x = x << 2;
int src1_index = mad24(y, src1_step, x + src1_offset);
- int dst_start = mad24(y, dst_step, dst_offset);
int dst_end = mad24(y, dst_step, dst_offset + dst_step1);
int dst_index = mad24(y, dst_step, dst_offset + x);
x = x << 2;
int src1_index = mad24(y, src1_step, x + src1_offset);
- int dst_start = mad24(y, dst_step, dst_offset);
int dst_end = mad24(y, dst_step, dst_offset + dst_step1);
int dst_index = mad24(y, dst_step, dst_offset + x);
//M*/
#if defined (DOUBLE_SUPPORT)
-#pragma OPENCL EXTENSION cl_khr_fp64:enable
+ #pragma OPENCL EXTENSION cl_khr_fp64:enable
+ #define CV_PI 3.1415926535897932384626433832795
+ #ifndef DBL_EPSILON
+ #define DBL_EPSILON 0x1.0p-52
+ #endif
+#else
+ #define CV_PI 3.1415926535897932384626433832795f
+ #ifndef DBL_EPSILON
+ #define DBL_EPSILON 0x1.0p-52f
+ #endif
#endif
-#define CV_PI 3.1415926535897932384626433832795
-
-#ifndef DBL_EPSILON
-#define DBL_EPSILON 0x1.0p-52
-#endif
__kernel void arithm_cartToPolar_D5 (__global float *src1, int src1_step, int src1_offset,
__global float *src2, int src2_step, int src2_offset,
float tmp = y >= 0 ? 0 : CV_PI*2;
tmp = x < 0 ? CV_PI : tmp;
- float tmp1 = y >= 0 ? CV_PI*0.5 : CV_PI*1.5;
- cartToPolar = y2 <= x2 ? x*y/(x2 + 0.28f*y2 + (float)DBL_EPSILON) + tmp :
- tmp1 - x*y/(y2 + 0.28f*x2 + (float)DBL_EPSILON);
+ float tmp1 = y >= 0 ? CV_PI*0.5f : CV_PI*1.5f;
+ cartToPolar = y2 <= x2 ? x*y/(x2 + 0.28f*y2 + DBL_EPSILON) + tmp :
+ tmp1 - x*y/(y2 + 0.28f*x2 + DBL_EPSILON);
cartToPolar = angInDegree == 0 ? cartToPolar : cartToPolar * (float)(180/CV_PI);
__kernel void arithm_op_minMax(__global const T * src, __global T * dst,
int cols, int invalid_cols, int offset, int elemnum, int groupnum)
{
- unsigned int lid = get_local_id(0);
- unsigned int gid = get_group_id(0);
- unsigned int id = get_global_id(0);
-
- unsigned int idx = offset + id + (id / cols) * invalid_cols;
-
- __local T localmem_max[128], localmem_min[128];
- T minval = (T)(MAX_VAL), maxval = (T)(MIN_VAL), temp;
-
- for (int grainSize = groupnum << 8; id < elemnum; id += grainSize)
- {
- idx = offset + id + (id / cols) * invalid_cols;
- temp = src[idx];
- minval = min(minval, temp);
- maxval = max(maxval, temp);
- }
-
- if (lid > 127)
- {
- localmem_min[lid - 128] = minval;
- localmem_max[lid - 128] = maxval;
- }
- barrier(CLK_LOCAL_MEM_FENCE);
-
- if (lid < 128)
- {
- localmem_min[lid] = min(minval, localmem_min[lid]);
- localmem_max[lid] = max(maxval, localmem_max[lid]);
- }
- barrier(CLK_LOCAL_MEM_FENCE);
-
- for (int lsize = 64; lsize > 0; lsize >>= 1)
- {
- if (lid < lsize)
- {
- int lid2 = lsize + lid;
- localmem_min[lid] = min(localmem_min[lid], localmem_min[lid2]);
- localmem_max[lid] = max(localmem_max[lid], localmem_max[lid2]);
- }
- barrier(CLK_LOCAL_MEM_FENCE);
- }
-
- if (lid == 0)
- {
- dst[gid] = localmem_min[0];
- dst[gid + groupnum] = localmem_max[0];
- }
+ int lid = get_local_id(0);
+ int gid = get_group_id(0);
+ int id = get_global_id(0);
+
+ int idx = offset + id + (id / cols) * invalid_cols;
+
+ __local T localmem_max[128], localmem_min[128];
+ T minval = (T)(MAX_VAL), maxval = (T)(MIN_VAL), temp;
+
+ for (int grainSize = groupnum << 8; id < elemnum; id += grainSize)
+ {
+ idx = offset + id + (id / cols) * invalid_cols;
+ temp = src[idx];
+ minval = min(minval, temp);
+ maxval = max(maxval, temp);
+ }
+
+ if (lid > 127)
+ {
+ localmem_min[lid - 128] = minval;
+ localmem_max[lid - 128] = maxval;
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ if (lid < 128)
+ {
+ localmem_min[lid] = min(minval, localmem_min[lid]);
+ localmem_max[lid] = max(maxval, localmem_max[lid]);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ for (int lsize = 64; lsize > 0; lsize >>= 1)
+ {
+ if (lid < lsize)
+ {
+ int lid2 = lsize + lid;
+ localmem_min[lid] = min(localmem_min[lid], localmem_min[lid2]);
+ localmem_max[lid] = max(localmem_max[lid], localmem_max[lid2]);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+ }
+
+ if (lid == 0)
+ {
+ dst[gid] = localmem_min[0];
+ dst[gid + groupnum] = localmem_max[0];
+ }
}
__kernel void arithm_op_minMax_mask(__global const T * src, __global T * dst,
int elemnum, int groupnum,
const __global uchar * mask, int minvalid_cols, int moffset)
{
- unsigned int lid = get_local_id(0);
- unsigned int gid = get_group_id(0);
- unsigned int id = get_global_id(0);
-
- unsigned int idx = offset + id + (id / cols) * invalid_cols;
- unsigned int midx = moffset + id + (id / cols) * minvalid_cols;
-
- __local T localmem_max[128], localmem_min[128];
- T minval = (T)(MAX_VAL), maxval = (T)(MIN_VAL), temp;
-
- for (int grainSize = groupnum << 8; id < elemnum; id += grainSize)
- {
- idx = offset + id + (id / cols) * invalid_cols;
- midx = moffset + id + (id / cols) * minvalid_cols;
-
- if (mask[midx])
- {
- temp = src[idx];
- minval = min(minval, temp);
- maxval = max(maxval, temp);
- }
- }
-
- if (lid > 127)
- {
- localmem_min[lid - 128] = minval;
- localmem_max[lid - 128] = maxval;
- }
- barrier(CLK_LOCAL_MEM_FENCE);
-
- if (lid < 128)
- {
- localmem_min[lid] = min(minval, localmem_min[lid]);
- localmem_max[lid] = max(maxval, localmem_max[lid]);
- }
- barrier(CLK_LOCAL_MEM_FENCE);
-
- for (int lsize = 64; lsize > 0; lsize >>= 1)
- {
- if (lid < lsize)
- {
- int lid2 = lsize + lid;
- localmem_min[lid] = min(localmem_min[lid], localmem_min[lid2]);
- localmem_max[lid] = max(localmem_max[lid], localmem_max[lid2]);
- }
- barrier(CLK_LOCAL_MEM_FENCE);
- }
-
- if (lid == 0)
- {
- dst[gid] = localmem_min[0];
- dst[gid + groupnum] = localmem_max[0];
- }
+ int lid = get_local_id(0);
+ int gid = get_group_id(0);
+ int id = get_global_id(0);
+
+ int idx = offset + id + (id / cols) * invalid_cols;
+ int midx = moffset + id + (id / cols) * minvalid_cols;
+
+ __local T localmem_max[128], localmem_min[128];
+ T minval = (T)(MAX_VAL), maxval = (T)(MIN_VAL), temp;
+
+ for (int grainSize = groupnum << 8; id < elemnum; id += grainSize)
+ {
+ idx = offset + id + (id / cols) * invalid_cols;
+ midx = moffset + id + (id / cols) * minvalid_cols;
+
+ if (mask[midx])
+ {
+ temp = src[idx];
+ minval = min(minval, temp);
+ maxval = max(maxval, temp);
+ }
+ }
+
+ if (lid > 127)
+ {
+ localmem_min[lid - 128] = minval;
+ localmem_max[lid - 128] = maxval;
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ if (lid < 128)
+ {
+ localmem_min[lid] = min(minval, localmem_min[lid]);
+ localmem_max[lid] = max(maxval, localmem_max[lid]);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ for (int lsize = 64; lsize > 0; lsize >>= 1)
+ {
+ if (lid < lsize)
+ {
+ int lid2 = lsize + lid;
+ localmem_min[lid] = min(localmem_min[lid], localmem_min[lid2]);
+ localmem_max[lid] = max(localmem_max[lid], localmem_max[lid2]);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+ }
+
+ if (lid == 0)
+ {
+ dst[gid] = localmem_min[0];
+ dst[gid + groupnum] = localmem_max[0];
+ }
}
#define repeat_e(a) a.s3 = a.s0;a.s2 = a.s0;a.s1 = a.s0;
#endif
-
-#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics:enable
-#pragma OPENCL EXTENSION cl_khr_global_int32_extended_atomics:enable
-
/**************************************Array minMax**************************************/
__kernel void arithm_op_minMaxLoc(int cols, int invalid_cols, int offset, int elemnum, int groupnum,
__global VEC_TYPE *src, __global RES_TYPE *dst)
{
- unsigned int lid = get_local_id(0);
- unsigned int gid = get_group_id(0);
- unsigned int id = get_global_id(0);
- unsigned int idx = offset + id + (id / cols) * invalid_cols;
-
- __local VEC_TYPE localmem_max[128], localmem_min[128];
- VEC_TYPE minval, maxval, temp;
-
- __local VEC_TYPE_LOC localmem_maxloc[128], localmem_minloc[128];
- VEC_TYPE_LOC minloc, maxloc, temploc, negative = -1;
-
- int idx_c;
-
- if (id < elemnum)
- {
- temp = src[idx];
- idx_c = idx << 2;
- temploc = (VEC_TYPE_LOC)(idx_c, idx_c + 1, idx_c + 2, idx_c + 3);
-
- if (id % cols == 0 )
- {
- repeat_s(temp);
- repeat_s(temploc);
- }
- if (id % cols == cols - 1)
- {
- repeat_e(temp);
- repeat_e(temploc);
- }
- minval = temp;
- maxval = temp;
- minloc = temploc;
- maxloc = temploc;
- }
- else
- {
- minval = MAX_VAL;
- maxval = MIN_VAL;
- minloc = negative;
- maxloc = negative;
- }
-
- int grainSize = (groupnum << 8);
