#include "solib-svr4.h"
+#include "elf-bfd.h"
+/* sh64 flags */
+#include "elf/sh.h"
+/* registers numbers shared with the simulator */
+#include "gdb/sim-sh64.h"
+
+#undef XMALLOC
+#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
+
void (*sh_show_regs) (void);
CORE_ADDR (*skip_prologue_hard_way) (CORE_ADDR);
void (*do_pseudo_register) (int);
return register_names[reg_nr];
}
+static char *
+sh_sh64_register_name (int reg_nr)
+{
+ static char *register_names[] =
+ {
+ /* SH MEDIA MODE (ISA 32) */
+ /* general registers (64-bit) 0-63 */
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
+ "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
+ "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
+ "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
+ "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
+ "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
+ "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
+
+ /* pc (64-bit) 64 */
+ "pc",
+
+ /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
+ "sr", "ssr", "spc",
+
+ /* target registers (64-bit) 68-75*/
+ "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
+
+ /* floating point state control register (32-bit) 76 */
+ "fpscr",
+
+ /* single precision floating point registers (32-bit) 77-140*/
+ "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
+ "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
+ "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
+ "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
+ "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
+ "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
+ "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
+ "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
+
+ /* double precision registers (pseudo) 141-172 */
+ "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
+ "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
+ "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
+ "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
+
+ /* floating point pairs (pseudo) 173-204*/
+ "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
+ "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
+ "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
+ "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
+
+ /* floating point vectors (4 floating point regs) (pseudo) 205-220*/
+ "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
+ "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
+
+ /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272*/
+ "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
+ "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
+ "pc_c",
+ "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
+ "fpscr_c", "fpul_c",
+ "fr0_c", "fr1_c", "fr2_c", "fr3_c", "fr4_c", "fr5_c", "fr6_c", "fr7_c",
+ "fr8_c", "fr9_c", "fr10_c", "fr11_c", "fr12_c", "fr13_c", "fr14_c", "fr15_c",
+ "dr0_c", "dr2_c", "dr4_c", "dr6_c", "dr8_c", "dr10_c", "dr12_c", "dr14_c",
+ "fv0_c", "fv4_c", "fv8_c", "fv12_c",
+ /* FIXME!!!! XF0 XF15, XD0 XD14 ?????*/
+ };
+
+ if (reg_nr < 0)
+ return NULL;
+ if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
+ return NULL;
+ return register_names[reg_nr];
+}
+
+#define NUM_PSEUDO_REGS_SH_MEDIA 80
+#define NUM_PSEUDO_REGS_SH_COMPACT 51
+
static const unsigned char *
sh_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
return breakpoint;
}
+/* Macros and functions for setting and testing a bit in a minimal
+ symbol that marks it as 32-bit function. The MSB of the minimal
+ symbol's "info" field is used for this purpose. This field is
+ already being used to store the symbol size, so the assumption is
+ that the symbol size cannot exceed 2^31.
+
+ ELF_MAKE_MSYMBOL_SPECIAL
+ tests whether an ELF symbol is "special", i.e. refers
+ to a 32-bit function, and sets a "special" bit in a
+ minimal symbol to mark it as a 32-bit function
+ MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
+ MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
+ the "info" field with the "special" bit masked out */
+
+#define MSYMBOL_IS_SPECIAL(msym) \
+ (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
+
+void
+sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
+{
+ if (msym == NULL)
+ return;
+
+ if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
+ {
+ MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000);
+ SYMBOL_VALUE_ADDRESS (msym) |= 1;
+ }
+}
+
+/* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
+ are some macros to test, set, or clear bit 0 of addresses. */
+#define IS_ISA32_ADDR(addr) ((addr) & 1)
+#define MAKE_ISA32_ADDR(addr) ((addr) | 1)
+#define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
+
+static int
+pc_is_isa32 (bfd_vma memaddr)
+{
+ struct minimal_symbol *sym;
+
+ /* If bit 0 of the address is set, assume this is a
+ ISA32 (shmedia) address. */
+ if (IS_ISA32_ADDR (memaddr))
+ return 1;
+
+ /* A flag indicating that this is a ISA32 function is stored by elfread.c in
+ the high bit of the info field. Use this to decide if the function is
+ ISA16 or ISA32. */
+ sym = lookup_minimal_symbol_by_pc (memaddr);
+ if (sym)
+ return MSYMBOL_IS_SPECIAL (sym);
+ else
+ return 0;
+}
+
+static const unsigned char *
+sh_sh64_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
+{
+ /* The BRK instruction for shmedia is
+ 01101111 11110101 11111111 11110000
+ which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
+ and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
+
+ /* The BRK instruction for shcompact is
+ 00000000 00111011
+ which translates in big endian mode to 0x0, 0x3b
+ and in little endian mode to 0x3b, 0x0*/
+
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ {
+ if (pc_is_isa32 (*pcptr))
+ {
+ static unsigned char big_breakpoint_media[] = {0x6f, 0xf5, 0xff, 0xf0};
+ *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
+ *lenptr = sizeof (big_breakpoint_media);
+ return big_breakpoint_media;
+ }
+ else
+ {
+ static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
+ *lenptr = sizeof (big_breakpoint_compact);
+ return big_breakpoint_compact;
+ }
+ }
+ else
+ {
+ if (pc_is_isa32 (*pcptr))
+ {
+ static unsigned char little_breakpoint_media[] = {0xf0, 0xff, 0xf5, 0x6f};
+ *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
+ *lenptr = sizeof (little_breakpoint_media);
+ return little_breakpoint_media;
+ }
+ else
+ {
+ static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
+ *lenptr = sizeof (little_breakpoint_compact);
+ return little_breakpoint_compact;
+ }
+ }
+}
+
/* Prologue looks like
[mov.l <regs>,@-r15]...
[sts.l pr,@-r15]
*/
+/* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
+ with l=1 and n = 18 0110101111110001010010100aaa0000 */
+#define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
+
+/* STS.L PR,@-r0 0100000000100010
+ r0-4-->r0, PR-->(r0) */
+#define IS_STS_R0(x) ((x) == 0x4022)
+
+/* STS PR, Rm 0000mmmm00101010
+ PR-->Rm */
+#define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
+
+/* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
+ Rm-->(dispx4+r15) */
+#define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
+
+/* MOV.L R14,@(disp,r15) 000111111110dddd
+ R14-->(dispx4+r15) */
+#define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
+
+/* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
+ R18-->(dispx8+R14) */
+#define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
+
+/* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
+ R18-->(dispx8+R15) */
+#define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
+
+/* ST.L R15, disp, R18 101010001111dddddddddd0100100000
+ R18-->(dispx4+R15) */
+#define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
+
+/* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
+ R14-->(dispx8+R15) */
+#define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
+
+/* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
+ R14-->(dispx4+R15) */
+#define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
+
+/* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
+ R15 + imm --> R15 */
+#define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
+
+/* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
+ R15 + imm --> R15 */
+#define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
+
+/* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
+ R15 + R63 --> R14 */
+#define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
+
+/* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
+ R15 + R63 --> R14 */
+#define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
+
+#define IS_MOV_SP_FP_MEDIA(x) (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
+
+/* MOV #imm, R0 1110 0000 ssss ssss
+ #imm-->R0 */
+#define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
+
+/* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
+#define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
+
+/* ADD r15,r0 0011 0000 1111 1100
+ r15+r0-->r0 */
+#define IS_ADD_SP_R0(x) ((x) == 0x30fc)
+
+/* MOV.L R14 @-R0 0010 0000 1110 0110
+ R14-->(R0-4), R0-4-->R0 */
+#define IS_MOV_R14_R0(x) ((x) == 0x20e6)
+
+/* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
+ where Rm is one of r2-r9 which are the argument registers. */
+/* FIXME: Recognize the float and double register moves too! */
+#define IS_MEDIA_IND_ARG_MOV(x) \
+((((x) & 0xfc0ffc0f) == 0x0009fc00) && (((x) & 0x03f00000) >= 0x00200000 && ((x) & 0x03f00000) <= 0x00900000))
+
+/* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
+ or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
+ where Rm is one of r2-r9 which are the argument registers. */
+#define IS_MEDIA_ARG_MOV(x) \
+(((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
+ && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
+
+/* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000*/
+/* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000*/
+/* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000*/
+/* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000*/
+/* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000*/
+#define IS_MEDIA_MOV_TO_R14(x) \
+((((x) & 0xfffffc0f) == 0xa0e00000) \
+|| (((x) & 0xfffffc0f) == 0xa4e00000) \
+|| (((x) & 0xfffffc0f) == 0xa8e00000) \
+|| (((x) & 0xfffffc0f) == 0xb4e00000) \
+|| (((x) & 0xfffffc0f) == 0xbce00000))
+
+/* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
+ where Rm is r2-r9 */
+#define IS_COMPACT_IND_ARG_MOV(x) \
+((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) && (((x) & 0x00f0) <= 0x0090))
+
+/* compact direct arg move!
