#include "SkTemplates.h"
#include "SkVarAlloc.h"
-// SkRecord (REC-ord) represents a sequence of SkCanvas calls, saved for future use.
+// SkRecord represents a sequence of SkCanvas calls, saved for future use.
// These future uses may include: replay, optimization, serialization, or combinations of those.
//
// Though an enterprising user may find calling alloc(), append(), visit(), and mutate() enough to
class SkRecord : public SkNVRefCnt<SkRecord> {
enum {
- kFirstReserveCount = 64 / sizeof(void*),
+ // TODO: tune these two constants.
+ kInlineRecords = 4, // Ideally our lower limit on recorded ops per picture.
+ kInlineAllocLgBytes = 8, // 1<<8 == 256 bytes inline, then SkVarAlloc starting at 512 bytes.
};
public:
- SkRecord() : fCount(0), fReserved(0), fAlloc(8/*start block sizes at 256 bytes*/) {}
+ SkRecord()
+ : fCount(0)
+ , fReserved(kInlineRecords)
+ , fAlloc(kInlineAllocLgBytes+1, // First malloc'd block is 2x as large as fInlineAlloc.
+ fInlineAlloc, sizeof(fInlineAlloc)) {}
~SkRecord();
// Returns the number of canvas commands in this SkRecord.
template <typename R, typename F>
R visit(unsigned i, F& f) const {
SkASSERT(i < this->count());
- return fRecords[i].visit<R>(fTypes[i], f);
+ return fRecords[i].visit<R>(f);
}
// Mutate the i-th canvas command with a functor matching this interface:
template <typename R, typename F>
R mutate(unsigned i, F& f) {
SkASSERT(i < this->count());
- return fRecords[i].mutate<R>(fTypes[i], f);
+ return fRecords[i].mutate<R>(f);
}
- // TODO: It'd be nice to infer R from F for visit and mutate if we ever get std::result_of.
+
+ // TODO: It'd be nice to infer R from F for visit and mutate.
// Allocate contiguous space for count Ts, to be freed when the SkRecord is destroyed.
// Here T can be any class, not just those from SkRecords. Throws on failure.
template <typename T>
T* alloc(size_t count = 1) {
- // Bump up to the next pointer width if needed, so all allocations start pointer-aligned.
return (T*)fAlloc.alloc(sizeof(T) * count, SK_MALLOC_THROW);
}
if (fCount == fReserved) {
this->grow();
}
- fTypes[fCount] = T::kType;
return fRecords[fCount++].set(this->allocCommand<T>());
}
Destroyer destroyer;
this->mutate<void>(i, destroyer);
- fTypes[i] = T::kType;
return fRecords[i].set(this->allocCommand<T>());
}
T* replace(unsigned i, const SkRecords::Adopted<Existing>& proofOfAdoption) {
SkASSERT(i < this->count());
- SkASSERT(Existing::kType == fTypes[i]);
- SkASSERT(proofOfAdoption == fRecords[i].ptr<Existing>());
+ SkASSERT(Existing::kType == fRecords[i].type());
+ SkASSERT(proofOfAdoption == fRecords[i].ptr());
- fTypes[i] = T::kType;
return fRecords[i].set(this->allocCommand<T>());
}
size_t bytesUsed() const;
private:
- // Implementation notes!
- //
- // Logically an SkRecord is structured as an array of pointers into a big chunk of memory where
+ // An SkRecord is structured as an array of pointers into a big chunk of memory where
// records representing each canvas draw call are stored:
//
// fRecords: [*][*][*]...
// v v v
// fAlloc: [SkRecords::DrawRect][SkRecords::DrawPosTextH][SkRecords::DrawRect]...
//
- // In the scheme above, the pointers in fRecords are void*: they have no type. The type is not
- // stored in fAlloc either; we just write raw data there. But we need that type information.
- // Here are some options:
- // 1) use inheritance, virtuals, and vtables to make the fRecords pointers smarter
- // 2) store the type data manually in fAlloc at the start of each record
- // 3) store the type data manually somewhere with fRecords
- //
- // This code uses approach 3). The implementation feels very similar to 1), but it's
- // devirtualized instead of using the language's polymorphism mechanisms. This lets us work
- // with the types themselves (as SkRecords::Type), a sort of limited free RTTI; it lets us pay
- // only 1 byte to store the type instead of a full pointer (4-8 bytes); and it leads to better
- // decoupling between the SkRecords::* record types and the operations performed on them in
- // visit() or mutate(). The recorded canvas calls don't have to have any idea about the
- // operations performed on them.
- //
- // We store the types in a parallel fTypes array, mainly so that they can be tightly packed as
- // single bytes. This has the side effect of allowing very fast analysis passes over an
- // SkRecord looking for just patterns of draw commands (or using this as a quick reject
- // mechanism) though there's admittedly not a very good API exposed publically for this.
- //
- // The cost to append a T into this structure is 1 + sizeof(void*) + sizeof(T).
+ // We store the types of each of the pointers alongside the pointer.
