27.3431454 27.3875446,27.2987461 27.4323025,27.2551785) t=0.03515625 (27.3462677,27.3400249) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=21 (27.4323025,27.2551785 27.4755878,27.2101307 27.5197105,27.165432) t=0 (27.4323025,27.2551785) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=22 (27.5197105,27.165432 27.541851,27.1430035 27.5638676,27.1209965) t=0 (27.5197105,27.165432) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=23 (27.5638676,27.1209965 27.5855064,27.0986347 27.6075668,27.0761414) t=0 (27.5638676,27.1209965) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=24 (27.6075668,27.0761414 29.9278316,24.7103367 33.2413864,24.6781349) t=0 (27.6075668,27.0761414) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=1 (41,33 41,36.3137093 38.6568527,38.6568527) t=0 (41,33) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=6 (27.3431454,27.3431454 29.6862907,25 33,25) t=0.000666163387 (27.3462677,27.3400249) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=7 (33,25 36.3137093,25 38.6568527,27.3431454) t=0 (33,25) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=8 (38.6568527,27.3431454 41,29.6862907 41,33) t=0 (38.6568527,27.3431454) tEnd=1 windSum=? windValue=1
+SkOpSpan::sortableTop dir=kTop seg=9 t=0.5 pt=(36.3180008,25.2340508)
+SkOpSpan::sortableTop [0] valid=1 operand=0 span=17 ccw=1 seg=9 {{{33.2413864f, 24.6781349f}, {36.5549393f, 24.6459332f}, {38.920742f, 26.966198f}}} t=0.5 pt=(36.3180008,25.2340508) slope=(2.83967781,1.14403152)
+SkOpSegment::markWinding id=9 (33.2413864,24.6781349 36.5549393,24.6459332 38.920742,26.966198) t=0 [17] (33.2413864,24.6781349) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+SkOpSegment::markWinding id=10 (38.920742,26.966198 41.2865486,29.2864628 41.3187523,32.6000175) t=0 [19] (38.920742,26.966198) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::markWinding id=11 (41.3187523,32.6000175 41.3509521,35.9135704 39.0306854,38.2793732) t=0 [21] (41.3187523,32.6000175) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::markWinding id=12 (39.0306854,38.2793732 38.9995995,38.3110695 38.9681816,38.3424988) t=0 [23] (39.0306854,38.2793732) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::markWinding id=13 (38.9681816,38.3424988 38.9374619,38.3742142 38.9064751,38.4056053) t=0 [25] (38.9681816,38.3424988) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::markWinding id=14 (38.9064751,38.4056053 38.8441086,38.4687881 38.7809143,38.5304031) t=0 [27] (38.9064751,38.4056053) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::markWinding id=15 (38.7809143,38.5304031 38.7196693,38.5940361 38.6568527,38.6568527) t=0 [29] (38.7809143,38.5304031) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::markWinding id=9 (33.2413864,24.6781349 36.5549393,24.6459332 38.920742,26.966198) t=0 [17] (33.2413864,24.6781349) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+SkOpSegment::markWinding id=24 (27.6075668,27.0761414 29.9278316,24.7103367 33.2413864,24.6781349) t=0 [47] (27.6075668,27.0761414) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::markWinding id=23 (27.5638676,27.1209965 27.5855064,27.0986347 27.6075668,27.0761414) t=0 [45] (27.5638676,27.1209965) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::markWinding id=22 (27.5197105,27.165432 27.541851,27.1430035 27.5638676,27.1209965) t=0 [43] (27.5197105,27.165432) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::markWinding id=21 (27.4323025,27.2551785 27.4755878,27.2101307 27.5197105,27.165432) t=0 [41] (27.4323025,27.2551785) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::markWinding id=20 (27.3431454,27.3431454 27.3875446,27.2987461 27.4323025,27.2551785) t=0.03515625 [49] (27.3462677,27.3400249) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::findNextWinding simple
