//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
//POSSIBILITY OF SUCH DAMAGE.
-//
-// Author: John Kessenich, LunarG
//
// Visit the nodes in the glslang intermediate tree representation to
// translate them to SPIR-V.
spv::Id createImageTextureFunctionCall(glslang::TIntermOperator* node);
spv::Id handleUserFunctionCall(const glslang::TIntermAggregate*);
- spv::Id createBinaryOperation(glslang::TOperator op, spv::Decoration precision, spv::Id typeId, spv::Id left, spv::Id right, glslang::TBasicType typeProxy, bool reduceComparison = true);
- spv::Id createBinaryMatrixOperation(spv::Op, spv::Decoration precision, spv::Id typeId, spv::Id left, spv::Id right);
- spv::Id createUnaryOperation(glslang::TOperator op, spv::Decoration precision, spv::Id typeId, spv::Id operand,glslang::TBasicType typeProxy);
- spv::Id createUnaryMatrixOperation(spv::Op, spv::Decoration precision, spv::Id typeId, spv::Id operand,glslang::TBasicType typeProxy);
+ spv::Id createBinaryOperation(glslang::TOperator op, spv::Decoration precision, spv::Decoration noContraction, spv::Id typeId, spv::Id left, spv::Id right, glslang::TBasicType typeProxy, bool reduceComparison = true);
+ spv::Id createBinaryMatrixOperation(spv::Op, spv::Decoration precision, spv::Decoration noContraction, spv::Id typeId, spv::Id left, spv::Id right);
+ spv::Id createUnaryOperation(glslang::TOperator op, spv::Decoration precision, spv::Decoration noContraction, spv::Id typeId, spv::Id operand,glslang::TBasicType typeProxy);
+ spv::Id createUnaryMatrixOperation(spv::Op, spv::Decoration precision, spv::Decoration noContraction, spv::Id typeId, spv::Id operand,glslang::TBasicType typeProxy);
spv::Id createConversion(glslang::TOperator op, spv::Decoration precision, spv::Id destTypeId, spv::Id operand);
spv::Id makeSmearedConstant(spv::Id constant, int vectorSize);
spv::Id createAtomicOperation(glslang::TOperator op, spv::Decoration precision, spv::Id typeId, std::vector<spv::Id>& operands, glslang::TBasicType typeProxy);
case glslang::EvqGlobal: return spv::StorageClassPrivate;
case glslang::EvqConstReadOnly: return spv::StorageClassFunction;
case glslang::EvqTemporary: return spv::StorageClassFunction;
- default:
+ default:
assert(0);
return spv::StorageClassFunction;
}
}
}
-// Return whether or not the given type is something that should be tied to a
+// Return whether or not the given type is something that should be tied to a
// descriptor set.
bool IsDescriptorResource(const glslang::TType& type)
{
// - struct members can inherit from a struct declaration
// - effect decorations on the struct members (note smooth does not, and expecting something like volatile to effect the whole object)
// - are not part of the offset/st430/etc or row/column-major layout
- return qualifier.invariant || qualifier.nopersp || qualifier.flat || qualifier.centroid || qualifier.patch || qualifier.sample || qualifier.hasLocation() ||
- qualifier.noContraction;
+ return qualifier.invariant || qualifier.nopersp || qualifier.flat || qualifier.centroid || qualifier.patch || qualifier.sample || qualifier.hasLocation();
}
//
//
//
-// Symbols can turn into
+// Symbols can turn into
// - uniform/input reads
// - output writes
// - complex lvalue base setups: foo.bar[3].... , where we see foo and start up an access chain
spv::Id leftRValue = accessChainLoad(node->getLeft()->getType());
// do the operation
- rValue = createBinaryOperation(node->getOp(), TranslatePrecisionDecoration(node->getType()),
+ rValue = createBinaryOperation(node->getOp(), TranslatePrecisionDecoration(node->getType()),
+ TranslateNoContractionDecoration(node->getType().getQualifier()),
convertGlslangToSpvType(node->getType()), leftRValue, rValue,
node->getType().getBasicType());
- // Decorate this instruction, if this node has 'noContraction' qualifier.
- addDecoration(rValue, TranslateNoContractionDecoration(node->getType().getQualifier()));
-
// these all need their counterparts in createBinaryOperation()
assert(rValue != spv::NoResult);
}
// get result
spv::Id result = createBinaryOperation(node->getOp(), TranslatePrecisionDecoration(node->getType()),
+ TranslateNoContractionDecoration(node->getType().getQualifier()),
convertGlslangToSpvType(node->getType()), left, right,
node->getLeft()->getType().getBasicType());
logger->missingFunctionality("unknown glslang binary operation");
return true; // pick up a child as the place-holder result
} else {
- // Decorate this instruction, if this node has 'noContraction' qualifier.