- for (id = id + grainSize; id < elemnum; id = id + grainSize)
- {
- idx = offset + id + (id / cols) * invalid_cols;
- temp = src[idx];
- idx_c = idx << 2;
- temploc = (VEC_TYPE_LOC)(idx_c, idx_c+1, idx_c+2, idx_c+3);
-
- if (id % cols == 0 )
- {
- repeat_s(temp);
- repeat_s(temploc);
- }
- if (id % cols == cols - 1)
- {
- repeat_e(temp);
- repeat_e(temploc);
- }
-
- minval = min(minval, temp);
- maxval = max(maxval, temp);
- minloc = CONDITION_FUNC(minval == temp, temploc, minloc);
- maxloc = CONDITION_FUNC(maxval == temp, temploc, maxloc);
- }
-
- if (lid > 127)
- {
- localmem_min[lid - 128] = minval;
- localmem_max[lid - 128] = maxval;
- localmem_minloc[lid - 128] = minloc;
- localmem_maxloc[lid - 128] = maxloc;
- }
- barrier(CLK_LOCAL_MEM_FENCE);
-
- if (lid < 128)
- {
- localmem_min[lid] = min(minval,localmem_min[lid]);
- localmem_max[lid] = max(maxval,localmem_max[lid]);
- localmem_minloc[lid] = CONDITION_FUNC(localmem_min[lid] == minval, minloc, localmem_minloc[lid]);
- localmem_maxloc[lid] = CONDITION_FUNC(localmem_max[lid] == maxval, maxloc, localmem_maxloc[lid]);
- }
- barrier(CLK_LOCAL_MEM_FENCE);
-
- for (int lsize = 64; lsize > 0; lsize >>= 1)
- {
+ int lid = get_local_id(0);
+ int gid = get_group_id(0);
+ int id = get_global_id(0);
+ int idx = offset + id + (id / cols) * invalid_cols;
+
+ __local VEC_TYPE localmem_max[128], localmem_min[128];
+ VEC_TYPE minval, maxval, temp;
+
+ __local VEC_TYPE_LOC localmem_maxloc[128], localmem_minloc[128];
+ VEC_TYPE_LOC minloc, maxloc, temploc, negative = -1;
+
+ int idx_c;
+
+ if (id < elemnum)
+ {
+ temp = src[idx];
+ idx_c = idx << 2;
+ temploc = (VEC_TYPE_LOC)(idx_c, idx_c + 1, idx_c + 2, idx_c + 3);
+
+ if (id % cols == 0 )
+ {
+ repeat_s(temp);
+ repeat_s(temploc);
+ }
+ if (id % cols == cols - 1)
+ {
+ repeat_e(temp);
+ repeat_e(temploc);
+ }
+ minval = temp;
+ maxval = temp;
+ minloc = temploc;
+ maxloc = temploc;
+ }
+ else
+ {
+ minval = MAX_VAL;
+ maxval = MIN_VAL;
+ minloc = negative;
+ maxloc = negative;
+ }
+
+ int grainSize = (groupnum << 8);
+ for (id = id + grainSize; id < elemnum; id = id + grainSize)
+ {
+ idx = offset + id + (id / cols) * invalid_cols;
+ temp = src[idx];
+ idx_c = idx << 2;
+ temploc = (VEC_TYPE_LOC)(idx_c, idx_c+1, idx_c+2, idx_c+3);
+
+ if (id % cols == 0 )
+ {
+ repeat_s(temp);
+ repeat_s(temploc);
+ }
+ if (id % cols == cols - 1)
+ {
+ repeat_e(temp);
+ repeat_e(temploc);
+ }
+
+ minval = min(minval, temp);
+ maxval = max(maxval, temp);
+ minloc = CONDITION_FUNC(minval == temp, temploc, minloc);
+ maxloc = CONDITION_FUNC(maxval == temp, temploc, maxloc);
+ }
+
+ if (lid > 127)
+ {
+ localmem_min[lid - 128] = minval;
+ localmem_max[lid - 128] = maxval;
+ localmem_minloc[lid - 128] = minloc;
+ localmem_maxloc[lid - 128] = maxloc;
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ if (lid < 128)
+ {
+ localmem_min[lid] = min(minval,localmem_min[lid]);
+ localmem_max[lid] = max(maxval,localmem_max[lid]);
+ localmem_minloc[lid] = CONDITION_FUNC(localmem_min[lid] == minval, minloc, localmem_minloc[lid]);
+ localmem_maxloc[lid] = CONDITION_FUNC(localmem_max[lid] == maxval, maxloc, localmem_maxloc[lid]);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ for (int lsize = 64; lsize > 0; lsize >>= 1)
+ {
if (lid < lsize)
{
- int lid2 = lsize + lid;
- localmem_min[lid] = min(localmem_min[lid], localmem_min[lid2]);
- localmem_max[lid] = max(localmem_max[lid], localmem_max[lid2]);
- localmem_minloc[lid] = CONDITION_FUNC(localmem_min[lid] == localmem_min[lid2], localmem_minloc[lid2], localmem_minloc[lid]);
- localmem_maxloc[lid] = CONDITION_FUNC(localmem_max[lid] == localmem_max[lid2], localmem_maxloc[lid2], localmem_maxloc[lid]);
+ int lid2 = lsize + lid;
+ localmem_min[lid] = min(localmem_min[lid], localmem_min[lid2]);
+ localmem_max[lid] = max(localmem_max[lid], localmem_max[lid2]);
+ localmem_minloc[lid] = CONDITION_FUNC(localmem_min[lid] == localmem_min[lid2], localmem_minloc[lid2], localmem_minloc[lid]);
+ localmem_maxloc[lid] = CONDITION_FUNC(localmem_max[lid] == localmem_max[lid2], localmem_maxloc[lid2], localmem_maxloc[lid]);
}
barrier(CLK_LOCAL_MEM_FENCE);
- }
-
- if ( lid == 0)
- {
- dst[gid] = CONVERT_RES_TYPE(localmem_min[0]);
- dst[gid + groupnum] = CONVERT_RES_TYPE(localmem_max[0]);
- dst[gid + 2 * groupnum] = CONVERT_RES_TYPE(localmem_minloc[0]);
- dst[gid + 3 * groupnum] = CONVERT_RES_TYPE(localmem_maxloc[0]);
- }
+ }
+
+ if ( lid == 0)
+ {
+ dst[gid] = CONVERT_RES_TYPE(localmem_min[0]);
+ dst[gid + groupnum] = CONVERT_RES_TYPE(localmem_max[0]);
+ dst[gid + 2 * groupnum] = CONVERT_RES_TYPE(localmem_minloc[0]);
+ dst[gid + 3 * groupnum] = CONVERT_RES_TYPE(localmem_maxloc[0]);
+ }
}
__kernel void arithm_op_minMaxLoc_mask (int cols,int invalid_cols,int offset,int elemnum,int groupnum,__global TYPE *src,
int minvalid_cols,int moffset,__global uchar *mask,__global RES_TYPE *dst)
{
- unsigned int lid = get_local_id(0);
- unsigned int gid = get_group_id(0);
- unsigned int id = get_global_id(0);
- unsigned int idx = id + (id / cols) * invalid_cols;
- unsigned int midx = id + (id / cols) * minvalid_cols;
- __local VEC_TYPE lm_max[128],lm_min[128];
- VEC_TYPE minval,maxval,temp,m_temp;
- __local VEC_TYPE_LOC lm_maxloc[128],lm_minloc[128];
- VEC_TYPE_LOC minloc,maxloc,temploc,negative = -1,one = 1,zero = 0;
- if(id < elemnum)
- {
- temp = vload4(idx, &src[offset]);
- m_temp = CONVERT_TYPE(vload4(midx,&mask[moffset]));
- int idx_c = (idx << 2) + offset;
- temploc = (VEC_TYPE_LOC)(idx_c,idx_c+1,idx_c+2,idx_c+3);
- if(id % cols == cols - 1)
- {
- repeat_me(m_temp);
- repeat_e(temploc);
- }
- minval = m_temp != (VEC_TYPE)0 ? temp : (VEC_TYPE)MAX_VAL;
- maxval = m_temp != (VEC_TYPE)0 ? temp : (VEC_TYPE)MIN_VAL;
- minloc = CONDITION_FUNC(m_temp != (VEC_TYPE)0, temploc , negative);
- maxloc = minloc;
- }
- else
- {
- minval = MAX_VAL;
- maxval = MIN_VAL;
- minloc = negative;
- maxloc = negative;
- }
- for(id=id + (groupnum << 8); id < elemnum;id = id + (groupnum << 8))
- {
- idx = id + (id / cols) * invalid_cols;
- midx = id + (id / cols) * minvalid_cols;
- temp = vload4(idx, &src[offset]);
- m_temp = CONVERT_TYPE(vload4(midx,&mask[moffset]));
- int idx_c = (idx << 2) + offset;
- temploc = (VEC_TYPE_LOC)(idx_c,idx_c+1,idx_c+2,idx_c+3);
- if(id % cols == cols - 1)
- {
- repeat_me(m_temp);
- repeat_e(temploc);
- }
- minval = min(minval,m_temp != (VEC_TYPE)0 ? temp : minval);
- maxval = max(maxval,m_temp != (VEC_TYPE)0 ? temp : maxval);
+ int lid = get_local_id(0);
+ int gid = get_group_id(0);
+ int id = get_global_id(0);
+ int idx = id + (id / cols) * invalid_cols;
+ int midx = id + (id / cols) * minvalid_cols;
+ __local VEC_TYPE lm_max[128],lm_min[128];
+ VEC_TYPE minval,maxval,temp,m_temp;
+ __local VEC_TYPE_LOC lm_maxloc[128],lm_minloc[128];
+ VEC_TYPE_LOC minloc,maxloc,temploc,negative = -1,one = 1,zero = 0;
+ if(id < elemnum)
+ {
+ temp = vload4(idx, &src[offset]);
+ m_temp = CONVERT_TYPE(vload4(midx,&mask[moffset]));
+ int idx_c = (idx << 2) + offset;
+ temploc = (VEC_TYPE_LOC)(idx_c,idx_c+1,idx_c+2,idx_c+3);
+ if(id % cols == cols - 1)
+ {
+ repeat_me(m_temp);
+ repeat_e(temploc);
+ }
+ minval = m_temp != (VEC_TYPE)0 ? temp : (VEC_TYPE)MAX_VAL;
+ maxval = m_temp != (VEC_TYPE)0 ? temp : (VEC_TYPE)MIN_VAL;
+ minloc = CONDITION_FUNC(m_temp != (VEC_TYPE)0, temploc , negative);
+ maxloc = minloc;
+ }
+ else
+ {
+ minval = MAX_VAL;
+ maxval = MIN_VAL;
+ minloc = negative;
+ maxloc = negative;
+ }
+ for(id=id + (groupnum << 8); id < elemnum;id = id + (groupnum << 8))
+ {
+ idx = id + (id / cols) * invalid_cols;
+ midx = id + (id / cols) * minvalid_cols;
+ temp = vload4(idx, &src[offset]);
+ m_temp = CONVERT_TYPE(vload4(midx,&mask[moffset]));
+ int idx_c = (idx << 2) + offset;
+ temploc = (VEC_TYPE_LOC)(idx_c,idx_c+1,idx_c+2,idx_c+3);
+ if(id % cols == cols - 1)
+ {
+ repeat_me(m_temp);
+ repeat_e(temploc);
+ }
+ minval = min(minval,m_temp != (VEC_TYPE)0 ? temp : minval);
+ maxval = max(maxval,m_temp != (VEC_TYPE)0 ? temp : maxval);
- minloc = CONDITION_FUNC((minval == temp) && (m_temp != (VEC_TYPE)0), temploc , minloc);
- maxloc = CONDITION_FUNC((maxval == temp) && (m_temp != (VEC_TYPE)0), temploc , maxloc);
- }
- if(lid > 127)
- {
- lm_min[lid - 128] = minval;