+SkOpSegment::markDone id=9 (33.2413864,24.6781349 36.5549393,24.6459332 38.920742,26.966198) t=0 [17] (33.2413864,24.6781349) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeWinding current id=9 from=(38.920742,26.966198) to=(33.2413864,24.6781349)
+path.moveTo(38.920742,26.966198);
+path.quadTo(36.5549393,24.6459332, 33.2413864,24.6781349);
+SkOpSegment::findNextWinding simple
+SkOpSegment::markDone id=24 (27.6075668,27.0761414 29.9278316,24.7103367 33.2413864,24.6781349) t=0 [47] (27.6075668,27.0761414) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeWinding current id=24 from=(33.2413864,24.6781349) to=(27.6075668,27.0761414)
+path.quadTo(29.9278316,24.7103367, 27.6075668,27.0761414);
+SkOpSegment::findNextWinding simple
+SkOpSegment::markDone id=23 (27.5638676,27.1209965 27.5855064,27.0986347 27.6075668,27.0761414) t=0 [45] (27.5638676,27.1209965) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeWinding current id=23 from=(27.6075668,27.0761414) to=(27.5638676,27.1209965)
+path.quadTo(27.5855064,27.0986347, 27.5638676,27.1209965);
+SkOpSegment::findNextWinding simple
+SkOpSegment::markDone id=22 (27.5197105,27.165432 27.541851,27.1430035 27.5638676,27.1209965) t=0 [43] (27.5197105,27.165432) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeWinding current id=22 from=(27.5638676,27.1209965) to=(27.5197105,27.165432)
+path.quadTo(27.541851,27.1430035, 27.5197105,27.165432);
+SkOpSegment::findNextWinding simple
+SkOpSegment::markDone id=21 (27.4323025,27.2551785 27.4755878,27.2101307 27.5197105,27.165432) t=0 [41] (27.4323025,27.2551785) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeWinding current id=21 from=(27.5197105,27.165432) to=(27.4323025,27.2551785)
+path.quadTo(27.4755878,27.2101307, 27.4323025,27.2551785);
+SkOpSegment::markWinding id=6 (27.3431454,27.3431454 29.6862907,25 33,25) t=0.000666163387 [50] (27.3462677,27.3400249) tEnd=1 newWindSum=1 windSum=? windValue=1
+SkOpSegment::markWinding id=7 (33,25 36.3137093,25 38.6568527,27.3431454) t=0 [13] (33,25) tEnd=1 newWindSum=1 windSum=? windValue=1
+SkOpSegment::markWinding id=8 (38.6568527,27.3431454 41,29.6862907 41,33) t=0 [15] (38.6568527,27.3431454) tEnd=1 newWindSum=1 windSum=? windValue=1
+SkOpSegment::markWinding id=1 (41,33 41,36.3137093 38.6568527,38.6568527) t=0 [1] (41,33) tEnd=1 newWindSum=1 windSum=? windValue=1
+SkOpSegment::markAngle last seg=1 span=2
+SkOpSegment::markWinding id=20 (27.3431454,27.3431454 27.3875446,27.2987461 27.4323025,27.2551785) t=0 [39] (27.3431454,27.3431454) tEnd=0.03515625 newWindSum=1 windSum=? windValue=2
+SkOpSegment::nextChase mismatched signs
+SkOpSegment::markWinding id=19 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 [37] (25,33) tEnd=1 newWindSum=1 windSum=? windValue=2
+SkOpSegment::nextChase mismatched signs
+SkOpSegment::markWinding id=18 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 [35] (27.3431454,38.6568527) tEnd=1 newWindSum=1 windSum=? windValue=2
+SkOpSegment::nextChase mismatched signs
+SkOpSegment::markWinding id=17 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 [33] (33,41) tEnd=1 newWindSum=1 windSum=? windValue=2
+SkOpSegment::nextChase mismatched signs
+SkOpSegment::markWinding id=16 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 [31] (38.6568527,38.6568527) tEnd=1 newWindSum=1 windSum=? windValue=2
+SkOpSegment::markAngle last seg=16 span=31 windSum=1
+SkOpSegment::findNextWinding
+SkOpAngle::dumpOne [20/12] next=6/14 sect=1/1  s=0.03515625 [49] e=1 [40] sgn=-1 windVal=1 windSum=-1 oppVal=0 oppSum=0
+SkOpAngle::dumpOne [6/14] next=20/11 sect=1/1  s=0.000666163387 [50] e=1 [12] sgn=-1 windVal=1 windSum=1
+SkOpAngle::dumpOne [20/11] next=20/12 sect=17/17  s=0.03515625 [49] e=0 [39] sgn=1 windVal=2 windSum=1
