extended to perform the benchmarking on the old memchunk code if 'O' is
authorTim Janik <timj@imendio.com>
Fri, 2 Dec 2005 09:57:06 +0000 (09:57 +0000)
committerTim Janik <timj@src.gnome.org>
Fri, 2 Dec 2005 09:57:06 +0000 (09:57 +0000)
Fri Dec  2 10:55:07 2005  Tim Janik  <timj@imendio.com>

        * tests/slice-test.c: extended to perform the benchmarking on the old
        memchunk code if 'O' is selected.

        * tests/memchunks.c: new file which contains the old GLib mem chunks
        implementation with prefix old_mem_chunk_.

        * tests/Makefile.am: added memchunks.c

tests/Makefile.am
tests/memchunks.c [new file with mode: 0644]
tests/slice-test.c

index 03c050b..445cabb 100644 (file)
@@ -150,6 +150,7 @@ rand_test_LDADD = $(progs_ldadd)
 relation_test_LDADD = $(progs_ldadd)
 shell_test_LDADD = $(progs_ldadd)
 slist_test_LDADD = $(progs_ldadd)
+slice_test_SOURCES = slice-test.c memchunks.c
 slice_test_LDADD = $(thread_ldadd)
 spawn_test_LDADD = $(progs_ldadd)
 strfunc_test_LDADD = $(progs_ldadd)
diff --git a/tests/memchunks.c b/tests/memchunks.c
new file mode 100644 (file)
index 0000000..7a08de0
--- /dev/null
@@ -0,0 +1,612 @@
+/* GLIB - Library of useful routines for C programming
+ * Copyright (C) 1995-1997  Peter Mattis, Spencer Kimball and Josh MacDonald
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 02111-1307, USA.
+ */
+
+/*
+ * Modified by the GLib Team and others 1997-2000.  See the AUTHORS
+ * file for a list of people on the GLib Team.  See the ChangeLog
+ * files for a list of changes.  These files are distributed with
+ * GLib at ftp://ftp.gtk.org/pub/gtk/. 
+ */
+
+/* 
+ * MT safe
+ */
+
+#include "config.h"
+
+#include <stdlib.h>
+#include <string.h>
+#include <signal.h>
+
+#include "glib.h"
+
+/* notes on macros:
+ * if ENABLE_GC_FRIENDLY is defined, freed memory should be 0-wiped.
+ */
+
+#define MEM_PROFILE_TABLE_SIZE 4096
+
+#define MEM_AREA_SIZE 4L
+
+static guint mem_chunk_recursion = 0;
+#  define MEM_CHUNK_ROUTINE_COUNT()    (mem_chunk_recursion)
+#  define ENTER_MEM_CHUNK_ROUTINE()    (mem_chunk_recursion = MEM_CHUNK_ROUTINE_COUNT () + 1)
+#  define LEAVE_MEM_CHUNK_ROUTINE()    (mem_chunk_recursion = MEM_CHUNK_ROUTINE_COUNT () - 1)
+
+/* --- old memchunk prototypes --- */
+void            old_mem_chunks_init     (void);
+GMemChunk*      old_mem_chunk_new       (const gchar  *name,
+                                         gint          atom_size,
+                                         gulong        area_size,
+                                         gint          type);
+void            old_mem_chunk_destroy   (GMemChunk *mem_chunk);
+gpointer        old_mem_chunk_alloc     (GMemChunk *mem_chunk);
+gpointer        old_mem_chunk_alloc0    (GMemChunk *mem_chunk);
+void            old_mem_chunk_free      (GMemChunk *mem_chunk,
+                                         gpointer   mem);
+void            old_mem_chunk_clean     (GMemChunk *mem_chunk);
+void            old_mem_chunk_reset     (GMemChunk *mem_chunk);
+void            old_mem_chunk_print     (GMemChunk *mem_chunk);
+void            old_mem_chunk_info      (void);
+
+
+/* --- MemChunks --- */
+#ifndef G_ALLOC_AND_FREE
+typedef struct _GAllocator GAllocator;
+typedef struct _GMemChunk  GMemChunk;
+#define G_ALLOC_ONLY     1
+#define G_ALLOC_AND_FREE  2
+#endif
+
+typedef struct _GFreeAtom      GFreeAtom;
+typedef struct _GMemArea       GMemArea;
+
+struct _GFreeAtom
+{
+  GFreeAtom *next;
+};
+
+struct _GMemArea
+{
+  GMemArea *next;            /* the next mem area */
+  GMemArea *prev;            /* the previous mem area */
+  gulong index;              /* the current index into the "mem" array */
+  gulong free;               /* the number of free bytes in this mem area */
+  gulong allocated;          /* the number of atoms allocated from this area */
+  gulong mark;               /* is this mem area marked for deletion */
+  gchar mem[MEM_AREA_SIZE];  /* the mem array from which atoms get allocated
+                             * the actual size of this array is determined by
+                             *  the mem chunk "area_size". ANSI says that it
+                             *  must be declared to be the maximum size it
+                             *  can possibly be (even though the actual size
+                             *  may be less).
