}
-static inline bool _parseNumber(char** content, float* number)
+static bool _parseNumber(char** content, float* number)
{
char* end = NULL;
*number = strtof(*content, &end);
}
-static inline bool _parseLong(char** content, int* number)
+static bool _parseLong(char** content, int* number)
{
char* end = NULL;
*number = strtol(*content, &end, 10) ? 1 : 0;
return true;
}
+void _pathAppendArcTo(vector<PathCommand>* cmds, vector<Point>* pts, float* arr, Point* cur, Point* curCtl, float x, float y, float rx, float ry, float angle, bool largeArc, bool sweep)
+{
+ float cxp, cyp, cx, cy;
+ float sx, sy;
+ float cosPhi, sinPhi;
+ float dx2, dy2;
+ float x1p, y1p;
+ float x1p2, y1p2;
+ float rx2, ry2;
+ float lambda;
+ float c;
+ float at;
+ float theta1, deltaTheta;
+ float nat;
+ float delta, bcp;
+ float cosPhiRx, cosPhiRy;
+ float sinPhiRx, sinPhiRy;
+ float cosTheta1, sinTheta1;
+ int segments, i;
+
+ //Some helpful stuff is available here:
+ //http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
+ sx = cur->x;
+ sy = cur->y;
+
+ //If start and end points are identical, then no arc is drawn
+ if ((fabs(x - sx) < (1.0f / 256.0f)) && (fabs(y - sy) < (1.0f / 256.0f))) return;
+
+ //Correction of out-of-range radii, see F6.6.1 (step 2)
+ rx = fabs(rx);
+ ry = fabs(ry);
+ if ((rx < 0.5f) || (ry < 0.5f)) {
+ Point p = {x, y};
+ cmds->push_back(PathCommand::LineTo);
+ pts->push_back(p);
+ *cur = p;
+ return;
+ }
+
+ angle = angle * M_PI / 180.0f;
+ cosPhi = cosf(angle);
+ sinPhi = sinf(angle);
+ dx2 = (sx - x) / 2.0f;
+ dy2 = (sy - y) / 2.0f;
+ x1p = cosPhi * dx2 + sinPhi * dy2;
+ y1p = cosPhi * dy2 - sinPhi * dx2;
+ x1p2 = x1p * x1p;
+ y1p2 = y1p * y1p;
+ rx2 = rx * rx;
+ ry2 = ry * ry;
+ lambda = (x1p2 / rx2) + (y1p2 / ry2);
+
+ //Correction of out-of-range radii, see F6.6.2 (step 4)
+ if (lambda > 1.0f) {
+ //See F6.6.3
+ float lambdaRoot = sqrt(lambda);
+
+ rx *= lambdaRoot;
+ ry *= lambdaRoot;
+ //Update rx2 and ry2
+ rx2 = rx * rx;
+ ry2 = ry * ry;
+ }
+
+ c = (rx2 * ry2) - (rx2 * y1p2) - (ry2 * x1p2);
+
+ //Check if there is no possible solution
+ //(i.e. we can't do a square root of a negative value)
+ if (c < 0.0f) {
+ //Scale uniformly until we have a single solution
+ //(see F6.2) i.e. when c == 0.0
+ float scale = sqrt(1.0f - c / (rx2 * ry2));
+ rx *= scale;
+ ry *= scale;
+ //Update rx2 and ry2
+ rx2 = rx * rx;
+ ry2 = ry * ry;
+
+ //Step 2 (F6.5.2) - simplified since c == 0.0
+ cxp = 0.0f;
+ cyp = 0.0f;
+ //Step 3 (F6.5.3 first part) - simplified since cxp and cyp == 0.0
+ cx = 0.0f;
+ cy = 0.0f;
+ } else {
+ //Complete c calculation
+ c = sqrt(c / ((rx2 * y1p2) + (ry2 * x1p2)));
+ //Inverse sign if Fa == Fs
+ if (largeArc == sweep) c = -c;
+
+ //Step 2 (F6.5.2)
+ cxp = c * (rx * y1p / ry);
+ cyp = c * (-ry * x1p / rx);
+
+ //Step 3 (F6.5.3 first part)
+ cx = cosPhi * cxp - sinPhi * cyp;
+ cy = sinPhi * cxp + cosPhi * cyp;
+ }
+
+ //Step 3 (F6.5.3 second part) we now have the center point of the ellipse
+ cx += (sx + x) / 2.0f;
+ cy += (sy + y) / 2.0f;
+
+ //Sstep 4 (F6.5.4)
+ //We dont' use arccos (as per w3c doc), see