+SkOpSegment::findNextWinding chase.append segment=1 span=2
+SkOpSegment::markDone id=20 (27.3431454,27.3431454 27.3875446,27.2987461 27.4323025,27.2551785) t=0 [39] (27.3431454,27.3431454) tEnd=0.03515625 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=2 oppValue=0
+SkOpSegment::nextChase mismatched signs
+SkOpSegment::markDone id=19 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 [37] (25,33) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=2 oppValue=0
+SkOpSegment::nextChase mismatched signs
+SkOpSegment::markDone id=18 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 [35] (27.3431454,38.6568527) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=2 oppValue=0
+SkOpSegment::nextChase mismatched signs
+SkOpSegment::markDone id=17 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 [33] (33,41) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=2 oppValue=0
+SkOpSegment::nextChase mismatched signs
+SkOpSegment::markDone id=16 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 [31] (38.6568527,38.6568527) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=2 oppValue=0
+SkOpSegment::findNextWinding chase.append segment=16 span=31 windSum=1
+SkOpSegment::markDone id=20 (27.3431454,27.3431454 27.3875446,27.2987461 27.4323025,27.2551785) t=0.03515625 [49] (27.3462677,27.3400249) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+SkOpSegment::findNextWinding from:[20] to:[6] start=5584652 end=5579668
+bridgeWinding current id=20 from=(27.4323025,27.2551785) to=(27.3462677,27.3400249)
+path.quadTo(27.3891354,27.2971973, 27.3462677,27.3400249);
+SkOpSegment::findNextWinding simple
+SkOpSegment::markDone id=6 (27.3431454,27.3431454 29.6862907,25 33,25) t=0.000666163387 [50] (27.3462677,27.3400249) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=1 oppValue=0
+bridgeWinding current id=6 from=(27.3462677,27.3400249) to=(33,25)
+path.quadTo(29.6884995,25, 33,25);
+SkOpSegment::findNextWinding simple
+SkOpSegment::markDone id=7 (33,25 36.3137093,25 38.6568527,27.3431454) t=0 [13] (33,25) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=1 oppValue=0
+bridgeWinding current id=7 from=(33,25) to=(38.6568527,27.3431454)
+path.quadTo(36.3137093,25, 38.6568527,27.3431454);
+SkOpSegment::findNextWinding simple
+SkOpSegment::markDone id=8 (38.6568527,27.3431454 41,29.6862907 41,33) t=0 [15] (38.6568527,27.3431454) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=1 oppValue=0
+bridgeWinding current id=8 from=(38.6568527,27.3431454) to=(41,33)
+path.quadTo(41,29.6862907, 41,33);
+SkOpSegment::findNextWinding
+SkOpAngle::dumpOne [1/13] next=15/1 sect=1/5  s=1 [2] e=0 [1] sgn=1 windVal=1 windSum=1
+SkOpAngle::dumpOne [15/1] next=16/2 sect=4/5  s=1 [30] e=0 [29] sgn=1 windVal=1 windSum=-1 oppVal=0 oppSum=0
+SkOpAngle::dumpOne [16/2] next=1/13 sect=21/17  s=0 [31] e=1 [32] sgn=-1 windVal=2 windSum=1 done
+SkOpSegment::markDone id=1 (41,33 41,36.3137093 38.6568527,38.6568527) t=0 [1] (41,33) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=1 oppValue=0
+SkOpSegment::findNextWinding from:[1] to:[15] start=5581892 end=5581788
+bridgeWinding current id=1 from=(41,33) to=(38.6568527,38.6568527)
+path.quadTo(41,36.3137093, 38.6568527,38.6568527);
+SkOpSegment::findNextWinding simple
+SkOpSegment::markDone id=15 (38.7809143,38.5304031 38.7196693,38.5940361 38.6568527,38.6568527) t=0 [29] (38.7809143,38.5304031) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeWinding current id=15 from=(38.6568527,38.6568527) to=(38.7809143,38.5304031)
+path.quadTo(38.7196693,38.5940361, 38.7809143,38.5304031);
+SkOpSegment::findNextWinding simple
+SkOpSegment::markDone id=14 (38.9064751,38.4056053 38.8441086,38.4687881 38.7809143,38.5304031) t=0 [27] (38.9064751,38.4056053) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeWinding current id=14 from=(38.7809143,38.5304031) to=(38.9064751,38.4056053)