+ MOV.L Rn, @r14 0010 1110 mmmm 0010 */
+#define IS_COMPACT_ARG_MOV(x) \
+(((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) && ((x) & 0x00f0) <= 0x0090))
+
+/* MOV.B Rm, @R14 0010 1110 mmmm 0000
+ MOV.W Rm, @R14 0010 1110 mmmm 0001 */
+#define IS_COMPACT_MOV_TO_R14(x) \
+((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
+
+#define IS_JSR_R0(x) ((x) == 0x400b)
+#define IS_NOP(x) ((x) == 0x0009)
+
+
/* STS.L PR,@-r15 0100111100100010
r15-4-->r15, PR-->(r15) */
#define IS_STS(x) ((x) == 0x4f22)
return start_pc;
}
+static CORE_ADDR
+look_for_args_moves (CORE_ADDR start_pc, int media_mode)
+{
+ CORE_ADDR here, end;
+ int w;
+ int insn_size = (media_mode ? 4 : 2);
+
+ for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
+ {
+ if (media_mode)
+ {
+ w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
+ here += insn_size;
+ if (IS_MEDIA_IND_ARG_MOV (w))
+ {
+ /* This must be followed by a store to r14, so the argument
+ is where the debug info says it is. This can happen after
+ the SP has been saved, unfortunately. */
+
+ int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
+ insn_size);
+ here += insn_size;
+ if (IS_MEDIA_MOV_TO_R14 (next_insn))
+ start_pc = here;
+ }
+ else if (IS_MEDIA_ARG_MOV (w))
+ {
+ /* These instructions store directly the argument in r14. */
+ start_pc = here;
+ }
+ else
+ break;
+ }
+ else
+ {
+ w = read_memory_integer (here, insn_size);
+ w = w & 0xffff;
+ here += insn_size;
+ if (IS_COMPACT_IND_ARG_MOV (w))
+ {
+ /* This must be followed by a store to r14, so the argument
+ is where the debug info says it is. This can happen after
+ the SP has been saved, unfortunately. */
+
+ int next_insn = 0xffff & read_memory_integer (here, insn_size);
+ here += insn_size;
+ if (IS_COMPACT_MOV_TO_R14 (next_insn))
+ start_pc = here;
+ }
+ else if (IS_COMPACT_ARG_MOV (w))
+ {
+ /* These instructions store directly the argument in r14. */
+ start_pc = here;
+ }
+ else if (IS_MOVL_R0 (w))
+ {
+ /* There is a function that gcc calls to get the arguments
+ passed correctly to the function. Only after this
+ function call the arguments will be found at the place
+ where they are supposed to be. This happens in case the
+ argument has to be stored into a 64-bit register (for
+ instance doubles, long longs). SHcompact doesn't have
+ access to the full 64-bits, so we store the register in
+ stack slot and store the address of the stack slot in
+ the register, then do a call through a wrapper that
+ loads the memory value into the register. A SHcompact
+ callee calls an argument decoder
+ (GCC_shcompact_incoming_args) that stores the 64-bit
+ value in a stack slot and stores the address of the
+ stack slot in the register. GCC thinks the argument is
+ just passed by transparent reference, but this is only
+ true after the argument decoder is called. Such a call
+ needs to be considered part of the prologue. */
+
+ /* This must be followed by a JSR @r0 instruction and by
+ a NOP instruction. After these, the prologue is over! */
+
+ int next_insn = 0xffff & read_memory_integer (here, insn_size);
+ here += insn_size;
+ if (IS_JSR_R0 (next_insn))
+ {
+ next_insn = 0xffff & read_memory_integer (here, insn_size);
+ here += insn_size;
+
+ if (IS_NOP (next_insn))
+ start_pc = here;
+ }
+ }
+ else
+ break;
+ }
+ }
+
+ return start_pc;
+}
+
+static CORE_ADDR
+sh64_skip_prologue_hard_way (CORE_ADDR start_pc)
+{
+ CORE_ADDR here, end;
+ int updated_fp = 0;
+ int insn_size = 4;
+ int media_mode = 1;
+
+ if (!start_pc)
+ return 0;
+
+ if (pc_is_isa32 (start_pc) == 0)
+ {
+ insn_size = 2;
+ media_mode = 0;
+ }
+
+ for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
+ {
+
+ if (media_mode)
+ {
+ int w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
+ here += insn_size;
+ if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
+ || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
+ || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w) || IS_PTABSL_R18 (w))
+ {
+ start_pc = here;
+ }
+ else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
+ {
+ start_pc = here;
+ updated_fp = 1;
+ }
+ else
+ if (updated_fp)
+ {
+ /* Don't bail out yet, we may have arguments stored in
+ registers here, according to the debug info, so that
+ gdb can print the frames correctly. */
+ start_pc = look_for_args_moves (here - insn_size, media_mode);
+ break;
+ }
+ }
+ else
+ {
+ int w = 0xffff & read_memory_integer (here, insn_size);
+ here += insn_size;
+
+ if (IS_STS_R0 (w) || IS_STS_PR (w)
+ || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
+ || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
+ {
+ start_pc = here;
+ }
+ else if (IS_MOV_SP_FP (w))
+ {
+ start_pc = here;
+ updated_fp = 1;
+ }
+ else
+ if (updated_fp)
+ {
+ /* Don't bail out yet, we may have arguments stored in
+ registers here, according to the debug info, so that
+ gdb can print the frames correctly. */
+ start_pc = look_for_args_moves (here - insn_size, media_mode);
+ break;
+ }
+ }
+ }
+
+ return start_pc;
+}
+
static CORE_ADDR
sh_skip_prologue (CORE_ADDR pc)
{
return (TYPE_LENGTH (type) > 1);
}
+static int
+sh64_use_struct_convention (int gcc_p, struct type *type)
+{
+ return (TYPE_LENGTH (type) > 8);
+}
+
/* Store the address of the place in which to copy the structure the
subroutine will return. This is called from call_function.
return print_insn_shl (memaddr, info);
}
+/* Disassemble an instruction. */
+static int
+gdb_print_insn_sh64 (bfd_vma memaddr, disassemble_info *info)
+{
+ if (pc_is_isa32 (memaddr))
+ {
+ /* Round down the instruction address to the appropriate boundary
+ before disassembling it. */
+ return print_insn_sh64x_media (UNMAKE_ISA32_ADDR (memaddr), info);
+ }
+ else
+ {
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ return print_insn_sh (memaddr, info);
+ else
+ return print_insn_shl (memaddr, info);
+ }
+}
+
/* Given a GDB frame, determine the address of the calling function's frame.
This will be used to create a new GDB frame struct, and then
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
return 0;
}
+/* Given a register number RN as it appears in an assembly
+ instruction, find the corresponding register number in the GDB
+ scheme. */
+static int
+translate_insn_rn (int rn, int media_mode)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ /* FIXME: this assumes that the number rn is for a not pseudo
+ register only. */
+ if (media_mode)
+ return rn;
+ else
+ {
+ /* These registers don't have a corresponding compact one. */
+ /* FIXME: This is probably not enough. */
+#if 0
+ if ((rn >= 16 && rn <= 63) || (rn >= 93 && rn <= 140))
+ return rn;
+#endif
+ if (rn >= 0 && rn <= tdep->R0_C_REGNUM)
+ return tdep->R0_C_REGNUM + rn;
+ else
+ return rn;
+ }
+}
+
+static CORE_ADDR
+sh64_frame_chain (struct frame_info *frame)
+{
+ if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
+ return frame->frame; /* dummy frame same as caller's frame */
+ if (frame->pc && !inside_entry_file (frame->pc))
+ {
+ int media_mode = pc_is_isa32 (frame->pc);
+ int size;
+ if (gdbarch_tdep (current_gdbarch)->sh_abi == SH_ABI_32)
+ size = 4;
+ else
+ size = REGISTER_RAW_SIZE (translate_insn_rn (FP_REGNUM, media_mode));
+ return read_memory_integer (FRAME_FP (frame) + frame->extra_info->f_offset, size);
+ }
+ else
+ return 0;
+}
+
/* Find REGNUM on the stack. Otherwise, it's in an active register. One thing
we might want to do here is to check REGNUM against the clobber mask, and
somehow flag it as invalid if it isn't saved on the stack somewhere. This
return read_register (regnum);
}
+static CORE_ADDR
+sh64_get_saved_pr (struct frame_info *fi, int pr_regnum)
+{
+ int media_mode = 0;
+
+ for (; fi; fi = fi->next)
+ if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
+ /* When the caller requests PR from the dummy frame, we return PC because
+ that's where the previous routine appears to have done a call from. */
+ return generic_read_register_dummy (fi->pc, fi->frame, pr_regnum);
+ else
+ {
+ FRAME_INIT_SAVED_REGS (fi);
+ if (!fi->pc)
+ return 0;
+
+ media_mode = pc_is_isa32 (fi->pc);
+
+ if (fi->saved_regs[pr_regnum] != 0)
+ {
+ int gdb_reg_num = translate_insn_rn (pr_regnum, media_mode);
+ int size = ((gdbarch_tdep (current_gdbarch)->sh_abi == SH_ABI_32)
+ ? 4
+ : REGISTER_RAW_SIZE (gdb_reg_num));
+ return read_memory_integer (fi->saved_regs[pr_regnum], size);
+ }
+ }
+ return read_register (pr_regnum);
+}
+
/* Put here the code to store, into a struct frame_saved_regs, the
addresses of the saved registers of frame described by FRAME_INFO.
This includes special registers such as pc and fp saved in special
return fp_regnum;
}
+/* For pairs of floating point registers */
+static int
+fpp_reg_base_num (int fpp_regnum)
+{
+ int fp_regnum;
+
+ fp_regnum = FP0_REGNUM +
+ (fpp_regnum - gdbarch_tdep (current_gdbarch)->FPP0_REGNUM) * 2;
+ return fp_regnum;
+}
+
+static int
+is_media_pseudo (int rn)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ return (rn >= tdep->DR0_REGNUM
+ && rn <= tdep->FV_LAST_REGNUM);
+}
+
+int
+sh64_get_gdb_regnum (int gcc_regnum, CORE_ADDR pc)
+{
+ return translate_insn_rn (gcc_regnum, pc_is_isa32 (pc));
+}
+
+static int
+sh64_media_reg_base_num (int reg_nr)
+{
+ int base_regnum = -1;
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ if (reg_nr >= tdep->DR0_REGNUM
+ && reg_nr <= tdep->DR_LAST_REGNUM)
+ base_regnum = dr_reg_base_num (reg_nr);
+
+ else if (reg_nr >= tdep->FPP0_REGNUM
+ && reg_nr <= tdep->FPP_LAST_REGNUM)
+ base_regnum = fpp_reg_base_num (reg_nr);
+
+ else if (reg_nr >= tdep->FV0_REGNUM
+ && reg_nr <= tdep->FV_LAST_REGNUM)
+ base_regnum = fv_reg_base_num (reg_nr);
+
+ return base_regnum;
+}
+
+/* *INDENT-OFF* */
+/*
+ SH COMPACT MODE (ISA 16) (all pseudo) 221-272
+ GDB_REGNUM BASE_REGNUM
+ r0_c 221 0
+ r1_c 222 1
+ r2_c 223 2