- addDecoration(result, TranslateNoContractionDecoration(node->getType().getQualifier()));
builder.setAccessChainRValue(result);
return false;
}
operand = accessChainLoad(node->getOperand()->getType());
spv::Decoration precision = TranslatePrecisionDecoration(node->getType());
+ spv::Decoration noContraction = TranslateNoContractionDecoration(node->getType().getQualifier());
// it could be a conversion
if (! result)
// if not, then possibly an operation
if (! result)
- result = createUnaryOperation(node->getOp(), precision, convertGlslangToSpvType(node->getType()), operand, node->getOperand()->getBasicType());
+ result = createUnaryOperation(node->getOp(), precision, noContraction, convertGlslangToSpvType(node->getType()), operand, node->getOperand()->getBasicType());
if (result) {
- // Decorate this instruction, if this node has 'noContraction' qualifier.
- addDecoration(result, TranslateNoContractionDecoration(node->getType().getQualifier()));
builder.clearAccessChain();
builder.setAccessChainRValue(result);
else
op = glslang::EOpSub;
- spv::Id result = createBinaryOperation(op, TranslatePrecisionDecoration(node->getType()),
+ spv::Id result = createBinaryOperation(op, TranslatePrecisionDecoration(node->getType()),
+ TranslateNoContractionDecoration(node->getType().getQualifier()),
convertGlslangToSpvType(node->getType()), operand, one,
node->getType().getBasicType());
assert(result != spv::NoResult);
- // Decorate this instruction, if this node has 'noContraction' qualifier.
- addDecoration(result, TranslateNoContractionDecoration(node->getType().getQualifier()));
// The result of operation is always stored, but conditionally the
// consumed result. The consumed result is always an r-value.
break;
}
case glslang::EOpMul:
- // compontent-wise matrix multiply
+ // compontent-wise matrix multiply
binOp = glslang::EOpMul;
break;
case glslang::EOpOuterProduct:
break;
case glslang::EOpDot:
{
- // for scalar dot product, use multiply
+ // for scalar dot product, use multiply
glslang::TIntermSequence& glslangOperands = node->getSequence();
if (! glslangOperands[0]->getAsTyped()->isVector())
binOp = glslang::EOpMul;
right->traverse(this);
spv::Id rightId = accessChainLoad(right->getType());
- result = createBinaryOperation(binOp, precision,
- convertGlslangToSpvType(node->getType()), leftId, rightId,
+ result = createBinaryOperation(binOp, precision, TranslateNoContractionDecoration(node->getType().getQualifier()),
+ convertGlslangToSpvType(node->getType()), leftId, rightId,
left->getType().getBasicType(), reduceComparison);
// code above should only make binOp that exists in createBinaryOperation
result = createNoArgOperation(node->getOp());
break;
case 1:
- result = createUnaryOperation(node->getOp(), precision, convertGlslangToSpvType(node->getType()), operands.front(), glslangOperands[0]->getAsTyped()->getBasicType());
+ result = createUnaryOperation(
+ node->getOp(), precision,
+ TranslateNoContractionDecoration(node->getType().getQualifier()),
+ convertGlslangToSpvType(node->getType()), operands.front(),
+ glslangOperands[0]->getAsTyped()->getBasicType());
break;
default:
result = createMiscOperation(node->getOp(), precision, convertGlslangToSpvType(node->getType()), operands, node->getBasicType());
codeSegments.push_back(child);
}
- // handle the case where the last code segment is missing, due to no code
+ // handle the case where the last code segment is missing, due to no code
// statements between the last case and the end of the switch statement
if ((caseValues.size() && (int)codeSegments.size() == valueIndexToSegment[caseValues.size() - 1]) ||
(int)codeSegments.size() == defaultSegment)
spv::Id TGlslangToSpvTraverser::createSpvVariable(const glslang::TIntermSymbol* node)
{
- // First, steer off constants, which are not SPIR-V variables, but
+ // First, steer off constants, which are not SPIR-V variables, but
// can still have a mapping to a SPIR-V Id.
// This includes specialization constants.
if (node->getQualifier().isConstant()) {
specNode->traverse(this);
return accessChainLoad(specNode->getAsTyped()->getType());
}
-
+
// Otherwise, need a compile-time (front end) size, get it:
int size = arraySizes.getDimSize(dim);
assert(size > 0);
// Getting this far means we need explicit offsets
if (currentOffset < 0)
currentOffset = 0;
-
+
// Now, currentOffset is valid (either 0, or from a previous nextOffset),
// but possibly not yet correctly aligned.
// so that it's available to call.
// Translating the body will happen later.
//
- // Typically (except for a "const in" parameter), an address will be passed to the
+ // Typically (except for a "const in" parameter), an address will be passed to the
// function. What it is an address of varies:
//
// - "in" parameters not marked as "const" can be written to without modifying the argument,
void TGlslangToSpvTraverser::handleFunctionEntry(const glslang::TIntermAggregate* node)
{
- // SPIR-V functions should already be in the functionMap from the prepass
+ // SPIR-V functions should already be in the functionMap from the prepass
// that called makeFunctions().
spv::Function* function = functionMap[node->getName().c_str()];
spv::Block* functionBlock = function->getEntryBlock();
}
// Translate AST operation to SPV operation, already having SPV-based operands/types.
-spv::Id TGlslangToSpvTraverser::createBinaryOperation(glslang::TOperator op, spv::Decoration precision,
+spv::Id TGlslangToSpvTraverser::createBinaryOperation(glslang::TOperator op, spv::Decoration precision,
+ spv::Decoration noContraction,
spv::Id typeId, spv::Id left, spv::Id right,
glslang::TBasicType typeProxy, bool reduceComparison)
{
if (binOp != spv::OpNop) {
assert(comparison == false);
if (builder.isMatrix(left) || builder.isMatrix(right))
- return createBinaryMatrixOperation(binOp, precision, typeId, left, right);
+ return createBinaryMatrixOperation(binOp, precision, noContraction, typeId, left, right);
// No matrix involved; make both operands be the same number of components, if needed
if (needMatchingVectors)
builder.promoteScalar(precision, left, right);
- return builder.setPrecision(builder.createBinOp(binOp, typeId, left, right), precision);
+ spv::Id result = builder.createBinOp(binOp, typeId, left, right);
+ addDecoration(result, noContraction);
+ return builder.setPrecision(result, precision);
}
if (! comparison)
break;
}
- if (binOp != spv::OpNop)
- return builder.setPrecision(builder.createBinOp(binOp, typeId, left, right), precision);
+ if (binOp != spv::OpNop) {
+ spv::Id result = builder.createBinOp(binOp, typeId, left, right);
+ addDecoration(result, noContraction);
+ return builder.setPrecision(result, precision);
+ }
return 0;
}
// matrix op scalar op in {+, -, /}
// scalar op matrix op in {+, -, /}
//
-spv::Id TGlslangToSpvTraverser::createBinaryMatrixOperation(spv::Op op, spv::Decoration precision, spv::Id typeId, spv::Id left, spv::Id right)
+spv::Id TGlslangToSpvTraverser::createBinaryMatrixOperation(spv::Op op, spv::Decoration precision, spv::Decoration noContraction, spv::Id typeId, spv::Id left, spv::Id right)
{
bool firstClass = true;
break;
}
- if (firstClass)
- return builder.setPrecision(builder.createBinOp(op, typeId, left, right), precision);
+ if (firstClass) {
+ spv::Id result = builder.createBinOp(op, typeId, left, right);
+ addDecoration(result, noContraction);
+ return builder.setPrecision(result, precision);
+ }
// Handle component-wise +, -, *, and / for all combinations of type.
// The result type of all of them is the same type as the (a) matrix operand.
indexes.push_back(c);
spv::Id leftVec = leftMat ? builder.createCompositeExtract( left, vecType, indexes) : smearVec;
spv::Id rightVec = rightMat ? builder.createCompositeExtract(right, vecType, indexes) : smearVec;
- results.push_back(builder.createBinOp(op, vecType, leftVec, rightVec));
- builder.setPrecision(results.back(), precision);
+ spv::Id result = builder.createBinOp(op, vecType, leftVec, rightVec);
+ addDecoration(result, noContraction);
+ results.push_back(builder.setPrecision(result, precision));
}
// put the pieces together
}
}
-spv::Id TGlslangToSpvTraverser::createUnaryOperation(glslang::TOperator op, spv::Decoration precision, spv::Id typeId, spv::Id operand, glslang::TBasicType typeProxy)
+spv::Id TGlslangToSpvTraverser::createUnaryOperation(glslang::TOperator op, spv::Decoration precision, spv::Decoration noContraction, spv::Id typeId, spv::Id operand, glslang::TBasicType typeProxy)
{
spv::Op unaryOp = spv::OpNop;
int libCall = -1;
if (isFloat) {
unaryOp = spv::OpFNegate;
if (builder.isMatrixType(typeId))
- return createUnaryMatrixOperation(unaryOp, precision, typeId, operand, typeProxy);
+ return createUnaryMatrixOperation(unaryOp, precision, noContraction, typeId, operand, typeProxy);
} else
unaryOp = spv::OpSNegate;
break;
id = builder.createUnaryOp(unaryOp, typeId, operand);
}
+ addDecoration(id, noContraction);
return builder.setPrecision(id, precision);
}
// Create a unary operation on a matrix
-spv::Id TGlslangToSpvTraverser::createUnaryMatrixOperation(spv::Op op, spv::Decoration precision, spv::Id typeId, spv::Id operand, glslang::TBasicType /* typeProxy */)
+spv::Id TGlslangToSpvTraverser::createUnaryMatrixOperation(spv::Op op, spv::Decoration precision, spv::Decoration noContraction, spv::Id typeId, spv::Id operand, glslang::TBasicType /* typeProxy */)
{
// Handle unary operations vector by vector.
// The result type is the same type as the original type.
std::vector<unsigned int> indexes;
indexes.push_back(c);
spv::Id vec = builder.createCompositeExtract(operand, vecType, indexes);
- results.push_back(builder.createUnaryOp(op, vecType, vec));
- builder.setPrecision(results.back(), precision);
+ spv::Id vec_result = builder.createUnaryOp(op, vecType, vec);
+ addDecoration(vec_result, noContraction);
+ results.push_back(builder.setPrecision(vec_result, precision));
}
// put the pieces together
default:
return false;
}
-}
+}
// A node is trivial if it is a single operation with no side effects.
// Error on the side of saying non-trivial.
#include "localintermediate.h"
namespace {
-// Use string to hold the accesschain information, as in most cases we the
-// accesschain is short and may contain only one element, which is the symbol ID.