+                             */
+};
+
+struct _GMemChunk
+{
+  const gchar *name;         /* name of this MemChunk...used for debugging output */
+  gint type;                 /* the type of MemChunk: ALLOC_ONLY or ALLOC_AND_FREE */
+  gint num_mem_areas;        /* the number of memory areas */
+  gint num_marked_areas;     /* the number of areas marked for deletion */
+  guint atom_size;           /* the size of an atom */
+  gulong area_size;          /* the size of a memory area */
+  GMemArea *mem_area;        /* the current memory area */
+  GMemArea *mem_areas;       /* a list of all the mem areas owned by this chunk */
+  GMemArea *free_mem_area;   /* the free area...which is about to be destroyed */
+  GFreeAtom *free_atoms;     /* the free atoms list */
+  GTree *mem_tree;           /* tree of mem areas sorted by memory address */
+  GMemChunk *next;           /* pointer to the next chunk */
+  GMemChunk *prev;           /* pointer to the previous chunk */
+};
+
+
+static gulong old_mem_chunk_compute_size (gulong    size,
+                                          gulong    min_size) G_GNUC_CONST;
+static gint   old_mem_chunk_area_compare (GMemArea *a,
+                                          GMemArea *b);
+static gint   old_mem_chunk_area_search  (GMemArea *a,
+                                          gchar    *addr);
+
+/* here we can't use StaticMutexes, as they depend upon a working
+ * g_malloc, the same holds true for StaticPrivate
+ */
+static GMutex        *mem_chunks_lock = NULL;
+static GMemChunk     *mem_chunks = NULL;
+
+void
+old_mem_chunks_init (void)
+{
+  mem_chunks_lock = g_mutex_new ();
+}
+
+GMemChunk*
+old_mem_chunk_new (const gchar  *name,
+                   gint          atom_size,
+                   gulong        area_size,
+                   gint          type)
+{
+  GMemChunk *mem_chunk;
+  gulong rarea_size;
+  
+  g_return_val_if_fail (atom_size > 0, NULL);
+  g_return_val_if_fail (area_size >= atom_size, NULL);
+  
+  ENTER_MEM_CHUNK_ROUTINE ();
+  
+  area_size = (area_size + atom_size - 1) / atom_size;
+  area_size *= atom_size;
+  
+  mem_chunk = g_new (GMemChunk, 1);
+  mem_chunk->name = name;
+  mem_chunk->type = type;
+  mem_chunk->num_mem_areas = 0;
+  mem_chunk->num_marked_areas = 0;
+  mem_chunk->mem_area = NULL;
+  mem_chunk->free_mem_area = NULL;
+  mem_chunk->free_atoms = NULL;
+  mem_chunk->mem_tree = NULL;
+  mem_chunk->mem_areas = NULL;
+  mem_chunk->atom_size = atom_size;
+  
+  if (mem_chunk->type == G_ALLOC_AND_FREE)
+    mem_chunk->mem_tree = g_tree_new ((GCompareFunc) old_mem_chunk_area_compare);
+  
+  if (mem_chunk->atom_size % G_MEM_ALIGN)
+    mem_chunk->atom_size += G_MEM_ALIGN - (mem_chunk->atom_size % G_MEM_ALIGN);
+  
+  rarea_size = area_size + sizeof (GMemArea) - MEM_AREA_SIZE;