+ r3_c 224 3
+ r4_c 225 4
+ r5_c 226 5
+ r6_c 227 6
+ r7_c 228 7
+ r8_c 229 8
+ r9_c 230 9
+ r10_c 231 10
+ r11_c 232 11
+ r12_c 233 12
+ r13_c 234 13
+ r14_c 235 14
+ r15_c 236 15
+
+ pc_c 237 64
+ gbr_c 238 16
+ mach_c 239 17
+ macl_c 240 17
+ pr_c 241 18
+ t_c 242 19
+ fpscr_c 243 76
+ fpul_c 244 109
+
+ fr0_c 245 77
+ fr1_c 246 78
+ fr2_c 247 79
+ fr3_c 248 80
+ fr4_c 249 81
+ fr5_c 250 82
+ fr6_c 251 83
+ fr7_c 252 84
+ fr8_c 253 85
+ fr9_c 254 86
+ fr10_c 255 87
+ fr11_c 256 88
+ fr12_c 257 89
+ fr13_c 258 90
+ fr14_c 259 91
+ fr15_c 260 92
+
+ dr0_c 261 77
+ dr2_c 262 79
+ dr4_c 263 81
+ dr6_c 264 83
+ dr8_c 265 85
+ dr10_c 266 87
+ dr12_c 267 89
+ dr14_c 268 91
+
+ fv0_c 269 77
+ fv4_c 270 81
+ fv8_c 271 85
+ fv12_c 272 91
+*/
+/* *INDENT-ON* */
+static int
+sh64_compact_reg_base_num (int reg_nr)
+{
+ int base_regnum = -1;
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ /* general register N maps to general register N */
+ if (reg_nr >= tdep->R0_C_REGNUM
+ && reg_nr <= tdep->R_LAST_C_REGNUM)
+ base_regnum = reg_nr - tdep->R0_C_REGNUM;
+
+ /* floating point register N maps to floating point register N */
+ else if (reg_nr >= tdep->FP0_C_REGNUM
+ && reg_nr <= tdep->FP_LAST_C_REGNUM)
+ base_regnum = reg_nr - tdep->FP0_C_REGNUM + FP0_REGNUM;
+
+ /* double prec register N maps to base regnum for double prec register N */
+ else if (reg_nr >= tdep->DR0_C_REGNUM
+ && reg_nr <= tdep->DR_LAST_C_REGNUM)
+ base_regnum = dr_reg_base_num (tdep->DR0_REGNUM
+ + reg_nr - tdep->DR0_C_REGNUM);
+
+ /* vector N maps to base regnum for vector register N */
+ else if (reg_nr >= tdep->FV0_C_REGNUM
+ && reg_nr <= tdep->FV_LAST_C_REGNUM)
+ base_regnum = fv_reg_base_num (tdep->FV0_REGNUM
+ + reg_nr - tdep->FV0_C_REGNUM);
+
+ else if (reg_nr == tdep->PC_C_REGNUM)
+ base_regnum = PC_REGNUM;
+
+ else if (reg_nr == tdep->GBR_C_REGNUM)
+ base_regnum = 16;
+
+ else if (reg_nr == tdep->MACH_C_REGNUM
+ || reg_nr == tdep->MACL_C_REGNUM)
+ base_regnum = 17;
+
+ else if (reg_nr == tdep->PR_C_REGNUM)
+ base_regnum = 18;
+
+ else if (reg_nr == tdep->T_C_REGNUM)
+ base_regnum = 19;
+
+ else if (reg_nr == tdep->FPSCR_C_REGNUM)
+ base_regnum = tdep->FPSCR_REGNUM; /*???? this register is a mess. */
+
+ else if (reg_nr == tdep->FPUL_C_REGNUM)
+ base_regnum = FP0_REGNUM + 32;
+
+ return base_regnum;
+}
+
+/* Given a register number RN (according to the gdb scheme) , return
+ its corresponding architectural register. In media mode, only a
+ subset of the registers is pseudo registers. For compact mode, all
+ the registers are pseudo. */
+static int
+translate_rn_to_arch_reg_num (int rn, int media_mode)
+{
+
+ if (media_mode)
+ {
+ if (!is_media_pseudo (rn))
+ return rn;
+ else
+ return sh64_media_reg_base_num (rn);
+ }
+ else
+ /* All compact registers are pseudo. */
+ return sh64_compact_reg_base_num (rn);
+}
+
+static int
+sign_extend (int value, int bits)
+{
+ value = value & ((1 << bits) - 1);
+ return (value & (1 << (bits - 1))
+ ? value | (~((1 << bits) - 1))
+ : value);
+}
+
static void
-sh_fp_frame_init_saved_regs (struct frame_info *fi)
+sh64_nofp_frame_init_saved_regs (struct frame_info *fi)
{
int *where = (int *) alloca ((NUM_REGS + NUM_PSEUDO_REGS) * sizeof(int));
int rn;
int have_fp = 0;
+ int fp_regnum;
+ int sp_regnum;
+ int depth;
+ int pc;
+ int opc;
+ int insn;
+ int r0_val = 0;
+ int media_mode = 0;
+ int insn_size;
+ int gdb_register_number;
+ int register_number;
+ char *dummy_regs = generic_find_dummy_frame (fi->pc, fi->frame);
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ if (fi->saved_regs == NULL)
+ frame_saved_regs_zalloc (fi);
+ else
+ memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
+
+ if (dummy_regs)
+ {
+ /* DANGER! This is ONLY going to work if the char buffer format of
+ the saved registers is byte-for-byte identical to the
+ CORE_ADDR regs[NUM_REGS] format used by struct frame_saved_regs! */
+ memcpy (fi->saved_regs, dummy_regs, sizeof (fi->saved_regs));
+ return;
+ }
+
+ fi->extra_info->leaf_function = 1;
+ fi->extra_info->f_offset = 0;
+
+ for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
+ where[rn] = -1;
+
+ depth = 0;
+
+ /* Loop around examining the prologue insns until we find something
+ that does not appear to be part of the prologue. But give up
+ after 20 of them, since we're getting silly then. */
+
+ pc = get_pc_function_start (fi->pc);
+ if (!pc)
+ {
+ fi->pc = 0;
+ return;
+ }
+
+ if (pc_is_isa32 (pc))
+ {
+ media_mode = 1;
+ insn_size = 4;
+ }
+ else
+ {
+ media_mode = 0;
+ insn_size = 2;
+ }
+
+ /* The frame pointer register is general register 14 in shmedia and
+ shcompact modes. In sh compact it is a pseudo register. Same goes
+ for the stack pointer register, which is register 15. */
+ fp_regnum = translate_insn_rn (FP_REGNUM, media_mode);
+ sp_regnum = translate_insn_rn (SP_REGNUM, media_mode);
+
+ for (opc = pc + (insn_size * 28); pc < opc; pc += insn_size)
+ {
+ insn = read_memory_integer (media_mode ? UNMAKE_ISA32_ADDR (pc) : pc,
+ insn_size);
+
+ if (media_mode == 0)
+ {
+ if (IS_STS_PR (insn))
+ {
+ int next_insn = read_memory_integer (pc + insn_size, insn_size);
+ if (IS_MOV_TO_R15 (next_insn))
+ {
+ int reg_nr = tdep->PR_C_REGNUM;
+
+ where[reg_nr] = depth - ((((next_insn & 0xf) ^ 0x8) - 0x8) << 2);
+ fi->extra_info->leaf_function = 0;
+ pc += insn_size;
+ }
+ }
+ else if (IS_MOV_R14 (insn))
+ {
+ where[fp_regnum] = depth - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
+ }
+
+ else if (IS_MOV_R0 (insn))
+ {
+ /* Put in R0 the offset from SP at which to store some
+ registers. We are interested in this value, because it
+ will tell us where the given registers are stored within
+ the frame. */
+ r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
+ }
+ else if (IS_ADD_SP_R0 (insn))
+ {
+ /* This instruction still prepares r0, but we don't care.
+ We already have the offset in r0_val. */
+ }
+ else if (IS_STS_R0 (insn))
+ {
+ /* Store PR at r0_val-4 from SP. Decrement r0 by 4*/
+ int reg_nr = tdep->PR_C_REGNUM;
+ where[reg_nr] = depth - (r0_val - 4);
+ r0_val -= 4;
+ fi->extra_info->leaf_function = 0;
+ }
+ else if (IS_MOV_R14_R0 (insn))
+ {
+ /* Store R14 at r0_val-4 from SP. Decrement r0 by 4 */
+ where[fp_regnum] = depth - (r0_val - 4);
+ r0_val -= 4;
+ }
+
+ else if (IS_ADD_SP (insn))
+ {
+ depth -= ((insn & 0xff) ^ 0x80) - 0x80;
+ }
+ else if (IS_MOV_SP_FP (insn))
+ break;
+ }
+ else
+ {
+ if (IS_ADDIL_SP_MEDIA (insn)
+ || IS_ADDI_SP_MEDIA (insn))
+ {
+ depth -= sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
+ }
+
+ else if (IS_STQ_R18_R15 (insn))
+ {
+ where[tdep->PR_REGNUM] =
+ depth - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
+ fi->extra_info->leaf_function = 0;
+ }
+
+ else if (IS_STL_R18_R15 (insn))
+ {
+ where[tdep->PR_REGNUM] =
+ depth - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
+ fi->extra_info->leaf_function = 0;
+ }
+
+ else if (IS_STQ_R14_R15 (insn))
+ {
+ where[fp_regnum] = depth - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
+ }
+
+ else if (IS_STL_R14_R15 (insn))
+ {
+ where[fp_regnum] = depth - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
+ }
+
+ else if (IS_MOV_SP_FP_MEDIA (insn))
+ break;
+ }
+ }
+
+ /* Now we know how deep things are, we can work out their addresses. */
+ for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
+ {
+ register_number = translate_rn_to_arch_reg_num (rn, media_mode);
+
+ if (where[rn] >= 0)
+ {
+ if (rn == fp_regnum)
+ have_fp = 1;
+
+ /* Watch out! saved_regs is only for the real registers, and
+ doesn't include space for the pseudo registers. */
+ fi->saved_regs[register_number]= fi->frame - where[rn] + depth;
+
+ }
+ else
+ fi->saved_regs[register_number] = 0;
+ }
+
+ if (have_fp)
+ {
+ /* SP_REGNUM is 15. For shmedia 15 is the real register. For
+ shcompact 15 is the arch register corresponding to the pseudo
+ register r15 which still is the SP register. */
+ /* The place on the stack where fp is stored contains the sp of
+ the caller. */
+ /* Again, saved_registers contains only space for the real registers,
+ so we store in FP_REGNUM position. */
+ int size;
+ if (tdep->sh_abi == SH_ABI_32)
+ size = 4;
+ else
+ size = REGISTER_RAW_SIZE (fp_regnum);
+ fi->saved_regs[sp_regnum] = read_memory_integer (fi->saved_regs[fp_regnum], size);
+ }
+ else
+ fi->saved_regs[sp_regnum] = fi->frame;
+
+ fi->extra_info->f_offset = depth - where[fp_regnum];
+}
+
+static void
+sh_fp_frame_init_saved_regs (struct frame_info *fi)
+{
+ int where[NUM_REGS + NUM_PSEUDO_REGS];
+ int rn;
+ int have_fp = 0;
int depth;
int pc;
int opc;
}
}
+static void
+sh64_init_extra_frame_info (int fromleaf, struct frame_info *fi)
+{
+ int media_mode = pc_is_isa32 (fi->pc);
+
+ fi->extra_info = (struct frame_extra_info *)
+ frame_obstack_alloc (sizeof (struct frame_extra_info));
+
+ if (fi->next)
+ fi->pc = FRAME_SAVED_PC (fi->next);
+
+ if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
+ {
+ /* We need to setup fi->frame here because run_stack_dummy gets it wrong
+ by assuming it's always FP. */
+ fi->frame = generic_read_register_dummy (fi->pc, fi->frame,
+ SP_REGNUM);
+ fi->extra_info->return_pc =
+ generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
+ fi->extra_info->f_offset = -(CALL_DUMMY_LENGTH + 4);
+ fi->extra_info->leaf_function = 0;
+ return;
+ }
+ else
+ {
+ FRAME_INIT_SAVED_REGS (fi);
+ fi->extra_info->return_pc =
+ sh64_get_saved_pr (fi, gdbarch_tdep (current_gdbarch)->PR_REGNUM);
+ }
+}
+
+void
+sh64_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
+ struct frame_info *frame, int regnum,
+ enum lval_type *lval)
+{
+ int media_mode;
+ int live_regnum = regnum;
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ if (!target_has_registers)
+ error ("No registers.");
+
+ /* Normal systems don't optimize out things with register numbers. */
