-/*\r
-xxHash - Fast Hash algorithm\r
-Copyright (C) 2012-2014, Yann Collet.\r
-BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)\r
-\r
-Redistribution and use in source and binary forms, with or without\r
-modification, are permitted provided that the following conditions are\r
-met:\r
-\r
-* Redistributions of source code must retain the above copyright\r
-notice, this list of conditions and the following disclaimer.\r
-* Redistributions in binary form must reproduce the above\r
-copyright notice, this list of conditions and the following disclaimer\r
-in the documentation and/or other materials provided with the\r
-distribution.\r
-\r
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS\r
-"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT\r
-LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR\r
-A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT\r
-OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,\r
-SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT\r
-LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,\r
-DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY\r
-THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT\r
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE\r
-OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\r
-\r
-You can contact the author at :\r
-- xxHash source repository : http://code.google.com/p/xxhash/\r
-*/\r
-\r
-\r
-//**************************************\r
-// Tuning parameters\r
-//**************************************\r
-// Unaligned memory access is automatically enabled for "common" CPU, such as x86.\r
-// For others CPU, the compiler will be more cautious, and insert extra code to ensure aligned access is respected.\r
-// If you know your target CPU supports unaligned memory access, you want to force this option manually to improve performance.\r
-// You can also enable this parameter if you know your input data will always be aligned (boundaries of 4, for U32).\r
-#if defined(__ARM_FEATURE_UNALIGNED) || defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)\r
-# define XXH_USE_UNALIGNED_ACCESS 1\r
-#endif\r
-\r
-// XXH_ACCEPT_NULL_INPUT_POINTER :\r
-// If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.\r
-// When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.\r
-// This option has a very small performance cost (only measurable on small inputs).\r
-// By default, this option is disabled. To enable it, uncomment below define :\r
-// #define XXH_ACCEPT_NULL_INPUT_POINTER 1\r
-\r
-// XXH_FORCE_NATIVE_FORMAT :\r
-// By default, xxHash library provides endian-independant Hash values, based on little-endian convention.\r
-// Results are therefore identical for little-endian and big-endian CPU.\r
-// This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.\r
-// Should endian-independance be of no importance for your application, you may set the #define below to 1.\r
-// It will improve speed for Big-endian CPU.\r
-// This option has no impact on Little_Endian CPU.\r
-#define XXH_FORCE_NATIVE_FORMAT 0\r
-\r
-//**************************************\r
-// Compiler Specific Options\r
-//**************************************\r
-// Disable some Visual warning messages\r
-#ifdef _MSC_VER // Visual Studio\r
-# pragma warning(disable : 4127) // disable: C4127: conditional expression is constant\r
-#endif\r
-\r
-#ifdef _MSC_VER // Visual Studio\r
-# define FORCE_INLINE static __forceinline\r
-#else\r
-# ifdef __GNUC__\r
-# define FORCE_INLINE static inline __attribute__((always_inline))\r
-# else\r
-# define FORCE_INLINE static inline\r
-# endif\r
-#endif\r
-\r
-//**************************************\r
-// Includes & Memory related functions\r
-//**************************************\r
-#include "xxhash.h"\r
-// Modify the local functions below should you wish to use some other memory related routines\r
-// for malloc(), free()\r
-#include <stdlib.h>\r
-FORCE_INLINE void* XXH_malloc(size_t s) { return malloc(s); }\r
-FORCE_INLINE void XXH_free (void* p) { free(p); }\r
-// for memcpy()\r
-#include <string.h>\r
-FORCE_INLINE void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }\r
-\r
-\r
-//**************************************\r
-// Basic Types\r
-//**************************************\r
-#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L // C99\r
-# include <stdint.h>\r
- typedef uint8_t BYTE;\r
- typedef uint16_t U16;\r
- typedef uint32_t U32;\r
- typedef int32_t S32;\r
- typedef uint64_t U64;\r
-#else\r
- typedef unsigned char BYTE;\r
- typedef unsigned short U16;\r
- typedef unsigned int U32;\r
- typedef signed int S32;\r
- typedef unsigned long long U64;\r
-#endif\r
-\r
-#if defined(__GNUC__) && !defined(XXH_USE_UNALIGNED_ACCESS)\r
-# define _PACKED __attribute__ ((packed))\r
-#else\r
-# define _PACKED\r
-#endif\r
-\r
-#if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__)\r
-# ifdef __IBMC__\r
-# pragma pack(1)\r
-# else\r
-# pragma pack(push, 1)\r
-# endif\r
-#endif\r
-\r
-typedef struct _U32_S { U32 v; } _PACKED U32_S;\r
-typedef struct _U64_S { U64 v; } _PACKED U64_S;\r
-\r
-#if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__)\r
-# pragma pack(pop)\r
-#endif\r
-\r
-#define A32(x) (((U32_S *)(x))->v)\r
-#define A64(x) (((U64_S *)(x))->v)\r
-\r
-\r
-//***************************************\r
-// Compiler-specific Functions and Macros\r
-//***************************************\r
-#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)\r
-\r
-// Note : although _rotl exists for minGW (GCC under windows), performance seems poor\r
-#if defined(_MSC_VER)\r
-# define XXH_rotl32(x,r) _rotl(x,r)\r
-# define XXH_rotl64(x,r) _rotl64(x,r)\r
-#else\r
-# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))\r
-# define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))\r
-#endif\r
-\r
-#if defined(_MSC_VER) // Visual Studio\r
-# define XXH_swap32 _byteswap_ulong\r
-# define XXH_swap64 _byteswap_uint64\r
-#elif GCC_VERSION >= 403\r
-# define XXH_swap32 __builtin_bswap32\r
-# define XXH_swap64 __builtin_bswap64\r
-#else\r
-static inline U32 XXH_swap32 (U32 x) {\r
- return ((x << 24) & 0xff000000 ) |\r
- ((x << 8) & 0x00ff0000 ) |\r
- ((x >> 8) & 0x0000ff00 ) |\r
- ((x >> 24) & 0x000000ff );}\r
-static inline U64 XXH_swap64 (U64 x) {\r
- return ((x << 56) & 0xff00000000000000ULL) |\r
- ((x << 40) & 0x00ff000000000000ULL) |\r
- ((x << 24) & 0x0000ff0000000000ULL) |\r
- ((x << 8) & 0x000000ff00000000ULL) |\r
- ((x >> 8) & 0x00000000ff000000ULL) |\r
- ((x >> 24) & 0x0000000000ff0000ULL) |\r
- ((x >> 40) & 0x000000000000ff00ULL) |\r
- ((x >> 56) & 0x00000000000000ffULL);}\r
-#endif\r
-\r
-\r
-//**************************************\r
-// Constants\r
-//**************************************\r
-#define PRIME32_1 2654435761U\r
-#define PRIME32_2 2246822519U\r
-#define PRIME32_3 3266489917U\r
-#define PRIME32_4 668265263U\r
-#define PRIME32_5 374761393U\r
-\r
-#define PRIME64_1 11400714785074694791ULL\r
-#define PRIME64_2 14029467366897019727ULL\r
-#define PRIME64_3 1609587929392839161ULL\r
-#define PRIME64_4 9650029242287828579ULL\r
-#define PRIME64_5 2870177450012600261ULL\r
-\r
-//**************************************\r
-// Architecture Macros\r
-//**************************************\r
-typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;\r
-#ifndef XXH_CPU_LITTLE_ENDIAN // It is possible to define XXH_CPU_LITTLE_ENDIAN externally, for example using a compiler switch\r
- static const int one = 1;\r
-# define XXH_CPU_LITTLE_ENDIAN (*(char*)(&one))\r
-#endif\r
-\r
-\r
-//**************************************\r
-// Macros\r
-//**************************************\r
-#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(!!(c)) }; } // use only *after* variable declarations\r
-\r
-\r
-//****************************\r
-// Memory reads\r
-//****************************\r
-typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;\r
-\r
-FORCE_INLINE U32 XXH_readLE32_align(const U32* ptr, XXH_endianess endian, XXH_alignment align)\r
-{\r
- if (align==XXH_unaligned)\r
- return endian==XXH_littleEndian ? A32(ptr) : XXH_swap32(A32(ptr));\r
- else\r
- return endian==XXH_littleEndian ? *ptr : XXH_swap32(*ptr);\r
-}\r
-\r
-FORCE_INLINE U32 XXH_readLE32(const U32* ptr, XXH_endianess endian) { return XXH_readLE32_align(ptr, endian, XXH_unaligned); }\r
-\r
-FORCE_INLINE U64 XXH_readLE64_align(const U64* ptr, XXH_endianess endian, XXH_alignment align)\r
-{\r
- if (align==XXH_unaligned)\r
- return endian==XXH_littleEndian ? A64(ptr) : XXH_swap64(A64(ptr));\r
- else\r
- return endian==XXH_littleEndian ? *ptr : XXH_swap64(*ptr);\r
-}\r
-\r
-FORCE_INLINE U64 XXH_readLE64(const U64* ptr, XXH_endianess endian) { return XXH_readLE64_align(ptr, endian, XXH_unaligned); }\r
-\r
-\r
-//****************************\r
-// Simple Hash Functions\r
-//****************************\r
-FORCE_INLINE U32 XXH32_endian_align(const void* input, unsigned int len, U32 seed, XXH_endianess endian, XXH_alignment align)\r
-{\r
- const BYTE* p = (const BYTE*)input;\r
+/*
+xxHash - Fast Hash algorithm
+Copyright (C) 2012-2014, Yann Collet.
+BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are
+met:
+
+* Redistributions of source code must retain the above copyright
+notice, this list of conditions and the following disclaimer.
+* Redistributions in binary form must reproduce the above
+copyright notice, this list of conditions and the following disclaimer
+in the documentation and/or other materials provided with the
+distribution.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+You can contact the author at :
+- xxHash source repository : http://code.google.com/p/xxhash/
+*/
+
+
+//**************************************
+// Tuning parameters
+//**************************************
+// Unaligned memory access is automatically enabled for "common" CPU, such as x86.
+// For others CPU, the compiler will be more cautious, and insert extra code to ensure aligned access is respected.
+// If you know your target CPU supports unaligned memory access, you want to force this option manually to improve performance.
+// You can also enable this parameter if you know your input data will always be aligned (boundaries of 4, for U32).
+#if defined(__ARM_FEATURE_UNALIGNED) || defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
+# define XXH_USE_UNALIGNED_ACCESS 1
+#endif
+
+// XXH_ACCEPT_NULL_INPUT_POINTER :
+// If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
+// When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
+// This option has a very small performance cost (only measurable on small inputs).
+// By default, this option is disabled. To enable it, uncomment below define :
+// #define XXH_ACCEPT_NULL_INPUT_POINTER 1
+
+// XXH_FORCE_NATIVE_FORMAT :
+// By default, xxHash library provides endian-independant Hash values, based on little-endian convention.
+// Results are therefore identical for little-endian and big-endian CPU.
+// This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
+// Should endian-independance be of no importance for your application, you may set the #define below to 1.
+// It will improve speed for Big-endian CPU.
+// This option has no impact on Little_Endian CPU.
+#define XXH_FORCE_NATIVE_FORMAT 0
+
+//**************************************
+// Compiler Specific Options
+//**************************************
+// Disable some Visual warning messages
+#ifdef _MSC_VER // Visual Studio
+# pragma warning(disable : 4127) // disable: C4127: conditional expression is constant
+#endif
+
+#ifdef _MSC_VER // Visual Studio
+# define FORCE_INLINE static __forceinline
+#else
+# ifdef __GNUC__
+# define FORCE_INLINE static inline __attribute__((always_inline))
+# else
+# define FORCE_INLINE static inline
+# endif
+#endif
+
+//**************************************
+// Includes & Memory related functions
+//**************************************
+#include "xxhash.h"
+// Modify the local functions below should you wish to use some other memory related routines
+// for malloc(), free()
+#include <stdlib.h>
+FORCE_INLINE void* XXH_malloc(size_t s) { return malloc(s); }
+FORCE_INLINE void XXH_free (void* p) { free(p); }
+// for memcpy()
+#include <string.h>
+FORCE_INLINE void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
+
+
+//**************************************
+// Basic Types
+//**************************************
+#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L // C99
+# include <stdint.h>
+ typedef uint8_t BYTE;
+ typedef uint16_t U16;
+ typedef uint32_t U32;
+ typedef int32_t S32;
+ typedef uint64_t U64;
+#else
+ typedef unsigned char BYTE;
+ typedef unsigned short U16;
+ typedef unsigned int U32;
+ typedef signed int S32;
+ typedef unsigned long long U64;
+#endif
+
+#if defined(__GNUC__) && !defined(XXH_USE_UNALIGNED_ACCESS)
+# define _PACKED __attribute__ ((packed))
+#else
+# define _PACKED
+#endif
+
+#if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__)
+# ifdef __IBMC__
+# pragma pack(1)
+# else
+# pragma pack(push, 1)
+# endif
+#endif
+
+typedef struct _U32_S { U32 v; } _PACKED U32_S;
+typedef struct _U64_S { U64 v; } _PACKED U64_S;
+
+#if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__)
+# pragma pack(pop)
+#endif
+
+#define A32(x) (((U32_S *)(x))->v)
+#define A64(x) (((U64_S *)(x))->v)
+
+
+//***************************************
+// Compiler-specific Functions and Macros
+//***************************************
+#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
+
+// Note : although _rotl exists for minGW (GCC under windows), performance seems poor
+#if defined(_MSC_VER)
+# define XXH_rotl32(x,r) _rotl(x,r)
+# define XXH_rotl64(x,r) _rotl64(x,r)
+#else
+# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
+# define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
+#endif
+
+#if defined(_MSC_VER) // Visual Studio
+# define XXH_swap32 _byteswap_ulong
+# define XXH_swap64 _byteswap_uint64
+#elif GCC_VERSION >= 403
+# define XXH_swap32 __builtin_bswap32
+# define XXH_swap64 __builtin_bswap64
+#else
+static inline U32 XXH_swap32 (U32 x) {
+ return ((x << 24) & 0xff000000 ) |
+ ((x << 8) & 0x00ff0000 ) |
+ ((x >> 8) & 0x0000ff00 ) |
+ ((x >> 24) & 0x000000ff );}
+static inline U64 XXH_swap64 (U64 x) {
+ return ((x << 56) & 0xff00000000000000ULL) |
+ ((x << 40) & 0x00ff000000000000ULL) |
+ ((x << 24) & 0x0000ff0000000000ULL) |
+ ((x << 8) & 0x000000ff00000000ULL) |
+ ((x >> 8) & 0x00000000ff000000ULL) |
+ ((x >> 24) & 0x0000000000ff0000ULL) |
+ ((x >> 40) & 0x000000000000ff00ULL) |
+ ((x >> 56) & 0x00000000000000ffULL);}
+#endif
+
+
+//**************************************
+// Constants
+//**************************************
+#define PRIME32_1 2654435761U
+#define PRIME32_2 2246822519U
+#define PRIME32_3 3266489917U
+#define PRIME32_4 668265263U
+#define PRIME32_5 374761393U
+
+#define PRIME64_1 11400714785074694791ULL
+#define PRIME64_2 14029467366897019727ULL
+#define PRIME64_3 1609587929392839161ULL
+#define PRIME64_4 9650029242287828579ULL
+#define PRIME64_5 2870177450012600261ULL
+
+//**************************************
+// Architecture Macros
+//**************************************
+typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
+#ifndef XXH_CPU_LITTLE_ENDIAN // It is possible to define XXH_CPU_LITTLE_ENDIAN externally, for example using a compiler switch
+ static const int one = 1;
+# define XXH_CPU_LITTLE_ENDIAN (*(char*)(&one))
+#endif
+
+
+//**************************************
+// Macros
+//**************************************
+#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(!!(c)) }; } // use only *after* variable declarations
+
+
+//****************************
+// Memory reads
+//****************************
+typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
+
+FORCE_INLINE U32 XXH_readLE32_align(const U32* ptr, XXH_endianess endian, XXH_alignment align)
+{
+ if (align==XXH_unaligned)
+ return endian==XXH_littleEndian ? A32(ptr) : XXH_swap32(A32(ptr));
+ else
+ return endian==XXH_littleEndian ? *ptr : XXH_swap32(*ptr);
+}
+
+FORCE_INLINE U32 XXH_readLE32(const U32* ptr, XXH_endianess endian) { return XXH_readLE32_align(ptr, endian, XXH_unaligned); }
+
+FORCE_INLINE U64 XXH_readLE64_align(const U64* ptr, XXH_endianess endian, XXH_alignment align)