+  rarea_size = old_mem_chunk_compute_size (rarea_size, atom_size + sizeof (GMemArea) - MEM_AREA_SIZE);
+  mem_chunk->area_size = rarea_size - (sizeof (GMemArea) - MEM_AREA_SIZE);
+  
+  g_mutex_lock (mem_chunks_lock);
+  mem_chunk->next = mem_chunks;
+  mem_chunk->prev = NULL;
+  if (mem_chunks)
+    mem_chunks->prev = mem_chunk;
+  mem_chunks = mem_chunk;
+  g_mutex_unlock (mem_chunks_lock);
+  
+  LEAVE_MEM_CHUNK_ROUTINE ();
+  
+  return mem_chunk;
+}
+
+void
+old_mem_chunk_destroy (GMemChunk *mem_chunk)
+{
+  GMemArea *mem_areas;
+  GMemArea *temp_area;
+  
+  g_return_if_fail (mem_chunk != NULL);
+  
+  ENTER_MEM_CHUNK_ROUTINE ();
+  
+  mem_areas = mem_chunk->mem_areas;
+  while (mem_areas)
+    {
+      temp_area = mem_areas;
+      mem_areas = mem_areas->next;
+      g_free (temp_area);
+    }
+  
+  g_mutex_lock (mem_chunks_lock);
+  if (mem_chunk->next)
+    mem_chunk->next->prev = mem_chunk->prev;
+  if (mem_chunk->prev)
+    mem_chunk->prev->next = mem_chunk->next;
+  
+  if (mem_chunk == mem_chunks)
+    mem_chunks = mem_chunks->next;
+  g_mutex_unlock (mem_chunks_lock);
+  
+  if (mem_chunk->type == G_ALLOC_AND_FREE)
+    g_tree_destroy (mem_chunk->mem_tree);  
+  
+  g_free (mem_chunk);
+  
+  LEAVE_MEM_CHUNK_ROUTINE ();
+}
+
+gpointer
+old_mem_chunk_alloc (GMemChunk *mem_chunk)
+{
+  GMemArea *temp_area;
+  gpointer mem;
+  
+  ENTER_MEM_CHUNK_ROUTINE ();
+  
+  g_return_val_if_fail (mem_chunk != NULL, NULL);
+  
+  while (mem_chunk->free_atoms)
+    {
+      /* Get the first piece of memory on the "free_atoms" list.
+       * We can go ahead and destroy the list node we used to keep
+       *  track of it with and to update the "free_atoms" list to
+       *  point to its next element.
+       */
+      mem = mem_chunk->free_atoms;
+      mem_chunk->free_atoms = mem_chunk->free_atoms->next;
+      
+      /* Determine which area this piece of memory is allocated from */
+      temp_area = g_tree_search (mem_chunk->mem_tree,
+                                (GCompareFunc) old_mem_chunk_area_search,
+                                mem);
+      
+      /* If the area has been marked, then it is being destroyed.
+       *  (ie marked to be destroyed).
+       * We check to see if all of the segments on the free list that
+       *  reference this area have been removed. This occurs when
+       *  the ammount of free memory is less than the allocatable size.
+       * If the chunk should be freed, then we place it in the "free_mem_area".
+       * This is so we make sure not to free the mem area here and then
+       *  allocate it again a few lines down.
+       * If we don't allocate a chunk a few lines down then the "free_mem_area"
+       *  will be freed.
+       * If there is already a "free_mem_area" then we'll just free this mem area.
