Delinearize memory accesses that reference parameters coming from function calls
authorTobias Grosser <tobias@grosser.es>
Sat, 27 May 2017 15:18:53 +0000 (15:18 +0000)
committerTobias Grosser <tobias@grosser.es>
Sat, 27 May 2017 15:18:53 +0000 (15:18 +0000)
Certain affine memory accesses which we model today might contain products of
parameters which we might combined into a new parameter to be able to create an
affine expression that represents these memory accesses. Especially in the
context of OpenCL, this approach looses information as memory accesses such as
A[get_global_id(0) * N + get_global_id(1)] are assumed to be linear. We
correctly recover their multi-dimensional structure by assuming that parameters
that are the result of a function call at IR level likely are not parameters,
but indeed induction variables. The resulting access is now
A[get_global_id(0)][get_global_id(1)] for an array A[][N].

llvm-svn: 304075

polly/include/polly/Support/SCEVValidator.h
polly/lib/Analysis/ScopBuilder.cpp
polly/lib/Analysis/ScopDetection.cpp
polly/lib/Support/SCEVValidator.cpp
polly/test/ScopInfo/constant_functions_multi_dim.ll [new file with mode: 0644]

index 0463fe6..b3bf5a7 100644 (file)
@@ -36,6 +36,16 @@ namespace polly {
 /// @param Call The call to check.
 bool isConstCall(llvm::CallInst *Call);
 
+/// Check if some parameters in the affine expression might hide induction
+/// variables. If this is the case, we will try to delinearize the accesses
+/// taking into account this information to possibly obtain a memory access
+/// with more structure. Currently we assume that each parameter that
+/// comes from a function call might depend on a (virtual) induction variable.
+/// This covers calls to 'get_global_id' and 'get_local_id' as they commonly
+/// arise in OpenCL code, while not catching any false-positives in our current
+/// tests.
+bool hasIVParams(const llvm::SCEV *Expr);
+
 /// Find the loops referenced from a SCEV expression.
 ///
 /// @param Expr The SCEV expression to scan for loops.
index 8339680..f362352 100644 (file)
@@ -407,6 +407,13 @@ bool ScopBuilder::buildAccessMultiDimParam(MemAccInst Inst, ScopStmt *Stmt) {
 
   Sizes.insert(Sizes.end(), AccItr->second.Shape->DelinearizedSizes.begin(),
                AccItr->second.Shape->DelinearizedSizes.end());
+
+  // In case only the element size is contained in the 'Sizes' array, the
+  // access does not access a real multi-dimensional array. Hence, we allow
+  // the normal single-dimensional access construction to handle this.
+  if (Sizes.size() == 1)
+    return false;
+
   // Remove the element size. This information is already provided by the
   // ElementSize parameter. In case the element size of this access and the
   // element size used for delinearization differs the delinearization is
index d1d6360..d5c154f 100644 (file)
@@ -823,6 +823,15 @@ bool ScopDetection::hasValidArraySizes(DetectionContext &Context,
                                        SmallVectorImpl<const SCEV *> &Sizes,
                                        const SCEVUnknown *BasePointer,
                                        Loop *Scope) const {
+  // If no sizes were found, all sizes are trivially valid. We allow this case
+  // to make it possible to pass known-affine accesses to the delinearization to
+  // try to recover some interesting multi-dimensional accesses, but to still
+  // allow the already known to be affine access in case the delinearization
+  // fails. In such situations, the delinearization will just return a Sizes
+  // array of size zero.
+  if (Sizes.size() == 0)
+    return true;
+
   Value *BaseValue = BasePointer->getValue();
   Region &CurRegion = Context.CurRegion;
   for (const SCEV *DelinearizedSize : Sizes) {
@@ -893,10 +902,14 @@ bool ScopDetection::computeAccessFunctions(
       else
         IsNonAffine = true;
     } else {
-      SE.computeAccessFunctions(AF, Acc->DelinearizedSubscripts,
-                                Shape->DelinearizedSizes);
-      if (Acc->DelinearizedSubscripts.size() == 0)
-        IsNonAffine = true;
+      if (Shape->DelinearizedSizes.size() == 0) {
+        Acc->DelinearizedSubscripts.push_back(AF);
+      } else {
+        SE.computeAccessFunctions(AF, Acc->DelinearizedSubscripts,
+                                  Shape->DelinearizedSizes);
+        if (Acc->DelinearizedSubscripts.size() == 0)
+          IsNonAffine = true;
+      }
       for (const SCEV *S : Acc->DelinearizedSubscripts)
         if (!isAffine(S, Scope, Context))
           IsNonAffine = true;
@@ -1013,7 +1026,7 @@ bool ScopDetection::isValidAccess(Instruction *Inst, const SCEV *AF,
   } else if (PollyDelinearize && !IsVariantInNonAffineLoop) {
     Context.Accesses[BP].push_back({Inst, AF});
 
