# SPDX-License-Identifier: GPL-2.0+
#
+"""Device tree to platform data class
+
+This supports converting device tree data to C structures definitions and
+static data.
+"""
+
import copy
+import sys
import fdt
import fdt_util
fdt.TYPE_BYTE: 'unsigned char',
fdt.TYPE_STRING: 'const char *',
fdt.TYPE_BOOL: 'bool',
-};
+}
STRUCT_PREFIX = 'dtd_'
VAL_PREFIX = 'dtv_'
-def Conv_name_to_c(name):
+def conv_name_to_c(name):
"""Convert a device-tree name to a C identifier
Args:
Return:
String containing the C version of this name
"""
- str = name.replace('@', '_at_')
- str = str.replace('-', '_')
- str = str.replace(',', '_')
- str = str.replace('.', '_')
- str = str.replace('/', '__')
- return str
-
-def TabTo(num_tabs, str):
- if len(str) >= num_tabs * 8:
- return str + ' '
- return str + '\t' * (num_tabs - len(str) // 8)
-
-class DtbPlatdata:
+ new = name.replace('@', '_at_')
+ new = new.replace('-', '_')
+ new = new.replace(',', '_')
+ new = new.replace('.', '_')
+ new = new.replace('/', '__')
+ return new
+
+def tab_to(num_tabs, line):
+ """Append tabs to a line of text to reach a tab stop.
+
+ Args:
+ num_tabs: Tab stop to obtain (0 = column 0, 1 = column 8, etc.)
+ line: Line of text to append to
+
+ Returns:
+ line with the correct number of tabs appeneded. If the line already
+ extends past that tab stop then a single space is appended.
+ """
+ if len(line) >= num_tabs * 8:
+ return line + ' '
+ return line + '\t' * (num_tabs - len(line) // 8)
+
+class DtbPlatdata(object):
"""Provide a means to convert device tree binary data to platform data
The output of this process is C structures which can be used in space-
code is not affordable.
Properties:
- fdt: Fdt object, referencing the device tree
+ _fdt: Fdt object, referencing the device tree
_dtb_fname: Filename of the input device tree binary file
_valid_nodes: A list of Node object with compatible strings
_options: Command-line options
- _phandle_node: A dict of nodes indexed by phandle number (1, 2...)
+ _phandle_nodes: A dict of nodes indexed by phandle number (1, 2...)
_outfile: The current output file (sys.stdout or a real file)
_lines: Stashed list of output lines for outputting in the future
- _phandle_node: A dict of Nodes indexed by phandle (an integer)
+ _phandle_nodes: A dict of Nodes indexed by phandle (an integer)
"""
def __init__(self, dtb_fname, options):
+ self._fdt = None
self._dtb_fname = dtb_fname
self._valid_nodes = None
self._options = options
- self._phandle_node = {}
+ self._phandle_nodes = {}
self._outfile = None
self._lines = []
self._aliases = {}
- def SetupOutput(self, fname):
+ def setup_output(self, fname):
"""Set up the output destination
- Once this is done, future calls to self.Out() will output to this
+ Once this is done, future calls to self.out() will output to this
file.
