*> \verbatim
*>
*> CHEEQUB computes row and column scalings intended to equilibrate a
-*> Hermitian matrix A and reduce its condition number
-*> (with respect to the two-norm). S contains the scale factors,
-*> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
-*> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
-*> choice of S puts the condition number of B within a factor N of the
-*> smallest possible condition number over all possible diagonal
+*> Hermitian matrix A (with respect to the Euclidean norm) and reduce
+*> its condition number. The scale factors S are computed by the BIN
+*> algorithm (see references) so that the scaled matrix B with elements
+*> B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of
+*> the smallest possible condition number over all possible diagonal
*> scalings.
*> \endverbatim
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
-*> = 'U': Upper triangles of A and B are stored;
-*> = 'L': Lower triangles of A and B are stored.
+*> = 'U': Upper triangle of A is stored;
+*> = 'L': Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
-*> The order of the matrix A. N >= 0.
+*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
-*> The N-by-N Hermitian matrix whose scaling
-*> factors are to be computed. Only the diagonal elements of A
-*> are referenced.
+*> The N-by-N Hermitian matrix whose scaling factors are to be
+*> computed.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
-*> The leading dimension of the array A. LDA >= max(1,N).
+*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> SCOND is REAL
*> If INFO = 0, S contains the ratio of the smallest S(i) to
-*> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
+*> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
*> large nor too small, it is not worth scaling by S.
*> \endverbatim
*>
*> \param[out] AMAX
*> \verbatim
*> AMAX is REAL
-*> Absolute value of largest matrix element. If AMAX is very
-*> close to overflow or very close to underflow, the matrix
-*> should be scaled.
+*> Largest absolute value of any matrix element. If AMAX is
+*> very close to overflow or very close to underflow, the
+*> matrix should be scaled.
*> \endverbatim
*>
*> \param[out] WORK
*
*> \ingroup complexHEcomputational
*
+*> \par References:
+* ================
+*>
+*> Livne, O.E. and Golub, G.H., "Scaling by Binormalization", \n
+*> Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. \n
+*> DOI 10.1023/B:NUMA.0000016606.32820.69 \n
+*> Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
+*>
* =====================================================================
SUBROUTINE CHEEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
*
*> \verbatim
*>
*> CSYEQUB computes row and column scalings intended to equilibrate a
-*> symmetric matrix A and reduce its condition number
-*> (with respect to the two-norm). S contains the scale factors,
-*> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
-*> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
-*> choice of S puts the condition number of B within a factor N of the
-*> smallest possible condition number over all possible diagonal
+*> symmetric matrix A (with respect to the Euclidean norm) and reduce
+*> its condition number. The scale factors S are computed by the BIN
+*> algorithm (see references) so that the scaled matrix B with elements
+*> B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of
+*> the smallest possible condition number over all possible diagonal
*> scalings.
*> \endverbatim
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
-*> Specifies whether the details of the factorization are stored
-*> as an upper or lower triangular matrix.
-*> = 'U': Upper triangular, form is A = U*D*U**T;
-*> = 'L': Lower triangular, form is A = L*D*L**T.
+*> = 'U': Upper triangle of A is stored;
+*> = 'L': Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
-*> The order of the matrix A. N >= 0.
+*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
-*> The N-by-N symmetric matrix whose scaling
-*> factors are to be computed. Only the diagonal elements of A
-*> are referenced.
+*> The N-by-N symmetric matrix whose scaling factors are to be
+*> computed.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
-*> The leading dimension of the array A. LDA >= max(1,N).
+*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> SCOND is REAL
*> If INFO = 0, S contains the ratio of the smallest S(i) to
-*> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
+*> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
*> large nor too small, it is not worth scaling by S.
*> \endverbatim
*>
*> \param[out] AMAX
*> \verbatim
*> AMAX is REAL
-*> Absolute value of largest matrix element. If AMAX is very
-*> close to overflow or very close to underflow, the matrix
-*> should be scaled.
+*> Largest absolute value of any matrix element. If AMAX is
+*> very close to overflow or very close to underflow, the
+*> matrix should be scaled.