- lm_max[lid - 128] = maxval;
- lm_minloc[lid - 128] = minloc;
- lm_maxloc[lid - 128] = maxloc;
- }
- barrier(CLK_LOCAL_MEM_FENCE);
- if(lid < 128)
- {
- lm_min[lid] = min(minval,lm_min[lid]);
- lm_max[lid] = max(maxval,lm_max[lid]);
- VEC_TYPE con_min = CONVERT_TYPE(minloc != negative ? one : zero);
- VEC_TYPE con_max = CONVERT_TYPE(maxloc != negative ? one : zero);
- lm_minloc[lid] = CONDITION_FUNC((lm_min[lid] == minval) && (con_min != (VEC_TYPE)0), minloc , lm_minloc[lid]);
- lm_maxloc[lid] = CONDITION_FUNC((lm_max[lid] == maxval) && (con_max != (VEC_TYPE)0), maxloc , lm_maxloc[lid]);
- }
- barrier(CLK_LOCAL_MEM_FENCE);
- for(int lsize = 64; lsize > 0; lsize >>= 1)
- {
- if(lid < lsize)
- {
- int lid2 = lsize + lid;
- lm_min[lid] = min(lm_min[lid] , lm_min[lid2]);
- lm_max[lid] = max(lm_max[lid] , lm_max[lid2]);
- VEC_TYPE con_min = CONVERT_TYPE(lm_minloc[lid2] != negative ? one : zero);
- VEC_TYPE con_max = CONVERT_TYPE(lm_maxloc[lid2] != negative ? one : zero);
- lm_minloc[lid] =
- CONDITION_FUNC((lm_min[lid] == lm_min[lid2]) && (con_min != (VEC_TYPE)0), lm_minloc[lid2] , lm_minloc[lid]);
- lm_maxloc[lid] =
- CONDITION_FUNC((lm_max[lid] == lm_max[lid2]) && (con_max != (VEC_TYPE)0), lm_maxloc[lid2] , lm_maxloc[lid]);
- }
- barrier(CLK_LOCAL_MEM_FENCE);
- }
- if( lid == 0)
- {
- dst[gid] = CONVERT_RES_TYPE(lm_min[0]);
- dst[gid + groupnum] = CONVERT_RES_TYPE(lm_max[0]);
- dst[gid + 2 * groupnum] = CONVERT_RES_TYPE(lm_minloc[0]);
- dst[gid + 3 * groupnum] = CONVERT_RES_TYPE(lm_maxloc[0]);
- }
+ minloc = CONDITION_FUNC((minval == temp) && (m_temp != (VEC_TYPE)0), temploc , minloc);
+ maxloc = CONDITION_FUNC((maxval == temp) && (m_temp != (VEC_TYPE)0), temploc , maxloc);
+ }
+ if(lid > 127)
+ {
+ lm_min[lid - 128] = minval;
+ lm_max[lid - 128] = maxval;
+ lm_minloc[lid - 128] = minloc;
+ lm_maxloc[lid - 128] = maxloc;
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+ if(lid < 128)
+ {
+ lm_min[lid] = min(minval,lm_min[lid]);
+ lm_max[lid] = max(maxval,lm_max[lid]);
+ VEC_TYPE con_min = CONVERT_TYPE(minloc != negative ? one : zero);
+ VEC_TYPE con_max = CONVERT_TYPE(maxloc != negative ? one : zero);
+ lm_minloc[lid] = CONDITION_FUNC((lm_min[lid] == minval) && (con_min != (VEC_TYPE)0), minloc , lm_minloc[lid]);
+ lm_maxloc[lid] = CONDITION_FUNC((lm_max[lid] == maxval) && (con_max != (VEC_TYPE)0), maxloc , lm_maxloc[lid]);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+ for(int lsize = 64; lsize > 0; lsize >>= 1)
+ {
+ if(lid < lsize)
+ {
+ int lid2 = lsize + lid;
+ lm_min[lid] = min(lm_min[lid] , lm_min[lid2]);
+ lm_max[lid] = max(lm_max[lid] , lm_max[lid2]);
+ VEC_TYPE con_min = CONVERT_TYPE(lm_minloc[lid2] != negative ? one : zero);
+ VEC_TYPE con_max = CONVERT_TYPE(lm_maxloc[lid2] != negative ? one : zero);
+ lm_minloc[lid] =
+ CONDITION_FUNC((lm_min[lid] == lm_min[lid2]) && (con_min != (VEC_TYPE)0), lm_minloc[lid2] , lm_minloc[lid]);
+ lm_maxloc[lid] =
+ CONDITION_FUNC((lm_max[lid] == lm_max[lid2]) && (con_max != (VEC_TYPE)0), lm_maxloc[lid2] , lm_maxloc[lid]);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+ }
+ if( lid == 0)
+ {
+ dst[gid] = CONVERT_RES_TYPE(lm_min[0]);
+ dst[gid + groupnum] = CONVERT_RES_TYPE(lm_max[0]);
+ dst[gid + 2 * groupnum] = CONVERT_RES_TYPE(lm_minloc[0]);
+ dst[gid + 3 * groupnum] = CONVERT_RES_TYPE(lm_maxloc[0]);
+ }
}
__kernel void arithm_op_nonzero(int cols, int invalid_cols, int offset, int elemnum, int groupnum,
__global srcT *src, __global dstT *dst)
{
- unsigned int lid = get_local_id(0);
- unsigned int gid = get_group_id(0);
- unsigned int id = get_global_id(0);
+ int lid = get_local_id(0);
+ int gid = get_group_id(0);
+ int id = get_global_id(0);
- unsigned int idx = offset + id + (id / cols) * invalid_cols;
+ int idx = offset + id + (id / cols) * invalid_cols;
__local dstT localmem_nonzero[128];
dstT nonzero = (dstT)(0);
srcT zero = (srcT)(0), one = (srcT)(1);
//
#if defined (DOUBLE_SUPPORT)
-#ifdef cl_khr_fp64
-#pragma OPENCL EXTENSION cl_khr_fp64:enable
-#elif defined (cl_amd_fp64)
-#pragma OPENCL EXTENSION cl_amd_fp64:enable
+ #ifdef cl_khr_fp64
+ #pragma OPENCL EXTENSION cl_khr_fp64:enable
+ #elif defined (cl_amd_fp64)
+ #pragma OPENCL EXTENSION cl_amd_fp64:enable
+ #endif
+ #define CV_PI 3.1415926535897932384626433832795
+ #define CV_2PI 2*CV_PI
+#else
+ #define CV_PI 3.1415926535897932384626433832795f
+ #define CV_2PI 2*CV_PI
#endif
-#endif
-
-#define CV_PI 3.1415926535898
-#define CV_2PI 2*3.1415926535898
/**************************************phase inradians**************************************/
//
//M*/
-#if defined (DOUBLE_SUPPORT)
-#pragma OPENCL EXTENSION cl_khr_fp64:enable
+#ifdef DOUBLE_SUPPORT
+ #pragma OPENCL EXTENSION cl_khr_fp64:enable
+ #define CV_PI 3.1415926535897932384626433832795
+#else
+ #define CV_PI 3.1415926535897932384626433832795f
#endif
-#define CV_PI 3.1415926535897932384626433832795
-
/////////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////polarToCart with magnitude//////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////
float x = *((__global float *)((__global char *)src1 + src1_index));
float y = *((__global float *)((__global char *)src2 + src2_index));
- float ascale = CV_PI/180.0;
+ float ascale = CV_PI/180.0f;
float alpha = angInDegree == 1 ? y * ascale : y;
float a = cos(alpha) * x;
float b = sin(alpha) * x;
float y = *((__global float *)((__global char *)src + src_index));
- float ascale = CV_PI/180.0;
+ float ascale = CV_PI/180.0f;
float alpha = angInDegree == 1 ? y * ascale : y;
float a = cos(alpha);
float b = sin(alpha);
__kernel void arithm_op_sum(int cols,int invalid_cols,int offset,int elemnum,int groupnum,
__global srcT *src, __global dstT *dst)
{
- unsigned int lid = get_local_id(0);
- unsigned int gid = get_group_id(0);
- unsigned int id = get_global_id(0);
- unsigned int idx = offset + id + (id / cols) * invalid_cols;
+ int lid = get_local_id(0);
+ int gid = get_group_id(0);
+ int id = get_global_id(0);
+ int idx = offset + id + (id / cols) * invalid_cols;
- __local dstT localmem_sum[128];
- dstT sum = (dstT)(0), temp;
+ __local dstT localmem_sum[128];
+ dstT sum = (dstT)(0), temp;
- for (int grainSize = groupnum << 8; id < elemnum; id += grainSize)
- {
- idx = offset + id + (id / cols) * invalid_cols;
- temp = convertToDstT(src[idx]);
- FUNC(temp, sum);
- }
+ for (int grainSize = groupnum << 8; id < elemnum; id += grainSize)
+ {
+ idx = offset + id + (id / cols) * invalid_cols;
+ temp = convertToDstT(src[idx]);
+ FUNC(temp, sum);
+ }
- if (lid > 127)
- localmem_sum[lid - 128] = sum;
- barrier(CLK_LOCAL_MEM_FENCE);
+ if (lid > 127)
+ localmem_sum[lid - 128] = sum;
+ barrier(CLK_LOCAL_MEM_FENCE);
- if (lid < 128)
- localmem_sum[lid] = sum + localmem_sum[lid];
- barrier(CLK_LOCAL_MEM_FENCE);
+ if (lid < 128)
+ localmem_sum[lid] = sum + localmem_sum[lid];
+ barrier(CLK_LOCAL_MEM_FENCE);
- for (int lsize = 64; lsize > 0; lsize >>= 1)
- {
- if (lid < lsize)
- {
- int lid2 = lsize + lid;
- localmem_sum[lid] = localmem_sum[lid] + localmem_sum[lid2];
- }
- barrier(CLK_LOCAL_MEM_FENCE);
- }
+ for (int lsize = 64; lsize > 0; lsize >>= 1)
+ {
+ if (lid < lsize)
+ {
+ int lid2 = lsize + lid;
+ localmem_sum[lid] = localmem_sum[lid] + localmem_sum[lid2];
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+ }
- if (lid == 0)
- dst[gid] = localmem_sum[0];
+ if (lid == 0)
+ dst[gid] = localmem_sum[0];
}
#endif
//http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
-int bit1Count(int v)
+static int bit1Count(int v)
{
v = v - ((v >> 1) & 0x55555555); // reuse input as temporary
v = (v & 0x33333333) + ((v >> 2) & 0x33333333); // temp
#define DIST_RES(x) (x)
#endif
-result_type reduce_block(
+static result_type reduce_block(
__local value_type *s_query,
__local value_type *s_train,
int lidx,
return DIST_RES(result);
}
-result_type reduce_block_match(
+static result_type reduce_block_match(
__local value_type *s_query,
__local value_type *s_train,
int lidx,
return (result);
}
-result_type reduce_multi_block(
+static result_type reduce_multi_block(
__local value_type *s_query,
__local value_type *s_train,
int block_index,
int myBestTrainIdx = -1;
// loopUnrolledCached to find the best trainIdx and best distance.