+{
+ if (align==XXH_unaligned)
+ return endian==XXH_littleEndian ? A64(ptr) : XXH_swap64(A64(ptr));
+ else
+ return endian==XXH_littleEndian ? *ptr : XXH_swap64(*ptr);
+}
+
+FORCE_INLINE U64 XXH_readLE64(const U64* ptr, XXH_endianess endian) { return XXH_readLE64_align(ptr, endian, XXH_unaligned); }
+
+
+//****************************
+// Simple Hash Functions
+//****************************
+FORCE_INLINE U32 XXH32_endian_align(const void* input, unsigned int len, U32 seed, XXH_endianess endian, XXH_alignment align)
+{
+ const BYTE* p = (const BYTE*)input;
+ const BYTE* bEnd = p + len;
+ U32 h32;
+#define XXH_get32bits(p) XXH_readLE32_align((const U32*)p, endian, align)
+
+#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
+ if (p==NULL) { len=0; bEnd=p=(const BYTE*)(size_t)16; }
+#endif
+
+ if (len>=16)
+ {
+ const BYTE* const limit = bEnd - 16;
+ U32 v1 = seed + PRIME32_1 + PRIME32_2;
+ U32 v2 = seed + PRIME32_2;
+ U32 v3 = seed + 0;
+ U32 v4 = seed - PRIME32_1;
+
+ do
+ {
+ v1 += XXH_get32bits(p) * PRIME32_2; v1 = XXH_rotl32(v1, 13); v1 *= PRIME32_1; p+=4;
+ v2 += XXH_get32bits(p) * PRIME32_2; v2 = XXH_rotl32(v2, 13); v2 *= PRIME32_1; p+=4;
+ v3 += XXH_get32bits(p) * PRIME32_2; v3 = XXH_rotl32(v3, 13); v3 *= PRIME32_1; p+=4;
+ v4 += XXH_get32bits(p) * PRIME32_2; v4 = XXH_rotl32(v4, 13); v4 *= PRIME32_1; p+=4;
+ } while (p<=limit);
+
+ h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
+ }
+ else
+ {
+ h32 = seed + PRIME32_5;
+ }
+
+ h32 += (U32) len;
+
+ while (p<=bEnd-4)
+ {
+ h32 += XXH_get32bits(p) * PRIME32_3;
+ h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
+ p+=4;
+ }
+
+ while (p<bEnd)
+ {
+ h32 += (*p) * PRIME32_5;
+ h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
+ p++;
+ }
+
+ h32 ^= h32 >> 15;
+ h32 *= PRIME32_2;
+ h32 ^= h32 >> 13;
+ h32 *= PRIME32_3;
+ h32 ^= h32 >> 16;
+
+ return h32;
+}
+
+
+U32 XXH32(const void* input, unsigned int len, U32 seed)
+{
+#if 0
+ // Simple version, good for code maintenance, but unfortunately slow for small inputs
+ void* state = XXH32_init(seed);
+ XXH32_update(state, input, len);
+ return XXH32_digest(state);
+#else
+ XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+# if !defined(XXH_USE_UNALIGNED_ACCESS)
+ if ((((size_t)input) & 3) == 0) // Input is aligned, let's leverage the speed advantage
+ {
+ if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+ return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
+ else
+ return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
+ }
+# endif
+
+ if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+ return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
+ else
+ return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
+#endif
+}
+
+FORCE_INLINE U64 XXH64_endian_align(const void* input, unsigned int len, U64 seed, XXH_endianess endian, XXH_alignment align)
+{
+ const BYTE* p = (const BYTE*)input;
const BYTE* bEnd = p + len;
- U32 h32;\r
-#define XXH_get32bits(p) XXH_readLE32_align((const U32*)p, endian, align)\r
-\r
-#ifdef XXH_ACCEPT_NULL_INPUT_POINTER\r
- if (p==NULL) { len=0; bEnd=p=(const BYTE*)(size_t)16; }\r
-#endif\r
-\r
- if (len>=16)\r
- {\r
- const BYTE* const limit = bEnd - 16;\r
- U32 v1 = seed + PRIME32_1 + PRIME32_2;\r
- U32 v2 = seed + PRIME32_2;\r
- U32 v3 = seed + 0;\r
- U32 v4 = seed - PRIME32_1;\r
-\r
- do\r
- {\r
- v1 += XXH_get32bits(p) * PRIME32_2; v1 = XXH_rotl32(v1, 13); v1 *= PRIME32_1; p+=4;\r
- v2 += XXH_get32bits(p) * PRIME32_2; v2 = XXH_rotl32(v2, 13); v2 *= PRIME32_1; p+=4;\r
- v3 += XXH_get32bits(p) * PRIME32_2; v3 = XXH_rotl32(v3, 13); v3 *= PRIME32_1; p+=4;\r
- v4 += XXH_get32bits(p) * PRIME32_2; v4 = XXH_rotl32(v4, 13); v4 *= PRIME32_1; p+=4;\r
- } while (p<=limit);\r
-\r
- h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);\r
- }\r
- else\r
- {\r
- h32 = seed + PRIME32_5;\r
- }\r
-\r
- h32 += (U32) len;\r
-\r
- while (p<=bEnd-4)\r
- {\r
- h32 += XXH_get32bits(p) * PRIME32_3;\r
- h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;\r
- p+=4;\r
- }\r
-\r
- while (p<bEnd)\r
- {\r
- h32 += (*p) * PRIME32_5;\r
- h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;\r
- p++;\r
- }\r
-\r
- h32 ^= h32 >> 15;\r
- h32 *= PRIME32_2;\r
- h32 ^= h32 >> 13;\r
- h32 *= PRIME32_3;\r
- h32 ^= h32 >> 16;\r
-\r
- return h32;\r
-}\r
-\r
-\r
-U32 XXH32(const void* input, unsigned int len, U32 seed)\r
-{\r
-#if 0\r
- // Simple version, good for code maintenance, but unfortunately slow for small inputs\r
- void* state = XXH32_init(seed);\r
- XXH32_update(state, input, len);\r
- return XXH32_digest(state);\r
-#else\r
- XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;\r
-\r
-# if !defined(XXH_USE_UNALIGNED_ACCESS)\r
- if ((((size_t)input) & 3) == 0) // Input is aligned, let's leverage the speed advantage\r
- {\r
- if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)\r
- return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);\r
- else\r
- return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);\r
- }\r
-# endif\r
-\r
- if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)\r
- return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);\r
- else\r
- return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);\r
-#endif\r
-}\r
-\r
-FORCE_INLINE U64 XXH64_endian_align(const void* input, unsigned int len, U64 seed, XXH_endianess endian, XXH_alignment align)\r
-{\r
- const BYTE* p = (const BYTE*)input;\r
- const BYTE* bEnd = p + len;\r
U64 h64;
-#define XXH_get64bits(p) XXH_readLE64_align((const U64*)p, endian, align)\r
-\r
-#ifdef XXH_ACCEPT_NULL_INPUT_POINTER\r
- if (p==NULL) { len=0; bEnd=p=(const BYTE*)(size_t)32; }\r
-#endif\r
-\r
- if (len>=32)\r
- {\r
- const BYTE* const limit = bEnd - 32;\r
- U64 v1 = seed + PRIME64_1 + PRIME64_2;\r
- U64 v2 = seed + PRIME64_2;\r
- U64 v3 = seed + 0;\r
- U64 v4 = seed - PRIME64_1;\r
-\r
- do\r
+#define XXH_get64bits(p) XXH_readLE64_align((const U64*)p, endian, align)
+
+#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
+ if (p==NULL) { len=0; bEnd=p=(const BYTE*)(size_t)32; }
+#endif
+
+ if (len>=32)
+ {
+ const BYTE* const limit = bEnd - 32;
+ U64 v1 = seed + PRIME64_1 + PRIME64_2;
+ U64 v2 = seed + PRIME64_2;
+ U64 v3 = seed + 0;
+ U64 v4 = seed - PRIME64_1;
+
+ do
{
- v1 += XXH_get64bits(p) * PRIME64_2; p+=8; v1 = XXH_rotl64(v1, 31); v1 *= PRIME64_1;\r
- v2 += XXH_get64bits(p) * PRIME64_2; p+=8; v2 = XXH_rotl64(v2, 31); v2 *= PRIME64_1;\r
- v3 += XXH_get64bits(p) * PRIME64_2; p+=8; v3 = XXH_rotl64(v3, 31); v3 *= PRIME64_1;\r
+ v1 += XXH_get64bits(p) * PRIME64_2; p+=8; v1 = XXH_rotl64(v1, 31); v1 *= PRIME64_1;
+ v2 += XXH_get64bits(p) * PRIME64_2; p+=8; v2 = XXH_rotl64(v2, 31); v2 *= PRIME64_1;
+ v3 += XXH_get64bits(p) * PRIME64_2; p+=8; v3 = XXH_rotl64(v3, 31); v3 *= PRIME64_1;
v4 += XXH_get64bits(p) * PRIME64_2; p+=8; v4 = XXH_rotl64(v4, 31); v4 *= PRIME64_1;
- } while (p<=limit);\r
-\r
- h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);\r
-\r
- v1 *= PRIME64_2; v1 = XXH_rotl64(v1, 31); v1 *= PRIME64_1; h64 ^= v1;\r
- h64 = h64 * PRIME64_1 + PRIME64_4;\r
-\r
- v2 *= PRIME64_2; v2 = XXH_rotl64(v2, 31); v2 *= PRIME64_1; h64 ^= v2;\r