+// Use string to hold the accesschain information, as in most cases the
+// accesschain is short and may contain only one element, which is the symbol
+// ID.
+// Example: struct {float a; float b;} s;
+// Object s.a will be represented with: <symbol ID of s>/0
+// Object s.b will be represented with: <symbol ID of s>/1
+// Object s will be representend with: <symbol ID of s>
+// For members of vector, matrix and arrays, they will be represented with the
+// same symbol ID of their container symbol objects. This is because their
+// precise'ness is always the same as their container symbol objects.
using ObjectAccessChain = std::string;
-#ifndef StructAccessChainDelimiter
-#define StructAccessChainDelimiter '/'
-#endif
+
+// The delimiter used in the ObjectAccessChain string to separate symbol ID and
+// different level of struct indices.
+const char OBJECT_ACCESSCHAIN_DELIMITER = '/';
// Mapping from Symbol IDs of symbol nodes, to their defining operation
// nodes.
-using NodeMapping = std::unordered_multimap<ObjectAccessChain, glslang::TIntermOperator *>;
+using NodeMapping = std::unordered_multimap<ObjectAccessChain, glslang::TIntermOperator*>;
// Mapping from object nodes to their accesschain info string.
-using AccessChainMapping = std::unordered_map<glslang::TIntermTyped *, ObjectAccessChain>;
+using AccessChainMapping = std::unordered_map<glslang::TIntermTyped*, ObjectAccessChain>;
// Set of object IDs.
using ObjectAccesschainSet = std::unordered_set<ObjectAccessChain>;
// A helper function to tell whether a node is 'noContraction'. Returns true if
// the node has 'noContraction' qualifier, otherwise false.
-bool isPreciseObjectNode(glslang::TIntermTyped *node)
+bool isPreciseObjectNode(glslang::TIntermTyped* node)
{
return node->getType().getQualifier().noContraction;
}
// A helper function to get the unsigned int from a given constant union node.
// Note the node should only holds a uint scalar.
-unsigned getStructIndexFromConstantUnion(glslang::TIntermTyped *node)
+unsigned getStructIndexFromConstantUnion(glslang::TIntermTyped* node)
{
assert(node->getAsConstantUnion() && node->getAsConstantUnion()->isScalar());
unsigned struct_dereference_index = node->getAsConstantUnion()->getConstArray()[0].getUConst();
}
// A helper function to generate symbol_label.
-ObjectAccessChain generateSymbolLabel(glslang::TIntermSymbol *node)
+ObjectAccessChain generateSymbolLabel(glslang::TIntermSymbol* node)
{
- ObjectAccessChain symbol_id = std::to_string(node->getId()) + "(" + node->getName().c_str() + ")";
+ ObjectAccessChain symbol_id =
+ std::to_string(node->getId()) + "(" + node->getName().c_str() + ")";
return symbol_id;
}
// A helper class to help managing populating_initial_no_contraction_ flag.
template <typename T> class StateSettingGuard {
public:
- StateSettingGuard(T *state_ptr, T new_state_value)
+ StateSettingGuard(T* state_ptr, T new_state_value)
: state_ptr_(state_ptr), previous_state_(*state_ptr)
{
*state_ptr = new_state_value;
}
- StateSettingGuard(T *state_ptr) : state_ptr_(state_ptr), previous_state_(*state_ptr) {}
- void setState(T new_state_value)
- {
- *state_ptr_ = new_state_value;
- }
+ StateSettingGuard(T* state_ptr) : state_ptr_(state_ptr), previous_state_(*state_ptr) {}
+ void setState(T new_state_value) { *state_ptr_ = new_state_value; }
~StateSettingGuard() { *state_ptr_ = previous_state_; }
private:
- T *state_ptr_;
+ T* state_ptr_;
T previous_state_;
};
// A helper function to get the front element from a given ObjectAccessChain
-ObjectAccessChain getFrontElement(const ObjectAccessChain &chain)
+ObjectAccessChain getFrontElement(const ObjectAccessChain& chain)
{
- size_t pos_delimiter = chain.find(StructAccessChainDelimiter);
+ size_t pos_delimiter = chain.find(OBJECT_ACCESSCHAIN_DELIMITER);
return pos_delimiter == std::string::npos ? chain : chain.substr(0, pos_delimiter);
}
// A helper function to get the accesschain starting from the second element.
ObjectAccessChain subAccessChainFromSecondElement(const ObjectAccessChain& chain)
{
- size_t pos_delimiter = chain.find(StructAccessChainDelimiter);
+ size_t pos_delimiter = chain.find(OBJECT_ACCESSCHAIN_DELIMITER);
return pos_delimiter == std::string::npos ? "" : chain.substr(pos_delimiter + 1);
}
// A helper function to get the accesschain after removing a given prefix.