+ if (optimized != NULL)
+ *optimized = 0;
+
+ if (addrp) /* default assumption: not found in memory */
+ *addrp = 0;
+
+ if (raw_buffer)
+ memset (raw_buffer, 0, sizeof (raw_buffer));
+
+ /* We must do this here, before the following while loop changes
+ frame, and makes it NULL. If this is a media register number,
+ but we are in compact mode, it will become the corresponding
+ compact pseudo register. If there is no corresponding compact
+ pseudo-register what do we do?*/
+ media_mode = pc_is_isa32 (frame->pc);
+ live_regnum = translate_insn_rn (regnum, media_mode);
+
+ /* Note: since the current frame's registers could only have been
+ saved by frames INTERIOR TO the current frame, we skip examining
+ the current frame itself: otherwise, we would be getting the
+ previous frame's registers which were saved by the current frame. */
+
+ while (frame && ((frame = frame->next) != NULL))
+ {
+ if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
+ {
+ if (lval) /* found it in a CALL_DUMMY frame */
+ *lval = not_lval;
+ if (raw_buffer)
+ memcpy (raw_buffer,
+ generic_find_dummy_frame (frame->pc, frame->frame) +
+ REGISTER_BYTE (regnum),
+ REGISTER_RAW_SIZE (regnum));
+ return;
+ }
+
+ FRAME_INIT_SAVED_REGS (frame);
+ if (frame->saved_regs != NULL
+ && frame->saved_regs[regnum] != 0)
+ {
+ if (lval) /* found it saved on the stack */
+ *lval = lval_memory;
+ if (regnum == SP_REGNUM)
+ {
+ if (raw_buffer) /* SP register treated specially */
+ store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
+ frame->saved_regs[regnum]);
+ }
+ else
+ { /* any other register */
+
+ if (addrp)
+ *addrp = frame->saved_regs[regnum];
+ if (raw_buffer)
+ {
+ int size;
+ if (tdep->sh_abi == SH_ABI_32
+ && (live_regnum == FP_REGNUM
+ || live_regnum == tdep->PR_REGNUM))
+ size = 4;
+ else
+ size = REGISTER_RAW_SIZE (live_regnum);
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
+ read_memory (frame->saved_regs[regnum], raw_buffer, size);
+ else
+ read_memory (frame->saved_regs[regnum],
+ raw_buffer
+ + REGISTER_RAW_SIZE (live_regnum)
+ - size,
+ size);
+ }
+ }
+ return;
+ }
+ }
+
+ /* If we get thru the loop to this point, it means the register was
+ not saved in any frame. Return the actual live-register value. */
+
+ if (lval) /* found it in a live register */
+ *lval = lval_register;
+ if (addrp)
+ *addrp = REGISTER_BYTE (live_regnum);
+ if (raw_buffer)
+ read_register_gen (live_regnum, raw_buffer);
+}
+
/* Extract from an array REGBUF containing the (raw) register state
the address in which a function should return its structure value,
as a CORE_ADDR (or an expression that can be used as one). */
}
static CORE_ADDR
+sh64_extract_struct_value_address (char *regbuf)
+{
+ return (extract_address ((regbuf + REGISTER_BYTE (STRUCT_RETURN_REGNUM)),
+ REGISTER_RAW_SIZE (STRUCT_RETURN_REGNUM)));
+}
+
+static CORE_ADDR
sh_frame_saved_pc (struct frame_info *frame)
{
return ((frame)->extra_info->return_pc);
flush_cached_frames ();
}
+/* Used in the 'return' command. */
+static void
+sh64_pop_frame (void)
+{
+ register struct frame_info *frame = get_current_frame ();
+ register CORE_ADDR fp;
+ register int regnum;
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ int media_mode = pc_is_isa32 (frame->pc);
+
+ if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
+ generic_pop_dummy_frame ();
+ else
+ {
+ fp = FRAME_FP (frame);
+ FRAME_INIT_SAVED_REGS (frame);
+
+ /* Copy regs from where they were saved in the frame */
+ for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
+ if (frame->saved_regs[regnum])
+ {
+ int size;
+ if (tdep->sh_abi == SH_ABI_32
+ && (regnum == FP_REGNUM
+ || regnum == tdep->PR_REGNUM))
+ size = 4;
+ else
+ size = REGISTER_RAW_SIZE (translate_insn_rn (regnum,
+ media_mode));
+ write_register (regnum,
+ read_memory_integer (frame->saved_regs[regnum],
+ size));
+ }
+
+ write_register (PC_REGNUM, frame->extra_info->return_pc);
+ write_register (SP_REGNUM, fp + 8);
+ }
+ flush_cached_frames ();
+}
+
/* Function: push_arguments
Setup the function arguments for calling a function in the inferior.
return sp;
}
+/* R2-R9 for integer types and integer equivalent (char, pointers) and
+ non-scalar (struct, union) elements (even if the elements are
+ floats).
+ FR0-FR11 for single precision floating point (float)
+ DR0-DR10 for double precision floating point (double)
+
+ If a float is argument number 3 (for instance) and arguments number
+ 1,2, and 4 are integer, the mapping will be:
+ arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
+
+ If a float is argument number 10 (for instance) and arguments number
+ 1 through 10 are integer, the mapping will be:
+ arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
+ arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0, arg11->stack(16,SP).
+ I.e. there is hole in the stack.
+
+ Different rules apply for variable arguments functions, and for functions
+ for which the prototype is not known. */
+
+static CORE_ADDR
+sh64_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
+ int struct_return, CORE_ADDR struct_addr)
+{
+ int stack_offset, stack_alloc;
+ int int_argreg;
+ int float_argreg;
+ int double_argreg;
+ int float_arg_index = 0;
+ int double_arg_index = 0;
+ int argnum;
+ struct type *type;
+ CORE_ADDR regval;
+ char *val;
+ char valbuf[8];
+ char valbuf_tmp[8];
+ int len;
+ int argreg_size;
+ int fp_args[12];
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ memset (fp_args, 0, sizeof (fp_args));
+
+ /* first force sp to a 8-byte alignment */
+ sp = sp & ~7;
+
+ /* The "struct return pointer" pseudo-argument has its own dedicated
+ register */
+
+ if (struct_return)
+ write_register (STRUCT_RETURN_REGNUM, struct_addr);
+
+ /* Now make sure there's space on the stack */
+ for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
+ stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 7) & ~7);
+ sp -= stack_alloc; /* make room on stack for args */
+
+ /* Now load as many as possible of the first arguments into
+ registers, and push the rest onto the stack. There are 64 bytes
+ in eight registers available. Loop thru args from first to last. */
+
+ int_argreg = tdep->ARG0_REGNUM;
+ float_argreg = FP0_REGNUM;
+ double_argreg = tdep->DR0_REGNUM;
+
+ for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
+ {
+ type = VALUE_TYPE (args[argnum]);
+ len = TYPE_LENGTH (type);
+ memset (valbuf, 0, sizeof (valbuf));
+
+ if (TYPE_CODE (type) != TYPE_CODE_FLT)
+ {
+ argreg_size = REGISTER_RAW_SIZE (int_argreg);
+
+ if (len < argreg_size)
+ {
+ /* value gets right-justified in the register or stack word */
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ memcpy (valbuf + argreg_size - len,
+ (char *) VALUE_CONTENTS (args[argnum]), len);
+ else
+ memcpy (valbuf, (char *) VALUE_CONTENTS (args[argnum]), len);
+
+ val = valbuf;
+ }
+ else
+ val = (char *) VALUE_CONTENTS (args[argnum]);
+
+ while (len > 0)
+ {
+ if (int_argreg > tdep->ARGLAST_REGNUM)
+ {
+ /* must go on the stack */
+ write_memory (sp + stack_offset, val, argreg_size);
+ stack_offset += 8;/*argreg_size;*/
+ }
+ /* NOTE WELL!!!!! This is not an "else if" clause!!!
+ That's because some *&^%$ things get passed on the stack
+ AND in the registers! */
+ if (int_argreg <= tdep->ARGLAST_REGNUM)
+ {
+ /* there's room in a register */
+ regval = extract_address (val, argreg_size);
+ write_register (int_argreg, regval);
+ }
+ /* Store the value 8 bytes at a time. This means that
+ things larger than 8 bytes may go partly in registers
+ and partly on the stack. FIXME: argreg is incremented
+ before we use its size. */
+ len -= argreg_size;
+ val += argreg_size;
+ int_argreg++;
+ }
+ }
+ else
+ {
+ val = (char *) VALUE_CONTENTS (args[argnum]);
+ if (len == 4)
+ {
+ /* Where is it going to be stored? */
+ while (fp_args[float_arg_index])
+ float_arg_index ++;
+
+ /* Now float_argreg points to the register where it
+ should be stored. Are we still within the allowed
+ register set? */
+ if (float_arg_index <= tdep->FLOAT_ARGLAST_REGNUM)
+ {
+ /* Goes in FR0...FR11 */
+ write_register_gen (FP0_REGNUM + float_arg_index, val);
+ fp_args[float_arg_index] = 1;
+ /* Skip the corresponding general argument register. */
+ int_argreg ++;
+ }
+ else
+ ;
+ /* Store it as the integers, 8 bytes at the time, if
+ necessary spilling on the stack. */
+
+ }
+ else if (len == 8)
+ {
+ /* Where is it going to be stored? */
+ while (fp_args[double_arg_index])
+ double_arg_index += 2;
+ /* Now double_argreg points to the register
+ where it should be stored.
+ Are we still within the allowed register set? */
+ if (double_arg_index < tdep->FLOAT_ARGLAST_REGNUM)
+ {
+ /* Goes in DR0...DR10 */
+ /* The numbering of the DRi registers is consecutive,
+ i.e. includes odd numbers. */
+ int double_register_offset = double_arg_index / 2;
+ int regnum = tdep->DR0_REGNUM +
+ double_register_offset;
+#if 0
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
+ {
+ memset (valbuf_tmp, 0, sizeof (valbuf_tmp));
+ REGISTER_CONVERT_TO_VIRTUAL (regnum,
+ type, val, valbuf_tmp);
+ val = valbuf_tmp;
+ }
+#endif
+ /* Note: must use write_register_gen here instead
+ of regcache_write, because regcache_write works
+ only for real registers, not pseudo.
+ write_register_gen will call the gdbarch
+ function to do register writes, and that will
+ properly know how to deal with pseudoregs. */
+ write_register_gen (regnum, val);
+ fp_args[double_arg_index] = 1;
+ fp_args[double_arg_index + 1] = 1;
+ /* Skip the corresponding general argument register. */
+ int_argreg ++;
+ }
+ else
+ ;
+ /* Store it as the integers, 8 bytes at the time, if
+ necessary spilling on the stack. */
+ }
+ }
+ }
+ return sp;
+}
+
/* Function: push_return_address (pc)
Set up the return address for the inferior function call.