- volatile int imgIdx = 0;
for (int t = 0, endt = (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE; t < endt; t++)
{
result_type result = 0;
if (queryIdx < query_rows && trainIdx < train_rows && result < myBestDistance/* && mask(queryIdx, trainIdx)*/)
{
- //bestImgIdx = imgIdx;
myBestDistance = result;
myBestTrainIdx = trainIdx;
}
if (queryIdx < query_rows && trainIdx < train_rows && result < myBestDistance /*&& mask(queryIdx, trainIdx)*/)
{
- //myBestImgidx = imgIdx;
myBestDistance = result;
myBestTrainIdx = trainIdx;
}
if (queryIdx < query_rows && trainIdx < train_rows &&
convert_float(result) < maxDistance/* && mask(queryIdx, trainIdx)*/)
{
- unsigned int ind = atom_inc(nMatches + queryIdx/*, (unsigned int) -1*/);
+ int ind = atom_inc(nMatches + queryIdx/*, (unsigned int) -1*/);
if(ind < bestTrainIdx_cols)
{
- //bestImgIdx = imgIdx;
bestTrainIdx[queryIdx * (ostep / sizeof(int)) + ind] = trainIdx;
bestDistance[queryIdx * (ostep / sizeof(float)) + ind] = result;
}
if (queryIdx < query_rows && trainIdx < train_rows &&
convert_float(result) < maxDistance/* && mask(queryIdx, trainIdx)*/)
{
- unsigned int ind = atom_inc(nMatches + queryIdx);
+ int ind = atom_inc(nMatches + queryIdx);
if(ind < bestTrainIdx_cols)
{
- //bestImgIdx = imgIdx;
bestTrainIdx[queryIdx * (ostep / sizeof(int)) + ind] = trainIdx;
bestDistance[queryIdx * (ostep / sizeof(float)) + ind] = result;
}
int myBestTrainIdx2 = -1;
//loopUnrolledCached
- volatile int imgIdx = 0;
for (int t = 0 ; t < (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE ; t++)
{
result_type result = 0;
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
-#define DATA_TYPE UNDEFINED
-
#if defined (DEPTH_0)
#define DATA_TYPE uchar
#define MAX_NUM 255
#define SAT_CAST(num) (num)
#endif
+#ifndef DATA_TYPE
+ #define DATA_TYPE UNDEFINED
+#endif
+
#define CV_DESCALE(x,n) (((x) + (1 << ((n)-1))) >> (n))
enum
//
//
-#pragma OPENCL EXTENSION cl_amd_printf : enable
#define CV_HAAR_FEATURE_MAX 3
#define calc_sum(rect,offset) (sum[(rect).p0+offset] - sum[(rect).p1+offset] - sum[(rect).p2+offset] + sum[(rect).p3+offset])
int grpidx = get_group_id(0);
int lclidx = get_local_id(0);
int lclidy = get_local_id(1);
- int lcl_sz = mul24(grpszx, grpszy);
int lcl_id = mad24(lclidy, grpszx, lclidx);
__local int glboutindex[1];
__local int lclcount[1];
int col = get_local_id(0);
int gX = get_group_id(0);
int gY = get_group_id(1);
- int glx = get_global_id(0);
int gly = get_global_id(1);
int dx_x_off = (dx_offset % dx_step) >> 2;
{
dx_con = dx_startX+col >= 0 && dx_startX+col < dx_whole_cols && dx_startY+i >= 0 && dx_startY+i < dx_whole_rows;
dx_s = Dx[(dx_startY+i)*(dx_step>>2)+(dx_startX+col)];
- dx_data[i] = dx_con ? dx_s : 0.0;
+ dx_data[i] = dx_con ? dx_s : 0.0f;
dy_con = dy_startX+col >= 0 && dy_startX+col < dy_whole_cols && dy_startY+i >= 0 && dy_startY+i < dy_whole_rows;
dy_s = Dy[(dy_startY+i)*(dy_step>>2)+(dy_startX+col)];
- dy_data[i] = dy_con ? dy_s : 0.0;
+ dy_data[i] = dy_con ? dy_s : 0.0f;
data[0][i] = dx_data[i] * dx_data[i];
data[1][i] = dx_data[i] * dy_data[i];
data[2][i] = dy_data[i] * dy_data[i];
}
#endif
- float sum0 = 0.0, sum1 = 0.0, sum2 = 0.0;
+ float sum0 = 0.0f, sum1 = 0.0f, sum2 = 0.0f;
for (int i=1; i < ksY; i++)
{
sum0 += data[0][i];
int posX = dst_startX - dst_x_off + col - anX;
int posY = (gly << 1);
int till = (ksX + 1)%2;
- float tmp_sum[6] = { 0.0, 0.0 , 0.0, 0.0, 0.0, 0.0 };
+ float tmp_sum[6] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
for (int k=0; k<6; k++)
for (int i=-anX; i<=anX - till; i++)
tmp_sum[k] += temp[k][col+i];
int col = get_local_id(0);
int gX = get_group_id(0);
int gY = get_group_id(1);
- int glx = get_global_id(0);
int gly = get_global_id(1);
int dx_x_off = (dx_offset % dx_step) >> 2;
{
dx_con = dx_startX+col >= 0 && dx_startX+col < dx_whole_cols && dx_startY+i >= 0 && dx_startY+i < dx_whole_rows;
dx_s = Dx[(dx_startY+i)*(dx_step>>2)+(dx_startX+col)];
- dx_data[i] = dx_con ? dx_s : 0.0;
+ dx_data[i] = dx_con ? dx_s : 0.0f;
dy_con = dy_startX+col >= 0 && dy_startX+col < dy_whole_cols && dy_startY+i >= 0 && dy_startY+i < dy_whole_rows;
dy_s = Dy[(dy_startY+i)*(dy_step>>2)+(dy_startX+col)];
- dy_data[i] = dy_con ? dy_s : 0.0;
+ dy_data[i] = dy_con ? dy_s : 0.0f;
data[0][i] = dx_data[i] * dx_data[i];
data[1][i] = dx_data[i] * dy_data[i];
data[2][i] = dy_data[i] * dy_data[i];
data[2][i] = dy_data[i] * dy_data[i];
}
#endif
- float sum0 = 0.0, sum1 = 0.0, sum2 = 0.0;
+ float sum0 = 0.0f, sum1 = 0.0f, sum2 = 0.0f;
for (int i=1; i < ksY; i++)
{
sum0 += (data[0][i]);
int posX = dst_startX - dst_x_off + col - anX;
int posY = (gly << 1);
int till = (ksX + 1)%2;
- float tmp_sum[6] = { 0.0, 0.0 , 0.0, 0.0, 0.0, 0.0 };
+ float tmp_sum[6] = { 0.0f, 0.0f , 0.0f, 0.0f, 0.0f, 0.0f };
for (int k=0; k<6; k++)
for (int i=-anX; i<=anX - till; i++)
tmp_sum[k] += temp[k][col+i];
//
//M*/
-#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable
-#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable
-
#ifdef L2GRAD
inline float calc(int x, int y)
{
//////////////////////////////////////////////////////////////////////////////////////////
// 0.4142135623730950488016887242097 is tan(22.5)
#define CANNY_SHIFT 15
-#define TG22 (int)(0.4142135623730950488016887242097*(1<<CANNY_SHIFT) + 0.5)
+
+#ifdef DOUBLE_SUPPORT
+ #define TG22 (int)(0.4142135623730950488016887242097*(1<<CANNY_SHIFT) + 0.5)
+#else
+ #define TG22 (int)(0.4142135623730950488016887242097f*(1<<CANNY_SHIFT) + 0.5f)
+#endif
//First pass of edge detection and non-maximum suppression
// edgetype is set to for each pixel:
ind = s_ind;
- for (int i = lidx; i < s_counter; i += get_local_size(0))
+ for (int i = lidx; i < (int)s_counter; i += get_local_size(0))
{
st2[ind + i] = s_st[i];
}
#define WAVE_SIZE 1
#endif
-int calc_lut(__local int* smem, int val, int tid)
+static int calc_lut(__local int* smem, int val, int tid)
{
smem[tid] = val;
barrier(CLK_LOCAL_MEM_FENCE);
}
#ifdef CPU
-void reduce(volatile __local int* smem, int val, int tid)
+static void reduce(volatile __local int* smem, int val, int tid)
{
smem[tid] = val;
barrier(CLK_LOCAL_MEM_FENCE);
#else
-void reduce(__local volatile int* smem, int val, int tid)
+static void reduce(__local volatile int* smem, int val, int tid)
{
smem[tid] = val;
barrier(CLK_LOCAL_MEM_FENCE);
{
__local int smem[512];
- const int tx = get_group_id(0);
- const int ty = get_group_id(1);
- const unsigned int tid = get_local_id(1) * get_local_size(0)
+ int tx = get_group_id(0);
+ int ty = get_group_id(1);
+ int tid = get_local_id(1) * get_local_size(0)
+ get_local_id(0);
smem[tid] = 0;
kernel void integral_cols_D4(__global uchar4 *src,__global int *sum ,__global float *sqsum,
int src_offset,int pre_invalid,int rows,int cols,int src_step,int dst_step)
{
- unsigned int lid = get_local_id(0);
- unsigned int gid = get_group_id(0);
+ int lid = get_local_id(0);
+ int gid = get_group_id(0);
int4 src_t[2], sum_t[2];
float4 sqsum_t[2];
__local int4 lm_sum[2][LSIZE + LOG_LSIZE];
gid = gid << 1;
for(int i = 0; i < rows; i =i + LSIZE_1)
{
- src_t[0] = (i + lid < rows ? convert_int4(src[src_offset + (lid+i) * src_step + min(gid, (uint)cols - 1)]) : 0);
- src_t[1] = (i + lid < rows ? convert_int4(src[src_offset + (lid+i) * src_step + min(gid + 1, (uint)cols - 1)]) : 0);
+ src_t[0] = (i + lid < rows ? convert_int4(src[src_offset + (lid+i) * src_step + min(gid, cols - 1)]) : 0);
+ src_t[1] = (i + lid < rows ? convert_int4(src[src_offset + (lid+i) * src_step + min(gid + 1, cols - 1)]) : 0);
sum_t[0] = (i == 0 ? 0 : lm_sum[0][LSIZE_2 + LOG_LSIZE]);
sqsum_t[0] = (i == 0 ? (float4)0 : lm_sqsum[0][LSIZE_2 + LOG_LSIZE]);
__global float *sqsum,int rows,int cols,int src_step,int sum_step,
int sqsum_step,int sum_offset,int sqsum_offset)
{
- unsigned int lid = get_local_id(0);
- unsigned int gid = get_group_id(0);
+ int lid = get_local_id(0);
+ int gid = get_group_id(0);
int4 src_t[2], sum_t[2];
float4 sqsrc_t[2],sqsum_t[2];
__local int4 lm_sum[2][LSIZE + LOG_LSIZE];
kernel void integral_cols_D5(__global uchar4 *src,__global float *sum ,__global float *sqsum,
int src_offset,int pre_invalid,int rows,int cols,int src_step,int dst_step)
{
- unsigned int lid = get_local_id(0);
- unsigned int gid = get_group_id(0);
+ int lid = get_local_id(0);
+ int gid = get_group_id(0);
float4 src_t[2], sum_t[2];
float4 sqsum_t[2];
__local float4 lm_sum[2][LSIZE + LOG_LSIZE];
gid = gid << 1;
for(int i = 0; i < rows; i =i + LSIZE_1)
{
- src_t[0] = (i + lid < rows ? convert_float4(src[src_offset + (lid+i) * src_step + min(gid, (uint)cols - 1)]) : (float4)0);
- src_t[1] = (i + lid < rows ? convert_float4(src[src_offset + (lid+i) * src_step + min(gid + 1, (uint)cols - 1)]) : (float4)0);
+ src_t[0] = (i + lid < rows ? convert_float4(src[src_offset + (lid+i) * src_step + min(gid, cols - 1)]) : (float4)0);