+       */
+      if (temp_area->mark)
+        {
+          /* Update the "free" memory available in that area */
+          temp_area->free += mem_chunk->atom_size;
+         
+          if (temp_area->free == mem_chunk->area_size)
+            {
+              if (temp_area == mem_chunk->mem_area)
+                mem_chunk->mem_area = NULL;
+             
+              if (mem_chunk->free_mem_area)
+                {
+                  mem_chunk->num_mem_areas -= 1;
+                 
+                  if (temp_area->next)
+                    temp_area->next->prev = temp_area->prev;
+                  if (temp_area->prev)
+                    temp_area->prev->next = temp_area->next;
+                  if (temp_area == mem_chunk->mem_areas)
+                    mem_chunk->mem_areas = mem_chunk->mem_areas->next;
+                 
+                 if (mem_chunk->type == G_ALLOC_AND_FREE)
+                   g_tree_remove (mem_chunk->mem_tree, temp_area);
+                  g_free (temp_area);
+                }
+              else
+                mem_chunk->free_mem_area = temp_area;
+             
+             mem_chunk->num_marked_areas -= 1;
+           }
+       }
+      else
+        {
+          /* Update the number of allocated atoms count.
+          */
+          temp_area->allocated += 1;
+         
+          /* The area wasn't marked...return the memory
+          */
+         goto outa_here;
+        }
+    }
+  
+  /* If there isn't a current mem area or the current mem area is out of space
+   *  then allocate a new mem area. We'll first check and see if we can use
+   *  the "free_mem_area". Otherwise we'll just malloc the mem area.
+   */
+  if ((!mem_chunk->mem_area) ||
+      ((mem_chunk->mem_area->index + mem_chunk->atom_size) > mem_chunk->area_size))
+    {
+      if (mem_chunk->free_mem_area)
+        {
+          mem_chunk->mem_area = mem_chunk->free_mem_area;
+         mem_chunk->free_mem_area = NULL;
+        }
+      else
+        {
+#ifdef ENABLE_GC_FRIENDLY
+         mem_chunk->mem_area = (GMemArea*) g_malloc0 (sizeof (GMemArea) -
+                                                      MEM_AREA_SIZE +
+                                                      mem_chunk->area_size); 
+#else /* !ENABLE_GC_FRIENDLY */
+         mem_chunk->mem_area = (GMemArea*) g_malloc (sizeof (GMemArea) -
+                                                     MEM_AREA_SIZE +
+                                                     mem_chunk->area_size);
+#endif /* ENABLE_GC_FRIENDLY */
+         
+         mem_chunk->num_mem_areas += 1;
+         mem_chunk->mem_area->next = mem_chunk->mem_areas;
+         mem_chunk->mem_area->prev = NULL;
+         
+         if (mem_chunk->mem_areas)
+           mem_chunk->mem_areas->prev = mem_chunk->mem_area;
+         mem_chunk->mem_areas = mem_chunk->mem_area;
+         
+         if (mem_chunk->type == G_ALLOC_AND_FREE)
+           g_tree_insert (mem_chunk->mem_tree, mem_chunk->mem_area, mem_chunk->mem_area);
+        }
+      
+      mem_chunk->mem_area->index = 0;
+      mem_chunk->mem_area->free = mem_chunk->area_size;
+      mem_chunk->mem_area->allocated = 0;
+      mem_chunk->mem_area->mark = 0;
+    }
+  
+  /* Get the memory and modify the state variables appropriately.
