}
+LInstruction* LChunkBuilder::DoMathMinMax(HMathMinMax* instr) {
+ LOperand* left = NULL;
+ LOperand* right = NULL;
+ if (instr->representation().IsInteger32()) {
+ ASSERT(instr->left()->representation().IsInteger32());
+ ASSERT(instr->right()->representation().IsInteger32());
+ left = UseRegisterAtStart(instr->LeastConstantOperand());
+ right = UseOrConstantAtStart(instr->MostConstantOperand());
+ } else {
+ ASSERT(instr->representation().IsDouble());
+ ASSERT(instr->left()->representation().IsDouble());
+ ASSERT(instr->right()->representation().IsDouble());
+ left = UseRegisterAtStart(instr->left());
+ right = UseRegisterAtStart(instr->right());
+ }
+ return DefineAsRegister(new(zone()) LMathMinMax(left, right));
+}
+
+
LInstruction* LChunkBuilder::DoPower(HPower* instr) {
ASSERT(instr->representation().IsDouble());
// We call a C function for double power. It can't trigger a GC.
V(IsStringAndBranch) \
V(IsSmiAndBranch) \
V(IsUndetectableAndBranch) \
- V(StringCompareAndBranch) \
V(JSArrayLength) \
V(Label) \
V(LazyBailout) \
V(LoadNamedFieldPolymorphic) \
V(LoadNamedGeneric) \
V(MathFloorOfDiv) \
+ V(MathMinMax) \
V(ModI) \
V(MulI) \
V(NumberTagD) \
V(StringAdd) \
V(StringCharCodeAt) \
V(StringCharFromCode) \
+ V(StringCompareAndBranch) \
V(StringLength) \
V(SubI) \
V(TaggedToI) \
};
+class LMathMinMax: public LTemplateInstruction<1, 2, 0> {
+ public:
+ LMathMinMax(LOperand* left, LOperand* right) {
+ inputs_[0] = left;
+ inputs_[1] = right;
+ }
+
+ DECLARE_CONCRETE_INSTRUCTION(MathMinMax, "min-max")
+ DECLARE_HYDROGEN_ACCESSOR(MathMinMax)
+};
+
+
class LPower: public LTemplateInstruction<1, 2, 0> {
public:
LPower(LOperand* left, LOperand* right) {
}
+void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
+ LOperand* left = instr->InputAt(0);
+ LOperand* right = instr->InputAt(1);
+ HMathMinMax::Operation operation = instr->hydrogen()->operation();
+ Condition condition = (operation == HMathMinMax::kMathMin) ? le : ge;
+ if (instr->hydrogen()->representation().IsInteger32()) {
+ Register left_reg = ToRegister(left);
+ Operand right_op = (right->IsRegister() || right->IsConstantOperand())
+ ? ToOperand(right)
+ : Operand(EmitLoadRegister(right, ip));
+ Register result_reg = ToRegister(instr->result());
+ __ cmp(left_reg, right_op);
+ if (!result_reg.is(left_reg)) {
+ __ mov(result_reg, left_reg, LeaveCC, condition);
+ }
+ __ mov(result_reg, right_op, LeaveCC, NegateCondition(condition));
+ } else {
+ ASSERT(instr->hydrogen()->representation().IsDouble());
+ DoubleRegister left_reg = ToDoubleRegister(left);
+ DoubleRegister right_reg = ToDoubleRegister(right);
+ DoubleRegister result_reg = ToDoubleRegister(instr->result());
+ Label check_nan_left, check_zero, return_left, return_right, done;
+ __ VFPCompareAndSetFlags(left_reg, right_reg);
+ __ b(vs, &check_nan_left);
+ __ b(eq, &check_zero);
+ __ b(condition, &return_left);
+ __ b(al, &return_right);
+
+ __ bind(&check_zero);
+ __ VFPCompareAndSetFlags(left_reg, 0.0);
+ __ b(ne, &return_left); // left == right != 0.
+ // At this point, both left and right are either 0 or -0.
+ if (operation == HMathMinMax::kMathMin) {
+ // We could use a single 'vorr' instruction here if we had NEON support.
+ __ vneg(left_reg, left_reg);
+ __ vsub(result_reg, left_reg, right_reg);
+ __ vneg(result_reg, result_reg);
+ } else {
+ // Since we operate on +0 and/or -0, vadd and vand have the same effect;
+ // the decision for vadd is easy because vand is a NEON instruction.