- h64 = h64 * PRIME64_1 + PRIME64_4;\r
-\r
- v3 *= PRIME64_2; v3 = XXH_rotl64(v3, 31); v3 *= PRIME64_1; h64 ^= v3;\r
- h64 = h64 * PRIME64_1 + PRIME64_4;\r
-\r
- v4 *= PRIME64_2; v4 = XXH_rotl64(v4, 31); v4 *= PRIME64_1; h64 ^= v4;\r
- h64 = h64 * PRIME64_1 + PRIME64_4;\r
- }\r
- else\r
- {\r
- h64 = seed + PRIME64_5;\r
- }\r
-\r
- h64 += (U64) len;\r
-\r
- while (p<=bEnd-8)\r
- {\r
- U64 k1 = XXH_get64bits(p);\r
- k1 *= PRIME64_2; k1 = XXH_rotl64(k1,31); k1 *= PRIME64_1; h64 ^= k1;\r
+ } while (p<=limit);
+
+ h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
+
+ v1 *= PRIME64_2; v1 = XXH_rotl64(v1, 31); v1 *= PRIME64_1; h64 ^= v1;
+ h64 = h64 * PRIME64_1 + PRIME64_4;
+
+ v2 *= PRIME64_2; v2 = XXH_rotl64(v2, 31); v2 *= PRIME64_1; h64 ^= v2;
+ h64 = h64 * PRIME64_1 + PRIME64_4;
+
+ v3 *= PRIME64_2; v3 = XXH_rotl64(v3, 31); v3 *= PRIME64_1; h64 ^= v3;
+ h64 = h64 * PRIME64_1 + PRIME64_4;
+
+ v4 *= PRIME64_2; v4 = XXH_rotl64(v4, 31); v4 *= PRIME64_1; h64 ^= v4;
+ h64 = h64 * PRIME64_1 + PRIME64_4;
+ }
+ else
+ {
+ h64 = seed + PRIME64_5;
+ }
+
+ h64 += (U64) len;
+
+ while (p<=bEnd-8)
+ {
+ U64 k1 = XXH_get64bits(p);
+ k1 *= PRIME64_2; k1 = XXH_rotl64(k1,31); k1 *= PRIME64_1; h64 ^= k1;
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
- p+=8;\r
- }\r
+ p+=8;
+ }
- if (p<=bEnd-4)\r
- {\r
- h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;\r
+ if (p<=bEnd-4)
+ {
+ h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
- p+=4;\r
- }\r
+ p+=4;
+ }
- while (p<bEnd)\r
- {\r
- h64 ^= (*p) * PRIME64_5;\r
+ while (p<bEnd)
+ {
+ h64 ^= (*p) * PRIME64_5;
h64 = XXH_rotl64(h64, 11) * PRIME64_1;
p++;
}
-\r
- h64 ^= h64 >> 33;\r
- h64 *= PRIME64_2;\r
- h64 ^= h64 >> 29;\r
- h64 *= PRIME64_3;\r
- h64 ^= h64 >> 32;\r
-\r
- return h64;\r
-}\r
-
-\r
-unsigned long long XXH64(const void* input, unsigned int len, unsigned long long seed)\r
-{\r
- XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;\r
-\r
-# if !defined(XXH_USE_UNALIGNED_ACCESS)\r
- if ((((size_t)input) & 7)==0) // Input is aligned, let's leverage the speed advantage\r
- {\r
- if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)\r
- return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);\r
- else\r
- return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);\r
- }\r
-# endif\r
-\r
- if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)\r
- return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);\r
- else\r
- return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);\r
-}\r
-\r
-//****************************\r
-// Advanced Hash Functions\r
-//****************************\r
-\r
-struct XXH_state32_t\r
-{\r
- U64 total_len;\r
- U32 seed;\r
- U32 v1;\r
- U32 v2;\r
- U32 v3;\r
- U32 v4;\r
- int memsize;\r
- char memory[16];\r
-};\r
-\r
-struct XXH_state64_t\r
-{\r
- U64 total_len;\r
- U64 seed;\r
- U64 v1;\r
- U64 v2;\r
- U64 v3;\r
- U64 v4;\r
- int memsize;\r
- char memory[32];\r
-};\r
-\r
-\r
-int XXH32_sizeofState(void)\r
-{\r
- XXH_STATIC_ASSERT(XXH32_SIZEOFSTATE >= sizeof(struct XXH_state32_t)); // A compilation error here means XXH32_SIZEOFSTATE is not large enough\r
- return sizeof(struct XXH_state32_t);\r
-}\r
-\r
-int XXH64_sizeofState(void)\r
-{\r
- XXH_STATIC_ASSERT(XXH64_SIZEOFSTATE >= sizeof(struct XXH_state64_t)); // A compilation error here means XXH64_SIZEOFSTATE is not large enough\r
- return sizeof(struct XXH_state64_t);\r
-}\r
-\r
-\r
-XXH_errorcode XXH32_resetState(void* state_in, U32 seed)\r
-{\r
- struct XXH_state32_t * state = (struct XXH_state32_t *) state_in;\r
- state->seed = seed;\r
- state->v1 = seed + PRIME32_1 + PRIME32_2;\r
- state->v2 = seed + PRIME32_2;\r
- state->v3 = seed + 0;\r
- state->v4 = seed - PRIME32_1;\r
- state->total_len = 0;\r
- state->memsize = 0;\r
- return XXH_OK;\r
-}\r
-\r
-XXH_errorcode XXH64_resetState(void* state_in, unsigned long long seed)\r
-{\r
- struct XXH_state64_t * state = (struct XXH_state64_t *) state_in;\r
- state->seed = seed;\r
- state->v1 = seed + PRIME64_1 + PRIME64_2;\r
- state->v2 = seed + PRIME64_2;\r
- state->v3 = seed + 0;\r
- state->v4 = seed - PRIME64_1;\r
- state->total_len = 0;\r
- state->memsize = 0;\r
- return XXH_OK;\r
-}\r
-\r
-\r
-void* XXH32_init (U32 seed)\r
-{\r
- void* state = XXH_malloc (sizeof(struct XXH_state32_t));\r
- XXH32_resetState(state, seed);\r
- return state;\r
-}\r
-\r
-void* XXH64_init (unsigned long long seed)\r
-{\r
- void* state = XXH_malloc (sizeof(struct XXH_state64_t));\r
- XXH64_resetState(state, seed);\r
- return state;\r
-}\r
-\r
-\r
-FORCE_INLINE XXH_errorcode XXH32_update_endian (void* state_in, const void* input, int len, XXH_endianess endian)\r
-{\r
- struct XXH_state32_t * state = (struct XXH_state32_t *) state_in;\r
- const BYTE* p = (const BYTE*)input;\r
- const BYTE* const bEnd = p + len;\r
-\r
-#ifdef XXH_ACCEPT_NULL_INPUT_POINTER\r
- if (input==NULL) return XXH_ERROR;\r
-#endif\r
-\r
- state->total_len += len;\r
-\r
- if (state->memsize + len < 16) // fill in tmp buffer\r
- {\r
- XXH_memcpy(state->memory + state->memsize, input, len);\r
- state->memsize += len;\r
- return XXH_OK;\r
- }\r
-\r
- if (state->memsize) // some data left from previous update\r
- {\r
- XXH_memcpy(state->memory + state->memsize, input, 16-state->memsize);\r
- {\r
- const U32* p32 = (const U32*)state->memory;\r
- state->v1 += XXH_readLE32(p32, endian) * PRIME32_2; state->v1 = XXH_rotl32(state->v1, 13); state->v1 *= PRIME32_1; p32++;\r
- state->v2 += XXH_readLE32(p32, endian) * PRIME32_2; state->v2 = XXH_rotl32(state->v2, 13); state->v2 *= PRIME32_1; p32++;\r
- state->v3 += XXH_readLE32(p32, endian) * PRIME32_2; state->v3 = XXH_rotl32(state->v3, 13); state->v3 *= PRIME32_1; p32++;\r
- state->v4 += XXH_readLE32(p32, endian) * PRIME32_2; state->v4 = XXH_rotl32(state->v4, 13); state->v4 *= PRIME32_1; p32++;\r
- }\r
- p += 16-state->memsize;\r
- state->memsize = 0;\r
- }\r
-\r
- if (p <= bEnd-16)\r
- {\r
- const BYTE* const limit = bEnd - 16;\r
- U32 v1 = state->v1;\r
- U32 v2 = state->v2;\r
- U32 v3 = state->v3;\r
- U32 v4 = state->v4;\r
-\r
- do\r
- {\r
- v1 += XXH_readLE32((const U32*)p, endian) * PRIME32_2; v1 = XXH_rotl32(v1, 13); v1 *= PRIME32_1; p+=4;\r
- v2 += XXH_readLE32((const U32*)p, endian) * PRIME32_2; v2 = XXH_rotl32(v2, 13); v2 *= PRIME32_1; p+=4;\r
- v3 += XXH_readLE32((const U32*)p, endian) * PRIME32_2; v3 = XXH_rotl32(v3, 13); v3 *= PRIME32_1; p+=4;\r
- v4 += XXH_readLE32((const U32*)p, endian) * PRIME32_2; v4 = XXH_rotl32(v4, 13); v4 *= PRIME32_1; p+=4;\r
- } while (p<=limit);\r
-\r
- state->v1 = v1;\r
- state->v2 = v2;\r
- state->v3 = v3;\r
- state->v4 = v4;\r
- }\r
-\r
- if (p < bEnd)\r
- {\r
- XXH_memcpy(state->memory, p, bEnd-p);\r
- state->memsize = (int)(bEnd-p);\r
- }\r
-\r
- return XXH_OK;\r
-}\r
-\r
-XXH_errorcode XXH32_update (void* state_in, const void* input, unsigned int len)\r
-{\r
- XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;\r
-\r
- if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)\r
- return XXH32_update_endian(state_in, input, len, XXH_littleEndian);\r
- else\r
- return XXH32_update_endian(state_in, input, len, XXH_bigEndian);\r
-}\r
-\r
-\r
-\r