-    if (!IsAffine)
+    if (!IsAffine || hasIVParams(AF))
       Context.NonAffineAccesses.insert(
           std::make_pair(BP, LI.getLoopFor(Inst->getParent())));
   } else if (!AllowNonAffine && !IsAffine) {
index 0e159f4..1941875 100644 (file)
@@ -429,6 +429,34 @@ public:
   }
 };
 
+class SCEVHasIVParams {
+  bool HasIVParams = false;
+
+public:
+  SCEVHasIVParams() {}
+
+  bool follow(const SCEV *S) {
+    const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S);
+    if (!Unknown)
+      return true;
+
+    CallInst *Call = dyn_cast<CallInst>(Unknown->getValue());
+
+    if (!Call)
+      return true;
+
+    if (isConstCall(Call)) {
+      HasIVParams = true;
+      return false;
+    }
+
+    return true;
+  }
+
+  bool isDone() { return HasIVParams; }
+  bool hasIVParams() { return HasIVParams; }
+};
+
 /// Check whether a SCEV refers to an SSA name defined inside a region.
 class SCEVInRegionDependences {
   const Region *R;
@@ -542,6 +570,13 @@ void findValues(const SCEV *Expr, ScalarEvolution &SE,
   ST.visitAll(Expr);
 }
 