+ src_t[1] = (i + lid < rows ? convert_float4(src[src_offset + (lid+i) * src_step + min(gid + 1, cols - 1)]) : (float4)0);
sum_t[0] = (i == 0 ? (float4)0 : lm_sum[0][LSIZE_2 + LOG_LSIZE]);
sqsum_t[0] = (i == 0 ? (float4)0 : lm_sqsum[0][LSIZE_2 + LOG_LSIZE]);
__global float *sqsum,int rows,int cols,int src_step,int sum_step,
int sqsum_step,int sum_offset,int sqsum_offset)
{
- unsigned int lid = get_local_id(0);
- unsigned int gid = get_group_id(0);
+ int lid = get_local_id(0);
+ int gid = get_group_id(0);
float4 src_t[2], sum_t[2];
float4 sqsrc_t[2],sqsum_t[2];
__local float4 lm_sum[2][LSIZE + LOG_LSIZE];
kernel void integral_sum_cols_D4(__global uchar4 *src,__global int *sum ,
int src_offset,int pre_invalid,int rows,int cols,int src_step,int dst_step)
{
- unsigned int lid = get_local_id(0);
- unsigned int gid = get_group_id(0);
+ int lid = get_local_id(0);
+ int gid = get_group_id(0);
int4 src_t[2], sum_t[2];
__local int4 lm_sum[2][LSIZE + LOG_LSIZE];
__local int* sum_p;
int rows,int cols,int src_step,int sum_step,
int sum_offset)
{
- unsigned int lid = get_local_id(0);
- unsigned int gid = get_group_id(0);
+ int lid = get_local_id(0);
+ int gid = get_group_id(0);
int4 src_t[2], sum_t[2];
__local int4 lm_sum[2][LSIZE + LOG_LSIZE];
__local int *sum_p;
kernel void integral_sum_cols_D5(__global uchar4 *src,__global float *sum ,
int src_offset,int pre_invalid,int rows,int cols,int src_step,int dst_step)
{
- unsigned int lid = get_local_id(0);
- unsigned int gid = get_group_id(0);
+ int lid = get_local_id(0);
+ int gid = get_group_id(0);
float4 src_t[2], sum_t[2];
__local float4 lm_sum[2][LSIZE + LOG_LSIZE];
__local float* sum_p;
int rows,int cols,int src_step,int sum_step,
int sum_offset)
{
- unsigned int lid = get_local_id(0);
- unsigned int gid = get_group_id(0);
+ int lid = get_local_id(0);
+ int gid = get_group_id(0);
float4 src_t[2], sum_t[2];
__local float4 lm_sum[2][LSIZE + LOG_LSIZE];
__local float *sum_p;
op(p3, p6); op(p1, p4); op(p2, p5); op(p4, p7);
op(p4, p2); op(p6, p4); op(p4, p2);
- if(get_global_id(1)<rows && get_global_id(0)<cols)
+ if((int)get_global_id(1)<rows && (int)get_global_id(0)<cols)
dst[dstOffset + get_global_id(1)*dstStep + get_global_id(0)]=p4;
}
-#undef op(a,b)
+#undef op
#define op(a,b) {mid=a; a=min(a,b); b=max(mid,b);}
__kernel void medianFilter3_C1_D0(__global uchar * src, __global uchar * dst, int srcOffset, int dstOffset, int cols,
op(p3, p6); op(p1, p4); op(p2, p5); op(p4, p7);
op(p4, p2); op(p6, p4); op(p4, p2);
- if(get_global_id(1)<rows && get_global_id(0)<cols)
+ if((int)get_global_id(1)<rows && (int)get_global_id(0)<cols)
dst[dstOffset + get_global_id(1)*dstStep + get_global_id(0)]=p4;
}
-#undef op(a,b)
+#undef op
#define op(a,b) {mid=a; a=min(a,b); b=max(mid,b);}
__kernel void medianFilter3_C1_D5(__global float * src, __global float * dst, int srcOffset, int dstOffset, int cols,
op(p3, p6); op(p1, p4); op(p2, p5); op(p4, p7);
op(p4, p2); op(p6, p4); op(p4, p2);
- if(get_global_id(1)<rows && get_global_id(0)<cols)
+ if((int)get_global_id(1)<rows && (int)get_global_id(0)<cols)
dst[dstOffset + get_global_id(1)*dstStep + get_global_id(0)]=p4;
}
-#undef op(a,b)
+#undef op
#define op(a,b) {mid=a; a=min(a,b); b=max(mid,b);}
__kernel void medianFilter3_C4_D5(__global float4 * src, __global float4 * dst, int srcOffset, int dstOffset, int cols,
op(p3, p6); op(p1, p4); op(p2, p5); op(p4, p7);
op(p4, p2); op(p6, p4); op(p4, p2);
- if(get_global_id(1)<rows && get_global_id(0)<cols)
+ if((int)get_global_id(1)<rows && (int)get_global_id(0)<cols)
dst[dstOffset + get_global_id(1)*dstStep + get_global_id(0)]=p4;
}
-#undef op(a,b)
+#undef op
#define op(a,b) {mid=a; a=min(a,b); b=max(mid,b);}
__kernel void medianFilter5_C4_D0(__global uchar4 * src, __global uchar4 * dst, int srcOffset, int dstOffset, int cols,
op(p13, p17); op(p3, p15); op(p11, p23); op(p11, p15); op(p7, p19);
op(p7, p11); op(p11, p13); op(p11, p12);
- if(get_global_id(1)<rows && get_global_id(0)<cols)
+ if((int)get_global_id(1)<rows && (int)get_global_id(0)<cols)
dst[dstOffset + get_global_id(1)*dstStep + get_global_id(0)]=p12;
}
-#undef op(a,b)
+#undef op
#define op(a,b) {mid=a; a=min(a,b); b=max(mid,b);}
__kernel void medianFilter5_C1_D0(__global uchar * src, __global uchar * dst, int srcOffset, int dstOffset, int cols,
op(p13, p17); op(p3, p15); op(p11, p23); op(p11, p15); op(p7, p19);
op(p7, p11); op(p11, p13); op(p11, p12);
- if(get_global_id(1)<rows && get_global_id(0)<cols)
+ if((int)get_global_id(1)<rows && (int)get_global_id(0)<cols)
dst[dstOffset + get_global_id(1)*dstStep + get_global_id(0)]=p12;
}
-#undef op(a,b)
+#undef op
#define op(a,b) {mid=a; a=min(a,b); b=max(mid,b);}
__kernel void medianFilter5_C4_D5(__global float4 * src, __global float4 * dst, int srcOffset, int dstOffset, int cols,
op(p13, p17); op(p3, p15); op(p11, p23); op(p11, p15); op(p7, p19);
op(p7, p11); op(p11, p13); op(p11, p12);
- if(get_global_id(1)<rows && get_global_id(0)<cols)
+ if((int)get_global_id(1)<rows && (int)get_global_id(0)<cols)
dst[dstOffset + get_global_id(1)*dstStep + get_global_id(0)]=p12;
}
-#undef op(a,b)
+#undef op
#define op(a,b) {mid=a; a=min(a,b); b=max(mid,b);}
__kernel void medianFilter5_C1_D5(__global float * src, __global float * dst, int srcOffset, int dstOffset, int cols,
op(p13, p17); op(p3, p15); op(p11, p23); op(p11, p15); op(p7, p19);
op(p7, p11); op(p11, p13); op(p11, p12);
- if(get_global_id(1)<rows && get_global_id(0)<cols)
+ if((int)get_global_id(1)<rows && (int)get_global_id(0)<cols)
dst[dstOffset + get_global_id(1)*dstStep + get_global_id(0)]=p12;
}
-#undef op(a,b)
+#undef op
#elif defined BORDER_REPLICATE
#define EXTRAPOLATE(v2, v) \
{ \
- v2 = max(min(v2, (int2)(src_cols - 1, src_rows - 1)), zero); \
+ v2 = max(min(v2, (int2)(src_cols - 1, src_rows - 1)), (int2)(0)); \
v = convertToWT(src[mad24(v2.y, src_step, v2.x + src_offset)]); \
}
#elif defined BORDER_WRAP
if (NEED_EXTRAPOLATION(gx, gy))
{
- int2 gxy = (int2)(gx, gy), zero = (int2)(0);
+#ifndef BORDER_CONSTANT
+ int2 gxy = (int2)(gx, gy);
+#endif
EXTRAPOLATE(gxy, dst[dstIdx]);
}
else
int gx = gxy.x, gy = gxy.y;
if (NEED_EXTRAPOLATION(gx, gy))
- {
- int2 zero = (int2)(0);
- EXTRAPOLATE(gxy, dst[dstIdx]);
- }
+ EXTRAPOLATE(gxy, dst[dstIdx])
else
{
int srcIdx = mad24(gy, src_step, gx + src_offset);
int gx = gxy.x, gy = gxy.y;
if (NEED_EXTRAPOLATION(gx, gy))
- {
- int2 zero = (int2)(0);
- EXTRAPOLATE(gxy, dst[dstIdx]);
- }
+ EXTRAPOLATE(gxy, dst[dstIdx])
else
{
int srcIdx = mad24(gy, src_step, gx + src_offset);
int2 map_dataB = (int2)(map_dataA.x + 1, map_dataA.y);
int2 map_dataC = (int2)(map_dataA.x, map_dataA.y + 1);
int2 map_dataD = (int2)(map_dataA.x + 1, map_dataA.y +1);
- int2 zero = (int2)(0);
float2 _u = map_data - convert_float2(map_dataA);
WT2 u = convertToWT2(convert_int2_rte(convertToWT2(_u) * (WT2)32)) / (WT2)32;
int2 map_dataB = (int2)(map_dataA.x + 1, map_dataA.y);
int2 map_dataC = (int2)(map_dataA.x, map_dataA.y + 1);
int2 map_dataD = (int2)(map_dataA.x + 1, map_dataA.y + 1);
- int2 zero = (int2)(0);
float2 _u = map_data - convert_float2(map_dataA);
WT2 u = convertToWT2(convert_int2_rte(convertToWT2(_u) * (WT2)32)) / (WT2)32;
int x = floor(sx), y = floor(sy);
float u = sx - x, v = sy - y;
- x<0 ? x=0,u=0 : x,u;
- x>=src_cols ? x=src_cols-1,u=0 : x,u;
- y<0 ? y=0,v=0 : y,v;
- y>=src_rows ? y=src_rows-1,v=0 : y,v;
+ if ( x<0 ) x=0,u=0;
+ if ( x>=src_cols ) x=src_cols-1,u=0;
+ if ( y<0 ) y=0,v=0;
+ if (y>=src_rows ) y=src_rows-1,v=0;
u = u * INTER_RESIZE_COEF_SCALE;
v = v * INTER_RESIZE_COEF_SCALE;
int x = floor(sx), y = floor(sy);
float u = sx - x, v = sy - y;
- x<0 ? x=0,u=0 : x,u;
- x>=src_cols ? x=src_cols-1,u=0 : x,u;
- y<0 ? y=0,v=0 : y,v;
- y>=src_rows ? y=src_rows-1,v=0 : y,v;
+ if ( x<0 ) x=0,u=0;
+ if ( x>=src_cols ) x=src_cols-1,u=0;
+ if ( y<0 ) y=0,v=0;
+ if (y>=src_rows ) y=src_rows-1,v=0;
int y_ = INC(y,src_rows);
int x_ = INC(x,src_cols);
int x = floor(sx), y = floor(sy);
float u = sx - x, v = sy - y;
- x<0 ? x=0,u=0 : x;
- x>=src_cols ? x=src_cols-1,u=0 : x;
- y<0 ? y=0,v=0 : y;
- y>=src_rows ? y=src_rows-1,v=0 : y;
+ if ( x<0 ) x=0,u=0;
+ if ( x>=src_cols ) x=src_cols-1,u=0;
+ if ( y<0 ) y=0,v=0;
+ if (y>=src_rows ) y=src_rows-1,v=0;
int y_ = INC(y,src_rows);
int x_ = INC(x,src_cols);
#else
VT sdata = VLOADN(0, src + src_index);
#endif
- VT vthresh = (VT)(thresh), zero = (VT)(0);
+ VT vthresh = (VT)(thresh);
#ifdef THRESH_BINARY
- VT vecValue = sdata > vthresh ? max_val : zero;
+ VT vecValue = sdata > vthresh ? max_val : (VT)(0);
#elif defined THRESH_BINARY_INV
- VT vecValue = sdata > vthresh ? zero : max_val;
+ VT vecValue = sdata > vthresh ? (VT)(0) : max_val;
#elif defined THRESH_TRUNC
VT vecValue = sdata > vthresh ? thresh : sdata;