-FORCE_INLINE U32 XXH32_intermediateDigest_endian (void* state_in, XXH_endianess endian)\r
-{\r
- struct XXH_state32_t * state = (struct XXH_state32_t *) state_in;\r
- const BYTE * p = (const BYTE*)state->memory;\r
- BYTE* bEnd = (BYTE*)state->memory + state->memsize;\r
- U32 h32;\r
-\r
- if (state->total_len >= 16)\r
- {\r
- h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);\r
- }\r
- else\r
- {\r
- h32 = state->seed + PRIME32_5;\r
- }\r
-\r
- h32 += (U32) state->total_len;\r
-\r
- while (p<=bEnd-4)\r
- {\r
- h32 += XXH_readLE32((const U32*)p, endian) * PRIME32_3;\r
- h32 = XXH_rotl32(h32, 17) * PRIME32_4;\r
- p+=4;\r
- }\r
-\r
- while (p<bEnd)\r
- {\r
- h32 += (*p) * PRIME32_5;\r
- h32 = XXH_rotl32(h32, 11) * PRIME32_1;\r
- p++;\r
- }\r
-\r
- h32 ^= h32 >> 15;\r
- h32 *= PRIME32_2;\r
- h32 ^= h32 >> 13;\r
- h32 *= PRIME32_3;\r
- h32 ^= h32 >> 16;\r
-\r
- return h32;\r
-}\r
-\r
-\r
-U32 XXH32_intermediateDigest (void* state_in)\r
-{\r
- XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;\r
-\r
- if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)\r
- return XXH32_intermediateDigest_endian(state_in, XXH_littleEndian);\r
- else\r
- return XXH32_intermediateDigest_endian(state_in, XXH_bigEndian);\r
-}\r
-\r
-\r
-U32 XXH32_digest (void* state_in)\r
-{\r
- U32 h32 = XXH32_intermediateDigest(state_in);\r
-\r
- XXH_free(state_in);\r
-\r
- return h32;\r
-}\r
-\r
-\r
-FORCE_INLINE XXH_errorcode XXH64_update_endian (void* state_in, const void* input, int len, XXH_endianess endian)\r
-{\r
- struct XXH_state64_t * state = (struct XXH_state64_t *) state_in;\r
- const BYTE* p = (const BYTE*)input;\r
- const BYTE* const bEnd = p + len;\r
-\r
-#ifdef XXH_ACCEPT_NULL_INPUT_POINTER\r
- if (input==NULL) return XXH_ERROR;\r
-#endif\r
-\r
- state->total_len += len;\r
-\r
- if (state->memsize + len < 32) // fill in tmp buffer\r
- {\r
- XXH_memcpy(state->memory + state->memsize, input, len);\r
- state->memsize += len;\r
- return XXH_OK;\r
- }\r
-\r
- if (state->memsize) // some data left from previous update\r
- {\r
- XXH_memcpy(state->memory + state->memsize, input, 32-state->memsize);\r
- {\r
- const U64* p64 = (const U64*)state->memory;\r
- state->v1 += XXH_readLE64(p64, endian) * PRIME64_2; state->v1 = XXH_rotl64(state->v1, 31); state->v1 *= PRIME64_1; p64++;\r
- state->v2 += XXH_readLE64(p64, endian) * PRIME64_2; state->v2 = XXH_rotl64(state->v2, 31); state->v2 *= PRIME64_1; p64++;\r
- state->v3 += XXH_readLE64(p64, endian) * PRIME64_2; state->v3 = XXH_rotl64(state->v3, 31); state->v3 *= PRIME64_1; p64++;\r
- state->v4 += XXH_readLE64(p64, endian) * PRIME64_2; state->v4 = XXH_rotl64(state->v4, 31); state->v4 *= PRIME64_1; p64++;\r
- }\r
- p += 32-state->memsize;\r
- state->memsize = 0;\r
- }\r
-\r
- if (p <= bEnd-32)\r
- {\r
- const BYTE* const limit = bEnd - 32;\r
- U64 v1 = state->v1;\r
- U64 v2 = state->v2;\r
- U64 v3 = state->v3;\r
- U64 v4 = state->v4;\r
-\r
- do\r
- {\r
- v1 += XXH_readLE64((const U64*)p, endian) * PRIME64_2; v1 = XXH_rotl64(v1, 31); v1 *= PRIME64_1; p+=8;\r
- v2 += XXH_readLE64((const U64*)p, endian) * PRIME64_2; v2 = XXH_rotl64(v2, 31); v2 *= PRIME64_1; p+=8;\r
- v3 += XXH_readLE64((const U64*)p, endian) * PRIME64_2; v3 = XXH_rotl64(v3, 31); v3 *= PRIME64_1; p+=8;\r
- v4 += XXH_readLE64((const U64*)p, endian) * PRIME64_2; v4 = XXH_rotl64(v4, 31); v4 *= PRIME64_1; p+=8;\r
- } while (p<=limit);\r
-\r
- state->v1 = v1;\r
- state->v2 = v2;\r
- state->v3 = v3;\r
- state->v4 = v4;\r
- }\r
-\r
- if (p < bEnd)\r
- {\r
- XXH_memcpy(state->memory, p, bEnd-p);\r
- state->memsize = (int)(bEnd-p);\r
- }\r
-\r
- return XXH_OK;\r
-}\r
-\r
-XXH_errorcode XXH64_update (void* state_in, const void* input, unsigned int len)\r
-{\r
- XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;\r
-\r
- if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)\r
- return XXH64_update_endian(state_in, input, len, XXH_littleEndian);\r
- else\r
- return XXH64_update_endian(state_in, input, len, XXH_bigEndian);\r
-}\r
-\r
-\r
-\r
-FORCE_INLINE U64 XXH64_intermediateDigest_endian (void* state_in, XXH_endianess endian)\r
-{\r
- struct XXH_state64_t * state = (struct XXH_state64_t *) state_in;\r
- const BYTE * p = (const BYTE*)state->memory;\r
- BYTE* bEnd = (BYTE*)state->memory + state->memsize;\r
- U64 h64;\r
-\r
- if (state->total_len >= 32)\r
- {\r
- U64 v1 = state->v1;\r
- U64 v2 = state->v2;\r
- U64 v3 = state->v3;\r
- U64 v4 = state->v4;\r
-\r
- h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);\r
-\r
- v1 *= PRIME64_2; v1 = XXH_rotl64(v1, 31); v1 *= PRIME64_1; h64 ^= v1;\r
- h64 = h64*PRIME64_1 + PRIME64_4;\r
-\r
- v2 *= PRIME64_2; v2 = XXH_rotl64(v2, 31); v2 *= PRIME64_1; h64 ^= v2;\r
- h64 = h64*PRIME64_1 + PRIME64_4;\r
-\r
- v3 *= PRIME64_2; v3 = XXH_rotl64(v3, 31); v3 *= PRIME64_1; h64 ^= v3;\r
- h64 = h64*PRIME64_1 + PRIME64_4;\r
-\r
- v4 *= PRIME64_2; v4 = XXH_rotl64(v4, 31); v4 *= PRIME64_1; h64 ^= v4;\r
- h64 = h64*PRIME64_1 + PRIME64_4;\r
- }\r
- else\r
- {\r
- h64 = state->seed + PRIME64_5;\r
- }\r
-\r
- h64 += (U64) state->total_len;\r
-\r
- while (p<=bEnd-8)\r
- {\r
- U64 k1 = XXH_readLE64((const U64*)p, endian);\r
- k1 *= PRIME64_2; k1 = XXH_rotl64(k1,31); k1 *= PRIME64_1; h64 ^= k1;\r
+
+ h64 ^= h64 >> 33;
+ h64 *= PRIME64_2;
+ h64 ^= h64 >> 29;
+ h64 *= PRIME64_3;
+ h64 ^= h64 >> 32;
+
+ return h64;
+}
+
+
+unsigned long long XXH64(const void* input, unsigned int len, unsigned long long seed)
+{
+ XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+# if !defined(XXH_USE_UNALIGNED_ACCESS)
+ if ((((size_t)input) & 7)==0) // Input is aligned, let's leverage the speed advantage
+ {
+ if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+ return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
+ else
+ return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
+ }
+# endif
+
+ if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+ return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
+ else
+ return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
+}
+
+//****************************
+// Advanced Hash Functions
+//****************************
+
+struct XXH_state32_t
+{
+ U64 total_len;
+ U32 seed;
+ U32 v1;
+ U32 v2;
+ U32 v3;
+ U32 v4;
+ int memsize;
+ char memory[16];
+};
+
+struct XXH_state64_t
+{
+ U64 total_len;
+ U64 seed;
+ U64 v1;
+ U64 v2;
+ U64 v3;
+ U64 v4;
+ int memsize;
+ char memory[32];
+};
+
+
+int XXH32_sizeofState(void)
+{
+ XXH_STATIC_ASSERT(XXH32_SIZEOFSTATE >= sizeof(struct XXH_state32_t)); // A compilation error here means XXH32_SIZEOFSTATE is not large enough
+ return sizeof(struct XXH_state32_t);
+}
+
+int XXH64_sizeofState(void)
+{
+ XXH_STATIC_ASSERT(XXH64_SIZEOFSTATE >= sizeof(struct XXH_state64_t)); // A compilation error here means XXH64_SIZEOFSTATE is not large enough
+ return sizeof(struct XXH_state64_t);
+}
+
+
+XXH_errorcode XXH32_resetState(void* state_in, U32 seed)
+{
+ struct XXH_state32_t * state = (struct XXH_state32_t *) state_in;
+ state->seed = seed;
+ state->v1 = seed + PRIME32_1 + PRIME32_2;
+ state->v2 = seed + PRIME32_2;
+ state->v3 = seed + 0;
+ state->v4 = seed - PRIME32_1;
+ state->total_len = 0;
+ state->memsize = 0;
+ return XXH_OK;
+}
+
