virtual ~ValueHandler() = default;
+ /// Returns true if the handler is dealing with formal arguments,
+ /// not with return values etc.
+ virtual bool isArgumentHandler() const { return false; }
+
/// Materialize a VReg containing the address of the specified
/// stack-based object. This is either based on a FrameIndex or
/// direct SP manipulation, depending on the context. \p MPO
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
+#define DEBUG_TYPE "call-lowering"
+
using namespace llvm;
void CallLowering::anchor() {}
unsigned NumArgs = Args.size();
for (unsigned i = 0; i != NumArgs; ++i) {
MVT CurVT = MVT::getVT(Args[i].Ty);
- if (Handler.assignArg(i, CurVT, CurVT, CCValAssign::Full, Args[i], CCInfo))
- return false;
+ if (Handler.assignArg(i, CurVT, CurVT, CCValAssign::Full, Args[i], CCInfo)) {
+ // Try to use the register type if we couldn't assign the VT.
+ if (!Handler.isArgumentHandler())
+ return false;
+ CurVT = TLI->getRegisterTypeForCallingConv(
+ F.getContext(), F.getCallingConv(), EVT(CurVT));
+ if (Handler.assignArg(i, CurVT, CurVT, CCValAssign::Full, Args[i], CCInfo))
+ return false;
+ }
}
for (unsigned i = 0, e = Args.size(), j = 0; i != e; ++i, ++j) {
continue;
}
- if (VA.isRegLoc())
- Handler.assignValueToReg(Args[i].Reg, VA.getLocReg(), VA);
- else if (VA.isMemLoc()) {
- unsigned Size = VA.getValVT() == MVT::iPTR
- ? DL.getPointerSize()
- : alignTo(VA.getValVT().getSizeInBits(), 8) / 8;
+ if (VA.isRegLoc()) {
+ MVT OrigVT = MVT::getVT(Args[i].Ty);
+ MVT VAVT = VA.getValVT();
+ if (Handler.isArgumentHandler() && VAVT != OrigVT) {
+ if (VAVT.getSizeInBits() < OrigVT.getSizeInBits())
+ return false; // Can't handle this type of arg yet.
+ const LLT VATy(VAVT);
+ unsigned NewReg =
+ MIRBuilder.getMRI()->createGenericVirtualRegister(VATy);
+ Handler.assignValueToReg(NewReg, VA.getLocReg(), VA);
+ // If it's a vector type, we either need to truncate the elements
+ // or do an unmerge to get the lower block of elements.
+ if (VATy.isVector() &&
+ VATy.getNumElements() > OrigVT.getVectorNumElements()) {
+ const LLT OrigTy(OrigVT);
+ // Just handle the case where the VA type is 2 * original type.
+ if (VATy.getNumElements() != OrigVT.getVectorNumElements() * 2) {
+ LLVM_DEBUG(dbgs()
+ << "Incoming promoted vector arg has too many elts");
+ return false;
+ }
+ auto Unmerge = MIRBuilder.buildUnmerge({OrigTy, OrigTy}, {NewReg});
+ MIRBuilder.buildCopy(Args[i].Reg, Unmerge.getReg(0));
+ } else {
+ MIRBuilder.buildTrunc(Args[i].Reg, {NewReg}).getReg(0);
+ }
+ } else {
+ Handler.assignValueToReg(Args[i].Reg, VA.getLocReg(), VA);
+ }
+ } else if (VA.isMemLoc()) {
+ MVT VT = MVT::getVT(Args[i].Ty);
+ unsigned Size = VT == MVT::iPTR ? DL.getPointerSize()
+ : alignTo(VT.getSizeInBits(), 8) / 8;
unsigned Offset = VA.getLocMemOffset();
MachinePointerInfo MPO;
unsigned StackAddr = Handler.getStackAddress(Size, Offset, MPO);
unsigned CallLowering::ValueHandler::extendRegister(unsigned ValReg,
CCValAssign &VA) {
LLT LocTy{VA.getLocVT()};
+ if (LocTy.getSizeInBits() == MRI.getType(ValReg).getSizeInBits())
+ return ValReg;
switch (VA.getLocInfo()) {
default: break;
case CCValAssign::Full:
#include <cstdint>
#include <iterator>
+#define DEBUG_TYPE "aarch64-call-lowering"
+
using namespace llvm;
AArch64CallLowering::AArch64CallLowering(const AArch64TargetLowering &TLI)
/// (it's an implicit-def of the BL).
virtual void markPhysRegUsed(unsigned PhysReg) = 0;
+ bool isArgumentHandler() const override { return true; }
+
uint64_t StackUsed;
};
"For each split Type there should be exactly one VReg.");
SmallVector<ArgInfo, 8> SplitArgs;
+ CallingConv::ID CC = F.getCallingConv();
+
for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
- // We zero-extend i1s to i8.