Args:
else:
self._outfile = open(fname, 'w')
- def Out(self, str):
+ def out(self, line):
"""Output a string to the output file
Args:
- str: String to output
+ line: String to output
"""
- self._outfile.write(str)
+ self._outfile.write(line)
- def Buf(self, str):
+ def buf(self, line):
"""Buffer up a string to send later
Args:
- str: String to add to our 'buffer' list
+ line: String to add to our 'buffer' list
"""
- self._lines.append(str)
+ self._lines.append(line)
- def GetBuf(self):
+ def get_buf(self):
"""Get the contents of the output buffer, and clear it
Returns:
self._lines = []
return lines
- def GetValue(self, type, value):
+ @staticmethod
+ def get_value(ftype, value):
"""Get a value as a C expression
For integers this returns a byte-swapped (little-endian) hex string
type: Data type (fdt_util)
value: Data value, as a string of bytes
"""
- if type == fdt.TYPE_INT:
+ if ftype == fdt.TYPE_INT:
return '%#x' % fdt_util.fdt32_to_cpu(value)
- elif type == fdt.TYPE_BYTE:
+ elif ftype == fdt.TYPE_BYTE:
return '%#x' % ord(value[0])
- elif type == fdt.TYPE_STRING:
+ elif ftype == fdt.TYPE_STRING:
return '"%s"' % value
- elif type == fdt.TYPE_BOOL:
+ elif ftype == fdt.TYPE_BOOL:
return 'true'
- def GetCompatName(self, node):
+ @staticmethod
+ def get_compat_name(node):
"""Get a node's first compatible string as a C identifier
Args:
"""
compat = node.props['compatible'].value
aliases = []
- if type(compat) == list:
+ if isinstance(compat, list):
compat, aliases = compat[0], compat[1:]
- return Conv_name_to_c(compat), [Conv_name_to_c(a) for a in aliases]
+ return conv_name_to_c(compat), [conv_name_to_c(a) for a in aliases]
- def ScanDtb(self):
+ def scan_dtb(self):
"""Scan the device tree to obtain a tree of notes and properties
- Once this is done, self.fdt.GetRoot() can be called to obtain the
+ Once this is done, self._fdt.GetRoot() can be called to obtain the
device tree root node, and progress from there.
"""
- self.fdt = fdt.FdtScan(self._dtb_fname)
+ self._fdt = fdt.FdtScan(self._dtb_fname)
+
+ def scan_node(self, root):
+ """Scan a node and subnodes to build a tree of node and phandle info
+
+ This adds each node to self._valid_nodes and each phandle to
+ self._phandle_nodes.
- def ScanNode(self, root):
+ Args:
+ root: Root node for scan
+ """
for node in root.subnodes:
if 'compatible' in node.props:
status = node.props.get('status')
if (not self._options.include_disabled and not status or
- status.value != 'disabled'):
+ status.value != 'disabled'):
self._valid_nodes.append(node)
phandle_prop = node.props.get('phandle')
if phandle_prop:
phandle = phandle_prop.GetPhandle()
- self._phandle_node[phandle] = node
+ self._phandle_nodes[phandle] = node
# recurse to handle any subnodes
- self.ScanNode(node);
+ self.scan_node(node)
- def ScanTree(self):
+ def scan_tree(self):
"""Scan the device tree for useful information
This fills in the following properties:
- _phandle_node: A dict of Nodes indexed by phandle (an integer)
+ _phandle_nodes: A dict of Nodes indexed by phandle (an integer)
_valid_nodes: A list of nodes we wish to consider include in the
platform data
"""
- self._phandle_node = {}
+ self._phandle_nodes = {}
self._valid_nodes = []
- return self.ScanNode(self.fdt.GetRoot());
-
- for node in self.fdt.GetRoot().subnodes:
- if 'compatible' in node.props:
- status = node.props.get('status')
- if (not self._options.include_disabled and not status or
- status.value != 'disabled'):
- node_list.append(node)
- phandle_prop = node.props.get('phandle')
- if phandle_prop:
- phandle = phandle_prop.GetPhandle()
- self._phandle_node[phandle] = node
-
- self._valid_nodes = node_list
+ return self.scan_node(self._fdt.GetRoot())
- def IsPhandle(self, prop):
+ @staticmethod
+ def is_phandle(prop):
"""Check if a node contains phandles
We have no reliable way of detecting whether a node uses a phandle
return True
return False
- def ScanStructs(self):
+ def scan_structs(self):
"""Scan the device tree building up the C structures we will use.