+XXH_errorcode XXH64_resetState(void* state_in, unsigned long long seed)
+{
+ struct XXH_state64_t * state = (struct XXH_state64_t *) state_in;
+ state->seed = seed;
+ state->v1 = seed + PRIME64_1 + PRIME64_2;
+ state->v2 = seed + PRIME64_2;
+ state->v3 = seed + 0;
+ state->v4 = seed - PRIME64_1;
+ state->total_len = 0;
+ state->memsize = 0;
+ return XXH_OK;
+}
+
+
+void* XXH32_init (U32 seed)
+{
+ void* state = XXH_malloc (sizeof(struct XXH_state32_t));
+ XXH32_resetState(state, seed);
+ return state;
+}
+
+void* XXH64_init (unsigned long long seed)
+{
+ void* state = XXH_malloc (sizeof(struct XXH_state64_t));
+ XXH64_resetState(state, seed);
+ return state;
+}
+
+
+FORCE_INLINE XXH_errorcode XXH32_update_endian (void* state_in, const void* input, int len, XXH_endianess endian)
+{
+ struct XXH_state32_t * state = (struct XXH_state32_t *) state_in;
+ const BYTE* p = (const BYTE*)input;
+ const BYTE* const bEnd = p + len;
+
+#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
+ if (input==NULL) return XXH_ERROR;
+#endif
+
+ state->total_len += len;
+
+ if (state->memsize + len < 16) // fill in tmp buffer
+ {
+ XXH_memcpy(state->memory + state->memsize, input, len);
+ state->memsize += len;
+ return XXH_OK;
+ }
+
+ if (state->memsize) // some data left from previous update
+ {
+ XXH_memcpy(state->memory + state->memsize, input, 16-state->memsize);
+ {
+ const U32* p32 = (const U32*)state->memory;
+ state->v1 += XXH_readLE32(p32, endian) * PRIME32_2; state->v1 = XXH_rotl32(state->v1, 13); state->v1 *= PRIME32_1; p32++;
+ state->v2 += XXH_readLE32(p32, endian) * PRIME32_2; state->v2 = XXH_rotl32(state->v2, 13); state->v2 *= PRIME32_1; p32++;
+ state->v3 += XXH_readLE32(p32, endian) * PRIME32_2; state->v3 = XXH_rotl32(state->v3, 13); state->v3 *= PRIME32_1; p32++;
+ state->v4 += XXH_readLE32(p32, endian) * PRIME32_2; state->v4 = XXH_rotl32(state->v4, 13); state->v4 *= PRIME32_1; p32++;
+ }
+ p += 16-state->memsize;
+ state->memsize = 0;
+ }
+
+ if (p <= bEnd-16)
+ {
+ const BYTE* const limit = bEnd - 16;
+ U32 v1 = state->v1;
+ U32 v2 = state->v2;
+ U32 v3 = state->v3;
+ U32 v4 = state->v4;
+
+ do
+ {
+ v1 += XXH_readLE32((const U32*)p, endian) * PRIME32_2; v1 = XXH_rotl32(v1, 13); v1 *= PRIME32_1; p+=4;
+ v2 += XXH_readLE32((const U32*)p, endian) * PRIME32_2; v2 = XXH_rotl32(v2, 13); v2 *= PRIME32_1; p+=4;
+ v3 += XXH_readLE32((const U32*)p, endian) * PRIME32_2; v3 = XXH_rotl32(v3, 13); v3 *= PRIME32_1; p+=4;
+ v4 += XXH_readLE32((const U32*)p, endian) * PRIME32_2; v4 = XXH_rotl32(v4, 13); v4 *= PRIME32_1; p+=4;
+ } while (p<=limit);
+
+ state->v1 = v1;
+ state->v2 = v2;
+ state->v3 = v3;
+ state->v4 = v4;
+ }
+
+ if (p < bEnd)
+ {
+ XXH_memcpy(state->memory, p, bEnd-p);
+ state->memsize = (int)(bEnd-p);
+ }
+
+ return XXH_OK;
+}
+
+XXH_errorcode XXH32_update (void* state_in, const void* input, unsigned int len)
+{
+ XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+ if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+ return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
+ else
+ return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
+}
+
+
+
+FORCE_INLINE U32 XXH32_intermediateDigest_endian (void* state_in, XXH_endianess endian)
+{
+ struct XXH_state32_t * state = (struct XXH_state32_t *) state_in;
+ const BYTE * p = (const BYTE*)state->memory;
+ BYTE* bEnd = (BYTE*)state->memory + state->memsize;
+ U32 h32;
+
+ if (state->total_len >= 16)
+ {
+ h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
+ }
+ else
+ {
+ h32 = state->seed + PRIME32_5;
+ }
+
+ h32 += (U32) state->total_len;
+
+ while (p<=bEnd-4)
+ {
+ h32 += XXH_readLE32((const U32*)p, endian) * PRIME32_3;
+ h32 = XXH_rotl32(h32, 17) * PRIME32_4;
+ p+=4;
+ }
+
+ while (p<bEnd)
+ {
+ h32 += (*p) * PRIME32_5;
+ h32 = XXH_rotl32(h32, 11) * PRIME32_1;
+ p++;
+ }
+
+ h32 ^= h32 >> 15;
+ h32 *= PRIME32_2;
+ h32 ^= h32 >> 13;
+ h32 *= PRIME32_3;
+ h32 ^= h32 >> 16;
+
+ return h32;
+}
+
+
+U32 XXH32_intermediateDigest (void* state_in)
+{
+ XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+ if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+ return XXH32_intermediateDigest_endian(state_in, XXH_littleEndian);
+ else
+ return XXH32_intermediateDigest_endian(state_in, XXH_bigEndian);
+}
+
+
+U32 XXH32_digest (void* state_in)
+{
+ U32 h32 = XXH32_intermediateDigest(state_in);
+
+ XXH_free(state_in);
+
+ return h32;
+}
+
+
+FORCE_INLINE XXH_errorcode XXH64_update_endian (void* state_in, const void* input, int len, XXH_endianess endian)
+{
+ struct XXH_state64_t * state = (struct XXH_state64_t *) state_in;
+ const BYTE* p = (const BYTE*)input;
+ const BYTE* const bEnd = p + len;
+
+#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
+ if (input==NULL) return XXH_ERROR;
+#endif
+
+ state->total_len += len;
+
+ if (state->memsize + len < 32) // fill in tmp buffer
+ {
+ XXH_memcpy(state->memory + state->memsize, input, len);
+ state->memsize += len;
+ return XXH_OK;
+ }
+
+ if (state->memsize) // some data left from previous update
+ {
+ XXH_memcpy(state->memory + state->memsize, input, 32-state->memsize);
+ {
+ const U64* p64 = (const U64*)state->memory;
+ state->v1 += XXH_readLE64(p64, endian) * PRIME64_2; state->v1 = XXH_rotl64(state->v1, 31); state->v1 *= PRIME64_1; p64++;
+ state->v2 += XXH_readLE64(p64, endian) * PRIME64_2; state->v2 = XXH_rotl64(state->v2, 31); state->v2 *= PRIME64_1; p64++;
+ state->v3 += XXH_readLE64(p64, endian) * PRIME64_2; state->v3 = XXH_rotl64(state->v3, 31); state->v3 *= PRIME64_1; p64++;
+ state->v4 += XXH_readLE64(p64, endian) * PRIME64_2; state->v4 = XXH_rotl64(state->v4, 31); state->v4 *= PRIME64_1; p64++;
+ }
+ p += 32-state->memsize;
+ state->memsize = 0;
+ }
+
+ if (p <= bEnd-32)
+ {
+ const BYTE* const limit = bEnd - 32;
+ U64 v1 = state->v1;
+ U64 v2 = state->v2;
+ U64 v3 = state->v3;
+ U64 v4 = state->v4;
+
+ do
+ {
+ v1 += XXH_readLE64((const U64*)p, endian) * PRIME64_2; v1 = XXH_rotl64(v1, 31); v1 *= PRIME64_1; p+=8;
+ v2 += XXH_readLE64((const U64*)p, endian) * PRIME64_2; v2 = XXH_rotl64(v2, 31); v2 *= PRIME64_1; p+=8;
+ v3 += XXH_readLE64((const U64*)p, endian) * PRIME64_2; v3 = XXH_rotl64(v3, 31); v3 *= PRIME64_1; p+=8;
+ v4 += XXH_readLE64((const U64*)p, endian) * PRIME64_2; v4 = XXH_rotl64(v4, 31); v4 *= PRIME64_1; p+=8;
+ } while (p<=limit);
+
+ state->v1 = v1;
+ state->v2 = v2;
+ state->v3 = v3;
+ state->v4 = v4;
+ }
+
+ if (p < bEnd)
+ {
+ XXH_memcpy(state->memory, p, bEnd-p);
+ state->memsize = (int)(bEnd-p);
+ }
+
+ return XXH_OK;
+}
+
+XXH_errorcode XXH64_update (void* state_in, const void* input, unsigned int len)
+{
+ XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+ if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+ return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
+ else
+ return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
+}
+
+
+
+FORCE_INLINE U64 XXH64_intermediateDigest_endian (void* state_in, XXH_endianess endian)
+{
+ struct XXH_state64_t * state = (struct XXH_state64_t *) state_in;
+ const BYTE * p = (const BYTE*)state->memory;
+ BYTE* bEnd = (BYTE*)state->memory + state->memsize;
+ U64 h64;
+
+ if (state->total_len >= 32)
+ {
+ U64 v1 = state->v1;
+ U64 v2 = state->v2;