-ObjectAccessChain getSubAccessChainAfterPrefix(const ObjectAccessChain &chain, const ObjectAccessChain &prefix)
+ObjectAccessChain getSubAccessChainAfterPrefix(const ObjectAccessChain& chain,
+ const ObjectAccessChain& prefix)
{
size_t pos = chain.find(prefix);
if (pos != 0) return chain;
- return chain.substr(prefix.length() + sizeof(StructAccessChainDelimiter));
+ return chain.substr(prefix.length() + sizeof(OBJECT_ACCESSCHAIN_DELIMITER));
}
//
//
class TSymbolDefinitionCollectingTraverser : public glslang::TIntermTraverser {
public:
- TSymbolDefinitionCollectingTraverser(
- NodeMapping *symbol_definition_mapping, AccessChainMapping *accesschain_mapping,
- ObjectAccesschainSet *precise_objects,
- ReturnBranchNodeSet *precise_return_nodes);
-
- // bool visitAggregate(glslang::TVisit, glslang::TIntermAggregate *) override;
- bool visitUnary(glslang::TVisit, glslang::TIntermUnary *) override;
- bool visitBinary(glslang::TVisit, glslang::TIntermBinary *) override;
- void visitSymbol(glslang::TIntermSymbol *) override;
- bool visitAggregate(glslang::TVisit, glslang::TIntermAggregate *) override;
- bool visitBranch(glslang::TVisit, glslang::TIntermBranch *) override;
+ TSymbolDefinitionCollectingTraverser(NodeMapping* symbol_definition_mapping,
+ AccessChainMapping* accesschain_mapping,
+ ObjectAccesschainSet* precise_objects,
+ ReturnBranchNodeSet* precise_return_nodes);
+
+ bool visitUnary(glslang::TVisit, glslang::TIntermUnary*) override;
+ bool visitBinary(glslang::TVisit, glslang::TIntermBinary*) override;
+ void visitSymbol(glslang::TIntermSymbol*) override;
+ bool visitAggregate(glslang::TVisit, glslang::TIntermAggregate*) override;
+ bool visitBranch(glslang::TVisit, glslang::TIntermBranch*) override;
protected:
// The mapping from symbol node IDs to their defining nodes. This should be
// populated along traversing the AST.
- NodeMapping &symbol_definition_mapping_;
+ NodeMapping& symbol_definition_mapping_;
// The set of symbol node IDs for precise symbol nodes, the ones marked as
// 'noContraction'.
- ObjectAccesschainSet &precise_objects_;
+ ObjectAccesschainSet& precise_objects_;
// The set of precise return nodes.
- ReturnBranchNodeSet &precise_return_nodes_;
+ ReturnBranchNodeSet& precise_return_nodes_;
// A temporary cache of the symbol node whose defining node is to be found
// currently along traversing the AST.
ObjectAccessChain object_to_be_defined_;
// A map from object node to its accesschain. This traverser stores
// the built accesschains into this map for each object node it has
// visited.
- AccessChainMapping &accesschain_mapping_;
+ AccessChainMapping& accesschain_mapping_;
// The pointer to the Function Definition node, so we can get the
// precise'ness of the return expression from it when we traverse the
// return branch node.
};
TSymbolDefinitionCollectingTraverser::TSymbolDefinitionCollectingTraverser(
- NodeMapping *symbol_definition_mapping, AccessChainMapping *accesschain_mapping,
- ObjectAccesschainSet *precise_objects,
- std::unordered_set<glslang::TIntermBranch *> *precise_return_nodes)
+ NodeMapping* symbol_definition_mapping, AccessChainMapping* accesschain_mapping,
+ ObjectAccesschainSet* precise_objects,
+ std::unordered_set<glslang::TIntermBranch*>* precise_return_nodes)
: TIntermTraverser(true, false, false), symbol_definition_mapping_(*symbol_definition_mapping),
precise_objects_(*precise_objects), object_to_be_defined_(),
accesschain_mapping_(*accesschain_mapping), current_function_definition_node_(nullptr),
// current node symbol ID, and record a mapping from this node to the current
// object_to_be_defined_, which is the just obtained symbol
// ID.
-void TSymbolDefinitionCollectingTraverser::visitSymbol(glslang::TIntermSymbol *node)
+void TSymbolDefinitionCollectingTraverser::visitSymbol(glslang::TIntermSymbol* node)
{
object_to_be_defined_ = generateSymbolLabel(node);
accesschain_mapping_[node] = object_to_be_defined_;
// Visits an aggregate node, traverses all of its children.
bool TSymbolDefinitionCollectingTraverser::visitAggregate(glslang::TVisit,
- glslang::TIntermAggregate *node)
+ glslang::TIntermAggregate* node)
{
// This aggreagate node might be a function definition node, in which case we need to
// cache this node, so we can get the precise'ness information of the return value
// of this function later.
- StateSettingGuard<glslang::TIntermAggregate *> current_function_definition_node_setting_guard(
+ StateSettingGuard<glslang::TIntermAggregate*> current_function_definition_node_setting_guard(
¤t_function_definition_node_);
if (node->getOp() == glslang::EOpFunction) {
// This is function definition node, we need to cache this node so that we can
current_function_definition_node_setting_guard.setState(node);
}
// Traverse the items in the sequence.