+ // The cost to append a T to this structure is 8 + sizeof(T) bytes.
// A mutator that can be used with replace to destroy canvas commands.
struct Destroyer {
void operator()(T* record) { record->~T(); }
};
- // Logically the same as SkRecords::Type, but packed into 8 bits.
- struct Type8 {
- public:
- // This intentionally converts implicitly back and forth.
- Type8(SkRecords::Type type) : fType(type) { SkASSERT(*this == type); }
- operator SkRecords::Type () { return (SkRecords::Type)fType; }
-
- private:
- uint8_t fType;
- };
-
- // No point in allocating any more than one of an empty struct.
- // We could just return NULL but it's sort of confusing to return NULL on success.
template <typename T>
SK_WHEN(SkTIsEmpty<T>, T*) allocCommand() {
static T singleton = {};
template <typename T>
SK_WHEN(!SkTIsEmpty<T>, T*) allocCommand() { return this->alloc<T>(); }
- // Called when we've run out of room to record new commands.
void grow();
- // An untyped pointer to some bytes in fAlloc. This is the interface for polymorphic dispatch:
- // visit() and mutate() work with the parallel fTypes array to do the work of a vtable.
+ // A typed pointer to some bytes in fAlloc. visit() and mutate() allow polymorphic dispatch.
struct Record {
- public:
+ // On 32-bit machines we store type in 4 bytes, followed by a pointer. Simple.
+ // On 64-bit machines we store a pointer with the type slotted into two top (unused) bytes.
+ // FWIW, SkRecords::Type is tiny. It can easily fit in one byte.
+ uint64_t fTypeAndPtr;
+ static const int kTypeShift = sizeof(void*) == 4 ? 32 : 48;
+
// Point this record to its data in fAlloc. Returns ptr for convenience.
template <typename T>
T* set(T* ptr) {
- fPtr = ptr;
+ fTypeAndPtr = ((uint64_t)T::kType) << kTypeShift | (uintptr_t)ptr;
+ SkASSERT(this->ptr() == ptr && this->type() == T::kType);
return ptr;
}
- // Get the data in fAlloc, assuming it's of type T.
- template <typename T>
- T* ptr() const { return (T*)fPtr; }
+ SkRecords::Type type() const { return (SkRecords::Type)(fTypeAndPtr >> kTypeShift); }
+ void* ptr() const { return (void*)(fTypeAndPtr & ((1ull<<kTypeShift)-1)); }
- // Visit this record with functor F (see public API above) assuming the record we're
- // pointing to has this type.
+ // Visit this record with functor F (see public API above).
template <typename R, typename F>
- R visit(Type8 type, F& f) const {
- #define CASE(T) case SkRecords::T##_Type: return f(*this->ptr<SkRecords::T>());
- switch(type) { SK_RECORD_TYPES(CASE) }
+ R visit(F& f) const {
+ #define CASE(T) case SkRecords::T##_Type: return f(*(const SkRecords::T*)this->ptr());
+ switch(this->type()) { SK_RECORD_TYPES(CASE) }
#undef CASE
SkDEBUGFAIL("Unreachable");
return R();
}
- // Mutate this record with functor F (see public API above) assuming the record we're
- // pointing to has this type.
+ // Mutate this record with functor F (see public API above).
template <typename R, typename F>
- R mutate(Type8 type, F& f) {
- #define CASE(T) case SkRecords::T##_Type: return f(this->ptr<SkRecords::T>());
- switch(type) { SK_RECORD_TYPES(CASE) }
+ R mutate(F& f) {
+ #define CASE(T) case SkRecords::T##_Type: return f((SkRecords::T*)this->ptr());
+ switch(this->type()) { SK_RECORD_TYPES(CASE) }
#undef CASE
SkDEBUGFAIL("Unreachable");
return R();
}
-
- private:
- void* fPtr;
};
+ // fRecords needs to be a data structure that can append fixed length data, and need to
+ // support efficient random access and forward iteration. (It doesn't need to be contiguous.)
+ unsigned fCount, fReserved;
+ SkAutoSTMalloc<kInlineRecords, Record> fRecords;
+
// fAlloc needs to be a data structure which can append variable length data in contiguous
// chunks, returning a stable handle to that data for later retrieval.
- //
- // fRecords and fTypes need to be data structures that can append fixed length data, and need to
- // support efficient random access and forward iteration. (They don't need to be contiguous.)
-
- // fCount and fReserved measure both fRecords and fTypes, which always grow in lock step.
- unsigned fCount;
- unsigned fReserved;
- SkAutoTMalloc<Record> fRecords;
- SkAutoTMalloc<Type8> fTypes;
SkVarAlloc fAlloc;
- // Strangely the order of these fields matters. If the unsigneds don't go first we're 56 bytes.
- // tomhudson and mtklein have no idea why.
+ char fInlineAlloc[1 << kInlineAllocLgBytes];
};
-SK_COMPILE_ASSERT(sizeof(SkRecord) <= 56, SkRecordSize);
#endif//SkRecord_DEFINED