+ __ vadd(result_reg, left_reg, right_reg);
+ }
+ __ b(al, &done);
+
+ __ bind(&check_nan_left);
+ __ VFPCompareAndSetFlags(left_reg, left_reg);
+ __ b(vs, &return_left); // left == NaN.
+ __ bind(&return_right);
+ if (!right_reg.is(result_reg)) {
+ __ vmov(result_reg, right_reg);
+ }
+ __ b(al, &done);
+
+ __ bind(&return_left);
+ if (!left_reg.is(result_reg)) {
+ __ vmov(result_reg, left_reg);
+ }
+ __ bind(&done);
+ }
+}
+
+
void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
DoubleRegister left = ToDoubleRegister(instr->InputAt(0));
DoubleRegister right = ToDoubleRegister(instr->InputAt(1));
}
-void Simulator::set_s_register_from_float(int sreg, const float flt) {
- ASSERT((sreg >= 0) && (sreg < num_s_registers));
- // Read the bits from the single precision floating point value
- // into the unsigned integer element of vfp_register[] given by index=sreg.
- char buffer[sizeof(vfp_register[0])];
- memcpy(buffer, &flt, sizeof(vfp_register[0]));
- memcpy(&vfp_register[sreg], buffer, sizeof(vfp_register[0]));
-}
-
-
-void Simulator::set_s_register_from_sinteger(int sreg, const int sint) {
- ASSERT((sreg >= 0) && (sreg < num_s_registers));
- // Read the bits from the integer value into the unsigned integer element of
- // vfp_register[] given by index=sreg.
- char buffer[sizeof(vfp_register[0])];
- memcpy(buffer, &sint, sizeof(vfp_register[0]));
- memcpy(&vfp_register[sreg], buffer, sizeof(vfp_register[0]));
-}
-
-
-void Simulator::set_d_register_from_double(int dreg, const double& dbl) {
- ASSERT((dreg >= 0) && (dreg < num_d_registers));
- // Read the bits from the double precision floating point value into the two
- // consecutive unsigned integer elements of vfp_register[] given by index
- // 2*sreg and 2*sreg+1.
- char buffer[2 * sizeof(vfp_register[0])];
- memcpy(buffer, &dbl, 2 * sizeof(vfp_register[0]));
- memcpy(&vfp_register[dreg * 2], buffer, 2 * sizeof(vfp_register[0]));
-}
-
-
-float Simulator::get_float_from_s_register(int sreg) {
- ASSERT((sreg >= 0) && (sreg < num_s_registers));
-
- float sm_val = 0.0;
- // Read the bits from the unsigned integer vfp_register[] array
- // into the single precision floating point value and return it.
- char buffer[sizeof(vfp_register[0])];
- memcpy(buffer, &vfp_register[sreg], sizeof(vfp_register[0]));
- memcpy(&sm_val, buffer, sizeof(vfp_register[0]));
- return(sm_val);
-}
-
-
-int Simulator::get_sinteger_from_s_register(int sreg) {
- ASSERT((sreg >= 0) && (sreg < num_s_registers));
-
- int sm_val = 0;
- // Read the bits from the unsigned integer vfp_register[] array
- // into the single precision floating point value and return it.
- char buffer[sizeof(vfp_register[0])];
- memcpy(buffer, &vfp_register[sreg], sizeof(vfp_register[0]));
- memcpy(&sm_val, buffer, sizeof(vfp_register[0]));
- return(sm_val);
-}
-
-
-double Simulator::get_double_from_d_register(int dreg) {
- ASSERT((dreg >= 0) && (dreg < num_d_registers));
-
- double dm_val = 0.0;
- // Read the bits from the unsigned integer vfp_register[] array
- // into the double precision floating point value and return it.