+bool hasIVParams(const SCEV *Expr) {
+  SCEVHasIVParams HasIVParams;
+  SCEVTraversal<SCEVHasIVParams> ST(HasIVParams);
+  ST.visitAll(Expr);
+  return HasIVParams.hasIVParams();
+}
+
 bool hasScalarDepsInsideRegion(const SCEV *Expr, const Region *R,
                                llvm::Loop *Scope, bool AllowLoops) {
   SCEVInRegionDependences InRegionDeps(R, Scope, AllowLoops);
diff --git a/polly/test/ScopInfo/constant_functions_multi_dim.ll b/polly/test/ScopInfo/constant_functions_multi_dim.ll
new file mode 100644 (file)
index 0000000..726e19f
--- /dev/null
@@ -0,0 +1,118 @@
+; RUN: opt %loadPolly -polly-scops -analyze \
+; RUN:                -polly-detect-full-functions < %s | FileCheck %s
+
+target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
+
+; CHECK:         Statements {
+; CHECK-NEXT:          Stmt_entry_split
+; CHECK-NEXT:            Domain :=
+; CHECK-NEXT:                [N, __global_id_0, __global_id_1] -> { Stmt_entry_split[] };
+; CHECK-NEXT:            Schedule :=
+; CHECK-NEXT:                [N, __global_id_0, __global_id_1] -> { Stmt_entry_split[] -> [0, 0] };
+; CHECK-NEXT:            MustWriteAccess :=    [Reduction Type: NONE] [Scalar: 1]
+; CHECK-NEXT:                [N, __global_id_0, __global_id_1] -> { Stmt_entry_split[] -> MemRef_acc_0_lcssa__phi[] };
+; CHECK-NEXT:          Stmt_for_inc_lr_ph
+; CHECK-NEXT:            Domain :=
+; CHECK-NEXT:                [N, __global_id_0, __global_id_1] -> { Stmt_for_inc_lr_ph[] : N > 0 };
+; CHECK-NEXT:            Schedule :=
+; CHECK-NEXT:                [N, __global_id_0, __global_id_1] -> { Stmt_for_inc_lr_ph[] -> [1, 0] };
+; CHECK-NEXT:            MustWriteAccess :=    [Reduction Type: NONE] [Scalar: 1]
+; CHECK-NEXT:                [N, __global_id_0, __global_id_1] -> { Stmt_for_inc_lr_ph[] -> MemRef_acc_03__phi[] };
+; CHECK-NEXT:          Stmt_for_inc
+; CHECK-NEXT:            Domain :=
+; CHECK-NEXT:                [N, __global_id_0, __global_id_1] -> { Stmt_for_inc[i0] : 0 <= i0 < N };
+; CHECK-NEXT:            Schedule :=
+; CHECK-NEXT:                [N, __global_id_0, __global_id_1] -> { Stmt_for_inc[i0] -> [2, i0] };
+; CHECK-NEXT:            MustWriteAccess :=    [Reduction Type: NONE] [Scalar: 1]
+; CHECK-NEXT:                [N, __global_id_0, __global_id_1] -> { Stmt_for_inc[i0] -> MemRef_acc_03__phi[] };
+; CHECK-NEXT:            ReadAccess := [Reduction Type: NONE] [Scalar: 1]
+; CHECK-NEXT:                [N, __global_id_0, __global_id_1] -> { Stmt_for_inc[i0] -> MemRef_acc_03__phi[] };
+; CHECK-NEXT:            ReadAccess := [Reduction Type: NONE] [Scalar: 0]
+; CHECK-NEXT:                [N, __global_id_0, __global_id_1] -> { Stmt_for_inc[i0] -> MemRef_A[__global_id_0, i0] };
+; CHECK-NEXT:            ReadAccess := [Reduction Type: NONE] [Scalar: 0]
+; CHECK-NEXT:                [N, __global_id_0, __global_id_1] -> { Stmt_for_inc[i0] -> MemRef_B[i0, __global_id_1] };
+; CHECK-NEXT:            MustWriteAccess :=    [Reduction Type: NONE] [Scalar: 1]
+; CHECK-NEXT:                [N, __global_id_0, __global_id_1] -> { Stmt_for_inc[i0] -> MemRef__lcssa__phi[] };
+; CHECK-NEXT:          Stmt_for_cond_for_end_crit_edge
+; CHECK-NEXT:            Domain :=
+; CHECK-NEXT:                [N, __global_id_0, __global_id_1] -> { Stmt_for_cond_for_end_crit_edge[] : N > 0 };
+; CHECK-NEXT:            Schedule :=
+; CHECK-NEXT:                [N, __global_id_0, __global_id_1] -> { Stmt_for_cond_for_end_crit_edge[] -> [3, 0] };
+; CHECK-NEXT:            ReadAccess := [Reduction Type: NONE] [Scalar: 1]
+; CHECK-NEXT:                [N, __global_id_0, __global_id_1] -> { Stmt_for_cond_for_end_crit_edge[] -> MemRef__lcssa__phi[] };
+; CHECK-NEXT:            MustWriteAccess :=    [Reduction Type: NONE] [Scalar: 1]
+; CHECK-NEXT:                [N, __global_id_0, __global_id_1] -> { Stmt_for_cond_for_end_crit_edge[] -> MemRef_acc_0_lcssa__phi[] };
+; CHECK-NEXT:          Stmt_for_end
+; CHECK-NEXT:            Domain :=