Needed for targets where we don't actually execute a JSR/BSR instruction */
static CORE_ADDR
sh_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
{
- write_register (gdbarch_tdep (current_gdbarch)->PR_REGNUM, CALL_DUMMY_ADDRESS ());
+ write_register (gdbarch_tdep (current_gdbarch)->PR_REGNUM,
+ CALL_DUMMY_ADDRESS ());
return sp;
}
error ("bad size for return value");
}
+static void
+sh64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
+{
+ int offset;
+ int return_register;
+ int len = TYPE_LENGTH (type);
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ if (TYPE_CODE (type) == TYPE_CODE_FLT)
+ {
+ if (len == 4)
+ {
+ /* Return value stored in FP0_REGNUM */
+ return_register = FP0_REGNUM;
+ offset = REGISTER_BYTE (return_register);
+ memcpy (valbuf, (char *) regbuf + offset, len);
+ }
+ else if (len == 8)
+ {
+ /* return value stored in DR0_REGNUM */
+ DOUBLEST val;
+
+ return_register = tdep->DR0_REGNUM;
+ offset = REGISTER_BYTE (return_register);
+
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
+ floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
+ (char *) regbuf + offset, &val);
+ else
+ floatformat_to_doublest (&floatformat_ieee_double_big,
+ (char *) regbuf + offset, &val);
+ store_floating (valbuf, len, val);
+ }
+ }
+ else
+ {
+ if (len <= 8)
+ {
+ /* Result is in register 2. If smaller than 8 bytes, it is padded
+ at the most significant end. */
+ return_register = tdep->RETURN_REGNUM;
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ offset = REGISTER_BYTE (return_register) +
+ REGISTER_RAW_SIZE (return_register) - len;
+ else
+ offset = REGISTER_BYTE (return_register);
+ memcpy (valbuf, (char *) regbuf + offset, len);
+ }
+ else
+ error ("bad size for return value");
+ }
+}
+
/* Write into appropriate registers a function return value
of type TYPE, given in virtual format.
If the architecture is sh4 or sh3e, store a function's return value
sh_default_store_return_value (type, valbuf);
}
+static void
+sh64_store_return_value (struct type *type, char *valbuf)
+{
+ char buf[64]; /* more than enough... */
+ int len = TYPE_LENGTH (type);
+
+ if (TYPE_CODE (type) == TYPE_CODE_FLT)
+ {
+ if (len == 4)
+ {
+ /* Return value stored in FP0_REGNUM */
+ write_register_gen (FP0_REGNUM, valbuf);
+ }
+ if (len == 8)
+ {
+ /* return value stored in DR0_REGNUM */
+ /* FIXME: Implement */
+ }
+ }
+ else
+ {
+ int return_register = gdbarch_tdep (current_gdbarch)->RETURN_REGNUM;
+ int offset = 0;
+
+ if (len <= REGISTER_RAW_SIZE (return_register))
+ {
+ /* Pad with zeros. */
+ memset (buf, 0, REGISTER_RAW_SIZE (return_register));
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
+ offset = 0; /*REGISTER_RAW_SIZE (return_register) - len;*/
+ else
+ offset = REGISTER_RAW_SIZE (return_register) - len;
+
+ memcpy (buf + offset, valbuf, len);
+ write_register_gen (return_register, buf);
+ }
+ else
+ write_register_gen (return_register, valbuf);
+ }
+}
+
/* Print the registers in a form similar to the E7000 */
static void
(long) read_register (tdep->RE_REGNUM));
}
+static void
+sh64_show_media_regs (void)
+{
+ int i;
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ printf_filtered ("PC=%s SR=%016llx \n",
+ paddr (read_register (PC_REGNUM)),
+ (long long) read_register (tdep->SR_REGNUM));
+
+ printf_filtered ("SSR=%016llx SPC=%016llx \n",
+ (long long) read_register (tdep->SSR_REGNUM),
+ (long long) read_register (tdep->SPC_REGNUM));
+ printf_filtered ("FPSCR=%016lx\n ",
+ (long) read_register (tdep->FPSCR_REGNUM));
+
+ for (i = 0; i < 64; i = i + 4)
+ printf_filtered ("\nR%d-R%d %016llx %016llx %016llx %016llx\n",
+ i, i + 3,
+ (long long) read_register (i + 0),
+ (long long) read_register (i + 1),
+ (long long) read_register (i + 2),
+ (long long) read_register (i + 3));
+
+ printf_filtered ("\n");
+
+ for (i = 0; i < 64; i = i + 8)
+ printf_filtered ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
+ i, i + 7,
+ (long) read_register (FP0_REGNUM + i + 0),
+ (long) read_register (FP0_REGNUM + i + 1),
+ (long) read_register (FP0_REGNUM + i + 2),
+ (long) read_register (FP0_REGNUM + i + 3),
+ (long) read_register (FP0_REGNUM + i + 4),
+ (long) read_register (FP0_REGNUM + i + 5),
+ (long) read_register (FP0_REGNUM + i + 6),
+ (long) read_register (FP0_REGNUM + i + 7));
+}
+
+static void
+sh64_show_compact_regs (void)
+{
+ int i;
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ printf_filtered ("PC=%s \n",
+ paddr (read_register (tdep->PC_C_REGNUM)));
+
+ printf_filtered ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
+ (long) read_register (tdep->GBR_C_REGNUM),
+ (long) read_register (tdep->MACH_C_REGNUM),
+ (long) read_register (tdep->MACL_C_REGNUM),
+ (long) read_register (tdep->PR_C_REGNUM),
+ (long) read_register (tdep->T_C_REGNUM));
+ printf_filtered ("FPSCR=%08lx FPUL=%08lx\n",
+ (long) read_register (tdep->FPSCR_REGNUM),
+ (long) read_register (tdep->FPUL_REGNUM));
+
+ for (i = 0; i < 16; i = i + 4)
+ printf_filtered ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
+ i, i + 3,
+ (long) read_register (i + 0),
+ (long) read_register (i + 1),
+ (long) read_register (i + 2),
+ (long) read_register (i + 3));
+
+ printf_filtered ("\n");
+
+ for (i = 0; i < 16; i = i + 8)
+ printf_filtered ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
+ i, i + 7,
+ (long) read_register (FP0_REGNUM + i + 0),
+ (long) read_register (FP0_REGNUM + i + 1),
+ (long) read_register (FP0_REGNUM + i + 2),
+ (long) read_register (FP0_REGNUM + i + 3),
+ (long) read_register (FP0_REGNUM + i + 4),
+ (long) read_register (FP0_REGNUM + i + 5),
+ (long) read_register (FP0_REGNUM + i + 6),
+ (long) read_register (FP0_REGNUM + i + 7));
+}
+
+/*FIXME!!! This only shows the registers for shmedia, excluding the
+ pseudo registers. */
+static void
+sh64_show_regs (void)
+{
+ if (pc_is_isa32 (selected_frame->pc))
+ sh64_show_media_regs ();
+ else
+ sh64_show_compact_regs ();
+}
+
void sh_show_regs_command (char *args, int from_tty)
{
if (sh_show_regs)
return (reg_nr * 4);
}
+/* *INDENT-OFF* */
+/*
+ SH MEDIA MODE (ISA 32)
+ general registers (64-bit) 0-63
+0 r0, r1, r2, r3, r4, r5, r6, r7,
+64 r8, r9, r10, r11, r12, r13, r14, r15,
+128 r16, r17, r18, r19, r20, r21, r22, r23,
+192 r24, r25, r26, r27, r28, r29, r30, r31,
+256 r32, r33, r34, r35, r36, r37, r38, r39,
+320 r40, r41, r42, r43, r44, r45, r46, r47,
+384 r48, r49, r50, r51, r52, r53, r54, r55,
+448 r56, r57, r58, r59, r60, r61, r62, r63,
+
+ pc (64-bit) 64
+512 pc,
+
+ status reg., saved status reg., saved pc reg. (64-bit) 65-67
+520 sr, ssr, spc,
+
+ target registers (64-bit) 68-75
+544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
+
+ floating point state control register (32-bit) 76
+608 fpscr,
+
+ single precision floating point registers (32-bit) 77-140
+612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
+644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
+676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
+708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
+740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
+772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
+804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
+836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
+
+TOTAL SPACE FOR REGISTERS: 868 bytes
+
+From here on they are all pseudo registers: no memory allocated.
+REGISTER_BYTE returns the register byte for the base register.
+
+ double precision registers (pseudo) 141-172
+ dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
+ dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
+ dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
+ dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
+
+ floating point pairs (pseudo) 173-204
+ fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
+ fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
+ fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
+ fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
+
+ floating point vectors (4 floating point regs) (pseudo) 205-220
+ fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
+ fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
+
+ SH COMPACT MODE (ISA 16) (all pseudo) 221-272
+ r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
+ r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
+ pc_c,
+ gbr_c, mach_c, macl_c, pr_c, t_c,
+ fpscr_c, fpul_c,
+ fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
+ fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
+ dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
+ fv0_c, fv4_c, fv8_c, fv12_c
+*/
+/* *INDENT-ON* */
+static int
+sh_sh64_register_byte (int reg_nr)
+{
+ int base_regnum = -1;
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ /* If it is a pseudo register, get the number of the first floating
+ point register that is part of it. */
+ if (reg_nr >= tdep->DR0_REGNUM
+ && reg_nr <= tdep->DR_LAST_REGNUM)
+ base_regnum = dr_reg_base_num (reg_nr);
+
+ else if (reg_nr >= tdep->FPP0_REGNUM
+ && reg_nr <= tdep->FPP_LAST_REGNUM)
+ base_regnum = fpp_reg_base_num (reg_nr);
+
+ else if (reg_nr >= tdep->FV0_REGNUM
+ && reg_nr <= tdep->FV_LAST_REGNUM)
+ base_regnum = fv_reg_base_num (reg_nr);
+
+ /* sh compact pseudo register. FPSCR is a pathological case, need to
+ treat it as special. */
+ else if ((reg_nr >= tdep->R0_C_REGNUM
+ && reg_nr <= tdep->FV_LAST_C_REGNUM)
+ && reg_nr != tdep->FPSCR_C_REGNUM)
+ base_regnum = sh64_compact_reg_base_num (reg_nr);
+
+ /* Now return the offset in bytes within the register cache. */
+ /* sh media pseudo register, i.e. any of DR, FFP, FV registers. */
+ if (reg_nr >= tdep->DR0_REGNUM
+ && reg_nr <= tdep->FV_LAST_REGNUM)
+ return (base_regnum - FP0_REGNUM + 1) * 4
+ + (tdep->TR7_REGNUM + 1) * 8;
+
+ /* sh compact pseudo register: general register */
+ if ((reg_nr >= tdep->R0_C_REGNUM
+ && reg_nr <= tdep->R_LAST_C_REGNUM))
+ return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