+ //http://www.euclideanspace.com/maths/algebra/vectors/angleBetween/index.htm
+ //Note: atan2 (0.0, 1.0) == 0.0
+ at = atan2(((y1p - cyp) / ry), ((x1p - cxp) / rx));
+ theta1 = (at < 0.0f) ? 2.0f * M_PI + at : at;
+
+ nat = atan2(((-y1p - cyp) / ry), ((-x1p - cxp) / rx));
+ deltaTheta = (nat < at) ? 2.0f * M_PI - at + nat : nat - at;
+
+ if (sweep) {
+ //Ensure delta theta < 0 or else add 360 degrees
+ if (deltaTheta < 0.0f) deltaTheta += 2.0f * M_PI;
+ } else {
+ //Ensure delta theta > 0 or else substract 360 degrees
+ if (deltaTheta > 0.0f) deltaTheta -= 2.0f * M_PI;
+ }
+
+ //Add several cubic bezier to approximate the arc
+ //(smaller than 90 degrees)
+ //We add one extra segment because we want something
+ //Smaller than 90deg (i.e. not 90 itself)
+ segments = (int)(fabs(deltaTheta / M_PI_2)) + 1.0f;
+ delta = deltaTheta / segments;
+
+ //http://www.stillhq.com/ctpfaq/2001/comp.text.pdf-faq-2001-04.txt (section 2.13)
+ bcp = 4.0f / 3.0f * (1.0f - cos(delta / 2.0f)) / sin(delta / 2.0f);
+
+ cosPhiRx = cosPhi * rx;
+ cosPhiRy = cosPhi * ry;
+ sinPhiRx = sinPhi * rx;
+ sinPhiRy = sinPhi * ry;
+
+ cosTheta1 = cos(theta1);
+ sinTheta1 = sin(theta1);
+
+ for (i = 0; i < segments; ++i) {
+ //End angle (for this segment) = current + delta
+ float c1x, c1y, ex, ey, c2x, c2y;
+ float theta2 = theta1 + delta;
+ float cosTheta2 = cos(theta2);
+ float sinTheta2 = sin(theta2);
+ static Point p[3];
+
+ //First control point (based on start point sx,sy)
+ c1x = sx - bcp * (cosPhiRx * sinTheta1 + sinPhiRy * cosTheta1);
+ c1y = sy + bcp * (cosPhiRy * cosTheta1 - sinPhiRx * sinTheta1);
+
+ //End point (for this segment)
+ ex = cx + (cosPhiRx * cosTheta2 - sinPhiRy * sinTheta2);
+ ey = cy + (sinPhiRx * cosTheta2 + cosPhiRy * sinTheta2);
+
+ //Second control point (based on end point ex,ey)
+ c2x = ex + bcp * (cosPhiRx * sinTheta2 + sinPhiRy * cosTheta2);
+ c2y = ey + bcp * (sinPhiRx * sinTheta2 - cosPhiRy * cosTheta2);
+ cmds->push_back(PathCommand::CubicTo);
+ p[0] = {c1x, c1y};
+ p[1] = {c2x, c2y};
+ p[2] = {ex, ey};
+ pts->push_back(p[0]);
+ pts->push_back(p[1]);
+ pts->push_back(p[2]);
+ *curCtl = p[1];
+ *cur = p[2];
+
+ //Next start point is the current end point (same for angle)
+ sx = ex;
+ sy = ey;
+ theta1 = theta2;
+ //Avoid recomputations
+ cosTheta1 = cosTheta2;
+ sinTheta1 = sinTheta2;
+ }
+}
static int _numberCount(char cmd)
{
}
case 'q':
case 'Q': {
- tvg::Point p[3];
+ Point p[3];
float ctrl_x0 = (cur->x + 2 * arr[0]) * (1.0 / 3.0);
float ctrl_y0 = (cur->y + 2 * arr[1]) * (1.0 / 3.0);
float ctrl_x1 = (arr[2] + 2 * arr[0]) * (1.0 / 3.0);
float ctrl_y1 = (arr[3] + 2 * arr[1]) * (1.0 / 3.0);
- cmds->push_back(tvg::PathCommand::CubicTo);
+ cmds->push_back(PathCommand::CubicTo);
p[0] = {ctrl_x0, ctrl_y0};
p[1] = {ctrl_x1, ctrl_y1};
p[2] = {arr[2], arr[3]};
}
case 'a':
case 'A': {
- //TODO: Implement arc_to
- break;
- }
- case 'E':
- case 'e': {
- //TODO: Implement arc
+ _pathAppendArcTo(cmds, pts, arr, cur, curCtl, arr[5], arr[6], arr[0], arr[1], arr[2], arr[3], arr[4]);
+ *cur = {arr[5] ,arr[6]};
break;
}
default: {