+path.quadTo(38.8441086,38.4687881, 38.9064751,38.4056053);
+SkOpSegment::findNextWinding simple
+SkOpSegment::markDone id=13 (38.9681816,38.3424988 38.9374619,38.3742142 38.9064751,38.4056053) t=0 [25] (38.9681816,38.3424988) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeWinding current id=13 from=(38.9064751,38.4056053) to=(38.9681816,38.3424988)
+path.quadTo(38.9374619,38.3742142, 38.9681816,38.3424988);
+SkOpSegment::findNextWinding simple
+SkOpSegment::markDone id=12 (39.0306854,38.2793732 38.9995995,38.3110695 38.9681816,38.3424988) t=0 [23] (39.0306854,38.2793732) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeWinding current id=12 from=(38.9681816,38.3424988) to=(39.0306854,38.2793732)
+path.quadTo(38.9995995,38.3110695, 39.0306854,38.2793732);
+SkOpSegment::findNextWinding simple
+SkOpSegment::markDone id=11 (41.3187523,32.6000175 41.3509521,35.9135704 39.0306854,38.2793732) t=0 [21] (41.3187523,32.6000175) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeWinding current id=11 from=(39.0306854,38.2793732) to=(41.3187523,32.6000175)
+path.quadTo(41.3509521,35.9135704, 41.3187523,32.6000175);
+SkOpSegment::findNextWinding simple
+SkOpSegment::markDone id=10 (38.920742,26.966198 41.2865486,29.2864628 41.3187523,32.6000175) t=0 [19] (38.920742,26.966198) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeWinding current id=10 from=(41.3187523,32.6000175) to=(38.920742,26.966198)
+path.quadTo(41.2865486,29.2864628, 38.920742,26.966198);
+path.close();
+</div>
+
+<div id="fuzz763_4713parts">
+seg=1 {{{-33.1326447f, -40.8928833f}, {-29.8189526f, -40.9036179f}, {-27.4682293f, -38.5680733f}}}
+seg=2 {{{-27.4682293f, -38.5680733f}, {-25.117506f, -36.2325325f}, {-25.1067715f, -32.9188423f}}}
+seg=3 {{{-25.1067715f, -32.9188423f}, {-25.0960369f, -29.6051483f}, {-27.4315796f, -27.254425f}}}
+seg=4 {{{-27.4315796f, -27.254425f}, {-29.7671204f, -24.9036999f}, {-33.0808144f, -24.8929653f}}}
+seg=5 {{{-33.0808144f, -24.8929653f}, {-36.3945045f, -24.8822308f}, {-38.7452278f, -27.2177753f}}}
+seg=6 {{{-38.7452278f, -27.2177753f}, {-41.0959549f, -29.5533161f}, {-41.1066895f, -32.867012f}}}
+seg=7 {{{-41.1066895f, -32.867012f}, {-41.117424f, -36.1807022f}, {-38.7818794f, -38.5314217f}}}
+seg=8 {{{-38.7818794f, -38.5314217f}, {-36.4463348f, -40.8821487f}, {-33.1326447f, -40.8928833f}}}
+op union
+seg=9 {{{41, 33}, {41, 36.3137093f}, {38.6568527f, 38.6568527f}}}
+seg=10 {{{38.6568527f, 38.6568527f}, {36.3137093f, 41}, {33, 41}}}
+seg=11 {{{33, 41}, {29.6862907f, 41}, {27.3431454f, 38.6568527f}}}
+seg=12 {{{27.3431454f, 38.6568527f}, {25, 36.3137093f}, {25, 33}}}
+seg=13 {{{25, 33}, {25, 29.6862907f}, {27.3431454f, 27.3431454f}}}
+seg=14 {{{27.3431454f, 27.3431454f}, {29.6862907f, 25}, {33, 25}}}
+seg=15 {{{33, 25}, {36.3137093f, 25}, {38.6568527f, 27.3431454f}}}
+seg=16 {{{38.6568527f, 27.3431454f}, {41, 29.6862907f}, {41, 33}}}
+debugShowQuadIntersection wtTs[0]=1 {{{-33.1326447,-40.8928833}, {-29.8189526,-40.9036179}, {-27.4682293,-38.5680733}}} {{-27.4682293,-38.5680733}} wnTs[0]=0 {{{-27.4682293,-38.5680733}, {-25.117506,-36.2325325}, {-25.1067715,-32.9188423}}}
+debugShowQuadIntersection wtTs[0]=0 {{{-33.1326447,-40.8928833}, {-29.8189526,-40.9036179}, {-27.4682293,-38.5680733}}} {{-33.1326447,-40.8928833}} wnTs[0]=1 {{{-38.7818794,-38.5314217}, {-36.4463348,-40.8821487}, {-33.1326447,-40.8928833}}}
+debugShowQuadIntersection wtTs[0]=1 {{{-27.4682293,-38.5680733}, {-25.117506,-36.2325325}, {-25.1067715,-32.9188423}}} {{-25.1067715,-32.9188423}} wnTs[0]=0 {{{-25.1067715,-32.9188423}, {-25.0960369,-29.6051483}, {-27.4315796,-27.254425}}}
+debugShowQuadIntersection wtTs[0]=1 {{{-25.1067715,-32.9188423}, {-25.0960369,-29.6051483}, {-27.4315796,-27.254425}}} {{-27.4315796,-27.254425}} wnTs[0]=0 {{{-27.4315796,-27.254425}, {-29.7671204,-24.9036999}, {-33.0808144,-24.8929653}}}
+debugShowQuadIntersection wtTs[0]=1 {{{-27.4315796,-27.254425}, {-29.7671204,-24.9036999}, {-33.0808144,-24.8929653}}} {{-33.0808144,-24.8929653}} wnTs[0]=0 {{{-33.0808144,-24.8929653}, {-36.3945045,-24.8822308}, {-38.7452278,-27.2177753}}}
+debugShowQuadIntersection wtTs[0]=1 {{{-33.0808144,-24.8929653}, {-36.3945045,-24.8822308}, {-38.7452278,-27.2177753}}} {{-38.7452278,-27.2177753}} wnTs[0]=0 {{{-38.7452278,-27.2177753}, {-41.0959549,-29.5533161}, {-41.1066895,-32.867012}}}
+debugShowQuadIntersection wtTs[0]=1 {{{-38.7452278,-27.2177753}, {-41.0959549,-29.5533161}, {-41.1066895,-32.867012}}} {{-41.1066895,-32.867012}} wnTs[0]=0 {{{-41.1066895,-32.867012}, {-41.117424,-36.1807022}, {-38.7818794,-38.5314217}}}
+debugShowQuadIntersection wtTs[0]=1 {{{-41.1066895,-32.867012}, {-41.117424,-36.1807022}, {-38.7818794,-38.5314217}}} {{-38.7818794,-38.5314217}} wnTs[0]=0 {{{-38.7818794,-38.5314217}, {-36.4463348,-40.8821487}, {-33.1326447,-40.8928833}}}
+debugShowQuadIntersection wtTs[0]=1 {{{41,33}, {41,36.3137093}, {38.6568527,38.6568527}}} {{38.6568527,38.6568527}} wnTs[0]=0 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}}
+debugShowQuadIntersection wtTs[0]=0 {{{41,33}, {41,36.3137093}, {38.6568527,38.6568527}}} {{41,33}} wnTs[0]=1 {{{38.6568527,27.3431454}, {41,29.6862907}, {41,33}}}
+debugShowQuadIntersection wtTs[0]=1 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}} {{33,41}} wnTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527}}}
+debugShowQuadIntersection wtTs[0]=1 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527}}} {{27.3431454,38.6568527}} wnTs[0]=0 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}}
+debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}} {{25,33}} wnTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}}
+debugShowQuadIntersection wtTs[0]=1 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}} {{27.3431454,27.3431454}} wnTs[0]=0 {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}}
+debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}} {{33,25}} wnTs[0]=0 {{{33,25}, {36.3137093,25}, {38.6568527,27.3431454}}}
+debugShowQuadIntersection wtTs[0]=1 {{{33,25}, {36.3137093,25}, {38.6568527,27.3431454}}} {{38.6568527,27.3431454}} wnTs[0]=0 {{{38.6568527,27.3431454}, {41,29.6862907}, {41,33}}}
+SkOpSegment::debugShowActiveSpans id=1 (-33.1326447,-40.8928833 -29.8189526,-40.9036179 -27.4682293,-38.5680733) t=0 (-33.1326447,-40.8928833) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=2 (-27.4682293,-38.5680733 -25.117506,-36.2325325 -25.1067715,-32.9188423) t=0 (-27.4682293,-38.5680733) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=3 (-25.1067715,-32.9188423 -25.0960369,-29.6051483 -27.4315796,-27.254425) t=0 (-25.1067715,-32.9188423) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=4 (-27.4315796,-27.254425 -29.7671204,-24.9036999 -33.0808144,-24.8929653) t=0 (-27.4315796,-27.254425) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=5 (-33.0808144,-24.8929653 -36.3945045,-24.8822308 -38.7452278,-27.2177753) t=0 (-33.0808144,-24.8929653) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=6 (-38.7452278,-27.2177753 -41.0959549,-29.5533161 -41.1066895,-32.867012) t=0 (-38.7452278,-27.2177753) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=7 (-41.1066895,-32.867012 -41.117424,-36.1807022 -38.7818794,-38.5314217) t=0 (-41.1066895,-32.867012) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=8 (-38.7818794,-38.5314217 -36.4463348,-40.8821487 -33.1326447,-40.8928833) t=0 (-38.7818794,-38.5314217) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=9 (41,33 41,36.3137093 