- glslang::TIntermSequence &seq = node->getSequence();
+ glslang::TIntermSequence& seq = node->getSequence();
for (int i = 0; i < (int)seq.size(); ++i) {
object_to_be_defined_.clear();
seq[i]->traverse(this);
}
bool TSymbolDefinitionCollectingTraverser::visitBranch(glslang::TVisit,
- glslang::TIntermBranch *node)
+ glslang::TIntermBranch* node)
{
if (node->getFlowOp() == glslang::EOpReturn && node->getExpression() &&
current_function_definition_node_ &&
// Visits an unary node. This might be an implicit assignment like i++, i--. etc.
bool TSymbolDefinitionCollectingTraverser::visitUnary(glslang::TVisit /* visit */,
- glslang::TIntermUnary *node)
+ glslang::TIntermUnary* node)
{
object_to_be_defined_.clear();
node->getOperand()->traverse(this);
// Visits a binary node and updates the mapping from symbol IDs to the definition
// nodes. Also collects the accesschains for the initial precise objects.
bool TSymbolDefinitionCollectingTraverser::visitBinary(glslang::TVisit /* visit */,
- glslang::TIntermBinary *node)
+ glslang::TIntermBinary* node)
{
// Traverses the left node to build the accesschain info for the object.
object_to_be_defined_.clear();
// object. We need to record the accesschain information of the current
// node into its object id.
unsigned struct_dereference_index = getStructIndexFromConstantUnion(node->getRight());
- object_to_be_defined_.push_back(StructAccessChainDelimiter);
+ object_to_be_defined_.push_back(OBJECT_ACCESSCHAIN_DELIMITER);
object_to_be_defined_.append(std::to_string(struct_dereference_index));
accesschain_mapping_[node] = object_to_be_defined_;
// 2) a mapping from object nodes in the AST to the accesschains of these objects.
// 3) a set of accesschains of precise objects.
std::tuple<NodeMapping, AccessChainMapping, ObjectAccesschainSet, ReturnBranchNodeSet>
-getSymbolToDefinitionMappingAndPreciseSymbolIDs(const glslang::TIntermediate &intermediate)
+getSymbolToDefinitionMappingAndPreciseSymbolIDs(const glslang::TIntermediate& intermediate)
{
- auto result_tuple = std::make_tuple(NodeMapping(), AccessChainMapping(), ObjectAccesschainSet(), ReturnBranchNodeSet());
+ auto result_tuple = std::make_tuple(NodeMapping(), AccessChainMapping(), ObjectAccesschainSet(),
+ ReturnBranchNodeSet());
- TIntermNode *root = intermediate.getTreeRoot();
+ TIntermNode* root = intermediate.getTreeRoot();
if (root == 0) return result_tuple;
- NodeMapping &symbol_definition_mapping = std::get<0>(result_tuple);
- AccessChainMapping &accesschain_mapping = std::get<1>(result_tuple);
- ObjectAccesschainSet &precise_objects = std::get<2>(result_tuple);
- ReturnBranchNodeSet &precise_return_nodes = std::get<3>(result_tuple);
+ NodeMapping& symbol_definition_mapping = std::get<0>(result_tuple);
+ AccessChainMapping& accesschain_mapping = std::get<1>(result_tuple);
+ ObjectAccesschainSet& precise_objects = std::get<2>(result_tuple);
+ ReturnBranchNodeSet& precise_return_nodes = std::get<3>(result_tuple);
// Traverses the AST and populate the results.
TSymbolDefinitionCollectingTraverser collector(&symbol_definition_mapping, &accesschain_mapping,
};
public:
- TNoContractionAssigneeCheckingTraverser(const AccessChainMapping &accesschain_mapping)
+ TNoContractionAssigneeCheckingTraverser(const AccessChainMapping& accesschain_mapping)
: TIntermTraverser(true, false, false), accesschain_mapping_(accesschain_mapping),
precise_object_(nullptr) {}
// precise object.
std::tuple<bool, ObjectAccessChain>
getPrecisenessAndRemainedAccessChain(glslang::TIntermOperator* node,
- const ObjectAccessChain &precise_object)
+ const ObjectAccessChain& precise_object)
{
assert(isAssignOperation(node->getOp()));
precise_object_ = &precise_object;
}
protected:
- bool visitBinary(glslang::TVisit, glslang::TIntermBinary *node) override;
- void visitSymbol(glslang::TIntermSymbol *node) override;
+ bool visitBinary(glslang::TVisit, glslang::TIntermBinary* node) override;
+ void visitSymbol(glslang::TIntermSymbol* node) override;
// A map from object nodes to their accesschain string (used as object ID).
- const AccessChainMapping &accesschain_mapping_;
+ const AccessChainMapping& accesschain_mapping_;
// A given precise object, represented in it accesschain string. This
// precise object is used to be compared with the assignee node to tell if
// the assignee node is 'precise', contains 'precise' object or not
// 'precise'.
- const ObjectAccessChain *precise_object_;
+ const ObjectAccessChain* precise_object_;
};
// Visit a binary node. If the node is an object node, it must be a dereference
// node. In such cases, if the left node is 'precise', this node should also be
// 'precise'.
bool TNoContractionAssigneeCheckingTraverser::visitBinary(glslang::TVisit,
- glslang::TIntermBinary *node)
+ glslang::TIntermBinary* node)
{
// Traverses the left so that we transfer the 'precise' from nesting object
// to its nested object.