+ ? base_regnum * 8 + 4
+ : base_regnum * 8);
+
+ /* sh compact pseudo register: */
+ if (reg_nr == tdep->PC_C_REGNUM
+ || reg_nr == tdep->GBR_C_REGNUM
+ || reg_nr == tdep->MACL_C_REGNUM
+ || reg_nr == tdep->PR_C_REGNUM)
+ return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
+ ? base_regnum * 8 + 4
+ : base_regnum * 8);
+
+ if (reg_nr == tdep->MACH_C_REGNUM)
+ return base_regnum * 8;
+
+ if (reg_nr == tdep->T_C_REGNUM)
+ return base_regnum * 8; /* FIXME??? how do we get bit 0? Do we have to? */
+
+ /* sh compact pseudo register: floating point register */
+ else if (reg_nr >=tdep->FP0_C_REGNUM
+ && reg_nr <= tdep->FV_LAST_C_REGNUM)
+ return (base_regnum - FP0_REGNUM) * 4
+ + (tdep->TR7_REGNUM + 1) * 8 + 4;
+
+ else if (reg_nr == tdep->FPSCR_C_REGNUM)
+ /* This is complicated, for now return the beginning of the
+ architectural FPSCR register. */
+ return (tdep->TR7_REGNUM + 1) * 8;
+
+ else if (reg_nr == tdep->FPUL_C_REGNUM)
+ return ((base_regnum - FP0_REGNUM) * 4 +
+ (tdep->TR7_REGNUM + 1) * 8 + 4);
+
+ /* It is not a pseudo register. */
+ /* It is a 64 bit register. */
+ else if (reg_nr <= tdep->TR7_REGNUM)
+ return reg_nr * 8;
+
+ /* It is a 32 bit register. */
+ else
+ if (reg_nr == tdep->FPSCR_REGNUM)
+ return (tdep->FPSCR_REGNUM * 8);
+
+ /* It is floating point 32-bit register */
+ else
+ return ((tdep->TR7_REGNUM + 1) * 8
+ + (reg_nr - FP0_REGNUM + 1) * 4);
+}
+
/* Number of bytes of storage in the actual machine representation for
register REG_NR. */
static int
return 4;
}
+static int
+sh_sh64_register_raw_size (int reg_nr)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ if ((reg_nr >= tdep->DR0_REGNUM
+ && reg_nr <= tdep->DR_LAST_REGNUM)
+ || (reg_nr >= tdep->FPP0_REGNUM
+ && reg_nr <= tdep->FPP_LAST_REGNUM)
+ || (reg_nr >= tdep->DR0_C_REGNUM
+ && reg_nr <= tdep->DR_LAST_C_REGNUM)
+ || (reg_nr <= tdep->TR7_REGNUM))
+ return 8;
+
+ else if ((reg_nr >= tdep->FV0_REGNUM
+ && reg_nr <= tdep->FV_LAST_REGNUM)
+ || (reg_nr >= tdep->FV0_C_REGNUM
+ && reg_nr <= tdep->FV_LAST_C_REGNUM))
+ return 16;
+
+ else /* this covers also the 32-bit SH compact registers. */
+ return 4;
+}
+
/* Number of bytes of storage in the program's representation
for register N. */
static int
return 4;
}
+/* ??????? FIXME */
+static int
+sh_sh64_register_virtual_size (int reg_nr)
+{
+ if (reg_nr >= FP0_REGNUM
+ && reg_nr <= gdbarch_tdep (current_gdbarch)->FP_LAST_REGNUM)
+ return 4;
+ else
+ return 8;
+}
+
/* Return the GDB type object for the "standard" data type
of data in register N. */
static struct type *
}
static struct type *
+sh_sh64_register_virtual_type (int reg_nr)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ if ((reg_nr >= FP0_REGNUM
+ && reg_nr <= tdep->FP_LAST_REGNUM)
+ || (reg_nr >= tdep->FP0_C_REGNUM
+ && reg_nr <= tdep->FP_LAST_C_REGNUM))
+ return builtin_type_float;
+ else if ((reg_nr >= tdep->DR0_REGNUM
+ && reg_nr <= tdep->DR_LAST_REGNUM)
+ || (reg_nr >= tdep->DR0_C_REGNUM
+ && reg_nr <= tdep->DR_LAST_C_REGNUM))
+ return builtin_type_double;
+ else if (reg_nr >= tdep->FPP0_REGNUM
+ && reg_nr <= tdep->FPP_LAST_REGNUM)
+ return sh_sh4_build_float_register_type (1);
+ else if ((reg_nr >= tdep->FV0_REGNUM
+ && reg_nr <= tdep->FV_LAST_REGNUM)
+ ||(reg_nr >= tdep->FV0_C_REGNUM
+ && reg_nr <= tdep->FV_LAST_C_REGNUM))
+ return sh_sh4_build_float_register_type (3);
+ else if (reg_nr == tdep->FPSCR_REGNUM)
+ return builtin_type_int;
+ else if (reg_nr >= tdep->R0_C_REGNUM
+ && reg_nr < tdep->FP0_C_REGNUM)
+ return builtin_type_int;
+ else
+ return builtin_type_long_long;
+}
+
+static struct type *
sh_default_register_virtual_type (int reg_nr)
{
return builtin_type_int;
The other pseudo registers (the FVs) also don't pose a problem
because they are stored as 4 individual FP elements. */
+int
+sh_sh4_register_convertible (int nr)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
+ return (tdep->DR0_REGNUM <= nr
+ && nr <= tdep->DR_LAST_REGNUM);
+ else
+ return 0;
+}
+
static void
sh_sh4_register_convert_to_virtual (int regnum, struct type *type,
char *from, char *to)
error ("sh_register_convert_to_virtual called with non DR register number");
}
+void
+sh_sh64_register_convert_to_virtual (int regnum, struct type *type,
+ char *from, char *to)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ if (TARGET_BYTE_ORDER != BFD_ENDIAN_LITTLE)
+ {
+ /* It is a no-op. */
+ memcpy (to, from, REGISTER_RAW_SIZE (regnum));
+ return;
+ }
+
+ if ((regnum >= tdep->DR0_REGNUM
+ && regnum <= tdep->DR_LAST_REGNUM)
+ || (regnum >= tdep->DR0_C_REGNUM
+ && regnum <= tdep->DR_LAST_C_REGNUM))
+ {
+ DOUBLEST val;
+ floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword, from, &val);
+ store_floating(to, TYPE_LENGTH(type), val);
+ }
+ else
+ error("sh_register_convert_to_virtual called with non DR register number");
+}
+
static void
sh_sh4_register_convert_to_raw (struct type *type, int regnum,
char *from, char *to)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
- if (regnum >= tdep->DR0_REGNUM
- && regnum <= tdep->DR_LAST_REGNUM)
+ if (regnum >= tdep->DR0_REGNUM
+ && regnum <= tdep->DR_LAST_REGNUM)
+ {
+ DOUBLEST val = extract_floating (from, TYPE_LENGTH(type));
+ floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword, &val, to);
+ }
+ else
+ error("sh_register_convert_to_raw called with non DR register number");
+}
+
+void
+sh_sh64_register_convert_to_raw (struct type *type, int regnum,
+ char *from, char *to)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ if (TARGET_BYTE_ORDER != BFD_ENDIAN_LITTLE)
+ {
+ /* It is a no-op. */
+ memcpy (to, from, REGISTER_RAW_SIZE (regnum));
+ return;
+ }
+
+ if ((regnum >= tdep->DR0_REGNUM
+ && regnum <= tdep->DR_LAST_REGNUM)
+ || (regnum >= tdep->DR0_C_REGNUM
+ && regnum <= tdep->DR_LAST_C_REGNUM))
{
DOUBLEST val = extract_floating (from, TYPE_LENGTH(type));
floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword, &val, to);
sh_pseudo_register_read (reg_nr, buffer);
}
+static void
+sh64_pseudo_register_read (int reg_nr, char *buffer)
+{
+ int base_regnum;
+ int portion;
+ int offset = 0;
+ char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ if (reg_nr >= tdep->DR0_REGNUM
+ && reg_nr <= tdep->DR_LAST_REGNUM)
+ {
+ base_regnum = dr_reg_base_num (reg_nr);
+
+ /* Build the value in the provided buffer. */
+ /* DR regs are double precision registers obtained by
+ concatenating 2 single precision floating point registers. */
+ for (portion = 0; portion < 2; portion++)
+ regcache_read (base_regnum + portion,
+ temp_buffer
+ + REGISTER_RAW_SIZE (base_regnum) * portion);
+
+ /* We must pay attention to the endiannes. */
+ sh_sh64_register_convert_to_virtual (reg_nr, REGISTER_VIRTUAL_TYPE (reg_nr),
+ temp_buffer, buffer);
+
+ }
+
+ else if (reg_nr >= tdep->FPP0_REGNUM
+ && reg_nr <= tdep->FPP_LAST_REGNUM)
+ {
+ base_regnum = fpp_reg_base_num (reg_nr);
+
+ /* Build the value in the provided buffer. */
+ /* FPP regs are pairs of single precision registers obtained by
+ concatenating 2 single precision floating point registers. */
+ for (portion = 0; portion < 2; portion++)
+ regcache_read (base_regnum + portion,
+ buffer + REGISTER_RAW_SIZE (base_regnum) * portion);
+ }
+
+ else if (reg_nr >= tdep->FV0_REGNUM
+ && reg_nr <= tdep->FV_LAST_REGNUM)
+ {
+ base_regnum = fv_reg_base_num (reg_nr);
+
+ /* Build the value in the provided buffer. */
+ /* FV regs are vectors of single precision registers obtained by
+ concatenating 4 single precision floating point registers. */
+ for (portion = 0; portion < 4; portion++)
+ regcache_read (base_regnum + portion,
+ buffer + REGISTER_RAW_SIZE (base_regnum) * portion);
+ }
+
+ /* sh compact pseudo registers. 1-to-1 with a shmedia register */
+ else if (reg_nr >= tdep->R0_C_REGNUM
+ && reg_nr <= tdep->T_C_REGNUM)
+ {
+ base_regnum = sh64_compact_reg_base_num (reg_nr);
+
+ /* Build the value in the provided buffer. */
+ regcache_read (base_regnum, temp_buffer);
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ offset = 4;
+ memcpy (buffer, temp_buffer + offset, 4); /* get LOWER 32 bits only????*/
+ }
+
+ else if (reg_nr >= tdep->FP0_C_REGNUM
+ && reg_nr <= tdep->FP_LAST_C_REGNUM)
+ {
+ base_regnum = sh64_compact_reg_base_num (reg_nr);
+
+ /* Build the value in the provided buffer. */
+ /* Floating point registers map 1-1 to the media fp regs,
+ they have the same size and endienness. */
+ regcache_read (base_regnum, buffer);
+ }
+
+ else if (reg_nr >= tdep->DR0_C_REGNUM
+ && reg_nr <= tdep->DR_LAST_C_REGNUM)
+ {
+ base_regnum = sh64_compact_reg_base_num (reg_nr);
+
+ /* DR_C regs are double precision registers obtained by
+ concatenating 2 single precision floating point registers. */
+ for (portion = 0; portion < 2; portion++)
+ regcache_read (base_regnum + portion,
+ temp_buffer
+ + REGISTER_RAW_SIZE (base_regnum) * portion);
+
+ /* We must pay attention to the endiannes. */
+ sh_sh64_register_convert_to_virtual (reg_nr, REGISTER_VIRTUAL_TYPE (reg_nr),
+ temp_buffer, buffer);
+ }
+
+ else if (reg_nr >= tdep->FV0_C_REGNUM
+ && reg_nr <= tdep->FV_LAST_C_REGNUM)
+ {
+ base_regnum = sh64_compact_reg_base_num (reg_nr);
+
+ /* Build the value in the provided buffer. */
+ /* FV_C regs are vectors of single precision registers obtained by
+ concatenating 4 single precision floating point registers. */
+ for (portion = 0; portion < 4; portion++)
+ regcache_read (base_regnum + portion,
+ buffer + REGISTER_RAW_SIZE (base_regnum) * portion);
+ }
+
+ else if (reg_nr == tdep->FPSCR_C_REGNUM)
+ {
+ int fpscr_base_regnum;
+ int sr_base_regnum;
+ unsigned int fpscr_value;
+ unsigned int sr_value;
+ unsigned int fpscr_c_value;
+ unsigned int fpscr_c_part1_value;
+ unsigned int fpscr_c_part2_value;
+
+ fpscr_base_regnum = tdep->FPSCR_REGNUM;
+ sr_base_regnum = tdep->SR_REGNUM;
+
+ /* Build the value in the provided buffer. */
+ /* FPSCR_C is a very weird register that contains sparse bits
+ from the FPSCR and the SR architectural registers.