38.6568527,38.6568527) t=0 (41,33) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=10 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 (38.6568527,38.6568527) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=11 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 (33,41) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=12 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 (27.3431454,38.6568527) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=13 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 (25,33) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=14 (27.3431454,27.3431454 29.6862907,25 33,25) t=0 (27.3431454,27.3431454) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=15 (33,25 36.3137093,25 38.6568527,27.3431454) t=0 (33,25) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=16 (38.6568527,27.3431454 41,29.6862907 41,33) t=0 (38.6568527,27.3431454) tEnd=1 windSum=? windValue=1
+SkOpSpan::sortableTop dir=kTop seg=1 t=0.5 pt=(-30.0596943,-40.3170471)
+SkOpSpan::sortableTop [0] valid=1 operand=0 span=1 ccw=1 seg=1 {{{-33.1326447f, -40.8928833f}, {-29.8189526f, -40.9036179f}, {-27.4682293f, -38.5680733f}}} t=0.5 pt=(-30.0596943,-40.3170471) slope=(2.83220768,1.16240501)
+SkOpSegment::markWinding id=1 (-33.1326447,-40.8928833 -29.8189526,-40.9036179 -27.4682293,-38.5680733) t=0 [1] (-33.1326447,-40.8928833) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+SkOpSegment::markWinding id=2 (-27.4682293,-38.5680733 -25.117506,-36.2325325 -25.1067715,-32.9188423) t=0 [3] (-27.4682293,-38.5680733) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::markWinding id=3 (-25.1067715,-32.9188423 -25.0960369,-29.6051483 -27.4315796,-27.254425) t=0 [5] (-25.1067715,-32.9188423) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::markWinding id=4 (-27.4315796,-27.254425 -29.7671204,-24.9036999 -33.0808144,-24.8929653) t=0 [7] (-27.4315796,-27.254425) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::markWinding id=5 (-33.0808144,-24.8929653 -36.3945045,-24.8822308 -38.7452278,-27.2177753) t=0 [9] (-33.0808144,-24.8929653) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::markWinding id=6 (-38.7452278,-27.2177753 -41.0959549,-29.5533161 -41.1066895,-32.867012) t=0 [11] (-38.7452278,-27.2177753) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::markWinding id=7 (-41.1066895,-32.867012 -41.117424,-36.1807022 -38.7818794,-38.5314217) t=0 [13] (-41.1066895,-32.867012) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::markWinding id=8 (-38.7818794,-38.5314217 -36.4463348,-40.8821487 -33.1326447,-40.8928833) t=0 [15] (-38.7818794,-38.5314217) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::markWinding id=1 (-33.1326447,-40.8928833 -29.8189526,-40.9036179 -27.4682293,-38.5680733) t=0 [1] (-33.1326447,-40.8928833) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+SkOpSegment::activeOp id=1 t=1 tEnd=0 op=union miFrom=0 miTo=1 suFrom=0 suTo=0 result=1
+SkOpSegment::findNextOp simple
+SkOpSegment::markDone id=1 (-33.1326447,-40.8928833 -29.8189526,-40.9036179 -27.4682293,-38.5680733) t=0 [1] (-33.1326447,-40.8928833) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeOp current id=1 from=(-27.4682293,-38.5680733) to=(-33.1326447,-40.8928833)
+path.moveTo(-27.4682293,-38.5680733);
+path.quadTo(-29.8189526,-40.9036179, -33.1326447,-40.8928833);
+SkOpSegment::findNextOp simple
+SkOpSegment::markDone id=8 (-38.7818794,-38.5314217 -36.4463348,-40.8821487 -33.1326447,-40.8928833) t=0 [15] (-38.7818794,-38.5314217) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeOp current id=8 from=(-33.1326447,-40.8928833) to=(-38.7818794,-38.5314217)
+path.quadTo(-36.4463348,-40.8821487, -38.7818794,-38.5314217);
+SkOpSegment::findNextOp simple