#elif defined THRESH_TOZERO
- VT vecValue = sdata > vthresh ? sdata : zero;
+ VT vecValue = sdata > vthresh ? sdata : (VT)(0);
#elif defined THRESH_TOZERO_INV
- VT vecValue = sdata > vthresh ? zero : sdata;
+ VT vecValue = sdata > vthresh ? (VT)(0) : sdata;
#endif
if (gx + VECSIZE <= max_index)
int src_index = mad24(gy, src_step, src_offset + gx);
int dst_index = mad24(gy, dst_step, dst_offset + gx);
- T sdata = src[src_index], zero = (T)(0);
+ T sdata = src[src_index];
#ifdef THRESH_BINARY
- dst[dst_index] = sdata > thresh ? max_val : zero;
+ dst[dst_index] = sdata > thresh ? max_val : (T)(0);
#elif defined THRESH_BINARY_INV
- dst[dst_index] = sdata > thresh ? zero : max_val;
+ dst[dst_index] = sdata > thresh ? (T)(0) : max_val;
#elif defined THRESH_TRUNC
dst[dst_index] = sdata > thresh ? thresh : sdata;
#elif defined THRESH_TOZERO
- dst[dst_index] = sdata > thresh ? sdata : zero;
+ dst[dst_index] = sdata > thresh ? sdata : (T)(0);
#elif defined THRESH_TOZERO_INV
- dst[dst_index] = sdata > thresh ? zero : sdata;
+ dst[dst_index] = sdata > thresh ? (T)(0) : sdata;
#endif
}
}
float tab[4];
float taby[2], tabx[2];
- taby[0] = 1.0 - 1.f/INTER_TAB_SIZE*ay0;
+ taby[0] = 1.0f - 1.f/INTER_TAB_SIZE*ay0;
taby[1] = 1.f/INTER_TAB_SIZE*ay0;
- tabx[0] = 1.0 - 1.f/INTER_TAB_SIZE*ax0;
+ tabx[0] = 1.0f - 1.f/INTER_TAB_SIZE*ax0;
tabx[1] = 1.f/INTER_TAB_SIZE*ax0;
tab[0] = taby[0] * tabx[0];
float tab[4];
float taby[2], tabx[2];
- taby[0] = 1.0 - 1.f/INTER_TAB_SIZE*ay0;
+ taby[0] = 1.0f - 1.f/INTER_TAB_SIZE*ay0;
taby[1] = 1.f/INTER_TAB_SIZE*ay0;
- tabx[0] = 1.0 - 1.f/INTER_TAB_SIZE*ax0;
+ tabx[0] = 1.0f - 1.f/INTER_TAB_SIZE*ax0;
tabx[1] = 1.f/INTER_TAB_SIZE*ax0;
tab[0] = taby[0] * tabx[0];
F X0 = M[0]*dx + M[1]*dy + M[2];
F Y0 = M[3]*dx + M[4]*dy + M[5];
F W = M[6]*dx + M[7]*dy + M[8];
- W = (W != 0.0) ? INTER_TAB_SIZE/W : 0.0;
+ W = (W != 0.0f) ? INTER_TAB_SIZE/W : 0.0f;
int X = rint(X0*W);
int Y = rint(Y0*W);
short itab[4];
float tab1y[2], tab1x[2];
- tab1y[0] = 1.0 - 1.f/INTER_TAB_SIZE*ay;
+ tab1y[0] = 1.0f - 1.f/INTER_TAB_SIZE*ay;
tab1y[1] = 1.f/INTER_TAB_SIZE*ay;
- tab1x[0] = 1.0 - 1.f/INTER_TAB_SIZE*ax;
+ tab1x[0] = 1.0f - 1.f/INTER_TAB_SIZE*ax;
tab1x[1] = 1.f/INTER_TAB_SIZE*ax;
#pragma unroll 4
F X0 = M[0]*dx + M[1]*dy + M[2];
F Y0 = M[3]*dx + M[4]*dy + M[5];
F W = M[6]*dx + M[7]*dy + M[8];
- W = (W != 0.0) ? INTER_TAB_SIZE/W : 0.0;
+ W = (W != 0.0f) ? INTER_TAB_SIZE/W : 0.0f;
int X = rint(X0*W);
int Y = rint(Y0*W);
F X0 = M[0]*dx + M[1]*dy + M[2];
F Y0 = M[3]*dx + M[4]*dy + M[5];
F W = M[6]*dx + M[7]*dy + M[8];
- W = (W != 0.0) ? 1./W : 0.0;
+ W = (W != 0.0f) ? 1.f/W : 0.0f;
short sx = convert_short_sat_rte(X0*W);
short sy = convert_short_sat_rte(Y0*W);
F X0 = M[0]*dx + M[1]*dy + M[2];
F Y0 = M[3]*dx + M[4]*dy + M[5];
F W = M[6]*dx + M[7]*dy + M[8];
- W = (W != 0.0) ? INTER_TAB_SIZE/W : 0.0;
+ W = (W != 0.0f) ? INTER_TAB_SIZE/W : 0.0f;
int X = rint(X0*W);
int Y = rint(Y0*W);
F X0 = M[0]*dx + M[1]*dy + M[2];
F Y0 = M[3]*dx + M[4]*dy + M[5];
F W = M[6]*dx + M[7]*dy + M[8];
- W = (W != 0.0) ? INTER_TAB_SIZE/W : 0.0;
+ W = (W != 0.0f) ? INTER_TAB_SIZE/W : 0.0f;
int X = rint(X0*W);
int Y = rint(Y0*W);
F X0 = M[0]*dx + M[1]*dy + M[2];
F Y0 = M[3]*dx + M[4]*dy + M[5];
F W = M[6]*dx + M[7]*dy + M[8];
- W = (W != 0.0) ? 1./W : 0.0;
+ W = (W != 0.0f) ? 1.f/W : 0.0f;
short sx = convert_short_sat_rte(X0*W);
short sy = convert_short_sat_rte(Y0*W);
F X0 = M[0]*dx + M[1]*dy + M[2];
F Y0 = M[3]*dx + M[4]*dy + M[5];
F W = M[6]*dx + M[7]*dy + M[8];
- W = (W != 0.0) ? INTER_TAB_SIZE/W : 0.0;
+ W = (W != 0.0f) ? INTER_TAB_SIZE/W : 0.0f;
int X = rint(X0*W);
int Y = rint(Y0*W);
float tab[4];
float taby[2], tabx[2];
- taby[0] = 1.0 - 1.f/INTER_TAB_SIZE*ay;
+ taby[0] = 1.0f - 1.f/INTER_TAB_SIZE*ay;
taby[1] = 1.f/INTER_TAB_SIZE*ay;
- tabx[0] = 1.0 - 1.f/INTER_TAB_SIZE*ax;
+ tabx[0] = 1.0f - 1.f/INTER_TAB_SIZE*ax;
tabx[1] = 1.f/INTER_TAB_SIZE*ax;
tab[0] = taby[0] * tabx[0];
F X0 = M[0]*dx + M[1]*dy + M[2];
F Y0 = M[3]*dx + M[4]*dy + M[5];
F W = M[6]*dx + M[7]*dy + M[8];
- W = (W != 0.0) ? INTER_TAB_SIZE/W : 0.0;
+ W = (W != 0.0f) ? INTER_TAB_SIZE/W : 0.0f;
int X = rint(X0*W);
int Y = rint(Y0*W);
F X0 = M[0]*dx + M[1]*dy + M[2];
F Y0 = M[3]*dx + M[4]*dy + M[5];
F W = M[6]*dx + M[7]*dy + M[8];
- W =(W != 0.0)? 1./W : 0.0;
+ W =(W != 0.0f)? 1.f/W : 0.0f;
short sx = convert_short_sat_rte(X0*W);
short sy = convert_short_sat_rte(Y0*W);
F X0 = M[0]*dx + M[1]*dy + M[2];
F Y0 = M[3]*dx + M[4]*dy + M[5];
F W = M[6]*dx + M[7]*dy + M[8];
- W = (W != 0.0) ? INTER_TAB_SIZE/W : 0.0;
+ W = (W != 0.0f) ? INTER_TAB_SIZE/W : 0.0f;
int X = rint(X0*W);
int Y = rint(Y0*W);
float tab[4];
float taby[2], tabx[2];
- taby[0] = 1.0 - 1.f/INTER_TAB_SIZE*ay0;
+ taby[0] = 1.0f - 1.f/INTER_TAB_SIZE*ay0;
taby[1] = 1.f/INTER_TAB_SIZE*ay0;
- tabx[0] = 1.0 - 1.f/INTER_TAB_SIZE*ax0;
+ tabx[0] = 1.0f - 1.f/INTER_TAB_SIZE*ax0;
tabx[1] = 1.f/INTER_TAB_SIZE*ax0;
tab[0] = taby[0] * tabx[0];
F X0 = M[0]*dx + M[1]*dy + M[2];
F Y0 = M[3]*dx + M[4]*dy + M[5];
F W = M[6]*dx + M[7]*dy + M[8];
- W = (W != 0.0) ? INTER_TAB_SIZE/W : 0.0;
+ W = (W != 0.0f) ? INTER_TAB_SIZE/W : 0.0f;
int X = rint(X0*W);
int Y = rint(Y0*W);
{
const int i = get_local_id(0); // index in workgroup
const int numOfGroups = get_num_groups(0); // index in workgroup
- const int groupID = get_group_id(0);
const int wg = get_local_size(0); // workgroup size = block size
int pos = 0, same = 0;
const int offset = get_group_id(0) * wg;
///////////// parallel merge sort ///////////////
// ported from https://github.com/HSA-Libraries/Bolt/blob/master/include/bolt/cl/stablesort_by_key_kernels.cl
-uint lowerBoundLinear( global K_T* data, uint left, uint right, K_T searchVal)
+static uint lowerBoundLinear( global K_T* data, uint left, uint right, K_T searchVal)
{
// The values firstIndex and lastIndex get modified within the loop, narrowing down the potential sequence
uint firstIndex = left;
// by a base pointer and left and right index for a particular candidate value. The comparison operator is
// passed as a functor parameter my_comp
// This function returns an index that is the first index whos value would be equal to the searched value
-uint lowerBoundBinary( global K_T* data, uint left, uint right, K_T searchVal)
+static uint lowerBoundBinary( global K_T* data, uint left, uint right, K_T searchVal)
{
// The values firstIndex and lastIndex get modified within the loop, narrowing down the potential sequence
uint firstIndex = left;
// passed as a functor parameter my_comp
// This function returns an index that is the first index whos value would be greater than the searched value
// If the search value is not found in the sequence, upperbound returns the same result as lowerbound
-uint upperBoundBinary( global K_T* data, uint left, uint right, K_T searchVal)
+static uint upperBoundBinary( global K_T* data, uint left, uint right, K_T searchVal)
{
uint upperBound = lowerBoundBinary( data, left, right, searchVal );
)
{
size_t globalID = get_global_id( 0 );
- size_t groupID = get_group_id( 0 );
- size_t localID = get_local_id( 0 );
- size_t wgSize = get_local_size( 0 );
// Abort threads that are passed the end of the input vector
if( globalID >= srcVecSize )
local V_T* val_lds
)
{
- size_t gloId = get_global_id( 0 );
- size_t groId = get_group_id( 0 );
- size_t locId = get_local_id( 0 );
- size_t wgSize = get_local_size( 0 );
+ int gloId = get_global_id( 0 );
+ int groId = get_group_id( 0 );
+ int locId = get_local_id( 0 );
+ int wgSize = get_local_size( 0 );
- bool in_range = gloId < vecSize;
+ bool in_range = gloId < (int)vecSize;
K_T key;
V_T val;
// Abort threads that are passed the end of the input vector
{
// The last workgroup may have an irregular size, so we calculate a per-block endIndex
// endIndex is essentially emulating a mod operator with subtraction and multiply
- size_t endIndex = vecSize - ( groId * wgSize );
+ int endIndex = vecSize - ( groId * wgSize );
endIndex = min( endIndex, wgSize );
// printf( "Debug: endIndex[%i]=%i\n", groId, endIndex );
}
/*! find_nearest_neighbor done!*/
/*! write_results start!*/
- switch (regression)
+ if (regression)
{
- case true:
- {
- TYPE s;
+ TYPE s;
#ifdef DOUBLE_SUPPORT
- s = 0.0;
+ s = 0.0;
#else
- s = 0.0f;
+ s = 0.0f;
#endif
- for(j = 0; j < K1; j++)
- s += nr[j * nThreads + threadY];
+ for(j = 0; j < K1; j++)
+ s += nr[j * nThreads + threadY];
- _results[y * _results_step] = (float)(s * inv_scale);
- }
- break;
- case false:
- {
- int prev_start = 0, best_count = 0, cur_count;
- float best_val;
+ _results[y * _results_step] = (float)(s * inv_scale);
+ }
+ else
+ {
+ int prev_start = 0, best_count = 0, cur_count;
+ float best_val;
- for(j = K1 - 1; j > 0; j--)
+ for(j = K1 - 1; j > 0; j--)
+ {
+ bool swap_f1 = false;
+ for(j1 = 0; j1 < j; j1++)