+ Specifically: */
+ /* *INDENT-OFF* */
+ /*
+ FPSRC_C bit
+ 0 Bit 0 of FPSCR
+ 1 reserved
+ 2-17 Bit 2-18 of FPSCR
+ 18-20 Bits 12,13,14 of SR
+ 21-31 reserved
+ */
+ /* *INDENT-ON* */
+ /* Get FPSCR into a local buffer */
+ regcache_read (fpscr_base_regnum, temp_buffer);
+ /* Get value as an int. */
+ fpscr_value = extract_unsigned_integer (temp_buffer, 4);
+ /* Get SR into a local buffer */
+ regcache_read (sr_base_regnum, temp_buffer);
+ /* Get value as an int. */
+ sr_value = extract_unsigned_integer (temp_buffer, 4);
+ /* Build the new value. */
+ fpscr_c_part1_value = fpscr_value & 0x3fffd;
+ fpscr_c_part2_value = (sr_value & 0x7000) << 6;
+ fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
+ /* Store that in out buffer!!! */
+ store_unsigned_integer (buffer, 4, fpscr_c_value);
+ /* FIXME There is surely an endianness gotcha here. */
+ }
+
+ else if (reg_nr == tdep->FPUL_C_REGNUM)
+ {
+ base_regnum = sh64_compact_reg_base_num (reg_nr);
+
+ /* FPUL_C register is floating point register 32,
+ same size, same endianness. */
+ regcache_read (base_regnum, buffer);
+ }
+}
+
+static void
+sh64_register_read (struct gdbarch *gdbarch, int reg_nr, char *buffer)
+{
+
+ if (reg_nr >= 0 && reg_nr < gdbarch_tdep (current_gdbarch)->DR0_REGNUM)
+ /* It is a regular register. */
+ regcache_read (reg_nr, buffer);
+ else
+ /* It is a pseudo register and we need to construct its value */
+ sh64_pseudo_register_read (reg_nr, buffer);
+}
+
void
sh_pseudo_register_write (int reg_nr, char *buffer)
{
sh_pseudo_register_write (reg_nr, buffer);
}
+void
+sh64_pseudo_register_write (int reg_nr, char *buffer)
+{
+ int base_regnum, portion;
+ int offset;
+ char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ if (reg_nr >= tdep->DR0_REGNUM
+ && reg_nr <= tdep->DR_LAST_REGNUM)
+ {
+ base_regnum = dr_reg_base_num (reg_nr);
+ /* We must pay attention to the endiannes. */
+ sh_sh64_register_convert_to_raw (REGISTER_VIRTUAL_TYPE (reg_nr), reg_nr,
+ buffer, temp_buffer);
+
+
+ /* Write the real regs for which this one is an alias. */
+ for (portion = 0; portion < 2; portion++)
+ regcache_write (base_regnum + portion,
+ temp_buffer + REGISTER_RAW_SIZE (base_regnum) * portion);
+ }
+
+ else if (reg_nr >= tdep->FPP0_REGNUM
+ && reg_nr <= tdep->FPP_LAST_REGNUM)
+ {
+ base_regnum = fpp_reg_base_num (reg_nr);
+
+ /* Write the real regs for which this one is an alias. */
+ for (portion = 0; portion < 2; portion++)
+ regcache_write (base_regnum + portion,
+ buffer + REGISTER_RAW_SIZE (base_regnum) * portion);
+ }
+
+ else if (reg_nr >= tdep->FV0_REGNUM
+ && reg_nr <= tdep->FV_LAST_REGNUM)
+ {
+ base_regnum = fv_reg_base_num (reg_nr);
+
+ /* Write the real regs for which this one is an alias. */
+ for (portion = 0; portion < 4; portion++)
+ regcache_write (base_regnum + portion,
+ buffer + REGISTER_RAW_SIZE (base_regnum) * portion);
+ }
+
+ /* sh compact general pseudo registers. 1-to-1 with a shmedia
+ register but only 4 bytes of it. */
+ else if (reg_nr >= tdep->R0_C_REGNUM
+ && reg_nr <= tdep->T_C_REGNUM)
+ {
+ base_regnum = sh64_compact_reg_base_num (reg_nr);
+ /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ offset = 4;
+ else
+ offset = 0;
+ /* Let's read the value of the base register into a temporary
+ buffer, so that overwriting the last four bytes with the new
+ value of the pseudo will leave the upper 4 bytes unchanged. */
+ regcache_read (base_regnum, temp_buffer);
+ /* Write as an 8 byte quantity */
+ memcpy (temp_buffer + offset, buffer, 4);
+ regcache_write (base_regnum, temp_buffer);
+ }
+
+ /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
+ registers. Both are 4 bytes. */
+ else if (reg_nr >= tdep->FP0_C_REGNUM
+ && reg_nr <= tdep->FP_LAST_C_REGNUM)
+ {
+ base_regnum = sh64_compact_reg_base_num (reg_nr);
+ regcache_write (base_regnum, buffer);
+ }
+
+ else if (reg_nr >= tdep->DR0_C_REGNUM
+ && reg_nr <= tdep->DR_LAST_C_REGNUM)
+ {
+ base_regnum = sh64_compact_reg_base_num (reg_nr);
+ for (portion = 0; portion < 2; portion++)
+ {
+ /* We must pay attention to the endiannes. */
+ sh_sh64_register_convert_to_raw (REGISTER_VIRTUAL_TYPE (reg_nr), reg_nr,
+ buffer, temp_buffer);
+
+ regcache_write (base_regnum + portion,
+ temp_buffer + REGISTER_RAW_SIZE (base_regnum) * portion);
+ }
+ }
+
+ else if (reg_nr >= tdep->FV0_C_REGNUM
+ && reg_nr <= tdep->FV_LAST_C_REGNUM)
+ {
+ base_regnum = sh64_compact_reg_base_num (reg_nr);
+
+ for (portion = 0; portion < 4; portion++)
+ {
+ regcache_write (base_regnum + portion,
+ buffer + REGISTER_RAW_SIZE (base_regnum) * portion);
+ }
+ }
+
+ else if (reg_nr == tdep->FPSCR_C_REGNUM)
+ {
+ int fpscr_base_regnum;
+ int sr_base_regnum;
+ unsigned int fpscr_value;
+ unsigned int sr_value;
+ unsigned int old_fpscr_value;
+ unsigned int old_sr_value;
+ unsigned int fpscr_c_value;
+ unsigned int fpscr_mask;
+ unsigned int sr_mask;
+
+ fpscr_base_regnum = tdep->FPSCR_REGNUM;
+ sr_base_regnum = tdep->SR_REGNUM;
+
+ /* FPSCR_C is a very weird register that contains sparse bits
+ from the FPSCR and the SR architectural registers.
+ Specifically: */
+ /* *INDENT-OFF* */
+ /*
+ FPSRC_C bit
+ 0 Bit 0 of FPSCR
+ 1 reserved
+ 2-17 Bit 2-18 of FPSCR
+ 18-20 Bits 12,13,14 of SR
+ 21-31 reserved
+ */
+ /* *INDENT-ON* */
+ /* Get value as an int. */
+ fpscr_c_value = extract_unsigned_integer (buffer, 4);
+
+ /* Build the new values. */
+ fpscr_mask = 0x0003fffd;
+ sr_mask = 0x001c0000;
+
+ fpscr_value = fpscr_c_value & fpscr_mask;
+ sr_value = (fpscr_value & sr_mask) >> 6;
+
+ regcache_read (fpscr_base_regnum, temp_buffer);
+ old_fpscr_value = extract_unsigned_integer (temp_buffer, 4);
+ old_fpscr_value &= 0xfffc0002;
+ fpscr_value |= old_fpscr_value;
+ store_unsigned_integer (temp_buffer, 4, fpscr_value);
+ regcache_write (fpscr_base_regnum, temp_buffer);
+
+ regcache_read (sr_base_regnum, temp_buffer);
+ old_sr_value = extract_unsigned_integer (temp_buffer, 4);
+ old_sr_value &= 0xffff8fff;
+ sr_value |= old_sr_value;
+ store_unsigned_integer (temp_buffer, 4, sr_value);
+ regcache_write (sr_base_regnum, temp_buffer);
+ }
+
+ else if (reg_nr == tdep->FPUL_C_REGNUM)
+ {
+ base_regnum = sh64_compact_reg_base_num (reg_nr);
+ regcache_write (base_regnum, buffer);
+ }
+}
+
+static void
+sh64_register_write (struct gdbarch *gdbarch, int reg_nr, char *buffer)
+{
+ if (reg_nr >= 0 && reg_nr < gdbarch_tdep (current_gdbarch)->DR0_REGNUM)
+ /* It is a regular register. */
+ regcache_write (reg_nr, buffer);
+ else
+ /* It is a pseudo register and we need to construct its value */
+ sh64_pseudo_register_write (reg_nr, buffer);
+}
+
/* Floating point vector of 4 float registers. */
static void
do_fv_register_info (int fv_regnum)
(int) read_register (first_fp_reg_num + 3));
}
+/* Floating point vector of 4 float registers, compact mode. */
+static void
+do_fv_c_register_info (int fv_regnum)
+{
+ int first_fp_reg_num = sh64_compact_reg_base_num (fv_regnum);
+ printf_filtered ("fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
+ fv_regnum - gdbarch_tdep (current_gdbarch)->FV0_C_REGNUM,
+ (int) read_register (first_fp_reg_num),
+ (int) read_register (first_fp_reg_num + 1),
+ (int) read_register (first_fp_reg_num + 2),
+ (int) read_register (first_fp_reg_num + 3));
+}
+
+/* Pairs of single regs. The DR are instead double precision
+ registers. */
+static void
+do_fpp_register_info (int fpp_regnum)
+{
+ int first_fp_reg_num = fpp_reg_base_num (fpp_regnum);
+
+ printf_filtered ("fpp%d\t0x%08x\t0x%08x\n",
+ fpp_regnum - gdbarch_tdep (current_gdbarch)->FPP0_REGNUM,
+ (int) read_register (first_fp_reg_num),
+ (int) read_register (first_fp_reg_num + 1));
+}
+
/* Double precision registers. */
static void
do_dr_register_info (int dr_regnum)
(int) read_register (first_fp_reg_num + 1));
}
+/* Double precision registers, compact mode. */
+static void
+do_dr_c_register_info (int dr_regnum)
+{
+ int first_fp_reg_num = sh64_compact_reg_base_num (dr_regnum);
+
+ printf_filtered ("dr%d_c\t0x%08x%08x\n",
+ dr_regnum - gdbarch_tdep (current_gdbarch)->DR0_C_REGNUM,
+ (int) read_register (first_fp_reg_num),
+ (int) read_register (first_fp_reg_num +1));
+}
+