- char buffer[2 * sizeof(vfp_register[0])];
- memcpy(buffer, &vfp_register[2 * dreg], 2 * sizeof(vfp_register[0]));
- memcpy(&dm_val, buffer, 2 * sizeof(vfp_register[0]));
- return(dm_val);
+template<class InputType, int register_size>
+void Simulator::SetVFPRegister(int reg_index, const InputType& value) {
+ ASSERT(reg_index >= 0);
+ if (register_size == 1) ASSERT(reg_index < num_s_registers);
+ if (register_size == 2) ASSERT(reg_index < num_d_registers);
+
+ char buffer[register_size * sizeof(vfp_register[0])];
+ memcpy(buffer, &value, register_size * sizeof(vfp_register[0]));
+ memcpy(&vfp_register[reg_index * register_size], buffer,
+ register_size * sizeof(vfp_register[0]));
+}
+
+
+template<class ReturnType, int register_size>
+ReturnType Simulator::GetFromVFPRegister(int reg_index) {
+ ASSERT(reg_index >= 0);
+ if (register_size == 1) ASSERT(reg_index < num_s_registers);
+ if (register_size == 2) ASSERT(reg_index < num_d_registers);
+
+ ReturnType value = 0;
+ char buffer[register_size * sizeof(vfp_register[0])];
+ memcpy(buffer, &vfp_register[register_size * reg_index],
+ register_size * sizeof(vfp_register[0]));
+ memcpy(&value, buffer, register_size * sizeof(vfp_register[0]));
+ return value;
}
// Support for VFP.
void set_s_register(int reg, unsigned int value);
unsigned int get_s_register(int reg) const;
- void set_d_register_from_double(int dreg, const double& dbl);
- double get_double_from_d_register(int dreg);
- void set_s_register_from_float(int sreg, const float dbl);
- float get_float_from_s_register(int sreg);
- void set_s_register_from_sinteger(int reg, const int value);
- int get_sinteger_from_s_register(int reg);
+
+ void set_d_register_from_double(int dreg, const double& dbl) {
+ SetVFPRegister<double, 2>(dreg, dbl);
+ }
+
+ double get_double_from_d_register(int dreg) {
+ return GetFromVFPRegister<double, 2>(dreg);
+ }
+
+ void set_s_register_from_float(int sreg, const float flt) {
+ SetVFPRegister<float, 1>(sreg, flt);
+ }
+
+ float get_float_from_s_register(int sreg) {
+ return GetFromVFPRegister<float, 1>(sreg);
+ }
+
+ void set_s_register_from_sinteger(int sreg, const int sint) {
+ SetVFPRegister<int, 1>(sreg, sint);
+ }
+
+ int get_sinteger_from_s_register(int sreg) {
+ return GetFromVFPRegister<int, 1>(sreg);
+ }
// Special case of set_register and get_register to access the raw PC value.
void set_pc(int32_t value);
void SetFpResult(const double& result);
void TrashCallerSaveRegisters();
+ template<class ReturnType, int register_size>
+ ReturnType GetFromVFPRegister(int reg_index);
+
+ template<class InputType, int register_size>
+ void SetVFPRegister(int reg_index, const InputType& value);
+
// Architecture state.
// Saturating instructions require a Q flag to indicate saturation.
// There is currently no way to read the CPSR directly, and thus read the Q
}
+void Range::CombinedMax(Range* other) {
+ upper_ = Max(upper_, other->upper_);
+ lower_ = Max(lower_, other->lower_);
+ set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
+}
+
+
+void Range::CombinedMin(Range* other) {
+ upper_ = Min(upper_, other->upper_);
+ lower_ = Min(lower_, other->lower_);
+ set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
+}
+
+
void Range::Sar(int32_t value) {
int32_t bits = value & 0x1F;
lower_ = lower_ >> bits;
}
+Range* HMathMinMax::InferRange(Zone* zone) {
+ if (representation().IsInteger32()) {
+ Range* a = left()->range();
+ Range* b = right()->range();
+ Range* res = a->Copy(zone);
+ if (operation_ == kMathMax) {
+ res->CombinedMax(b);
+ } else {
+ ASSERT(operation_ == kMathMin);
+ res->CombinedMin(b);
+ }
+ return res;
+ } else {
+ return HValue::InferRange(zone);
+ }
+}
+
+
void HPhi::PrintTo(StringStream* stream) {
stream->Add("[");
for (int i = 0; i < OperandCount(); ++i) {
V(IsStringAndBranch) \
V(IsSmiAndBranch) \
V(IsUndetectableAndBranch) \
- V(StringCompareAndBranch) \
V(JSArrayLength) \
V(LeaveInlined) \
V(LoadContextSlot) \
V(LoadNamedFieldPolymorphic) \
V(LoadNamedGeneric) \
V(MathFloorOfDiv) \
+ V(MathMinMax) \
V(Mod) \
V(Mul) \
V(ObjectLiteral) \
V(StringAdd) \