+   */
+  mem = (gpointer) &mem_chunk->mem_area->mem[mem_chunk->mem_area->index];
+  mem_chunk->mem_area->index += mem_chunk->atom_size;
+  mem_chunk->mem_area->free -= mem_chunk->atom_size;
+  mem_chunk->mem_area->allocated += 1;
+  
+ outa_here:
+  
+  LEAVE_MEM_CHUNK_ROUTINE ();
+  
+  return mem;
+}
+
+gpointer
+old_mem_chunk_alloc0 (GMemChunk *mem_chunk)
+{
+  gpointer mem;
+  
+  mem = old_mem_chunk_alloc (mem_chunk);
+  if (mem)
+    {
+      memset (mem, 0, mem_chunk->atom_size);
+    }
+  
+  return mem;
+}
+
+void
+old_mem_chunk_free (GMemChunk *mem_chunk,
+                    gpointer   mem)
+{
+  GMemArea *temp_area;
+  GFreeAtom *free_atom;
+  
+  g_return_if_fail (mem_chunk != NULL);
+  g_return_if_fail (mem != NULL);
+  
+  ENTER_MEM_CHUNK_ROUTINE ();
+  
+#ifdef ENABLE_GC_FRIENDLY
+  memset (mem, 0, mem_chunk->atom_size);
+#endif /* ENABLE_GC_FRIENDLY */
+  
+  /* Don't do anything if this is an ALLOC_ONLY chunk
+   */
+  if (mem_chunk->type == G_ALLOC_AND_FREE)
+    {
+      /* Place the memory on the "free_atoms" list
+       */
+      free_atom = (GFreeAtom*) mem;
+      free_atom->next = mem_chunk->free_atoms;
+      mem_chunk->free_atoms = free_atom;
+      
+      temp_area = g_tree_search (mem_chunk->mem_tree,
+                                (GCompareFunc) old_mem_chunk_area_search,
+                                mem);
+      
+      temp_area->allocated -= 1;
+      
+      if (temp_area->allocated == 0)
+       {
+         temp_area->mark = 1;
+         mem_chunk->num_marked_areas += 1;
+       }
+    }
+  
+  LEAVE_MEM_CHUNK_ROUTINE ();
+}
+
+/* This doesn't free the free_area if there is one */
+void
+old_mem_chunk_clean (GMemChunk *mem_chunk)
+{
+  GMemArea *mem_area;
+  GFreeAtom *prev_free_atom;
+  GFreeAtom *temp_free_atom;
+  gpointer mem;
+  
+  g_return_if_fail (mem_chunk != NULL);
+  
+  ENTER_MEM_CHUNK_ROUTINE ();
+  
+  if (mem_chunk->type == G_ALLOC_AND_FREE)
+    {
+      prev_free_atom = NULL;
+      temp_free_atom = mem_chunk->free_atoms;
+      
+      while (temp_free_atom)
+       {
+         mem = (gpointer) temp_free_atom;
+         
+         mem_area = g_tree_search (mem_chunk->mem_tree,
+                                   (GCompareFunc) old_mem_chunk_area_search,
+                                   mem);
+         
+          /* If this mem area is marked for destruction then delete the
+          *  area and list node and decrement the free mem.
+           */
+         if (mem_area->mark)
+           {
+             if (prev_free_atom)
+               prev_free_atom->next = temp_free_atom->next;
+             else
+               mem_chunk->free_atoms = temp_free_atom->next;
+             temp_free_atom = temp_free_atom->next;
+             
+             mem_area->free += mem_chunk->atom_size;
+             if (mem_area->free == mem_chunk->area_size)
+               {
+                 mem_chunk->num_mem_areas -= 1;
+                 mem_chunk->num_marked_areas -= 1;
+                 
+                 if (mem_area->next)
+                   mem_area->next->prev = mem_area->prev;
+                 if (mem_area->prev)
+                   mem_area->prev->next = mem_area->next;
+                 if (mem_area == mem_chunk->mem_areas)
+                   mem_chunk->mem_areas = mem_chunk->mem_areas->next;
+                 if (mem_area == mem_chunk->mem_area)
+                   mem_chunk->mem_area = NULL;
+                 
+                 if (mem_chunk->type == G_ALLOC_AND_FREE)