// this node should be marked as 'precise'.
if (isPreciseObjectNode(node->getLeft())) {
node->getWritableType().getQualifier().noContraction = true;
- } else if (accesschain_mapping_.at(node) == *precise_object_){
+ } else if (accesschain_mapping_.at(node) == *precise_object_) {
node->getWritableType().getQualifier().noContraction = true;
}
}
// Visit a symbol node, if the symbol node ID (its accesschain string) matches
// with the given precise object, this node should be 'precise'.
-void TNoContractionAssigneeCheckingTraverser::visitSymbol(glslang::TIntermSymbol *node)
+void TNoContractionAssigneeCheckingTraverser::visitSymbol(glslang::TIntermSymbol* node)
{
// A symbol node should always be an object node, and should have been added
// to the map from object nodes to their accesschain strings.
//
class TNoContractionPropagator : public glslang::TIntermTraverser {
public:
- TNoContractionPropagator(ObjectAccesschainSet *precise_objects,
- const AccessChainMapping &accesschain_mapping)
+ TNoContractionPropagator(ObjectAccesschainSet* precise_objects,
+ const AccessChainMapping& accesschain_mapping)
: TIntermTraverser(true, false, false), remained_accesschain_(),
- precise_objects_(*precise_objects),
- accesschain_mapping_(accesschain_mapping), added_precise_object_ids_() {}
+ precise_objects_(*precise_objects), accesschain_mapping_(accesschain_mapping),
+ added_precise_object_ids_() {}
// Propagates 'precise' in the right nodes of a given assignment node with
// accesschain record from the assignee node to a 'precise' object it
// contains.
void
- propagateNoContractionInOneExpression(glslang::TIntermTyped *defining_node,
- const ObjectAccessChain &assignee_remained_accesschain)
+ propagateNoContractionInOneExpression(glslang::TIntermTyped* defining_node,
+ const ObjectAccessChain& assignee_remained_accesschain)
{
remained_accesschain_ = assignee_remained_accesschain;
- if (glslang::TIntermBinary *BN = defining_node->getAsBinaryNode()) {
+ if (glslang::TIntermBinary* BN = defining_node->getAsBinaryNode()) {
assert(isAssignOperation(BN->getOp()));
BN->getRight()->traverse(this);
if (isArithmeticOperation(BN->getOp())) {
BN->getWritableType().getQualifier().noContraction = true;
}
- } else if (glslang::TIntermUnary *UN = defining_node->getAsUnaryNode()) {
+ } else if (glslang::TIntermUnary* UN = defining_node->getAsUnaryNode()) {
assert(isAssignOperation(UN->getOp()));
UN->getOperand()->traverse(this);
if (isArithmeticOperation(UN->getOp())) {
}
// Propagates 'precise' in a given precise return node.
- void
- propagateNoContractionInReturnNode(glslang::TIntermBranch *return_node)
+ void propagateNoContractionInReturnNode(glslang::TIntermBranch* return_node)
{
remained_accesschain_ = "";
assert(return_node->getFlowOp() == glslang::EOpReturn && return_node->getExpression());
// case we need to find the 'precise' or 'precise' containing object node
// with the accesschain record. In other cases, just need to traverse all
// the children nodes.
- bool visitAggregate(glslang::TVisit, glslang::TIntermAggregate *node) override
+ bool visitAggregate(glslang::TVisit, glslang::TIntermAggregate* node) override
{
if (!remained_accesschain_.empty() && node->getOp() == glslang::EOpConstructStruct) {
// This is a struct initializer node, and the remained
getFrontElement(remained_accesschain_);
unsigned precise_accesschain_index = std::stoul(precise_accesschain_index_str);
// Gets the node pointed by the accesschain index extracted before.
- glslang::TIntermTyped *potential_precise_node =
+ glslang::TIntermTyped* potential_precise_node =
node->getSequence()[precise_accesschain_index]->getAsTyped();
assert(potential_precise_node);
// Pop the front accesschain index from the path, and visit the nested node.
&remained_accesschain_, next_level_accesschain);
potential_precise_node->traverse(this);
}
-
- } else {
- // If this is not a struct constructor, just visit each nested node.
- glslang::TIntermSequence &seq = node->getSequence();
- for (int i = 0; i < (int)seq.size(); ++i) {
- seq[i]->traverse(this);
- }
+ return false;
}
-
- return false;
+ return true;
}
// Visit a binary node. A binary node can be an object node, e.g. a dereference node.
// an object node. If the binary node does not represent an object node, it should
// go on to traverse its children nodes and if it is an arithmetic operation node, this
// operation should be marked as 'noContraction'.
- bool visitBinary(glslang::TVisit, glslang::TIntermBinary *node) override
+ bool visitBinary(glslang::TVisit, glslang::TIntermBinary* node) override
{
if (isDereferenceOperation(node->getOp())) {
// This binary node is an object node. Need to update the precise
if (remained_accesschain_.empty()) {
node->getWritableType().getQualifier().noContraction = true;
} else {
- new_precise_accesschain +=
- StructAccessChainDelimiter + remained_accesschain_;
+ new_precise_accesschain += OBJECT_ACCESSCHAIN_DELIMITER + remained_accesschain_;
}
// Cache the accesschain as added precise object, so we won't add the
// same object to the worklist again.
node->getWritableType().getQualifier().noContraction = true;
}
// As this node is not an object node, need to traverse the children nodes.