V(StringCharCodeAt) \
V(StringCharFromCode) \
+ V(StringCompareAndBranch) \
V(StringLength) \
V(Sub) \
V(ThisFunction) \
void Intersect(Range* other);
void Union(Range* other);
+ void CombinedMax(Range* other);
+ void CombinedMin(Range* other);
void AddConstant(int32_t value);
void Sar(int32_t value);
};
+class HMathMinMax: public HArithmeticBinaryOperation {
+ public:
+ enum Operation { kMathMin, kMathMax };
+
+ HMathMinMax(HValue* context, HValue* left, HValue* right, Operation op)
+ : HArithmeticBinaryOperation(context, left, right),
+ operation_(op) { }
+
+ virtual Representation RequiredInputRepresentation(int index) {
+ return index == 0
+ ? Representation::Tagged()
+ : representation();
+ }
+
+ virtual Representation InferredRepresentation() {
+ if (left()->representation().IsInteger32() &&
+ right()->representation().IsInteger32()) {
+ return Representation::Integer32();
+ }
+ return Representation::Double();
+ }
+
+ virtual bool IsCommutative() const { return true; }
+
+ Operation operation() { return operation_; }
+
+ DECLARE_CONCRETE_INSTRUCTION(MathMinMax)
+
+ protected:
+ virtual bool DataEquals(HValue* other) {
+ return other->IsMathMinMax() &&
+ HMathMinMax::cast(other)->operation_ == operation_;
+ }
+
+ virtual Range* InferRange(Zone* zone);
+
+ private:
+ Operation operation_;
+};
+
+
class HBitwise: public HBitwiseBinaryOperation {
public:
HBitwise(Token::Value op, HValue* context, HValue* left, HValue* right)
break;
}
- // For multiplication and division, we must propagate to the left and
- // the right side.
+ // For multiplication, division, and Math.min/max(), we must propagate
+ // to the left and the right side.
if (current->IsMul()) {
HMul* mul = HMul::cast(current);
mul->EnsureAndPropagateNotMinusZero(visited);
div->EnsureAndPropagateNotMinusZero(visited);
PropagateMinusZeroChecks(div->left(), visited);
PropagateMinusZeroChecks(div->right(), visited);
+ } else if (current->IsMathMinMax()) {
+ HMathMinMax* minmax = HMathMinMax::cast(current);
+ visited->Add(minmax->id());
+ PropagateMinusZeroChecks(minmax->left(), visited);
+ PropagateMinusZeroChecks(minmax->right(), visited);
}
current = current->EnsureAndPropagateNotMinusZero(visited);
AddCheckConstantFunction(expr->holder(), receiver, receiver_map, true);
HValue* right = Pop();
HValue* left = Pop();
- Pop(); // Pop receiver.
-
- HValue* left_operand = left;
- HValue* right_operand = right;
-
- // If we do not have two integers, we convert to double for comparison.
- if (!left->representation().IsInteger32() ||
- !right->representation().IsInteger32()) {
- if (!left->representation().IsDouble()) {
- HChange* left_convert = new(zone()) HChange(
- left,
- Representation::Double(),
- false, // Do not truncate when converting to double.
- true); // Deoptimize for undefined.
- left_convert->SetFlag(HValue::kBailoutOnMinusZero);
- left_operand = AddInstruction(left_convert);
- }
- if (!right->representation().IsDouble()) {
- HChange* right_convert = new(zone()) HChange(
- right,
- Representation::Double(),
- false, // Do not truncate when converting to double.
- true); // Deoptimize for undefined.
- right_convert->SetFlag(HValue::kBailoutOnMinusZero);
- right_operand = AddInstruction(right_convert);
- }
- }
-
- ASSERT(left_operand->representation().Equals(
- right_operand->representation()));
- ASSERT(!left_operand->representation().IsTagged());
-
- Token::Value op = (id == kMathMin) ? Token::LT : Token::GT;
-
- HCompareIDAndBranch* compare =
- new(zone()) HCompareIDAndBranch(left_operand, right_operand, op);
- compare->SetInputRepresentation(left_operand->representation());
-
- HBasicBlock* return_left = graph()->CreateBasicBlock();
- HBasicBlock* return_right = graph()->CreateBasicBlock();
-
- compare->SetSuccessorAt(0, return_left);
- compare->SetSuccessorAt(1, return_right);
- current_block()->Finish(compare);
-
- set_current_block(return_left);
- Push(left);
- set_current_block(return_right);
- // The branch above always returns the right operand if either of
- // them is NaN, but the spec requires that max/min(NaN, X) = NaN.