+; CHECK-NEXT:                [N, __global_id_0, __global_id_1] -> { Stmt_for_end[] };
+; CHECK-NEXT:            Schedule :=
+; CHECK-NEXT:                [N, __global_id_0, __global_id_1] -> { Stmt_for_end[] -> [4, 0] };
+; CHECK-NEXT:            ReadAccess := [Reduction Type: NONE] [Scalar: 1]
+; CHECK-NEXT:                [N, __global_id_0, __global_id_1] -> { Stmt_for_end[] -> MemRef_acc_0_lcssa__phi[] };
+; CHECK-NEXT:            MustWriteAccess :=    [Reduction Type: NONE] [Scalar: 0]
+; CHECK-NEXT:                [N, __global_id_0, __global_id_1] -> { Stmt_for_end[] -> MemRef_C[__global_id_0, __global_id_1] };
+; CHECK-NEXT:    }
+
+
+; Function Attrs: noinline nounwind uwtable
+define void @mat_mul(float* %C, float* %A, float* %B, i64 %N) #0 !kernel_arg_addr_space !2 !kernel_arg_access_qual !3 !kernel_arg_type !4 !kernel_arg_base_type !4 !kernel_arg_type_qual !5 {
+entry:
+  br label %entry.split
+
+entry.split:                                      ; preds = %entry
+  %call = tail call i64 @_Z13get_global_idj(i32 0) #3
+  %call1 = tail call i64 @_Z13get_global_idj(i32 1) #3
+  %cmp1 = icmp sgt i64 %N, 0
+  %mul = mul nsw i64 %call, %N
+  br i1 %cmp1, label %for.inc.lr.ph, label %for.end
+
+for.inc.lr.ph:                                    ; preds = %entry.split
+  br label %for.inc
+
+for.inc:                                          ; preds = %for.inc.lr.ph, %for.inc
+  %acc.03 = phi float [ 0.000000e+00, %for.inc.lr.ph ], [ %tmp6, %for.inc ]
+  %m.02 = phi i64 [ 0, %for.inc.lr.ph ], [ %inc, %for.inc ]
+  %add = add nsw i64 %m.02, %mul
+  %arrayidx = getelementptr inbounds float, float* %A, i64 %add
+  %tmp = load float, float* %arrayidx, align 4
+  %mul2 = mul nsw i64 %m.02, %N
+  %add3 = add nsw i64 %mul2, %call1
+  %arrayidx4 = getelementptr inbounds float, float* %B, i64 %add3
+  %tmp5 = load float, float* %arrayidx4, align 4
+  %tmp6 = tail call float @llvm.fmuladd.f32(float %tmp, float %tmp5, float %acc.03)
+  %inc = add nuw nsw i64 %m.02, 1
+  %exitcond = icmp ne i64 %inc, %N
+  br i1 %exitcond, label %for.inc, label %for.cond.for.end_crit_edge
+
+for.cond.for.end_crit_edge:                       ; preds = %for.inc
+  %.lcssa = phi float [ %tmp6, %for.inc ]
+  br label %for.end
+
+for.end:                                          ; preds = %for.cond.for.end_crit_edge, %entry.split
+  %acc.0.lcssa = phi float [ %.lcssa, %for.cond.for.end_crit_edge ], [ 0.000000e+00, %entry.split ]
+  %add7 = add nsw i64 %mul, %call1
+  %arrayidx8 = getelementptr inbounds float, float* %C, i64 %add7
+  store float %acc.0.lcssa, float* %arrayidx8, align 4
+  ret void
+}
+
+; Function Attrs: nounwind readnone
+declare i64 @_Z13get_global_idj(i32) #1
+
+; Function Attrs: nounwind readnone speculatable
+declare float @llvm.fmuladd.f32(float, float, float) #2
+
+attributes #0 = { noinline nounwind uwtable "correctly-rounded-divide-sqrt-fp-math"="false" "disable-tail-calls"="false" "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-jump-tables"="false" "no-nans-fp-math"="false" "no-signed-zeros-fp-math"="false" "no-trapping-math"="false" "stack-protector-buffer-size"="8" "target-cpu"="x86-64" "target-features"="+fxsr,+mmx,+sse,+sse2,+x87" "unsafe-fp-math"="false" "use-soft-float"="false" }
+attributes #1 = { nounwind readnone "correctly-rounded-divide-sqrt-fp-math"="false" "disable-tail-calls"="false" "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "no-signed-zeros-fp-math"="false" "no-trapping-math"="false" "stack-protector-buffer-size"="8" "target-cpu"="x86-64" "target-features"="+fxsr,+mmx,+sse,+sse2,+x87" "unsafe-fp-math"="false" "use-soft-float"="false" }
+attributes #2 = { nounwind readnone speculatable }
+attributes #3 = { nounwind readnone }
+
+!llvm.module.flags = !{!0}
+!llvm.ident = !{!1}
+
+!0 = !{i32 1, !"wchar_size", i32 4}
+!1 = !{!"clang version 5.0.0 (trunk 303846) (llvm/trunk 303834)"}
+!2 = !{i32 1, i32 1, i32 1, i32 0}
+!3 = !{!"none", !"none", !"none", !"none"}
+!4 = !{!"float*", !"float*", !"float*", !"long"}
+!5 = !{!"", !"", !"", !""}