+SkOpSegment::markDone id=7 (-41.1066895,-32.867012 -41.117424,-36.1807022 -38.7818794,-38.5314217) t=0 [13] (-41.1066895,-32.867012) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeOp current id=7 from=(-38.7818794,-38.5314217) to=(-41.1066895,-32.867012)
+path.quadTo(-41.117424,-36.1807022, -41.1066895,-32.867012);
+SkOpSegment::findNextOp simple
+SkOpSegment::markDone id=6 (-38.7452278,-27.2177753 -41.0959549,-29.5533161 -41.1066895,-32.867012) t=0 [11] (-38.7452278,-27.2177753) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeOp current id=6 from=(-41.1066895,-32.867012) to=(-38.7452278,-27.2177753)
+path.quadTo(-41.0959549,-29.5533161, -38.7452278,-27.2177753);
+SkOpSegment::findNextOp simple
+SkOpSegment::markDone id=5 (-33.0808144,-24.8929653 -36.3945045,-24.8822308 -38.7452278,-27.2177753) t=0 [9] (-33.0808144,-24.8929653) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeOp current id=5 from=(-38.7452278,-27.2177753) to=(-33.0808144,-24.8929653)
+path.quadTo(-36.3945045,-24.8822308, -33.0808144,-24.8929653);
+SkOpSegment::findNextOp simple
+SkOpSegment::markDone id=4 (-27.4315796,-27.254425 -29.7671204,-24.9036999 -33.0808144,-24.8929653) t=0 [7] (-27.4315796,-27.254425) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeOp current id=4 from=(-33.0808144,-24.8929653) to=(-27.4315796,-27.254425)
+path.quadTo(-29.7671204,-24.9036999, -27.4315796,-27.254425);
+SkOpSegment::findNextOp simple
+SkOpSegment::markDone id=3 (-25.1067715,-32.9188423 -25.0960369,-29.6051483 -27.4315796,-27.254425) t=0 [5] (-25.1067715,-32.9188423) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeOp current id=3 from=(-27.4315796,-27.254425) to=(-25.1067715,-32.9188423)
+path.quadTo(-25.0960369,-29.6051483, -25.1067715,-32.9188423);
+SkOpSegment::findNextOp simple
+SkOpSegment::markDone id=2 (-27.4682293,-38.5680733 -25.117506,-36.2325325 -25.1067715,-32.9188423) t=0 [3] (-27.4682293,-38.5680733) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeOp current id=2 from=(-25.1067715,-32.9188423) to=(-27.4682293,-38.5680733)
+path.quadTo(-25.117506,-36.2325325, -27.4682293,-38.5680733);
+path.close();
+SkOpSegment::debugShowActiveSpans id=9 (41,33 41,36.3137093 38.6568527,38.6568527) t=0 (41,33) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=10 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 (38.6568527,38.6568527) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=11 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 (33,41) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=12 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 (27.3431454,38.6568527) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=13 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 (25,33) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=14 (27.3431454,27.3431454 29.6862907,25 33,25) t=0 (27.3431454,27.3431454) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=15 (33,25 36.3137093,25 38.6568527,27.3431454) t=0 (33,25) tEnd=1 windSum=? windValue=1
+SkOpSegment::debugShowActiveSpans id=16 (38.6568527,27.3431454 41,29.6862907 41,33) t=0 (38.6568527,27.3431454) tEnd=1 windSum=? windValue=1
+SkOpSpan::sortableTop dir=kLeft seg=9 t=0.5 pt=(40.4142151,36.0710678)
+SkOpSpan::sortableTop [0] valid=1 operand=1 span=23 ccw=1 seg=12 {{{27.3431454f, 38.6568527f}, {25, 36.3137093f}, {25, 33}}} t=0.5 pt=(25.5857868,36.0710678) slope=(-1.17157269,-2.82842636)
+SkOpSpan::sortableTop [1] valid=1 operand=1 span=17 ccw=0 seg=9 {{{41, 33}, {41, 36.3137093f}, {38.6568527f, 38.6568527f}}} t=0.5 pt=(40.4142151,36.0710678) slope=(-1.17157364,2.82842636)