Build a dict keyed by C struct name containing a dict of Prop
"""
structs = {}
for node in self._valid_nodes:
- node_name, _ = self.GetCompatName(node)
+ node_name, _ = self.get_compat_name(node)
fields = {}
# Get a list of all the valid properties in this node.
upto = 0
for node in self._valid_nodes:
- node_name, _ = self.GetCompatName(node)
+ node_name, _ = self.get_compat_name(node)
struct = structs[node_name]
for name, prop in node.props.items():
if name not in PROP_IGNORE_LIST and name[0] != '#':
prop.Widen(struct[name])
upto += 1
- struct_name, aliases = self.GetCompatName(node)
+ struct_name, aliases = self.get_compat_name(node)
for alias in aliases:
self._aliases[alias] = struct_name
return structs
- def ScanPhandles(self):
+ def scan_phandles(self):
"""Figure out what phandles each node uses
We need to be careful when outputing nodes that use phandles since
for pname, prop in node.props.items():
if pname in PROP_IGNORE_LIST or pname[0] == '#':
continue
- if type(prop.value) == list:
- if self.IsPhandle(prop):
+ if isinstance(prop.value, list):
+ if self.is_phandle(prop):
# Process the list as pairs of (phandle, id)
- it = iter(prop.value)
- for phandle_cell, id_cell in zip(it, it):
+ value_it = iter(prop.value)
+ for phandle_cell, _ in zip(value_it, value_it):
phandle = fdt_util.fdt32_to_cpu(phandle_cell)
- id = fdt_util.fdt32_to_cpu(id_cell)
- target_node = self._phandle_node[phandle]
+ target_node = self._phandle_nodes[phandle]
node.phandles.add(target_node)
- def GenerateStructs(self, structs):
+ def generate_structs(self, structs):
"""Generate struct defintions for the platform data
This writes out the body of a header file consisting of structure
definitions for node in self._valid_nodes. See the documentation in
README.of-plat for more information.
"""
- self.Out('#include <stdbool.h>\n')
- self.Out('#include <libfdt.h>\n')
+ self.out('#include <stdbool.h>\n')
+ self.out('#include <libfdt.h>\n')
# Output the struct definition
for name in sorted(structs):
- self.Out('struct %s%s {\n' % (STRUCT_PREFIX, name));
+ self.out('struct %s%s {\n' % (STRUCT_PREFIX, name))
for pname in sorted(structs[name]):
prop = structs[name][pname]
- if self.IsPhandle(prop):
+ if self.is_phandle(prop):
# For phandles, include a reference to the target
- self.Out('\t%s%s[%d]' % (TabTo(2, 'struct phandle_2_cell'),
- Conv_name_to_c(prop.name),
+ self.out('\t%s%s[%d]' % (tab_to(2, 'struct phandle_2_cell'),
+ conv_name_to_c(prop.name),
len(prop.value) / 2))
else:
ptype = TYPE_NAMES[prop.type]
- self.Out('\t%s%s' % (TabTo(2, ptype),
- Conv_name_to_c(prop.name)))
- if type(prop.value) == list:
- self.Out('[%d]' % len(prop.value))
- self.Out(';\n')
- self.Out('};\n')
+ self.out('\t%s%s' % (tab_to(2, ptype),
+ conv_name_to_c(prop.name)))
+ if isinstance(prop.value, list):
+ self.out('[%d]' % len(prop.value))
+ self.out(';\n')
+ self.out('};\n')
for alias, struct_name in self._aliases.iteritems():
- self.Out('#define %s%s %s%s\n'% (STRUCT_PREFIX, alias,
+ self.out('#define %s%s %s%s\n'% (STRUCT_PREFIX, alias,
STRUCT_PREFIX, struct_name))
- def OutputNode(self, node):
+ def output_node(self, node):
"""Output the C code for a node
Args:
node: node to output
"""
- struct_name, _ = self.GetCompatName(node)
- var_name = Conv_name_to_c(node.name)
- self.Buf('static struct %s%s %s%s = {\n' %
- (STRUCT_PREFIX, struct_name, VAL_PREFIX, var_name))
+ struct_name, _ = self.get_compat_name(node)
+ var_name = conv_name_to_c(node.name)
+ self.buf('static struct %s%s %s%s = {\n' %
+ (STRUCT_PREFIX, struct_name, VAL_PREFIX, var_name))
for pname, prop in node.props.items():
if pname in PROP_IGNORE_LIST or pname[0] == '#':
continue
- ptype = TYPE_NAMES[prop.type]
- member_name = Conv_name_to_c(prop.name)
- self.Buf('\t%s= ' % TabTo(3, '.' + member_name))
+ member_name = conv_name_to_c(prop.name)
+ self.buf('\t%s= ' % tab_to(3, '.' + member_name))
# Special handling for lists
- if type(prop.value) == list:
- self.Buf('{')
+ if isinstance(prop.value, list):
+ self.buf('{')
vals = []