{
- bool swap_f1 = false;
- for(j1 = 0; j1 < j; j1++)
+ if(nr[j1 * nThreads + threadY] > nr[(j1 + 1) * nThreads + threadY])
{
- if(nr[j1 * nThreads + threadY] > nr[(j1 + 1) * nThreads + threadY])
- {
- int t;
- CV_SWAP(nr[j1 * nThreads + threadY], nr[(j1 + 1) * nThreads + threadY], t);
- swap_f1 = true;
- }
+ int t;
+ CV_SWAP(nr[j1 * nThreads + threadY], nr[(j1 + 1) * nThreads + threadY], t);
+ swap_f1 = true;
}
- if(!swap_f1)
- break;
}
+ if(!swap_f1)
+ break;
+ }
- best_val = 0;
- for(j = 1; j <= K1; j++)
- if(j == K1 || nr[j * nThreads + threadY] != nr[(j - 1) * nThreads + threadY])
+ best_val = 0;
+ for(j = 1; j <= K1; j++)
+ if(j == K1 || nr[j * nThreads + threadY] != nr[(j - 1) * nThreads + threadY])
+ {
+ cur_count = j - prev_start;
+ if(best_count < cur_count)
{
- cur_count = j - prev_start;
- if(best_count < cur_count)
- {
- best_count = cur_count;
- best_val = nr[(j - 1) * nThreads + threadY];
- }
- prev_start = j;
+ best_count = cur_count;
+ best_val = nr[(j - 1) * nThreads + threadY];
}
- _results[y * _results_step] = best_val;
- }
- break;
+ prev_start = j;
+ }
+ _results[y * _results_step] = best_val;
}
///*! write_results done!*/
}
//
//M*/
-#pragma OPENCL EXTENSION cl_amd_printf : enable
-
#if defined (DOUBLE_SUPPORT)
#ifdef cl_khr_fp64
#define SUMS_PTR(ox, oy) mad24(gidy + oy, img_sums_step, gidx + img_sums_offset + ox)
// normAcc* are accurate normalization routines which make GPU matchTemplate
// consistent with CPU one
-float normAcc(float num, float denum)
+inline float normAcc(float num, float denum)
{
if(fabs(num) < denum)
{
return 0;
}
-float normAcc_SQDIFF(float num, float denum)
+inline float normAcc_SQDIFF(float num, float denum)
{
if(fabs(num) < denum)
{
//
//M*/
-short2 do_mean_shift(int x0, int y0, __global uchar4* out,int out_step,
+static short2 do_mean_shift(int x0, int y0, __global uchar4* out,int out_step,
__global uchar4* in, int in_step, int dst_off, int src_off,
int cols, int rows, int sp, int sr, int maxIter, float eps)
{
src_off = src_off >> 2;
dst_off = dst_off >> 2;
int idx = src_off + y0 * in_step + x0;
-// uchar4 c = vload4(0, (__global uchar*)in+idx);
uchar4 c = in[idx];
int base = dst_off + get_global_id(1)*out_step + get_global_id(0) ;
WT4 x3 = (WT4)(0.f);
__global TT* row = src_data + gidy * src_step + ly * src_step + gidx * 256;
- bool switchFlag = false;
WT4 p;
WT4 x;
if(dy < src_rows)
{
- if((x_rest > 0) && (gidx == (get_num_groups(0) - 1)))
+ if((x_rest > 0) && (gidx == ((int)get_num_groups(0) - 1)))
{
int i;
for(i = 0; i < x_rest - 4; i += 4)
}
x0.s0 = x0.s0 + x0.s1 + x0.s2 + x0.s3;
-
x1.s0 = x1.s0 + x1.s1 + x1.s2 + x1.s3;
-
x2.s0 = x2.s0 + x2.s1 + x2.s2 + x2.s3;
-
x3.s0 = x3.s0 + x3.s1 + x3.s2 + x3.s3;
WT x0_ = 0;
}
x0.s0 = x0.s0 + x0.s1 + x0.s2 + x0.s3;
-
x1.s0 = x1.s0 + x1.s1 + x1.s2 + x1.s3;
-
x2.s0 = x2.s0 + x2.s1 + x2.s2 + x2.s3;
-
x3.s0 = x3.s0 + x3.s1 + x3.s2 + x3.s3;
}
}
__local WT mom[10][256];
- if((y_rest > 0) && (gidy == (get_num_groups(1) - 1)))
+ if((y_rest > 0) && (gidy == ((int)get_num_groups(1) - 1)))
{
if(ly < y_rest)
{
}
barrier(CLK_LOCAL_MEM_FENCE);
if(ly < 10)
- {
for(int i = 1; i < y_rest; i++)
- {
mom[ly][0] = mom[ly][i] + mom[ly][0];
- }
- }
- }else
+ }
+ else
{
mom[9][ly] = py * sy;
mom[8][ly] = x1.s0 * sy;
if(binary)
{
- WT s = 1./255;
+ WT s = 1.0f/255;
if(ly < 10)
- {
mom[ly][0] *= s;
- }
barrier(CLK_LOCAL_MEM_FENCE);
}
WT xm = (gidx * 256) * mom[0][0];
barrier(CLK_LOCAL_MEM_FENCE);
if(ly < 10)
- {
dst_m[10 * gidy * dst_step + ly * dst_step + gidx] = mom[ly][1];
- }
}
//-------------------------------------------------------------
// Normalization of histograms via L2Hys_norm
//
-float reduce_smem(volatile __local float* smem, int size)
+static float reduce_smem(volatile __local float* smem, int size)
{
unsigned int tid = get_local_id(0);
float sum = smem[tid];
const int x = get_global_id(0);
const int tid = get_local_id(0);
const int gSizeX = get_local_size(0);
- const int gidX = get_group_id(0);
const int gidY = get_group_id(1);
__global const uchar4* row = img + gidY * img_step;
const int x = get_global_id(0);
const int tid = get_local_id(0);
const int gSizeX = get_local_size(0);
- const int gidX = get_group_id(0);
const int gidY = get_group_id(1);
__global const uchar* row = img + gidY * img_step;
//M*/
-#define tx get_local_id(0)
+#define tx (int)get_local_id(0)
#define ty get_local_id(1)
#define bx get_group_id(0)
-#define bdx get_local_size(0)
+#define bdx (int)get_local_size(0)
#define BORDER_SIZE 5
#define MAX_KSIZE_HALF 100
//
//M*/
-int idx_row_low(int y, int last_row)
+inline int idx_row_low(int y, int last_row)
{
return abs(y) % (last_row + 1);
}
-int idx_row_high(int y, int last_row)
+inline int idx_row_high(int y, int last_row)
{
return abs(last_row - (int)abs(last_row - y)) % (last_row + 1);
}
-int idx_row(int y, int last_row)
+inline int idx_row(int y, int last_row)
{
return idx_row_low(idx_row_high(y, last_row), last_row);
}
-int idx_col_low(int x, int last_col)
+inline int idx_col_low(int x, int last_col)
{
return abs(x) % (last_col + 1);
}
-int idx_col_high(int x, int last_col)
+inline int idx_col_high(int x, int last_col)
{
return abs(last_col - (int)abs(last_col - x)) % (last_col + 1);
}
-int idx_col(int x, int last_col)
+inline int idx_col(int x, int last_col)
{
return idx_col_low(idx_col_high(x, last_col), last_col);
}
#define WAVE_SIZE 1
#endif
#ifdef CPU
-void reduce3(float val1, float val2, float val3, __local float* smem1, __local float* smem2, __local float* smem3, int tid)
+
+static void reduce3(float val1, float val2, float val3, __local float* smem1, __local float* smem2, __local float* smem3, int tid)
{
smem1[tid] = val1;
smem2[tid] = val2;
}
}
-void reduce2(float val1, float val2, volatile __local float* smem1, volatile __local float* smem2, int tid)
+static void reduce2(float val1, float val2, volatile __local float* smem1, volatile __local float* smem2, int tid)
{
smem1[tid] = val1;
smem2[tid] = val2;
}
}
-void reduce1(float val1, volatile __local float* smem1, int tid)
+static void reduce1(float val1, volatile __local float* smem1, int tid)
{
smem1[tid] = val1;
barrier(CLK_LOCAL_MEM_FENCE);
}
}
#else
-void reduce3(float val1, float val2, float val3,
+static void reduce3(float val1, float val2, float val3,
__local volatile float* smem1, __local volatile float* smem2, __local volatile float* smem3, int tid)
{
smem1[tid] = val1;
barrier(CLK_LOCAL_MEM_FENCE);
}
-void reduce2(float val1, float val2, __local volatile float* smem1, __local volatile float* smem2, int tid)
+static void reduce2(float val1, float val2, __local volatile float* smem1, __local volatile float* smem2, int tid)
{
smem1[tid] = val1;
smem2[tid] = val2;
barrier(CLK_LOCAL_MEM_FENCE);
}
-void reduce1(float val1, __local volatile float* smem1, int tid)
+static void reduce1(float val1, __local volatile float* smem1, int tid)
{
smem1[tid] = val1;
barrier(CLK_LOCAL_MEM_FENCE);
// Image read mode
__constant sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_LINEAR;
-void SetPatch(image2d_t I, float x, float y,
+static void SetPatch(image2d_t I, float x, float y,
float* Pch, float* Dx, float* Dy,
float* A11, float* A12, float* A22)
{
*A22 += dIdy * dIdy;
}
-void GetPatch(image2d_t J, float x, float y,
+inline void GetPatch(image2d_t J, float x, float y,
float* Pch, float* Dx, float* Dy,
float* b1, float* b2)
{
*b2 += diff**Dy;
}
-void GetError(image2d_t J, const float x, const float y, const float* Pch, float* errval)
+inline void GetError(image2d_t J, const float x, const float y, const float* Pch, float* errval)
{
float diff = read_imagef(J, sampler, (float2)(x,y)).x-*Pch;
*errval += fabs(diff);
}
-void SetPatch4(image2d_t I, const float x, const float y,
+static void SetPatch4(image2d_t I, const float x, const float y,
float4* Pch, float4* Dx, float4* Dy,
float* A11, float* A12, float* A22)
{
*A22 += sqIdx.x + sqIdx.y + sqIdx.z;
}
-void GetPatch4(image2d_t J, const float x, const float y,
+static void GetPatch4(image2d_t J, const float x, const float y,
const float4* Pch, const float4* Dx, const float4* Dy,
float* b1, float* b2)
{
*b2 += xdiff.x + xdiff.y + xdiff.z;
}
-void GetError4(image2d_t J, const float x, const float y, const float4* Pch, float* errval)
+static void GetError4(image2d_t J, const float x, const float y, const float4* Pch, float* errval)
{
float4 diff = read_imagef(J, sampler, (float2)(x,y))-*Pch;
*errval += fabs(diff.x) + fabs(diff.y) + fabs(diff.z);
unsigned int gid=get_group_id(0);
unsigned int xsize=get_local_size(0);
unsigned int ysize=get_local_size(1);
- int xBase, yBase, i, j, k;
+ int xBase, yBase, k;
float2 c_halfWin = (float2)((c_winSize_x - 1)>>1, (c_winSize_y - 1)>>1);
unsigned int gid=get_group_id(0);
unsigned int xsize=get_local_size(0);
unsigned int ysize=get_local_size(1);
- int xBase, yBase, i, j, k;
+ int xBase, yBase, k;
float2 c_halfWin = (float2)((c_winSize_x - 1)>>1, (c_winSize_y - 1)>>1);
int dst ## xOffsetLimitBytes = dst ## Offset.x + size.x * sizeof(TYPE); \
int dst ## xOffsetBytes = dst ## Offset.x + x * sizeof(TYPE); \
int dst ## yOffsetBytes = (dst ## Offset.y + y) * dst ## StepBytes; \
- if (!BYPASS_VSTORE && dst ## xOffsetBytes + sizeof(DST_VEC_TYPE) <= dst ## xOffsetLimitBytes) \
+ if (!BYPASS_VSTORE && dst ## xOffsetBytes + (int)sizeof(DST_VEC_TYPE) <= dst ## xOffsetLimitBytes) \
{ \
VSTORE_ ## dst(((__global char*)dst + dst ## yOffsetBytes + dst ## xOffsetBytes), vecValue); \
} \
VEC_TO_ARRAY(vecValue, vecValue##Array); \
for (int i = 0; i < VEC_SIZE; i++, dst ## xOffsetBytes += sizeof(TYPE)) \
{ \
- if (dst ## xOffsetBytes + sizeof(TYPE) <= dst ## xOffsetLimitBytes) \
+ if (dst ## xOffsetBytes + (int)sizeof(TYPE) <= dst ## xOffsetLimitBytes) \
*(__global TYPE*)((__global char*)dst + dst ## yOffsetBytes + dst ## xOffsetBytes) = vecValue##Array[i]; \
else \
break; \
#define radius 64
#endif
-unsigned int CalcSSD(__local unsigned int *col_ssd)
+static unsigned int CalcSSD(__local unsigned int *col_ssd)
{
unsigned int cache = col_ssd[0];
return cache;
}
-uint2 MinSSD(__local unsigned int *col_ssd)
+static uint2 MinSSD(__local unsigned int *col_ssd)
{
unsigned int ssd[N_DISPARITIES];
const int win_size = (radius << 1);
return (uint2)(mssd, bestIdx);
}
-void StepDown(int idx1, int idx2, __global unsigned char* imageL,
+static void StepDown(int idx1, int idx2, __global unsigned char* imageL,
__global unsigned char* imageR, int d, __local unsigned int *col_ssd)
{
uint8 imgR1 = convert_uint8(vload8(0, imageR + (idx1 - d - 7)));
col_ssd[7 * (BLOCK_W + win_size)] += res.s0;
}
-void InitColSSD(int x_tex, int y_tex, int im_pitch, __global unsigned char* imageL,
+static void InitColSSD(int x_tex, int y_tex, int im_pitch, __global unsigned char* imageL,
__global unsigned char* imageR, int d,
__local unsigned int *col_ssd)
{
int X = get_group_id(0) * BLOCK_W + get_local_id(0) + maxdisp + radius;
-#define Y (get_group_id(1) * ROWSperTHREAD + radius)
+#define Y (int)(get_group_id(1) * ROWSperTHREAD + radius)
__global unsigned int* minSSDImage = cminSSDImage + X + Y * cminSSD_step;
__global unsigned char* disparImage = disp + X + Y * disp_step;
/////////////////////////////////// Textureness filtering ////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////
-float sobel(__global unsigned char *input, int x, int y, int rows, int cols)
+static float sobel(__global unsigned char *input, int x, int y, int rows, int cols)
{
float conv = 0;
int y1 = y==0? 0 : y-1;
return fabs(conv);
}
-float CalcSums(__local float *cols, __local float *cols_cache, int winsz)
+static float CalcSums(__local float *cols, __local float *cols_cache, int winsz)
{
unsigned int cache = cols[0];
///////////////////////////////////////////////////////////////
/////////////////common///////////////////////////////////////
/////////////////////////////////////////////////////////////
-T saturate_cast(float v){
+inline T saturate_cast(float v){
#ifdef T_SHORT
return convert_short_sat_rte(v);
#else
#endif
}
-T4 saturate_cast4(float4 v){
+inline T4 saturate_cast4(float4 v){
#ifdef T_SHORT
return convert_short4_sat_rte(v);
#else
return abs((int)(l.x) - *rs);
}
-float pix_diff_4(const uchar4 l, __global const uchar *rs)
+static float pix_diff_4(const uchar4 l, __global const uchar *rs)
{
uchar4 r;
r = *((__global uchar4 *)rs);
///////////////////////////////////////////////////////////////
//////////////////// calc all iterations /////////////////////
///////////////////////////////////////////////////////////////
-void message(__global T *us_, __global T *ds_, __global T *ls_, __global T *rs_,
+static void message(__global T *us_, __global T *ds_, __global T *ls_, __global T *rs_,
const __global T *dt,
int u_step, int msg_disp_step, int data_disp_step,
float4 cmax_disc_term, float4 cdisc_single_jump)
///////////////////////////////////////////////////////////////
/////////////////////// init data cost ////////////////////////
///////////////////////////////////////////////////////////////
-float compute_3(__global uchar* left, __global uchar* right,
+inline float compute_3(__global uchar* left, __global uchar* right,
float cdata_weight, float cmax_data_term)
{
float tb = 0.114f * abs((int)left[0] - right[0]);
return fmin(cdata_weight * (tr + tg + tb), cdata_weight * cmax_data_term);
}
-float compute_1(__global uchar* left, __global uchar* right,
+inline float compute_1(__global uchar* left, __global uchar* right,
float cdata_weight, float cmax_data_term)
{
return fmin(cdata_weight * abs((int)*left - (int)*right), cdata_weight * cmax_data_term);
}
-short round_short(float v){
+
+inline short round_short(float v)
+{
return convert_short_sat_rte(v);
}
+
///////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////init_data_cost///////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////
+
__kernel void init_data_cost_0(__global short *ctemp, __global uchar *cleft, __global uchar *cright,
int h, int w, int level, int channels,
int cmsg_step1, float cdata_weight, float cmax_data_term, int cdisp_step1,
///////////////////////////////////////////////////////////////
//////////////////////// init message /////////////////////////
///////////////////////////////////////////////////////////////
-void get_first_k_element_increase_0(__global short* u_new, __global short *d_new, __global short *l_new,
+
+static void get_first_k_element_increase_0(__global short* u_new, __global short *d_new, __global short *l_new,
__global short *r_new, __global const short *u_cur, __global const short *d_cur,
__global const short *l_cur, __global const short *r_cur,
__global short *data_cost_selected, __global short *disparity_selected_new,
data_cost_new[id * cdisp_step1] = SHRT_MAX;
}
}
-void get_first_k_element_increase_1(__global float *u_new, __global float *d_new, __global float *l_new,
+
+static void get_first_k_element_increase_1(__global float *u_new, __global float *d_new, __global float *l_new,
__global float *r_new, __global const float *u_cur, __global const float *d_cur,
__global const float *l_cur, __global const float *r_cur,
__global float *data_cost_selected, __global float *disparity_selected_new,
///////////////////////////////////////////////////////////////
//////////////////// calc all iterations /////////////////////
///////////////////////////////////////////////////////////////
-void message_per_pixel_0(__global const short *data, __global short *msg_dst, __global const short *msg1,
+
+static void message_per_pixel_0(__global const short *data, __global short *msg_dst, __global const short *msg1,
__global const short *msg2, __global const short *msg3,
__global const short *dst_disp, __global const short *src_disp,
int nr_plane, __global short *temp,
for(int d = 0; d < nr_plane; d++)
msg_dst[d * cdisp_step1] = convert_short_sat_rte(temp[d * cdisp_step1] - sum);
}
-void message_per_pixel_1(__global const float *data, __global float *msg_dst, __global const float *msg1,
+
+static void message_per_pixel_1(__global const float *data, __global float *msg_dst, __global const float *msg1,
__global const float *msg2, __global const float *msg3,
__global const float *dst_disp, __global const float *src_disp,
int nr_plane, __global float *temp,
for(int d = 0; d < nr_plane; d++)
msg_dst[d * cdisp_step1] = temp[d * cdisp_step1] - sum;
}
+
__kernel void compute_message_0(__global short *u_, __global short *d_, __global short *l_, __global short *r_,
__global const short *data_cost_selected, __global const short *selected_disp_pyr_cur,
__global short *ctemp, int h, int w, int nr_plane, int i,
cmax_disc_term, cdisp_step1, cdisc_single_jump);
}
}
+
__kernel void compute_message_1(__global float *u_, __global float *d_, __global float *l_, __global float *r_,
__global const float *data_cost_selected, __global const float *selected_disp_pyr_cur,
__global float *ctemp, int h, int w, int nr_plane, int i,
///////////////////////////////////////////////////////////////
/////////////////////////// output ////////////////////////////
///////////////////////////////////////////////////////////////
+
__kernel void compute_disp_0(__global const short *u_, __global const short *d_, __global const short *l_,
__global const short *r_, __global const short * data_cost_selected,
__global const short *disp_selected_pyr,
disp[res_step * y + x] = best;
}
}
+
__kernel void compute_disp_1(__global const float *u_, __global const float *d_, __global const float *l_,
__global const float *r_, __global const float *data_cost_selected,
__global const float *disp_selected_pyr,