+SkOpSegment::markWinding id=12 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 [23] (27.3431454,38.6568527) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+SkOpSegment::markWinding id=13 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 [25] (25,33) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::markWinding id=14 (27.3431454,27.3431454 29.6862907,25 33,25) t=0 [27] (27.3431454,27.3431454) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::markWinding id=15 (33,25 36.3137093,25 38.6568527,27.3431454) t=0 [29] (33,25) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::markWinding id=16 (38.6568527,27.3431454 41,29.6862907 41,33) t=0 [31] (38.6568527,27.3431454) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::markWinding id=9 (41,33 41,36.3137093 38.6568527,38.6568527) t=0 [17] (41,33) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::markWinding id=10 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 [19] (38.6568527,38.6568527) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::markWinding id=11 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 [21] (33,41) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
+SkOpSegment::markWinding id=12 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 [23] (27.3431454,38.6568527) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+SkOpSegment::activeOp id=9 t=1 tEnd=0 op=union miFrom=0 miTo=0 suFrom=0 suTo=1 result=1
+SkOpSegment::findNextOp simple
+SkOpSegment::markDone id=9 (41,33 41,36.3137093 38.6568527,38.6568527) t=0 [17] (41,33) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeOp current id=9 from=(38.6568527,38.6568527) to=(41,33)
+path.moveTo(38.6568527,38.6568527);
+path.quadTo(41,36.3137093, 41,33);
+SkOpSegment::findNextOp simple
+SkOpSegment::markDone id=16 (38.6568527,27.3431454 41,29.6862907 41,33) t=0 [31] (38.6568527,27.3431454) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeOp current id=16 from=(41,33) to=(38.6568527,27.3431454)
+path.quadTo(41,29.6862907, 38.6568527,27.3431454);
+SkOpSegment::findNextOp simple
+SkOpSegment::markDone id=15 (33,25 36.3137093,25 38.6568527,27.3431454) t=0 [29] (33,25) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeOp current id=15 from=(38.6568527,27.3431454) to=(33,25)
+path.quadTo(36.3137093,25, 33,25);
+SkOpSegment::findNextOp simple
+SkOpSegment::markDone id=14 (27.3431454,27.3431454 29.6862907,25 33,25) t=0 [27] (27.3431454,27.3431454) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeOp current id=14 from=(33,25) to=(27.3431454,27.3431454)
+path.quadTo(29.6862907,25, 27.3431454,27.3431454);
+SkOpSegment::findNextOp simple
+SkOpSegment::markDone id=13 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 [25] (25,33) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeOp current id=13 from=(27.3431454,27.3431454) to=(25,33)
+path.quadTo(25,29.6862907, 25,33);
+SkOpSegment::findNextOp simple
+SkOpSegment::markDone id=12 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 [23] (27.3431454,38.6568527) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeOp current id=12 from=(25,33) to=(27.3431454,38.6568527)
+path.quadTo(25,36.3137093, 27.3431454,38.6568527);
+SkOpSegment::findNextOp simple
+SkOpSegment::markDone id=11 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 [21] (33,41) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeOp current id=11 from=(27.3431454,38.6568527) to=(33,41)
+path.quadTo(29.6862907,41, 33,41);
+SkOpSegment::findNextOp simple
+SkOpSegment::markDone id=10 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 [19] (38.6568527,38.6568527) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
+bridgeOp current id=10 from=(33,41) to=(38.6568527,38.6568527)
+path.quadTo(36.3137093,41, 38.6568527,38.6568527);
 path.close();
 </div>
 
@@ -141,7 +880,8 @@ path.close();
 <script type="text/javascript">
 
 var testDivs = [
-    reduced,
+    fuzz763_4713_b,
+    fuzz763_4713parts,
 ];
 
 var decimal_places = 3; // make this 3 to show more precision