+                   g_tree_remove (mem_chunk->mem_tree, mem_area);
+                 g_free (mem_area);
+               }
+           }
+         else
+           {
+             prev_free_atom = temp_free_atom;
+             temp_free_atom = temp_free_atom->next;
+           }
+       }
+    }
+  LEAVE_MEM_CHUNK_ROUTINE ();
+}
+
+void
+old_mem_chunk_reset (GMemChunk *mem_chunk)
+{
+  GMemArea *mem_areas;
+  GMemArea *temp_area;
+  
+  g_return_if_fail (mem_chunk != NULL);
+  
+  ENTER_MEM_CHUNK_ROUTINE ();
+  
+  mem_areas = mem_chunk->mem_areas;
+  mem_chunk->num_mem_areas = 0;
+  mem_chunk->mem_areas = NULL;
+  mem_chunk->mem_area = NULL;
+  
+  while (mem_areas)
+    {
+      temp_area = mem_areas;
+      mem_areas = mem_areas->next;
+      g_free (temp_area);
+    }
+  
+  mem_chunk->free_atoms = NULL;
+  
+  if (mem_chunk->mem_tree)
+    {
+      g_tree_destroy (mem_chunk->mem_tree);
+      mem_chunk->mem_tree = g_tree_new ((GCompareFunc) old_mem_chunk_area_compare);
+    }
+  
+  LEAVE_MEM_CHUNK_ROUTINE ();
+}
+
+void
+old_mem_chunk_print (GMemChunk *mem_chunk)
+{
+  GMemArea *mem_areas;
+  gulong mem;
+  
+  g_return_if_fail (mem_chunk != NULL);
+  
+  mem_areas = mem_chunk->mem_areas;
+  mem = 0;
+  
+  while (mem_areas)
+    {
+      mem += mem_chunk->area_size - mem_areas->free;
+      mem_areas = mem_areas->next;
+    }
+  
+  g_log (G_LOG_DOMAIN, G_LOG_LEVEL_INFO,
+        "%s: %ld bytes using %d mem areas",
+        mem_chunk->name, mem, mem_chunk->num_mem_areas);
+}
+
+void
+old_mem_chunk_info (void)
+{
+  GMemChunk *mem_chunk;
+  gint count;
+  
+  count = 0;
+  g_mutex_lock (mem_chunks_lock);
+  mem_chunk = mem_chunks;
+  while (mem_chunk)
+    {
+      count += 1;
+      mem_chunk = mem_chunk->next;
+    }
+  g_mutex_unlock (mem_chunks_lock);
+  
+  g_log (G_LOG_DOMAIN, G_LOG_LEVEL_INFO, "%d mem chunks", count);
+  
+  g_mutex_lock (mem_chunks_lock);
+  mem_chunk = mem_chunks;
+  g_mutex_unlock (mem_chunks_lock);
+  
+  while (mem_chunk)
+    {
+      old_mem_chunk_print ((GMemChunk*) mem_chunk);
+      mem_chunk = mem_chunk->next;
+    }  
+}
+
+static gulong
+old_mem_chunk_compute_size (gulong size,
+                            gulong min_size)
+{
+  gulong power_of_2;
+  gulong lower, upper;
+  
+  power_of_2 = 16;
+  while (power_of_2 < size)
+    power_of_2 <<= 1;
+  
+  lower = power_of_2 >> 1;
+  upper = power_of_2;
+  
+  if (size - lower < upper - size && lower >= min_size)
+    return lower;
+  else
+    return upper;
+}
+
+static gint
+old_mem_chunk_area_compare (GMemArea *a,
+                            GMemArea *b)
+{
+  if (a->mem > b->mem)
+    return 1;
+  else if (a->mem < b->mem)
+    return -1;
+  return 0;
+}
+
+static gint
+old_mem_chunk_area_search (GMemArea *a,
+                           gchar    *addr)
+{
+  if (a->mem <= addr)
+    {
+      if (addr < &a->mem[a->index])
+       return 0;
+      return 1;
+    }
+  return -1;
+}
index fd70143..fbbd081 100644 (file)
 #include <sys/time.h> // gettimeofday
 
 #define quick_rand32()  (rand_accu = 1664525 * rand_accu + 1013904223, rand_accu)
-static guint prime_size = 1021; // 769; // 509
+static guint    prime_size = 1021; // 769; // 509
+static gboolean clean_memchunks = FALSE;
+static guint    number_of_blocks = 10000;          /* total number of blocks allocated */
+static guint    number_of_repetitions = 10000;     /* number of alloc+free repetitions */
+
+/* --- old memchunk prototypes (memchunks.c) --- */
+void            old_mem_chunks_init     (void);
+GMemChunk*      old_mem_chunk_new       (const gchar  *name,