# For phandles, output a reference to the platform data
# of the target node.
- if self.IsPhandle(prop):
+ if self.is_phandle(prop):
# Process the list as pairs of (phandle, id)
- it = iter(prop.value)
- for phandle_cell, id_cell in zip(it, it):
+ value_it = iter(prop.value)
+ for phandle_cell, id_cell in zip(value_it, value_it):
phandle = fdt_util.fdt32_to_cpu(phandle_cell)
- id = fdt_util.fdt32_to_cpu(id_cell)
- target_node = self._phandle_node[phandle]
- name = Conv_name_to_c(target_node.name)
- vals.append('{&%s%s, %d}' % (VAL_PREFIX, name, id))
+ id_num = fdt_util.fdt32_to_cpu(id_cell)
+ target_node = self._phandle_nodes[phandle]
+ name = conv_name_to_c(target_node.name)
+ vals.append('{&%s%s, %d}' % (VAL_PREFIX, name, id_num))
else:
for val in prop.value:
- vals.append(self.GetValue(prop.type, val))
- self.Buf(', '.join(vals))
- self.Buf('}')
+ vals.append(self.get_value(prop.type, val))
+ self.buf(', '.join(vals))
+ self.buf('}')
else:
- self.Buf(self.GetValue(prop.type, prop.value))
- self.Buf(',\n')
- self.Buf('};\n')
+ self.buf(self.get_value(prop.type, prop.value))
+ self.buf(',\n')
+ self.buf('};\n')
# Add a device declaration
- self.Buf('U_BOOT_DEVICE(%s) = {\n' % var_name)
- self.Buf('\t.name\t\t= "%s",\n' % struct_name)
- self.Buf('\t.platdata\t= &%s%s,\n' % (VAL_PREFIX, var_name))
- self.Buf('\t.platdata_size\t= sizeof(%s%s),\n' %
- (VAL_PREFIX, var_name))
- self.Buf('};\n')
- self.Buf('\n')
+ self.buf('U_BOOT_DEVICE(%s) = {\n' % var_name)
+ self.buf('\t.name\t\t= "%s",\n' % struct_name)
+ self.buf('\t.platdata\t= &%s%s,\n' % (VAL_PREFIX, var_name))
+ self.buf('\t.platdata_size\t= sizeof(%s%s),\n' % (VAL_PREFIX, var_name))
+ self.buf('};\n')
+ self.buf('\n')
- self.Out(''.join(self.GetBuf()))
+ self.out(''.join(self.get_buf()))
- def GenerateTables(self):
+ def generate_tables(self):
"""Generate device defintions for the platform data
This writes out C platform data initialisation data and
See the documentation in doc/driver-model/of-plat.txt for more
information.
"""
- self.Out('#include <common.h>\n')
- self.Out('#include <dm.h>\n')
- self.Out('#include <dt-structs.h>\n')
- self.Out('\n')
+ self.out('#include <common.h>\n')
+ self.out('#include <dm.h>\n')
+ self.out('#include <dt-structs.h>\n')
+ self.out('\n')
nodes_to_output = list(self._valid_nodes)
# Keep outputing nodes until there is none left
# Output all the node's dependencies first
for req_node in node.phandles:
if req_node in nodes_to_output:
- self.OutputNode(req_node)
+ self.output_node(req_node)
nodes_to_output.remove(req_node)
- self.OutputNode(node)
+ self.output_node(node)
nodes_to_output.remove(node)