+ U64 v3 = state->v3;
+ U64 v4 = state->v4;
+
+ h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
+
+ v1 *= PRIME64_2; v1 = XXH_rotl64(v1, 31); v1 *= PRIME64_1; h64 ^= v1;
+ h64 = h64*PRIME64_1 + PRIME64_4;
+
+ v2 *= PRIME64_2; v2 = XXH_rotl64(v2, 31); v2 *= PRIME64_1; h64 ^= v2;
+ h64 = h64*PRIME64_1 + PRIME64_4;
+
+ v3 *= PRIME64_2; v3 = XXH_rotl64(v3, 31); v3 *= PRIME64_1; h64 ^= v3;
+ h64 = h64*PRIME64_1 + PRIME64_4;
+
+ v4 *= PRIME64_2; v4 = XXH_rotl64(v4, 31); v4 *= PRIME64_1; h64 ^= v4;
+ h64 = h64*PRIME64_1 + PRIME64_4;
+ }
+ else
+ {
+ h64 = state->seed + PRIME64_5;
+ }
+
+ h64 += (U64) state->total_len;
+
+ while (p<=bEnd-8)
+ {
+ U64 k1 = XXH_readLE64((const U64*)p, endian);
+ k1 *= PRIME64_2; k1 = XXH_rotl64(k1,31); k1 *= PRIME64_1; h64 ^= k1;
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
- p+=8;\r
- }\r
-\r
- if (p<=bEnd-4)\r
- {\r
- h64 ^= (U64)(XXH_readLE32((const U32*)p, endian)) * PRIME64_1;\r
+ p+=8;
+ }
+
+ if (p<=bEnd-4)
+ {
+ h64 ^= (U64)(XXH_readLE32((const U32*)p, endian)) * PRIME64_1;
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
- p+=4;\r
- }\r
+ p+=4;
+ }
- while (p<bEnd)\r
- {\r
- h64 ^= (*p) * PRIME64_5;\r
+ while (p<bEnd)
+ {
+ h64 ^= (*p) * PRIME64_5;
h64 = XXH_rotl64(h64, 11) * PRIME64_1;
p++;
- }\r
-\r
- h64 ^= h64 >> 33;\r
- h64 *= PRIME64_2;\r
- h64 ^= h64 >> 29;\r
- h64 *= PRIME64_3;\r
- h64 ^= h64 >> 32;\r
-\r
- return h64;\r
-}\r
-\r
-\r
-unsigned long long XXH64_intermediateDigest (void* state_in)\r
-{\r
- XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;\r
-\r
- if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)\r
- return XXH64_intermediateDigest_endian(state_in, XXH_littleEndian);\r
- else\r
- return XXH64_intermediateDigest_endian(state_in, XXH_bigEndian);\r
-}\r
-\r
-\r
-unsigned long long XXH64_digest (void* state_in)\r
-{\r
- U64 h64 = XXH64_intermediateDigest(state_in);\r
-\r
- XXH_free(state_in);\r
-\r
- return h64;\r
-}\r
-\r
+ }
+
+ h64 ^= h64 >> 33;
+ h64 *= PRIME64_2;
+ h64 ^= h64 >> 29;
+ h64 *= PRIME64_3;
+ h64 ^= h64 >> 32;
+
+ return h64;
+}
+
+
+unsigned long long XXH64_intermediateDigest (void* state_in)
+{
+ XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+ if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+ return XXH64_intermediateDigest_endian(state_in, XXH_littleEndian);
+ else
+ return XXH64_intermediateDigest_endian(state_in, XXH_bigEndian);
+}
+
+
+unsigned long long XXH64_digest (void* state_in)
+{
+ U64 h64 = XXH64_intermediateDigest(state_in);
+
+ XXH_free(state_in);
+
+ return h64;
+}
+
-/*\r
- xxHash - Extremely Fast Hash algorithm\r
- Header File\r
- Copyright (C) 2012-2014, Yann Collet.\r
- BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)\r
-\r
- Redistribution and use in source and binary forms, with or without\r
- modification, are permitted provided that the following conditions are\r
- met:\r
-\r
- * Redistributions of source code must retain the above copyright\r
- notice, this list of conditions and the following disclaimer.\r
- * Redistributions in binary form must reproduce the above\r
- copyright notice, this list of conditions and the following disclaimer\r
- in the documentation and/or other materials provided with the\r
- distribution.\r
-\r
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS\r
- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT\r
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR\r
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT\r
- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,\r
- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT\r
- LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,\r
- DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY\r
- THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT\r
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE\r
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\r
-\r
- You can contact the author at :\r
- - xxHash source repository : http://code.google.com/p/xxhash/\r
-*/\r
-\r
-/* Notice extracted from xxHash homepage :\r
-\r
-xxHash is an extremely fast Hash algorithm, running at RAM speed limits.\r
-It also successfully passes all tests from the SMHasher suite.\r
-\r
-Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)\r
-\r
-Name Speed Q.Score Author\r
-xxHash 5.4 GB/s 10\r
-CrapWow 3.2 GB/s 2 Andrew\r
-MumurHash 3a 2.7 GB/s 10 Austin Appleby\r
-SpookyHash 2.0 GB/s 10 Bob Jenkins\r
-SBox 1.4 GB/s 9 Bret Mulvey\r
-Lookup3 1.2 GB/s 9 Bob Jenkins\r
-SuperFastHash 1.2 GB/s 1 Paul Hsieh\r
-CityHash64 1.05 GB/s 10 Pike & Alakuijala\r
-FNV 0.55 GB/s 5 Fowler, Noll, Vo\r
-CRC32 0.43 GB/s 9\r
-MD5-32 0.33 GB/s 10 Ronald L. Rivest\r
-SHA1-32 0.28 GB/s 10\r
-\r
-Q.Score is a measure of quality of the hash function.\r
-It depends on successfully passing SMHasher test set.\r
-10 is a perfect score.\r
-*/\r
-\r
-#pragma once\r
-\r
-#if defined (__cplusplus)\r
-extern "C" {\r
-#endif\r
-\r
-\r
-/*****************************\r
- Type\r
-*****************************/\r
-typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;\r
-\r
-\r
-\r
-/*****************************\r
- Simple Hash Functions\r
-*****************************/\r
-\r
-unsigned int XXH32 (const void* input, unsigned int len, unsigned int seed);\r
-unsigned long long XXH64 (const void* input, unsigned int len, unsigned long long seed);\r
-\r
-/*\r
-XXH32() :\r
- Calculate the 32-bits hash of sequence of length "len" stored at memory address "input".\r
- The memory between input & input+len must be valid (allocated and read-accessible).\r
- "seed" can be used to alter the result predictably.\r
- This function successfully passes all SMHasher tests.\r
- Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark) : 5.4 GB/s\r
- Note that "len" is type "int", which means it is limited to 2^31-1.\r
- If your data is larger, use the advanced functions below.\r
-XXH64() :\r
- Calculate the 64-bits hash of sequence of length "len" stored at memory address "input".\r
-*/\r
-\r
-\r
-\r
-/*****************************\r
- Advanced Hash Functions\r
-*****************************/\r
-\r
-void* XXH32_init (unsigned int seed);\r
-XXH_errorcode XXH32_update (void* state, const void* input, unsigned int len);\r
-unsigned int XXH32_digest (void* state);\r
-\r
-void* XXH64_init (unsigned long long seed);\r
-XXH_errorcode XXH64_update (void* state, const void* input, unsigned int len);\r
-unsigned long long XXH64_digest (void* state);\r
-\r
-/*\r
-These functions calculate the xxhash of an input provided in several small packets,\r
-as opposed to an input provided as a single block.\r
-\r
-It must be started with :\r
-void* XXHnn_init()\r
-The function returns a pointer which holds the state of calculation.\r
-\r
-This pointer must be provided as "void* state" parameter for XXHnn_update().\r
-XXHnn_update() can be called as many times as necessary.\r
-The user must provide a valid (allocated) input.\r
-The function returns an error code, with 0 meaning OK, and any other value meaning there is an error.\r
-Note that "len" is type "int", which means it is limited to 2^31-1.\r
-If your data is larger, it is recommended to chunk your data into blocks\r