+/* General register in compact mode. */
+static void
+do_r_c_register_info (int r_c_regnum)
+{
+ int regnum = sh64_compact_reg_base_num (r_c_regnum);
+
+ printf_filtered ("r%d_c\t0x%08x\n",
+ r_c_regnum - gdbarch_tdep (current_gdbarch)->R0_C_REGNUM,
+ /*FIXME!!!*/ (int) read_register (regnum));
+}
+
+/* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
+ shmedia REGISTERS. */
+/* Control registers, compact mode. */
+static void
+do_cr_c_register_info (int cr_c_regnum)
+{
+ switch (cr_c_regnum)
+ {
+ case 237: printf_filtered ("pc_c\t0x%08x\n", (int) read_register (cr_c_regnum));
+ break;
+ case 238: printf_filtered ("gbr_c\t0x%08x\n", (int) read_register (cr_c_regnum));
+ break;
+ case 239: printf_filtered ("mach_c\t0x%08x\n", (int) read_register (cr_c_regnum));
+ break;
+ case 240: printf_filtered ("macl_c\t0x%08x\n", (int) read_register (cr_c_regnum));
+ break;
+ case 241: printf_filtered ("pr_c\t0x%08x\n", (int) read_register (cr_c_regnum));
+ break;
+ case 242: printf_filtered ("t_c\t0x%08x\n", (int) read_register (cr_c_regnum));
+ break;
+ case 243: printf_filtered ("fpscr_c\t0x%08x\n", (int) read_register (cr_c_regnum));
+ break;
+ case 244: printf_filtered ("fpul_c\t0x%08x\n", (int)read_register (cr_c_regnum));
+ break;
+ }
+}
+
static void
sh_do_pseudo_register (int regnum)
{
}
static void
+sh64_do_pseudo_register (int regnum)
+{
+ /* All the sh64-compact mode registers are pseudo registers. */
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ if (regnum < NUM_REGS
+ || regnum >= NUM_REGS + NUM_PSEUDO_REGS_SH_MEDIA + NUM_PSEUDO_REGS_SH_COMPACT)
+ internal_error (__FILE__, __LINE__,
+ "Invalid pseudo register number %d\n", regnum);
+
+ else if ((regnum >= tdep->DR0_REGNUM
+ && regnum <= tdep->DR_LAST_REGNUM))
+ do_dr_register_info (regnum);
+
+ else if ((regnum >= tdep->DR0_C_REGNUM
+ && regnum <= tdep->DR_LAST_C_REGNUM))
+ do_dr_c_register_info (regnum);
+
+ else if ((regnum >= tdep->FV0_REGNUM
+ && regnum <= tdep->FV_LAST_REGNUM))
+ do_fv_register_info (regnum);
+
+ else if ((regnum >= tdep->FV0_C_REGNUM
+ && regnum <= tdep->FV_LAST_C_REGNUM))
+ do_fv_c_register_info (regnum);
+
+ else if (regnum >= tdep->FPP0_REGNUM
+ && regnum <= tdep->FPP_LAST_REGNUM)
+ do_fpp_register_info (regnum);
+
+ else if (regnum >= tdep->R0_C_REGNUM
+ && regnum <= tdep->R_LAST_C_REGNUM)
+ do_r_c_register_info (regnum); /* FIXME, this function will not print the right format */
+
+ else if (regnum >= tdep->FP0_C_REGNUM
+ && regnum <= tdep->FP_LAST_C_REGNUM)
+ sh_do_fp_register (regnum); /* this should work also for pseudoregs */
+
+ else if (regnum >= tdep->PC_C_REGNUM
+ && regnum <= tdep->FPUL_C_REGNUM)
+ do_cr_c_register_info (regnum);
+
+}
+
+static void
sh_do_register (int regnum)
{
char raw_buffer[MAX_REGISTER_RAW_SIZE];
}
}
+void
+sh_compact_do_registers_info (int regnum, int fpregs)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+ if (regnum != -1) /* do one specified register */
+ {
+ if (*(REGISTER_NAME (regnum)) == '\0')
+ error ("Not a valid register for the current processor type");
+
+ if (regnum >= 0 && regnum < tdep->R0_C_REGNUM)
+ error ("Not a valid register for the current processor mode.");
+
+ sh_print_register (regnum);
+ }
+ else
+ /* do all compact registers */
+ {
+ regnum = tdep->R0_C_REGNUM;
+ while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
+ {
+ do_pseudo_register (regnum);
+ regnum++;
+ }
+ }
+}
+
+void
+sh64_do_registers_info (int regnum, int fpregs)
+{
+ if (pc_is_isa32 (selected_frame->pc))
+ sh_do_registers_info (regnum, fpregs);
+ else
+ sh_compact_do_registers_info (regnum, fpregs);
+}
+
#ifdef SVR4_SHARED_LIBS
/* Fetch (and possibly build) an appropriate link_map_offsets structure
tdep->RETURN_REGNUM = 0;
tdep->FLOAT_ARGLAST_REGNUM = -1;
+ tdep->sh_abi = SH_ABI_UNKNOWN;
+
set_gdbarch_fp0_regnum (gdbarch, -1);
set_gdbarch_num_pseudo_regs (gdbarch, 0);
set_gdbarch_max_register_raw_size (gdbarch, 4);
tdep->FV0_REGNUM = 67;
tdep->FV_LAST_REGNUM = 70;
break;
+ case bfd_mach_sh5:
+ tdep->PR_REGNUM = 18;
+ tdep->SR_REGNUM = 65;
+ tdep->FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM;
+ tdep->FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1;
+ tdep->SSR_REGNUM = SIM_SH64_SSR_REGNUM;
+ tdep->SPC_REGNUM = SIM_SH64_SPC_REGNUM;
+ tdep->TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7;
+ tdep->FPP0_REGNUM = 173;
+ tdep->FPP_LAST_REGNUM = 204;
+ tdep->DR0_REGNUM = 141;
+ tdep->DR_LAST_REGNUM = 172;
+ tdep->FV0_REGNUM = 205;
+ tdep->FV_LAST_REGNUM = 220;
+ tdep->R0_C_REGNUM = 221;
+ tdep->R_LAST_C_REGNUM = 236;
+ tdep->PC_C_REGNUM = 237;
+ tdep->GBR_C_REGNUM = 238;
+ tdep->MACH_C_REGNUM = 239;
+ tdep->MACL_C_REGNUM = 240;
+ tdep->PR_C_REGNUM = 241;
+ tdep->T_C_REGNUM = 242;
+ tdep->FPSCR_C_REGNUM = 243;
+ tdep->FPUL_C_REGNUM = 244;
+ tdep->FP0_C_REGNUM = 245;
+ tdep->FP_LAST_C_REGNUM = 260;
+ tdep->DR0_C_REGNUM = 261;
+ tdep->DR_LAST_C_REGNUM = 268;
+ tdep->FV0_C_REGNUM = 269;
+ tdep->FV_LAST_C_REGNUM = 272;
+ tdep->ARG0_REGNUM = 2;
+ tdep->ARGLAST_REGNUM = 9;
+ tdep->RETURN_REGNUM = 2;
+ tdep->FLOAT_ARGLAST_REGNUM = 11;
+
+ set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA + NUM_PSEUDO_REGS_SH_COMPACT);
+ set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
+ set_gdbarch_pc_regnum (gdbarch, 64);
+
+ /* Determine the ABI */
+ if (bfd_get_arch_size (info.abfd) == 64)
+ {
+ /* If the ABI is the 64-bit one, it can only be sh-media. */
+ tdep->sh_abi = SH_ABI_64;
+ set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
+ set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
+ }
+ else
+ {
+ /* If the ABI is the 32-bit one it could be either media or
+ compact. */
+ tdep->sh_abi = SH_ABI_32;
+ set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ }
+
+ /* the number of real registers is the same whether we are in
+ ISA16(compact) or ISA32(media). */
+ set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
+ set_gdbarch_register_size (gdbarch, 8); /*????*/
+ set_gdbarch_register_bytes (gdbarch,
+ ((SIM_SH64_NR_FP_REGS + 1) * 4)
+ + (SIM_SH64_NR_REGS - SIM_SH64_NR_FP_REGS -1) * 8);
+
+ sh_register_name = sh_sh64_register_name;
+ sh_show_regs = sh64_show_regs;
+ sh_register_virtual_type = sh_sh64_register_virtual_type;
+ sh_store_return_value = sh64_store_return_value;
+ skip_prologue_hard_way = sh64_skip_prologue_hard_way;
+ do_pseudo_register = sh64_do_pseudo_register;
+ set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh64);
+ set_gdbarch_register_raw_size (gdbarch, sh_sh64_register_raw_size);
+ set_gdbarch_register_virtual_size (gdbarch, sh_sh64_register_raw_size);
+ set_gdbarch_register_byte (gdbarch, sh_sh64_register_byte);
+ /* This seems awfully wrong!*/
+ /*set_gdbarch_max_register_raw_size (gdbarch, 8);*/
+ /* should include the size of the pseudo regs. */
+ set_gdbarch_max_register_raw_size (gdbarch, 4 * 4);
+ /* Or should that go in the virtual_size? */
+ /*set_gdbarch_max_register_virtual_size (gdbarch, 8);*/
+ set_gdbarch_max_register_virtual_size (gdbarch, 4 * 4);
+ set_gdbarch_register_read (gdbarch, sh64_register_read);
+ set_gdbarch_register_write (gdbarch, sh64_register_write);
+
+ set_gdbarch_do_registers_info (gdbarch, sh64_do_registers_info);
+ set_gdbarch_frame_init_saved_regs (gdbarch, sh64_nofp_frame_init_saved_regs);
+ set_gdbarch_breakpoint_from_pc (gdbarch, sh_sh64_breakpoint_from_pc);
+ set_gdbarch_init_extra_frame_info (gdbarch, sh64_init_extra_frame_info);
+ set_gdbarch_frame_chain (gdbarch, sh64_frame_chain);
+ set_gdbarch_get_saved_register (gdbarch, sh64_get_saved_register);
+ set_gdbarch_extract_return_value (gdbarch, sh64_extract_return_value);
+ set_gdbarch_push_arguments (gdbarch, sh64_push_arguments);
+ /*set_gdbarch_store_struct_return (gdbarch, sh64_store_struct_return);*/
+ set_gdbarch_extract_struct_value_address (gdbarch, sh64_extract_struct_value_address);
+ set_gdbarch_use_struct_convention (gdbarch, sh64_use_struct_convention);
+ set_gdbarch_pop_frame (gdbarch, sh64_pop_frame);
+ set_gdbarch_elf_make_msymbol_special (gdbarch,
+ sh64_elf_make_msymbol_special);
+ break;
default:
sh_register_name = sh_generic_register_name;
sh_show_regs = sh_generic_show_regs;