+                                         gint          atom_size,
+                                         gulong        area_size,
+                                         gint          type);
+void            old_mem_chunk_destroy   (GMemChunk *mem_chunk);
+gpointer        old_mem_chunk_alloc     (GMemChunk *mem_chunk);
+gpointer        old_mem_chunk_alloc0    (GMemChunk *mem_chunk);
+void            old_mem_chunk_free      (GMemChunk *mem_chunk,
+                                         gpointer   mem);
+void            old_mem_chunk_clean     (GMemChunk *mem_chunk);
+void            old_mem_chunk_reset     (GMemChunk *mem_chunk);
+void            old_mem_chunk_print     (GMemChunk *mem_chunk);
+void            old_mem_chunk_info      (void);
+#ifndef G_ALLOC_AND_FREE
+#define G_ALLOC_AND_FREE  2
+#endif
+
+/* --- functions --- */
+static inline gpointer
+memchunk_alloc (GMemChunk **memchunkp,
+                guint       size)
+{
+  size = MAX (size, 1);
+  if (G_UNLIKELY (!*memchunkp))
+    *memchunkp = old_mem_chunk_new ("", size, 4096, G_ALLOC_AND_FREE);
+  return old_mem_chunk_alloc (*memchunkp);
+}
+
+static inline void
+memchunk_free (GMemChunk *memchunk,
+               gpointer   chunk)
+{
+  old_mem_chunk_free (memchunk, chunk);
+  if (clean_memchunks)
+    old_mem_chunk_clean (memchunk);
+}
+
+static gpointer
+test_memchunk_thread (gpointer data)
+{
+  guint32 rand_accu = 2147483563;
+  /* initialize random numbers */
+  if (data)
+    rand_accu = *(guint32*) data;
+  else
+    {
+      struct timeval rand_tv;
+      gettimeofday (&rand_tv, NULL);
+      rand_accu = rand_tv.tv_usec + (rand_tv.tv_sec << 16);
+    }
+
+  /* prepare for memchunk creation */
+  GMemChunk **memchunks = g_alloca (sizeof (memchunks[0]) * prime_size);
+  memset (memchunks, 0, sizeof (memchunks[0]) * prime_size);
+
+  guint i, j;
+  guint8 **ps = g_new (guint8*, number_of_blocks);
+  guint   *ss = g_new (guint, number_of_blocks);
+  /* create number_of_blocks random sizes */
+  for (i = 0; i < number_of_blocks; i++)
+    ss[i] = quick_rand32() % prime_size;
+  /* allocate number_of_blocks blocks */
+  for (i = 0; i < number_of_blocks; i++)
+    ps[i] = memchunk_alloc (&memchunks[ss[i]], ss[i]);
+  for (j = 0; j < number_of_repetitions; j++)
+    {
+      /* free number_of_blocks/2 blocks */
+      for (i = 0; i < number_of_blocks; i += 2)
+        memchunk_free (memchunks[ss[i]], ps[i]);
+      /* allocate number_of_blocks/2 blocks with new sizes */
+      for (i = 0; i < number_of_blocks; i += 2)
+        {
+          ss[i] = quick_rand32() % prime_size;
+          ps[i] = memchunk_alloc (&memchunks[ss[i]], ss[i]);
+        }
+    }
+  /* free number_of_blocks blocks */
+  for (i = 0; i < number_of_blocks; i++)
+    memchunk_free (memchunks[ss[i]], ps[i]);
+  /* alloc and free many equally sized chunks in a row */
+  for (i = 0; i < number_of_repetitions; i++)
+    {
+      guint sz = quick_rand32() % prime_size;
+      guint k = number_of_blocks / 100;
+      for (j = 0; j < k; j++)
+        ps[j] = memchunk_alloc (&memchunks[sz], sz);
+      for (j = 0; j < k; j++)
+        memchunk_free (memchunks[sz], ps[j]);
+    }
+  /* cleanout memchunks */
+  for (i = 0; i < prime_size; i++)
+    if (memchunks[i])
+      old_mem_chunk_destroy (memchunks[i]);
+
+  return NULL;
+}
 
 static gpointer
 test_sliced_mem_thread (gpointer data)
@@ -39,36 +141,35 @@ test_sliced_mem_thread (gpointer data)
       rand_accu = rand_tv.tv_usec + (rand_tv.tv_sec << 16);
     }
 