- node->getLeft()->traverse(this);
- node->getRight()->traverse(this);
- return false;
+ return true;
}
// Visits an unary node. An unary node can not be an object node. If the operation
// is an arithmetic operation, need to mark this node as 'noContraction'.
- bool visitUnary(glslang::TVisit /* visit */, glslang::TIntermUnary *node) override
+ bool visitUnary(glslang::TVisit /* visit */, glslang::TIntermUnary* node) override
{
// If this is an arithmetic operation, marks this with 'noContraction'
if (isArithmeticOperation(node->getOp())) {
node->getWritableType().getQualifier().noContraction = true;
}
- node->getOperand()->traverse(this);
- return false;
+ return true;
}
// Visits a symbol node. A symbol node is always an object node. So we
// nodes to accesschains. As an object node, a symbol node can be either
// 'precise' or containing 'precise' objects according to unused
// accesschain information we have when we visit this node.
- void visitSymbol(glslang::TIntermSymbol *node) override
+ void visitSymbol(glslang::TIntermSymbol* node) override
{
// Symbol nodes are object nodes and should always have an
// accesschain collected before matches with it.
if (remained_accesschain_.empty()) {
node->getWritableType().getQualifier().noContraction = true;
} else {
- new_precise_accesschain += StructAccessChainDelimiter + remained_accesschain_;
+ new_precise_accesschain += OBJECT_ACCESSCHAIN_DELIMITER + remained_accesschain_;
}
// Add the new 'precise' accesschain to the worklist and make sure we
// don't visit it again.
}
// A set of precise objects, represented as accesschains.
- ObjectAccesschainSet &precise_objects_;
+ ObjectAccesschainSet& precise_objects_;
// Visited symbol nodes, should not revisit these nodes.
ObjectAccesschainSet added_precise_object_ids_;
// The left node of an assignment operation might be an parent of 'precise' objects.
// tell us how to find the corresponding 'precise' node in the right.
ObjectAccessChain remained_accesschain_;
// A map from node pointers to their accesschains.
- const AccessChainMapping &accesschain_mapping_;
+ const AccessChainMapping& accesschain_mapping_;
};
-
-#undef StructAccessChainDelimiter
}
namespace glslang {
-void PropagateNoContraction(const glslang::TIntermediate &intermediate)
+void PropagateNoContraction(const glslang::TIntermediate& intermediate)
{
// First, traverses the AST, records symbols with their defining operations
// and collects the initial set of precise symbols (symbol nodes that marked
// The mapping of symbol node IDs to their defining nodes. This enables us
// to get the defining node directly from a given symbol ID without
// traversing the tree again.
- NodeMapping &symbol_definition_mapping = std::get<0>(mappings_and_precise_objects);
+ NodeMapping& symbol_definition_mapping = std::get<0>(mappings_and_precise_objects);
// The mapping of object nodes to their accesschains recorded.
- AccessChainMapping &accesschain_mapping = std::get<1>(mappings_and_precise_objects);
+ AccessChainMapping& accesschain_mapping = std::get<1>(mappings_and_precise_objects);
// The initial set of 'precise' objects which are represented as the
// accesschain toward them.
- ObjectAccesschainSet &precise_object_accesschains =
- std::get<2>(mappings_and_precise_objects);
+ ObjectAccesschainSet& precise_object_accesschains = std::get<2>(mappings_and_precise_objects);
// The set of 'precise' return nodes.
- ReturnBranchNodeSet &precise_return_nodes = std::get<3>(mappings_and_precise_objects);
+ ReturnBranchNodeSet& precise_return_nodes = std::get<3>(mappings_and_precise_objects);
// Second, uses the initial set of precise objects as a worklist, pops an
// accesschain, extract the symbol ID from it. Then:
// 'precise' accesschain worklist with new found object nodes.
// Repeat above steps until the worklist is empty.
TNoContractionAssigneeCheckingTraverser checker(accesschain_mapping);
- TNoContractionPropagator propagator(&precise_object_accesschains,
- accesschain_mapping);
+ TNoContractionPropagator propagator(&precise_object_accesschains, accesschain_mapping);
- // We have to initial precise worklist to handle:
+ // We have two initial precise worklists to handle:
// 1) precise return nodes
// 2) precise object accesschains
// We should process the precise return nodes first and the involved
// objects, and mark arithmetic operations as 'noContraction'.
for (NodeMapping::iterator defining_node_iter = range.first;
defining_node_iter != range.second; defining_node_iter++) {
- TIntermOperator *defining_node = defining_node_iter->second;
+ TIntermOperator* defining_node = defining_node_iter->second;
// Check the assignee node.
auto checker_result = checker.getPrecisenessAndRemainedAccessChain(
defining_node, precise_object_accesschain);
- bool &contain_precise = std::get<0>(checker_result);
- ObjectAccessChain &remained_accesschain = std::get<1>(checker_result);
+ bool& contain_precise = std::get<0>(checker_result);
+ ObjectAccessChain& remained_accesschain = std::get<1>(checker_result);
// If the assignee node is 'precise' or contains 'precise', propagate the
// 'precise' to the right. Otherwise just skip this assignment node.
if (contain_precise) {