- // We add another branch that checks if the left operand is NaN or not.
- if (left_operand->representation().IsDouble()) {
- // If left_operand != left_operand then it is NaN.
- HCompareIDAndBranch* compare_nan = new(zone()) HCompareIDAndBranch(
- left_operand, left_operand, Token::EQ);
- compare_nan->SetInputRepresentation(left_operand->representation());
- HBasicBlock* left_is_number = graph()->CreateBasicBlock();
- HBasicBlock* left_is_nan = graph()->CreateBasicBlock();
- compare_nan->SetSuccessorAt(0, left_is_number);
- compare_nan->SetSuccessorAt(1, left_is_nan);
- current_block()->Finish(compare_nan);
- set_current_block(left_is_nan);
- Push(left);
- set_current_block(left_is_number);
- Push(right);
- return_right = CreateJoin(left_is_number, left_is_nan, expr->id());
- } else {
- Push(right);
- }
-
- HBasicBlock* join = CreateJoin(return_left, return_right, expr->id());
- set_current_block(join);
- ast_context()->ReturnValue(Pop());
+ Drop(1); // Receiver.
+ HValue* context = environment()->LookupContext();
+ HMathMinMax::Operation op = (id == kMathMin) ? HMathMinMax::kMathMin
+ : HMathMinMax::kMathMax;
+ HMathMinMax* result = new(zone()) HMathMinMax(context, left, right, op);
+ ast_context()->ReturnInstruction(result, expr->id());
return true;
}
break;
}
+void Assembler::orpd(XMMRegister dst, XMMRegister src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x66);
+ EMIT(0x0F);
+ EMIT(0x56);
+ emit_sse_operand(dst, src);
+}
+
+
void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
ASSERT(CpuFeatures::IsEnabled(SSE2));
EnsureSpace ensure_space(this);
void sqrtsd(XMMRegister dst, XMMRegister src);
void andpd(XMMRegister dst, XMMRegister src);
+ void orpd(XMMRegister dst, XMMRegister src);
void ucomisd(XMMRegister dst, XMMRegister src);
void ucomisd(XMMRegister dst, const Operand& src);
NameOfXMMRegister(regop),
NameOfXMMRegister(rm));
data++;
+ } else if (*data == 0x56) {
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, ®op, &rm);
+ AppendToBuffer("orpd %s,%s",
+ NameOfXMMRegister(regop),
+ NameOfXMMRegister(rm));
+ data++;
} else if (*data == 0x57) {
data++;
int mod, regop, rm;
}
+void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
+ LOperand* left = instr->InputAt(0);
+ LOperand* right = instr->InputAt(1);
+ ASSERT(left->Equals(instr->result()));
+ HMathMinMax::Operation operation = instr->hydrogen()->operation();
+ if (instr->hydrogen()->representation().IsInteger32()) {
+ Label return_left;
+ Condition condition = (operation == HMathMinMax::kMathMin)
+ ? less_equal
+ : greater_equal;
+ if (right->IsConstantOperand()) {
+ Operand left_op = ToOperand(left);
+ Immediate right_imm = ToInteger32Immediate(right);
+ __ cmp(left_op, right_imm);
+ __ j(condition, &return_left, Label::kNear);
+ __ mov(left_op, right_imm);
+ } else {
+ Register left_reg = ToRegister(left);
+ Operand right_op = ToOperand(right);
+ __ cmp(left_reg, right_op);
+ __ j(condition, &return_left, Label::kNear);
+ __ mov(left_reg, right_op);
+ }
+ __ bind(&return_left);
+ } else {
+ ASSERT(instr->hydrogen()->representation().IsDouble());
+ Label check_nan_left, check_zero, return_left, return_right;
+ Condition condition = (operation == HMathMinMax::kMathMin) ? below : above;
+ XMMRegister left_reg = ToDoubleRegister(left);
+ XMMRegister right_reg = ToDoubleRegister(right);
+ __ ucomisd(left_reg, right_reg);
+ __ j(parity_even, &check_nan_left, Label::kNear); // At least one NaN.
+ __ j(equal, &check_zero, Label::kNear); // left == right.
+ __ j(condition, &return_left, Label::kNear);
+ __ jmp(&return_right, Label::kNear);
+
+ __ bind(&check_zero);
+ XMMRegister xmm_scratch = xmm0;
+ __ xorps(xmm_scratch, xmm_scratch);
+ __ ucomisd(left_reg, xmm_scratch);
+ __ j(not_equal, &return_left, Label::kNear); // left == right != 0.
+ // At this point, both left and right are either 0 or -0.
+ if (operation == HMathMinMax::kMathMin) {
+ __ orpd(left_reg, right_reg);
+ } else {
+ // Since we operate on +0 and/or -0, addsd and andsd have the same effect.
+ __ addsd(left_reg, right_reg);
+ }
+ __ jmp(&return_left, Label::kNear);
+
+ __ bind(&check_nan_left);
+ __ ucomisd(left_reg, left_reg); // NaN check.
+ __ j(parity_even, &return_left, Label::kNear); // left == NaN.
+ __ bind(&return_right);
+ __ movsd(left_reg, right_reg);
+
+ __ bind(&return_left);
+ }
+}
+
+
void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
XMMRegister left = ToDoubleRegister(instr->InputAt(0));
XMMRegister right = ToDoubleRegister(instr->InputAt(1));
}
+LInstruction* LChunkBuilder::DoMathMinMax(HMathMinMax* instr) {
+ LOperand* left = NULL;
+ LOperand* right = NULL;
+ if (instr->representation().IsInteger32()) {
+ ASSERT(instr->left()->representation().IsInteger32());
+ ASSERT(instr->right()->representation().IsInteger32());
+ left = UseRegisterAtStart(instr->LeastConstantOperand());
+ right = UseOrConstantAtStart(instr->MostConstantOperand());
+ } else {
+ ASSERT(instr->representation().IsDouble());
+ ASSERT(instr->left()->representation().IsDouble());
+ ASSERT(instr->right()->representation().IsDouble());
+ left = UseRegisterAtStart(instr->left());
+ right = UseRegisterAtStart(instr->right());
+ }
+ LMathMinMax* minmax = new(zone()) LMathMinMax(left, right);
+ return DefineSameAsFirst(minmax);
+}
+
+
LInstruction* LChunkBuilder::DoPower(HPower* instr) {
ASSERT(instr->representation().IsDouble());
// We call a C function for double power. It can't trigger a GC.
V(IsStringAndBranch) \
V(IsSmiAndBranch) \
V(IsUndetectableAndBranch) \
- V(StringCompareAndBranch) \
V(JSArrayLength) \
V(Label) \
V(LazyBailout) \
V(LoadNamedFieldPolymorphic) \
V(LoadNamedGeneric) \
V(MathFloorOfDiv) \
+ V(MathMinMax) \
V(MathPowHalf) \
V(ModI) \
V(MulI) \
V(StringAdd) \
V(StringCharCodeAt) \
V(StringCharFromCode) \
+ V(StringCompareAndBranch) \
V(StringLength) \
V(SubI) \
V(TaggedToI) \
};
+class LMathMinMax: public LTemplateInstruction<1, 2, 0> {
+ public:
+ LMathMinMax(LOperand* left, LOperand* right) {
+ inputs_[0] = left;
+ inputs_[1] = right;
+ }
+
+ DECLARE_CONCRETE_INSTRUCTION(MathMinMax, "min-max")
+ DECLARE_HYDROGEN_ACCESSOR(MathMinMax)
+};
+
+
class LPower: public LTemplateInstruction<1, 2, 0> {
public:
LPower(LOperand* left, LOperand* right) {
}
+void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
+ LOperand* left = instr->InputAt(0);
+ LOperand* right = instr->InputAt(1);
+ ASSERT(left->Equals(instr->result()));
+ HMathMinMax::Operation operation = instr->hydrogen()->operation();
+ if (instr->hydrogen()->representation().IsInteger32()) {
+ Label return_left;
+ Condition condition = (operation == HMathMinMax::kMathMin)
+ ? less_equal
+ : greater_equal;
+ Register left_reg = ToRegister(left);
+ if (right->IsConstantOperand()) {
+ Immediate right_imm =
+ Immediate(ToInteger32(LConstantOperand::cast(right)));
+ __ cmpq(left_reg, right_imm);
+ __ j(condition, &return_left, Label::kNear);
+ __ movq(left_reg, right_imm);
+ } else {
+ Operand right_op = ToOperand(right);
+ __ cmpq(left_reg, right_op);
+ __ j(condition, &return_left, Label::kNear);
+ __ movq(left_reg, right_op);
+ }
+ __ bind(&return_left);
+ } else {
+ ASSERT(instr->hydrogen()->representation().IsDouble());
+ Label check_nan_left, check_zero, return_left, return_right;
+ Condition condition = (operation == HMathMinMax::kMathMin) ? below : above;
+ XMMRegister left_reg = ToDoubleRegister(left);
+ XMMRegister right_reg = ToDoubleRegister(right);
+ __ ucomisd(left_reg, right_reg);
+ __ j(parity_even, &check_nan_left, Label::kNear); // At least one NaN.
+ __ j(equal, &check_zero, Label::kNear); // left == right.
+ __ j(condition, &return_left, Label::kNear);
+ __ jmp(&return_right, Label::kNear);
+
+ __ bind(&check_zero);
+ XMMRegister xmm_scratch = xmm0;
+ __ xorps(xmm_scratch, xmm_scratch);
+ __ ucomisd(left_reg, xmm_scratch);
+ __ j(not_equal, &return_left, Label::kNear); // left == right != 0.
+ // At this point, both left and right are either 0 or -0.
+ if (operation == HMathMinMax::kMathMin) {
+ __ orpd(left_reg, right_reg);
+ } else {
+ // Since we operate on +0 and/or -0, addsd and andsd have the same effect.
+ __ addsd(left_reg, right_reg);
+ }
+ __ jmp(&return_left, Label::kNear);
+
+ __ bind(&check_nan_left);
+ __ ucomisd(left_reg, left_reg); // NaN check.
+ __ j(parity_even, &return_left, Label::kNear);
+ __ bind(&return_right);
+ __ movsd(left_reg, right_reg);
+
+ __ bind(&return_left);
+ }
+}
+
+
void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
XMMRegister left = ToDoubleRegister(instr->InputAt(0));
XMMRegister right = ToDoubleRegister(instr->InputAt(1));
}
+LInstruction* LChunkBuilder::DoMathMinMax(HMathMinMax* instr) {
+ LOperand* left = NULL;
+ LOperand* right = NULL;
+ if (instr->representation().IsInteger32()) {
+ ASSERT(instr->left()->representation().IsInteger32());
+ ASSERT(instr->right()->representation().IsInteger32());
+ left = UseRegisterAtStart(instr->LeastConstantOperand());
+ right = UseOrConstantAtStart(instr->MostConstantOperand());
+ } else {
+ ASSERT(instr->representation().IsDouble());
+ ASSERT(instr->left()->representation().IsDouble());
+ ASSERT(instr->right()->representation().IsDouble());
+ left = UseRegisterAtStart(instr->left());
+ right = UseRegisterAtStart(instr->right());
+ }
+ LMathMinMax* minmax = new(zone()) LMathMinMax(left, right);
+ return DefineSameAsFirst(minmax);
+}
+
+
LInstruction* LChunkBuilder::DoPower(HPower* instr) {
ASSERT(instr->representation().IsDouble());
// We call a C function for double power. It can't trigger a GC.
V(IsStringAndBranch) \
V(IsSmiAndBranch) \
V(IsUndetectableAndBranch) \
- V(StringCompareAndBranch) \
V(JSArrayLength) \
V(Label) \
V(LazyBailout) \
V(LoadNamedFieldPolymorphic) \
V(LoadNamedGeneric) \
V(MathFloorOfDiv) \
+ V(MathMinMax) \
V(ModI) \
V(MulI) \
V(NumberTagD) \
V(StringAdd) \
V(StringCharCodeAt) \
V(StringCharFromCode) \
+ V(StringCompareAndBranch) \
V(StringLength) \
V(SubI) \
V(TaggedToI) \
};
+class LMathMinMax: public LTemplateInstruction<1, 2, 0> {
+ public:
+ LMathMinMax(LOperand* left, LOperand* right) {
+ inputs_[0] = left;
+ inputs_[1] = right;
+ }
+
+ DECLARE_CONCRETE_INSTRUCTION(MathMinMax, "min-max")
+ DECLARE_HYDROGEN_ACCESSOR(MathMinMax)
+};
+
+
class LPower: public LTemplateInstruction<1, 2, 0> {
public:
LPower(LOperand* left, LOperand* right) {