-  guint i, m = 10000;   /* number of blocks */
-  guint j, n = 10000;   /* number of alloc+free repetitions */
-  guint8 **ps = g_new (guint8*, m);
-  guint   *ss = g_new (guint, m);
-  /* create m random sizes */
-  for (i = 0; i < m; i++)
+  guint i, j;
+  guint8 **ps = g_new (guint8*, number_of_blocks);
+  guint   *ss = g_new (guint, number_of_blocks);
+  /* create number_of_blocks random sizes */
+  for (i = 0; i < number_of_blocks; i++)
     ss[i] = quick_rand32() % prime_size;
-  /* allocate m blocks */
-  for (i = 0; i < m; i++)
+  /* allocate number_of_blocks blocks */
+  for (i = 0; i < number_of_blocks; i++)
     ps[i] = g_slice_alloc (ss[i]);
-  for (j = 0; j < n; j++)
+  for (j = 0; j < number_of_repetitions; j++)
     {
-      /* free m/2 blocks */
-      for (i = 0; i < m; i += 2)
+      /* free number_of_blocks/2 blocks */
+      for (i = 0; i < number_of_blocks; i += 2)
         g_slice_free1 (ss[i], ps[i]);
-      /* allocate m/2 blocks with new sizes */
-      for (i = 0; i < m; i += 2)
+      /* allocate number_of_blocks/2 blocks with new sizes */
+      for (i = 0; i < number_of_blocks; i += 2)
         {
           ss[i] = quick_rand32() % prime_size;
           ps[i] = g_slice_alloc (ss[i]);
         }
     }
-  /* free m blocks */
-  for (i = 0; i < m; i++)
+  /* free number_of_blocks blocks */
+  for (i = 0; i < number_of_blocks; i++)
     g_slice_free1 (ss[i], ps[i]);
   /* alloc and free many equally sized chunks in a row */
-  for (i = 0; i < n; i++)
+  for (i = 0; i < number_of_repetitions; i++)
     {
       guint sz = quick_rand32() % prime_size;
-      guint k = m / 100;
+      guint k = number_of_blocks / 100;
       for (j = 0; j < k; j++)
         ps[j] = g_slice_alloc (sz);
       for (j = 0; j < k; j++)
@@ -81,7 +182,7 @@ test_sliced_mem_thread (gpointer data)
 static void
 usage (void)
 {
-  g_print ("Usage: gslicedmemory [n_threads] [G|S|M][f][c] [maxblocksize] [seed]\n");
+  g_print ("Usage: gslicedmemory [n_threads] [G|S|M|O][f][c] [maxblocksize] [seed]\n");
 }
 
 int
@@ -89,7 +190,7 @@ main (int   argc,
       char *argv[])
 {
   guint seed32, *seedp = NULL;
-  gboolean ccounters = FALSE;
+  gboolean ccounters = FALSE, use_memchunks = FALSE;
   guint n_threads = 1;
   const gchar *mode = "slab allocator + magazine cache", *emode = " ";
   if (argc > 1)
@@ -114,8 +215,13 @@ main (int   argc,
             g_slice_set_config (G_SLICE_CONFIG_ALWAYS_MALLOC, TRUE);
             mode = "system malloc";
             break;
+          case 'O': /* old memchunks */
+            use_memchunks = TRUE;
+            mode = "old memchunks";
+            break;
           case 'f': /* eager freeing */
             g_slice_set_config (G_SLICE_CONFIG_ALWAYS_FREE, TRUE);
+            clean_memchunks = TRUE;
             emode = " with eager freeing";
             break;
           case 'c': /* print contention counters */
@@ -146,8 +252,15 @@ main (int   argc,
   
   GThread *threads[n_threads];
   guint i;
-  for (i = 0; i < n_threads; i++)
-    threads[i] = g_thread_create_full (test_sliced_mem_thread, seedp, 0, TRUE, FALSE, 0, NULL);
+  if (!use_memchunks)
+    for (i = 0; i < n_threads; i++)
+      threads[i] = g_thread_create_full (test_sliced_mem_thread, seedp, 0, TRUE, FALSE, 0, NULL);
+  else
+    {
+      old_mem_chunks_init();
+      for (i = 0; i < n_threads; i++)
+        threads[i] = g_thread_create_full (test_memchunk_thread, seedp, 0, TRUE, FALSE, 0, NULL);
+    }
   for (i = 0; i < n_threads; i++)
     g_thread_join (threads[i]);