- unsigned CurVReg = VRegs[i];
- if (MRI.getType(VRegs[i]).getSizeInBits() == 1) {
- CurVReg = MIRBuilder.buildZExt(LLT::scalar(8), CurVReg)
- ->getOperand(0)
- .getReg();
+ if (TLI.getNumRegistersForCallingConv(Ctx, CC, SplitEVTs[i]) > 1) {
+ LLVM_DEBUG(dbgs() << "Can't handle extended arg types which need split");
+ return false;
}
+ unsigned CurVReg = VRegs[i];
ArgInfo CurArgInfo = ArgInfo{CurVReg, SplitEVTs[i].getTypeForEVT(Ctx)};
setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
- splitToValueTypes(CurArgInfo, SplitArgs, DL, MRI, F.getCallingConv(),
+
+ // i1 is a special case because SDAG i1 true is naturally zero extended
+ // when widened using ANYEXT. We need to do it explicitly here.
+ if (MRI.getType(CurVReg).getSizeInBits() == 1) {
+ CurVReg = MIRBuilder.buildZExt(LLT::scalar(8), CurVReg).getReg(0);
+ } else {
+ // Some types will need extending as specified by the CC.
+ MVT NewVT = TLI.getRegisterTypeForCallingConv(Ctx, CC, SplitEVTs[i]);
+ if (EVT(NewVT) != SplitEVTs[i]) {
+ unsigned ExtendOp = TargetOpcode::G_ANYEXT;
+ if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
+ Attribute::SExt))
+ ExtendOp = TargetOpcode::G_SEXT;
+ else if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
+ Attribute::ZExt))
+ ExtendOp = TargetOpcode::G_ZEXT;
+
+ LLT NewLLT(NewVT);
+ LLT OldLLT(MVT::getVT(CurArgInfo.Ty));
+ CurArgInfo.Ty = EVT(NewVT).getTypeForEVT(Ctx);
+ // Instead of an extend, we might have a vector type which needs
+ // padding with more elements, e.g. <2 x half> -> <4 x half>
+ if (NewVT.isVector() &&
+ NewLLT.getNumElements() > OldLLT.getNumElements()) {
+ // We don't handle VA types which are not exactly twice the size,
+ // but can easily be done in future.
+ if (NewLLT.getNumElements() != OldLLT.getNumElements() * 2) {
+ LLVM_DEBUG(dbgs() << "Outgoing vector ret has too many elts");
+ return false;
+ }
+ auto Undef = MIRBuilder.buildUndef({OldLLT});
+ CurVReg =
+ MIRBuilder.buildMerge({NewLLT}, {CurVReg, Undef.getReg(0)})
+ .getReg(0);
+ } else {
+ CurVReg =
+ MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg}).getReg(0);
+ }
+ }
+ }
+ if (CurVReg != CurArgInfo.Reg) {
+ CurArgInfo.Reg = CurVReg;
+ // Reset the arg flags after modifying CurVReg.
+ setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
+ }
+ splitToValueTypes(CurArgInfo, SplitArgs, DL, MRI, CC,
[&](unsigned Reg, uint64_t Offset) {
MIRBuilder.buildExtract(Reg, CurVReg, Offset);
});
CCAssignFn AssignFn)
: ValueHandler(MIRBuilder, MRI, AssignFn) {}
+ bool isArgumentHandler() const override { return true; }
+
unsigned getStackAddress(uint64_t Size, int64_t Offset,
MachinePointerInfo &MPO) override {
assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) &&
: ValueHandler(MIRBuilder, MRI, AssignFn),
DL(MIRBuilder.getMF().getDataLayout()) {}
+ bool isArgumentHandler() const override { return true; }
+
unsigned getStackAddress(uint64_t Size, int64_t Offset,
MachinePointerInfo &MPO) override {
auto &MFI = MIRBuilder.getMF().getFrameInfo();
--- /dev/null
+; NOTE: Assertions have been autogenerated by utils/update_mir_test_checks.py
+; RUN: llc -mtriple=aarch64-linux-gnu -O0 -global-isel -stop-after=irtranslator -o - %s | FileCheck %s
+
+; Tests vectors of i1 types can appropriately extended first before return handles it.
+define <4 x i1> @ret_v4i1(<4 x i1> *%v) {
+ ; CHECK-LABEL: name: ret_v4i1
+ ; CHECK: bb.1 (%ir-block.0):
+ ; CHECK: liveins: $x0
+ ; CHECK: [[COPY:%[0-9]+]]:_(p0) = COPY $x0
+ ; CHECK: [[LOAD:%[0-9]+]]:_(<4 x s1>) = G_LOAD [[COPY]](p0) :: (load 1 from %ir.v, align 4)
+ ; CHECK: [[ANYEXT:%[0-9]+]]:_(<4 x s16>) = G_ANYEXT [[LOAD]](<4 x s1>)
+ ; CHECK: $d0 = COPY [[ANYEXT]](<4 x s16>)
+ ; CHECK: RET_ReallyLR implicit $d0
+ %v2 = load <4 x i1>, <4 x i1> *%v
+ ret <4 x i1> %v2
+}
--- /dev/null
+; NOTE: Assertions have been autogenerated by utils/update_mir_test_checks.py
+; RUN: llc -mtriple=aarch64-linux-gnu -O0 -stop-after=irtranslator -verify-machineinstrs -o - %s | FileCheck %s
+
+define <2 x half> @f16_vec_param(<2 x half> %v) {
+ ; CHECK-LABEL: name: f16_vec_param
+ ; CHECK: bb.1 (%ir-block.0):
+ ; CHECK: liveins: $d0
+ ; CHECK: [[COPY:%[0-9]+]]:_(<4 x s16>) = COPY $d0
+ ; CHECK: [[UV:%[0-9]+]]:_(<2 x s16>), [[UV1:%[0-9]+]]:_(<2 x s16>) = G_UNMERGE_VALUES [[COPY]](<4 x s16>)
+ ; CHECK: [[COPY1:%[0-9]+]]:_(<2 x s16>) = COPY [[UV]](<2 x s16>)
+ ; CHECK: [[DEF:%[0-9]+]]:_(<2 x s16>) = G_IMPLICIT_DEF
+ ; CHECK: [[CONCAT_VECTORS:%[0-9]+]]:_(<4 x s16>) = G_CONCAT_VECTORS [[COPY1]](<2 x s16>), [[DEF]](<2 x s16>)
+ ; CHECK: $d0 = COPY [[CONCAT_VECTORS]](<4 x s16>)
+ ; CHECK: RET_ReallyLR implicit $d0
+ ret <2 x half> %v
+}
+
+define <2 x i16> @i16_vec_param(<2 x i16> %v) {
+ ; CHECK-LABEL: name: i16_vec_param
+ ; CHECK: bb.1 (%ir-block.0):
+ ; CHECK: liveins: $d0
+ ; CHECK: [[COPY:%[0-9]+]]:_(<2 x s32>) = COPY $d0
+ ; CHECK: [[TRUNC:%[0-9]+]]:_(<2 x s16>) = G_TRUNC [[COPY]](<2 x s32>)
+ ; CHECK: [[ANYEXT:%[0-9]+]]:_(<2 x s32>) = G_ANYEXT [[TRUNC]](<2 x s16>)
+ ; CHECK: $d0 = COPY [[ANYEXT]](<2 x s32>)
+ ; CHECK: RET_ReallyLR implicit $d0
+ ret <2 x i16> %v
+}
}
define half @test_half(half %a, half %b) {
-; CHECK: remark: {{.*}} unable to lower arguments: half (half, half)* (in function: test_half)
+; CHECK: remark: {{.*}} unable to translate instruction: ret: ' ret half %res' (in function: test_half)
; CHECK-LABEL: warning: Instruction selection used fallback path for test_half
%res = fadd half %a, %b
ret half %res