*> \endverbatim
*>
*> \param[out] WORK
*> Livne, O.E. and Golub, G.H., "Scaling by Binormalization", \n
*> Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. \n
*> DOI 10.1023/B:NUMA.0000016606.32820.69 \n
-*> Tech report version: http://ruready.utah.edu/archive/papers/bin.pdf
+*> Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
*>
* =====================================================================
SUBROUTINE CSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
*> \verbatim
*>
*> DSYEQUB computes row and column scalings intended to equilibrate a
-*> symmetric matrix A and reduce its condition number
-*> (with respect to the two-norm). S contains the scale factors,
-*> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
-*> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
-*> choice of S puts the condition number of B within a factor N of the
-*> smallest possible condition number over all possible diagonal
+*> symmetric matrix A (with respect to the Euclidean norm) and reduce
+*> its condition number. The scale factors S are computed by the BIN
+*> algorithm (see references) so that the scaled matrix B with elements
+*> B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of
+*> the smallest possible condition number over all possible diagonal
*> scalings.
*> \endverbatim
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
-*> Specifies whether the details of the factorization are stored
-*> as an upper or lower triangular matrix.
-*> = 'U': Upper triangular, form is A = U*D*U**T;
-*> = 'L': Lower triangular, form is A = L*D*L**T.
+*> = 'U': Upper triangle of A is stored;
+*> = 'L': Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
-*> The order of the matrix A. N >= 0.
+*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
-*> The N-by-N symmetric matrix whose scaling
-*> factors are to be computed. Only the diagonal elements of A
-*> are referenced.
+*> The N-by-N symmetric matrix whose scaling factors are to be
+*> computed.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
-*> The leading dimension of the array A. LDA >= max(1,N).
+*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> SCOND is DOUBLE PRECISION
*> If INFO = 0, S contains the ratio of the smallest S(i) to
-*> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
+*> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
*> large nor too small, it is not worth scaling by S.
*> \endverbatim
*>
*> \param[out] AMAX
*> \verbatim
*> AMAX is DOUBLE PRECISION
-*> Absolute value of largest matrix element. If AMAX is very
-*> close to overflow or very close to underflow, the matrix
-*> should be scaled.
+*> Largest absolute value of any matrix element. If AMAX is
+*> very close to overflow or very close to underflow, the
+*> matrix should be scaled.
*> \endverbatim
*>
*> \param[out] WORK
*> Livne, O.E. and Golub, G.H., "Scaling by Binormalization", \n
*> Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. \n
*> DOI 10.1023/B:NUMA.0000016606.32820.69 \n
-*> Tech report version: http://ruready.utah.edu/archive/papers/bin.pdf
+*> Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
*>
* =====================================================================
SUBROUTINE DSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
*> \verbatim
*>
*> SSYEQUB computes row and column scalings intended to equilibrate a
-*> symmetric matrix A and reduce its condition number
-*> (with respect to the two-norm). S contains the scale factors,
-*> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
-*> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
-*> choice of S puts the condition number of B within a factor N of the
-*> smallest possible condition number over all possible diagonal
+*> symmetric matrix A (with respect to the Euclidean norm) and reduce
+*> its condition number. The scale factors S are computed by the BIN
+*> algorithm (see references) so that the scaled matrix B with elements
+*> B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of
+*> the smallest possible condition number over all possible diagonal
*> scalings.
*> \endverbatim
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
-*> Specifies whether the details of the factorization are stored
-*> as an upper or lower triangular matrix.
-*> = 'U': Upper triangular, form is A = U*D*U**T;
-*> = 'L': Lower triangular, form is A = L*D*L**T.
+*> = 'U': Upper triangle of A is stored;
+*> = 'L': Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
-*> The order of the matrix A. N >= 0.
+*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is REAL array, dimension (LDA,N)
-*> The N-by-N symmetric matrix whose scaling
-*> factors are to be computed. Only the diagonal elements of A
-*> are referenced.
+*> The N-by-N symmetric matrix whose scaling factors are to be
+*> computed.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
-*> The leading dimension of the array A. LDA >= max(1,N).
+*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> SCOND is REAL
*> If INFO = 0, S contains the ratio of the smallest S(i) to
-*> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
+*> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
*> large nor too small, it is not worth scaling by S.
*> \endverbatim
*>
*> \param[out] AMAX
*> \verbatim
*> AMAX is REAL
-*> Absolute value of largest matrix element. If AMAX is very
-*> close to overflow or very close to underflow, the matrix
-*> should be scaled.
+*> Largest absolute value of any matrix element. If AMAX is
+*> very close to overflow or very close to underflow, the
+*> matrix should be scaled.