-of size for example 2^30 (1GB) to avoid any "int" overflow issue.\r
-\r
-Finally, you can end the calculation anytime, by using XXHnn_digest().\r
-This function returns the final nn-bits hash.\r
-You must provide the same "void* state" parameter created by XXHnn_init().\r
-Memory will be freed by XXHnn_digest().\r
-*/\r
-\r
-\r
-int XXH32_sizeofState(void);\r
-XXH_errorcode XXH32_resetState(void* state, unsigned int seed);\r
-\r
-#define XXH32_SIZEOFSTATE 48\r
-typedef struct { long long ll[(XXH32_SIZEOFSTATE+(sizeof(long long)-1))/sizeof(long long)]; } XXH32_stateSpace_t;\r
-\r
-int XXH64_sizeofState(void);\r
-XXH_errorcode XXH64_resetState(void* state, unsigned long long seed);\r
-\r
-#define XXH64_SIZEOFSTATE 88\r
-typedef struct { long long ll[(XXH64_SIZEOFSTATE+(sizeof(long long)-1))/sizeof(long long)]; } XXH64_stateSpace_t;\r
-\r
-/*\r
-These functions allow user application to make its own allocation for state.\r
-\r
-XXHnn_sizeofState() is used to know how much space must be allocated for the xxHash nn-bits state.\r
-Note that the state must be aligned to access 'long long' fields. Memory must be allocated and referenced by a pointer.\r
-This pointer must then be provided as 'state' into XXHnn_resetState(), which initializes the state.\r
-\r
-For static allocation purposes (such as allocation on stack, or freestanding systems without malloc()),\r
-use the structure XXHnn_stateSpace_t, which will ensure that memory space is large enough and correctly aligned to access 'long long' fields.\r
-*/\r
-\r
-\r
-unsigned int XXH32_intermediateDigest (void* state);\r
-unsigned long long XXH64_intermediateDigest (void* state);\r
-/*\r
-These functions do the same as XXHnn_digest(), generating a nn-bit hash,\r
-but preserve memory context.\r
-This way, it becomes possible to generate intermediate hashes, and then continue feeding data with XXHnn_update().\r
-To free memory context, use XXHnn_digest(), or free().\r
-*/\r
-\r
-\r
-#if defined (__cplusplus)\r
-}\r
-#endif\r
+/*
+ xxHash - Extremely Fast Hash algorithm
+ Header File
+ Copyright (C) 2012-2014, Yann Collet.
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - xxHash source repository : http://code.google.com/p/xxhash/
+*/
+
+/* Notice extracted from xxHash homepage :
+
+xxHash is an extremely fast Hash algorithm, running at RAM speed limits.
+It also successfully passes all tests from the SMHasher suite.
+
+Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)
+
+Name Speed Q.Score Author
+xxHash 5.4 GB/s 10
+CrapWow 3.2 GB/s 2 Andrew
+MumurHash 3a 2.7 GB/s 10 Austin Appleby
+SpookyHash 2.0 GB/s 10 Bob Jenkins
+SBox 1.4 GB/s 9 Bret Mulvey
+Lookup3 1.2 GB/s 9 Bob Jenkins
+SuperFastHash 1.2 GB/s 1 Paul Hsieh
+CityHash64 1.05 GB/s 10 Pike & Alakuijala
+FNV 0.55 GB/s 5 Fowler, Noll, Vo
+CRC32 0.43 GB/s 9
+MD5-32 0.33 GB/s 10 Ronald L. Rivest
+SHA1-32 0.28 GB/s 10
+
+Q.Score is a measure of quality of the hash function.
+It depends on successfully passing SMHasher test set.
+10 is a perfect score.
+*/
+
+#pragma once
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/*****************************
+ Type
+*****************************/
+typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
+
+
+
+/*****************************
+ Simple Hash Functions
+*****************************/
+
+unsigned int XXH32 (const void* input, unsigned int len, unsigned int seed);
+unsigned long long XXH64 (const void* input, unsigned int len, unsigned long long seed);
+
+/*
+XXH32() :
+ Calculate the 32-bits hash of sequence of length "len" stored at memory address "input".
+ The memory between input & input+len must be valid (allocated and read-accessible).
+ "seed" can be used to alter the result predictably.
+ This function successfully passes all SMHasher tests.
+ Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark) : 5.4 GB/s
+ Note that "len" is type "int", which means it is limited to 2^31-1.
+ If your data is larger, use the advanced functions below.
+XXH64() :
+ Calculate the 64-bits hash of sequence of length "len" stored at memory address "input".
+*/
+
+
+
+/*****************************
+ Advanced Hash Functions
+*****************************/
+
+void* XXH32_init (unsigned int seed);
+XXH_errorcode XXH32_update (void* state, const void* input, unsigned int len);
+unsigned int XXH32_digest (void* state);
+
+void* XXH64_init (unsigned long long seed);
+XXH_errorcode XXH64_update (void* state, const void* input, unsigned int len);
+unsigned long long XXH64_digest (void* state);
+
+/*
+These functions calculate the xxhash of an input provided in several small packets,
+as opposed to an input provided as a single block.
+
+It must be started with :
+void* XXHnn_init()
+The function returns a pointer which holds the state of calculation.
+
+This pointer must be provided as "void* state" parameter for XXHnn_update().
+XXHnn_update() can be called as many times as necessary.
+The user must provide a valid (allocated) input.
+The function returns an error code, with 0 meaning OK, and any other value meaning there is an error.
+Note that "len" is type "int", which means it is limited to 2^31-1.
+If your data is larger, it is recommended to chunk your data into blocks
+of size for example 2^30 (1GB) to avoid any "int" overflow issue.
+
+Finally, you can end the calculation anytime, by using XXHnn_digest().
+This function returns the final nn-bits hash.
+You must provide the same "void* state" parameter created by XXHnn_init().
+Memory will be freed by XXHnn_digest().
+*/
+
+
+int XXH32_sizeofState(void);
+XXH_errorcode XXH32_resetState(void* state, unsigned int seed);
+
+#define XXH32_SIZEOFSTATE 48
+typedef struct { long long ll[(XXH32_SIZEOFSTATE+(sizeof(long long)-1))/sizeof(long long)]; } XXH32_stateSpace_t;
+
+int XXH64_sizeofState(void);
+XXH_errorcode XXH64_resetState(void* state, unsigned long long seed);
+
+#define XXH64_SIZEOFSTATE 88
+typedef struct { long long ll[(XXH64_SIZEOFSTATE+(sizeof(long long)-1))/sizeof(long long)]; } XXH64_stateSpace_t;
+
+/*
+These functions allow user application to make its own allocation for state.
+
+XXHnn_sizeofState() is used to know how much space must be allocated for the xxHash nn-bits state.
+Note that the state must be aligned to access 'long long' fields. Memory must be allocated and referenced by a pointer.
+This pointer must then be provided as 'state' into XXHnn_resetState(), which initializes the state.
+
+For static allocation purposes (such as allocation on stack, or freestanding systems without malloc()),
+use the structure XXHnn_stateSpace_t, which will ensure that memory space is large enough and correctly aligned to access 'long long' fields.
+*/
+
+
+unsigned int XXH32_intermediateDigest (void* state);
+unsigned long long XXH64_intermediateDigest (void* state);
+/*
+These functions do the same as XXHnn_digest(), generating a nn-bit hash,
+but preserve memory context.
+This way, it becomes possible to generate intermediate hashes, and then continue feeding data with XXHnn_update().
+To free memory context, use XXHnn_digest(), or free().
+*/
+
+
+#if defined (__cplusplus)
+}
+#endif