*> \endverbatim
*>
*> \param[out] WORK
*> Livne, O.E. and Golub, G.H., "Scaling by Binormalization", \n
*> Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. \n
*> DOI 10.1023/B:NUMA.0000016606.32820.69 \n
-*> Tech report version: http://ruready.utah.edu/archive/papers/bin.pdf
+*> Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
*>
* =====================================================================
SUBROUTINE SSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
*> \verbatim
*>
*> ZHEEQUB computes row and column scalings intended to equilibrate a
-*> Hermitian matrix A and reduce its condition number
-*> (with respect to the two-norm). S contains the scale factors,
-*> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
-*> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
-*> choice of S puts the condition number of B within a factor N of the
-*> smallest possible condition number over all possible diagonal
+*> Hermitian matrix A (with respect to the Euclidean norm) and reduce
+*> its condition number. The scale factors S are computed by the BIN
+*> algorithm (see references) so that the scaled matrix B with elements
+*> B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of
+*> the smallest possible condition number over all possible diagonal
*> scalings.
*> \endverbatim
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
-*> = 'U': Upper triangles of A and B are stored;
-*> = 'L': Lower triangles of A and B are stored.
+*> = 'U': Upper triangle of A is stored;
+*> = 'L': Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
-*> The order of the matrix A. N >= 0.
+*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
-*> The N-by-N Hermitian matrix whose scaling
-*> factors are to be computed. Only the diagonal elements of A
-*> are referenced.
+*> The N-by-N Hermitian matrix whose scaling factors are to be
+*> computed.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
-*> The leading dimension of the array A. LDA >= max(1,N).
+*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> SCOND is DOUBLE PRECISION
*> If INFO = 0, S contains the ratio of the smallest S(i) to
-*> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
+*> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
*> large nor too small, it is not worth scaling by S.
*> \endverbatim
*>
*> \param[out] AMAX
*> \verbatim
*> AMAX is DOUBLE PRECISION
-*> Absolute value of largest matrix element. If AMAX is very
-*> close to overflow or very close to underflow, the matrix
-*> should be scaled.
+*> Largest absolute value of any matrix element. If AMAX is
+*> very close to overflow or very close to underflow, the
+*> matrix should be scaled.
*> \endverbatim
*>
*> \param[out] WORK
*
*> \ingroup complex16HEcomputational
*
+*> \par References:
+* ================
+*>
+*> Livne, O.E. and Golub, G.H., "Scaling by Binormalization", \n
+*> Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. \n
+*> DOI 10.1023/B:NUMA.0000016606.32820.69 \n
+*> Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
+*>
* =====================================================================
SUBROUTINE ZHEEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
*
*> \verbatim
*>
*> ZSYEQUB computes row and column scalings intended to equilibrate a
-*> symmetric matrix A and reduce its condition number
-*> (with respect to the two-norm). S contains the scale factors,
-*> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
-*> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
-*> choice of S puts the condition number of B within a factor N of the
-*> smallest possible condition number over all possible diagonal
+*> symmetric matrix A (with respect to the Euclidean norm) and reduce
+*> its condition number. The scale factors S are computed by the BIN
+*> algorithm (see references) so that the scaled matrix B with elements
+*> B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of
+*> the smallest possible condition number over all possible diagonal
*> scalings.
*> \endverbatim
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
-*> Specifies whether the details of the factorization are stored
-*> as an upper or lower triangular matrix.
-*> = 'U': Upper triangular, form is A = U*D*U**T;
-*> = 'L': Lower triangular, form is A = L*D*L**T.
+*> = 'U': Upper triangle of A is stored;
+*> = 'L': Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
-*> The order of the matrix A. N >= 0.
+*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
-*> The N-by-N symmetric matrix whose scaling
-*> factors are to be computed. Only the diagonal elements of A
-*> are referenced.
+*> The N-by-N symmetric matrix whose scaling factors are to be
+*> computed.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
-*> The leading dimension of the array A. LDA >= max(1,N).
+*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> SCOND is DOUBLE PRECISION
*> If INFO = 0, S contains the ratio of the smallest S(i) to
-*> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
+*> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
*> large nor too small, it is not worth scaling by S.
*> \endverbatim
*>
*> \param[out] AMAX
*> \verbatim
*> AMAX is DOUBLE PRECISION
-*> Absolute value of largest matrix element. If AMAX is very
-*> close to overflow or very close to underflow, the matrix
-*> should be scaled.
+*> Largest absolute value of any matrix element. If AMAX is
+*> very close to overflow or very close to underflow, the
+*> matrix should be scaled.
*> \endverbatim
*>
*> \param[out] WORK
*> Livne, O.E. and Golub, G.H., "Scaling by Binormalization", \n
*> Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. \n
*> DOI 10.1023/B:NUMA.0000016606.32820.69 \n
-*> Tech report version: http://ruready.utah.edu/archive/papers/bin.pdf
+*> Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
*>
* =====================================================================
SUBROUTINE ZSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )