Summary: C++14 migration. No functional change.
Reviewers: bkramer, JDevlieghere, lebedev.ri
Subscribers: MatzeB, hiraditya, jkorous, dexonsmith, arphaman, kadircet, lebedev.ri, usaxena95, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74384
/// ``CheckOptions``. If the corresponding key is not present, returns
/// \p Default.
template <typename T>
- typename std::enable_if<std::is_integral<T>::value, T>::type
- get(StringRef LocalName, T Default) const {
+ std::enable_if_t<std::is_integral<T>::value, T> get(StringRef LocalName,
+ T Default) const {
std::string Value = get(LocalName, "");
T Result = Default;
if (!Value.empty())
/// present, falls back to get global option. If global option is not
/// present either, returns Default.
template <typename T>
- typename std::enable_if<std::is_integral<T>::value, T>::type
+ std::enable_if_t<std::is_integral<T>::value, T>
getLocalOrGlobal(StringRef LocalName, T Default) const {
std::string Value = getLocalOrGlobal(LocalName, "");
T Result = Default;
/// requested (which interrupts IO), we'll fail rather than retry.
template <typename Fun, typename Ret = decltype(std::declval<Fun>()())>
Ret retryAfterSignalUnlessShutdown(
- const typename std::enable_if<true, Ret>::type &Fail, // Suppress deduction.
+ const std::enable_if_t<true, Ret> &Fail, // Suppress deduction.
const Fun &F) {
Ret Res;
do {
APFloat(const fltSemantics &Semantics) : U(Semantics) {}
APFloat(const fltSemantics &Semantics, StringRef S);
APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {}
- template <typename T, typename = typename std::enable_if<
- std::is_floating_point<T>::value>::type>
+ template <typename T,
+ typename = std::enable_if_t<std::is_floating_point<T>::value>>
APFloat(const fltSemantics &Semantics, T V) = delete;
// TODO: Remove this constructor. This isn't faster than the first one.
APFloat(const fltSemantics &Semantics, uninitializedTag)
template <class OtherValueT, class OtherIteratorBase>
IteratorImpl(const IteratorImpl<OtherValueT, OtherIteratorBase> &X,
- typename std::enable_if<std::is_convertible<
- OtherIteratorBase, IteratorBase>::value>::type * = nullptr)
+ std::enable_if_t<std::is_convertible<
+ OtherIteratorBase, IteratorBase>::value> * = nullptr)
: base_type(X.wrapped()) {}
~IteratorImpl() = default;
// When T is Any or T is not copy-constructible we need to explicitly disable
// the forwarding constructor so that the copy constructor gets selected
// instead.
- template <
- typename T,
- typename std::enable_if<
- llvm::conjunction<
- llvm::negation<std::is_same<typename std::decay<T>::type, Any>>,
- // We also disable this overload when an `Any` object can be
- // converted to the parameter type because in that case, this
- // constructor may combine with that conversion during overload
- // resolution for determining copy constructibility, and then
- // when we try to determine copy constructibility below we may
- // infinitely recurse. This is being evaluated by the standards
- // committee as a potential DR in `std::any` as well, but we're
- // going ahead and adopting it to work-around usage of `Any` with
- // types that need to be implicitly convertible from an `Any`.
- llvm::negation<std::is_convertible<Any, typename std::decay<T>::type>>,
- std::is_copy_constructible<typename std::decay<T>::type>>::value,
- int>::type = 0>
+ template <typename T,
+ std::enable_if_t<
+ llvm::conjunction<
+ llvm::negation<std::is_same<std::decay_t<T>, Any>>,
+ // We also disable this overload when an `Any` object can be
+ // converted to the parameter type because in that case,
+ // this constructor may combine with that conversion during
+ // overload resolution for determining copy
+ // constructibility, and then when we try to determine copy
+ // constructibility below we may infinitely recurse. This is
+ // being evaluated by the standards committee as a potential
+ // DR in `std::any` as well, but we're going ahead and
+ // adopting it to work-around usage of `Any` with types that
+ // need to be implicitly convertible from an `Any`.
+ llvm::negation<std::is_convertible<Any, std::decay_t<T>>>,
+ std::is_copy_constructible<std::decay<T>>>::value,
+ int> = 0>
Any(T &&Value) {
- using U = typename std::decay<T>::type;
- Storage = std::make_unique<StorageImpl<U>>(std::forward<T>(Value));
+ Storage =
+ std::make_unique<StorageImpl<std::decay_t<T>>>(std::forward<T>(Value));
}
Any(Any &&Other) : Storage(std::move(Other.Storage)) {}
template <typename T> bool any_isa(const Any &Value) {
if (!Value.Storage)
return false;
- using U =
- typename std::remove_cv<typename std::remove_reference<T>::type>::type;
- return Value.Storage->id() == &Any::TypeId<U>::Id;
+ return Value.Storage->id() ==
+ &Any::TypeId<std::remove_cv_t<std::remove_reference_t<T>>>::Id;
}
template <class T> T any_cast(const Any &Value) {
- using U =
- typename std::remove_cv<typename std::remove_reference<T>::type>::type;
- return static_cast<T>(*any_cast<U>(&Value));
+ return static_cast<T>(
+ *any_cast<std::remove_cv_t<std::remove_reference_t<T>>>(&Value));
}
template <class T> T any_cast(Any &Value) {
- using U =
- typename std::remove_cv<typename std::remove_reference<T>::type>::type;
- return static_cast<T>(*any_cast<U>(&Value));
+ return static_cast<T>(
+ *any_cast<std::remove_cv_t<std::remove_reference_t<T>>>(&Value));
}
template <class T> T any_cast(Any &&Value) {
- using U =
- typename std::remove_cv<typename std::remove_reference<T>::type>::type;
- return static_cast<T>(std::move(*any_cast<U>(&Value)));
+ return static_cast<T>(std::move(
+ *any_cast<std::remove_cv_t<std::remove_reference_t<T>>>(&Value)));
}
template <class T> const T *any_cast(const Any *Value) {
- using U =
- typename std::remove_cv<typename std::remove_reference<T>::type>::type;
+ using U = std::remove_cv_t<std::remove_reference_t<T>>;
assert(Value && any_isa<T>(*Value) && "Bad any cast!");
if (!Value || !any_isa<U>(*Value))
return nullptr;
}
template <class T> T *any_cast(Any *Value) {
- using U = typename std::decay<T>::type;
+ using U = std::decay_t<T>;
assert(Value && any_isa<U>(*Value) && "Bad any cast!");
if (!Value || !any_isa<U>(*Value))
return nullptr;
/// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to
/// ensure that only ArrayRefs of pointers can be converted.
template <typename U>
- ArrayRef(
- const ArrayRef<U *> &A,
- typename std::enable_if<
- std::is_convertible<U *const *, T const *>::value>::type * = nullptr)
- : Data(A.data()), Length(A.size()) {}
+ ArrayRef(const ArrayRef<U *> &A,
+ std::enable_if_t<std::is_convertible<U *const *, T const *>::value>
+ * = nullptr)
+ : Data(A.data()), Length(A.size()) {}
/// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is
/// templated in order to avoid instantiating SmallVectorTemplateCommon<T>
/// whenever we copy-construct an ArrayRef.
- template<typename U, typename DummyT>
+ template <typename U, typename DummyT>
/*implicit*/ ArrayRef(
- const SmallVectorTemplateCommon<U *, DummyT> &Vec,
- typename std::enable_if<
- std::is_convertible<U *const *, T const *>::value>::type * = nullptr)
- : Data(Vec.data()), Length(Vec.size()) {
- }
+ const SmallVectorTemplateCommon<U *, DummyT> &Vec,
+ std::enable_if_t<std::is_convertible<U *const *, T const *>::value> * =
+ nullptr)
+ : Data(Vec.data()), Length(Vec.size()) {}
/// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE
/// to ensure that only vectors of pointers can be converted.
- template<typename U, typename A>
+ template <typename U, typename A>
ArrayRef(const std::vector<U *, A> &Vec,
- typename std::enable_if<
- std::is_convertible<U *const *, T const *>::value>::type* = 0)
- : Data(Vec.data()), Length(Vec.size()) {}
+ std::enable_if_t<std::is_convertible<U *const *, T const *>::value>
+ * = 0)
+ : Data(Vec.data()), Length(Vec.size()) {}
/// @}
/// @name Simple Operations
/// The declaration here is extra complicated so that "arrayRef = {}"
/// continues to select the move assignment operator.
template <typename U>
- typename std::enable_if<std::is_same<U, T>::value, ArrayRef<T>>::type &
+ std::enable_if_t<std::is_same<U, T>::value, ArrayRef<T>> &
operator=(U &&Temporary) = delete;
/// Disallow accidental assignment from a temporary.
/// The declaration here is extra complicated so that "arrayRef = {}"
/// continues to select the move assignment operator.
template <typename U>
- typename std::enable_if<std::is_same<U, T>::value, ArrayRef<T>>::type &
+ std::enable_if_t<std::is_same<U, T>::value, ArrayRef<T>> &
operator=(std::initializer_list<U>) = delete;
/// @}
template <typename E>
struct is_bitmask_enum<
- E, typename std::enable_if<sizeof(E::LLVM_BITMASK_LARGEST_ENUMERATOR) >=
- 0>::type> : std::true_type {};
+ E, std::enable_if_t<sizeof(E::LLVM_BITMASK_LARGEST_ENUMERATOR) >= 0>>
+ : std::true_type {};
namespace BitmaskEnumDetail {
/// Get a bitmask with 1s in all places up to the high-order bit of E's largest
/// value.
-template <typename E> typename std::underlying_type<E>::type Mask() {
+template <typename E> std::underlying_type_t<E> Mask() {
// On overflow, NextPowerOf2 returns zero with the type uint64_t, so
// subtracting 1 gives us the mask with all bits set, like we want.
- return NextPowerOf2(static_cast<typename std::underlying_type<E>::type>(
+ return NextPowerOf2(static_cast<std::underlying_type_t<E>>(
E::LLVM_BITMASK_LARGEST_ENUMERATOR)) -
1;
}
/// Check that Val is in range for E, and return Val cast to E's underlying
/// type.
-template <typename E> typename std::underlying_type<E>::type Underlying(E Val) {
- auto U = static_cast<typename std::underlying_type<E>::type>(Val);
+template <typename E> std::underlying_type_t<E> Underlying(E Val) {
+ auto U = static_cast<std::underlying_type_t<E>>(Val);
assert(U >= 0 && "Negative enum values are not allowed.");
assert(U <= Mask<E>() && "Enum value too large (or largest val too small?)");
return U;
}
-template <typename E,
- typename = typename std::enable_if<is_bitmask_enum<E>::value>::type>
+template <typename E, typename = std::enable_if_t<is_bitmask_enum<E>::value>>
E operator~(E Val) {
return static_cast<E>(~Underlying(Val) & Mask<E>());
}
-template <typename E,
- typename = typename std::enable_if<is_bitmask_enum<E>::value>::type>
+template <typename E, typename = std::enable_if_t<is_bitmask_enum<E>::value>>
E operator|(E LHS, E RHS) {
return static_cast<E>(Underlying(LHS) | Underlying(RHS));
}
-template <typename E,
- typename = typename std::enable_if<is_bitmask_enum<E>::value>::type>
+template <typename E, typename = std::enable_if_t<is_bitmask_enum<E>::value>>
E operator&(E LHS, E RHS) {
return static_cast<E>(Underlying(LHS) & Underlying(RHS));
}
-template <typename E,
- typename = typename std::enable_if<is_bitmask_enum<E>::value>::type>
+template <typename E, typename = std::enable_if_t<is_bitmask_enum<E>::value>>
E operator^(E LHS, E RHS) {
return static_cast<E>(Underlying(LHS) ^ Underlying(RHS));
}
// |=, &=, and ^= return a reference to LHS, to match the behavior of the
// operators on builtin types.
-template <typename E,
- typename = typename std::enable_if<is_bitmask_enum<E>::value>::type>
+template <typename E, typename = std::enable_if_t<is_bitmask_enum<E>::value>>
E &operator|=(E &LHS, E RHS) {
LHS = LHS | RHS;
return LHS;
}
-template <typename E,
- typename = typename std::enable_if<is_bitmask_enum<E>::value>::type>
+template <typename E, typename = std::enable_if_t<is_bitmask_enum<E>::value>>
E &operator&=(E &LHS, E RHS) {
LHS = LHS & RHS;
return LHS;
}
-template <typename E,
- typename = typename std::enable_if<is_bitmask_enum<E>::value>::type>
+template <typename E, typename = std::enable_if_t<is_bitmask_enum<E>::value>>
E &operator^=(E &LHS, E RHS) {
LHS = LHS ^ RHS;
return LHS;
// for const iterator destinations so it doesn't end up as a user defined copy
// constructor.
template <bool IsConstSrc,
- typename = typename std::enable_if<!IsConstSrc && IsConst>::type>
+ typename = std::enable_if_t<!IsConstSrc && IsConst>>
DenseMapIterator(
const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I)
: DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {}
/// differing argument types even if they would implicit promote to a common
/// type without changing the value.
template <typename T>
-typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type
-hash_value(T value);
+std::enable_if_t<is_integral_or_enum<T>::value, hash_code> hash_value(T value);
/// Compute a hash_code for a pointer's address.
///
/// Helper to get the hashable data representation for a type.
/// This variant is enabled when the type itself can be used.
template <typename T>
-typename std::enable_if<is_hashable_data<T>::value, T>::type
+std::enable_if_t<is_hashable_data<T>::value, T>
get_hashable_data(const T &value) {
return value;
}
/// This variant is enabled when we must first call hash_value and use the
/// result as our data.
template <typename T>
-typename std::enable_if<!is_hashable_data<T>::value, size_t>::type
+std::enable_if_t<!is_hashable_data<T>::value, size_t>
get_hashable_data(const T &value) {
using ::llvm::hash_value;
return hash_value(value);
/// are stored in contiguous memory, this routine avoids copying each value
/// and directly reads from the underlying memory.
template <typename ValueT>
-typename std::enable_if<is_hashable_data<ValueT>::value, hash_code>::type
+std::enable_if_t<is_hashable_data<ValueT>::value, hash_code>
hash_combine_range_impl(ValueT *first, ValueT *last) {
const uint64_t seed = get_execution_seed();
const char *s_begin = reinterpret_cast<const char *>(first);
// Declared and documented above, but defined here so that any of the hashing
// infrastructure is available.
template <typename T>
-typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type
-hash_value(T value) {
+std::enable_if_t<is_integral_or_enum<T>::value, hash_code> hash_value(T value) {
return ::llvm::hashing::detail::hash_integer_value(
static_cast<uint64_t>(value));
}
/// Insert a sequence of new elements into the PriorityWorklist.
template <typename SequenceT>
- typename std::enable_if<!std::is_convertible<SequenceT, T>::value>::type
+ std::enable_if_t<!std::is_convertible<SequenceT, T>::value>
insert(SequenceT &&Input) {
if (std::begin(Input) == std::end(Input))
// Nothing to do for an empty input sequence.
template <typename Callable>
function_ref(Callable &&callable,
- typename std::enable_if<
- !std::is_same<typename std::remove_reference<Callable>::type,
- function_ref>::value>::type * = nullptr)
+ std::enable_if_t<!std::is_same<std::remove_reference_t<Callable>,
+ function_ref>::value> * = nullptr)
: callback(callback_fn<typename std::remove_reference<Callable>::type>),
callable(reinterpret_cast<intptr_t>(&callable)) {}
// Returns an iterator_range over the given container which iterates in reverse.
// Note that the container must have rbegin()/rend() methods for this to work.
template <typename ContainerTy>
-auto reverse(
- ContainerTy &&C,
- typename std::enable_if<has_rbegin<ContainerTy>::value>::type * = nullptr) {
+auto reverse(ContainerTy &&C,
+ std::enable_if_t<has_rbegin<ContainerTy>::value> * = nullptr) {
return make_range(C.rbegin(), C.rend());
}
// bidirectional iterators for this to work.
template <typename ContainerTy>
auto reverse(ContainerTy &&C,
- typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * =
- nullptr) {
+ std::enable_if_t<!has_rbegin<ContainerTy>::value> * = nullptr) {
return make_range(llvm::make_reverse_iterator(std::end(C)),
llvm::make_reverse_iterator(std::begin(C)));
}
/// Get the size of a range. This is a wrapper function around std::distance
/// which is only enabled when the operation is O(1).
template <typename R>
-auto size(R &&Range, typename std::enable_if<
- std::is_same<typename std::iterator_traits<decltype(
- Range.begin())>::iterator_category,
- std::random_access_iterator_tag>::value,
- void>::type * = nullptr) {
+auto size(R &&Range,
+ std::enable_if_t<std::is_same<typename std::iterator_traits<decltype(
+ Range.begin())>::iterator_category,
+ std::random_access_iterator_tag>::value,
+ void> * = nullptr) {
return std::distance(Range.begin(), Range.end());
}
template <typename IterTy>
bool hasNItems(
IterTy &&Begin, IterTy &&End, unsigned N,
- typename std::enable_if<
- !std::is_same<
- typename std::iterator_traits<typename std::remove_reference<
- decltype(Begin)>::type>::iterator_category,
- std::random_access_iterator_tag>::value,
- void>::type * = nullptr) {
+ std::enable_if_t<
+ !std::is_same<typename std::iterator_traits<std::remove_reference_t<
+ decltype(Begin)>>::iterator_category,
+ std::random_access_iterator_tag>::value,
+ void> * = nullptr) {
for (; N; --N, ++Begin)
if (Begin == End)
return false; // Too few.
template <typename IterTy>
bool hasNItemsOrMore(
IterTy &&Begin, IterTy &&End, unsigned N,
- typename std::enable_if<
- !std::is_same<
- typename std::iterator_traits<typename std::remove_reference<
- decltype(Begin)>::type>::iterator_category,
- std::random_access_iterator_tag>::value,
- void>::type * = nullptr) {
+ std::enable_if_t<
+ !std::is_same<typename std::iterator_traits<std::remove_reference_t<
+ decltype(Begin)>>::iterator_category,
+ std::random_access_iterator_tag>::value,
+ void> * = nullptr) {
for (; N; --N, ++Begin)
if (Begin == End)
return false; // Too few.
template <typename T1, typename T2>
static void uninitialized_copy(
T1 *I, T1 *E, T2 *Dest,
- typename std::enable_if<std::is_same<typename std::remove_const<T1>::type,
- T2>::value>::type * = nullptr) {
+ std::enable_if_t<std::is_same<typename std::remove_const<T1>::type,
+ T2>::value> * = nullptr) {
// Use memcpy for PODs iterated by pointers (which includes SmallVector
// iterators): std::uninitialized_copy optimizes to memmove, but we can
// use memcpy here. Note that I and E are iterators and thus might be
/// Add the specified range to the end of the SmallVector.
template <typename in_iter,
- typename = typename std::enable_if<std::is_convertible<
+ typename = std::enable_if_t<std::is_convertible<
typename std::iterator_traits<in_iter>::iterator_category,
- std::input_iterator_tag>::value>::type>
+ std::input_iterator_tag>::value>>
void append(in_iter in_start, in_iter in_end) {
size_type NumInputs = std::distance(in_start, in_end);
if (NumInputs > this->capacity() - this->size())
}
template <typename in_iter,
- typename = typename std::enable_if<std::is_convertible<
+ typename = std::enable_if_t<std::is_convertible<
typename std::iterator_traits<in_iter>::iterator_category,
- std::input_iterator_tag>::value>::type>
+ std::input_iterator_tag>::value>>
void assign(in_iter in_start, in_iter in_end) {
clear();
append(in_start, in_end);
}
template <typename ItTy,
- typename = typename std::enable_if<std::is_convertible<
+ typename = std::enable_if_t<std::is_convertible<
typename std::iterator_traits<ItTy>::iterator_category,
- std::input_iterator_tag>::value>::type>
+ std::input_iterator_tag>::value>>
iterator insert(iterator I, ItTy From, ItTy To) {
// Convert iterator to elt# to avoid invalidating iterator when we reserve()
size_t InsertElt = I - this->begin();
}
template <typename ItTy,
- typename = typename std::enable_if<std::is_convertible<
+ typename = std::enable_if_t<std::is_convertible<
typename std::iterator_traits<ItTy>::iterator_category,
- std::input_iterator_tag>::value>::type>
+ std::input_iterator_tag>::value>>
SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
this->append(S, E);
}
/// The declaration here is extra complicated so that `stringRef = {}`
/// and `stringRef = "abc"` continue to select the move assignment operator.
template <typename T>
- typename std::enable_if<std::is_same<T, std::string>::value,
- StringRef>::type &
+ std::enable_if_t<std::is_same<T, std::string>::value, StringRef> &
operator=(T &&Str) = delete;
/// @}
/// this returns true to signify the error. The string is considered
/// erroneous if empty or if it overflows T.
template <typename T>
- typename std::enable_if<std::numeric_limits<T>::is_signed, bool>::type
+ std::enable_if_t<std::numeric_limits<T>::is_signed, bool>
getAsInteger(unsigned Radix, T &Result) const {
long long LLVal;
if (getAsSignedInteger(*this, Radix, LLVal) ||
}
template <typename T>
- typename std::enable_if<!std::numeric_limits<T>::is_signed, bool>::type
+ std::enable_if_t<!std::numeric_limits<T>::is_signed, bool>
getAsInteger(unsigned Radix, T &Result) const {
unsigned long long ULLVal;
// The additional cast to unsigned long long is required to avoid the
/// The portion of the string representing the discovered numeric value
/// is removed from the beginning of the string.
template <typename T>
- typename std::enable_if<std::numeric_limits<T>::is_signed, bool>::type
+ std::enable_if_t<std::numeric_limits<T>::is_signed, bool>
consumeInteger(unsigned Radix, T &Result) {
long long LLVal;
if (consumeSignedInteger(*this, Radix, LLVal) ||
}
template <typename T>
- typename std::enable_if<!std::numeric_limits<T>::is_signed, bool>::type
+ std::enable_if_t<!std::numeric_limits<T>::is_signed, bool>
consumeInteger(unsigned Radix, T &Result) {
unsigned long long ULLVal;
if (consumeUnsignedInteger(*this, Radix, ULLVal) ||
}
// Implicit conversion to ArrayRef<U> if EltTy* implicitly converts to U*.
- template<typename U,
- typename std::enable_if<
- std::is_convertible<ArrayRef<EltTy>, ArrayRef<U>>::value,
- bool>::type = false>
+ template <
+ typename U,
+ std::enable_if_t<std::is_convertible<ArrayRef<EltTy>, ArrayRef<U>>::value,
+ bool> = false>
operator ArrayRef<U>() const {
return operator ArrayRef<EltTy>();
}
// This is templated so that we can allow constructing a const iterator from
// a nonconst iterator...
template <bool RHSIsConst>
- ilist_iterator(
- const ilist_iterator<OptionsT, IsReverse, RHSIsConst> &RHS,
- typename std::enable_if<IsConst || !RHSIsConst, void *>::type = nullptr)
+ ilist_iterator(const ilist_iterator<OptionsT, IsReverse, RHSIsConst> &RHS,
+ std::enable_if_t<IsConst || !RHSIsConst, void *> = nullptr)
: NodePtr(RHS.NodePtr) {}
// This is templated so that we can allow assigning to a const iterator from
// a nonconst iterator...
template <bool RHSIsConst>
- typename std::enable_if<IsConst || !RHSIsConst, ilist_iterator &>::type
+ std::enable_if_t<IsConst || !RHSIsConst, ilist_iterator &>
operator=(const ilist_iterator<OptionsT, IsReverse, RHSIsConst> &RHS) {
NodePtr = RHS.NodePtr;
return *this;
typename T = typename std::iterator_traits<WrappedIteratorT>::value_type,
typename DifferenceTypeT =
typename std::iterator_traits<WrappedIteratorT>::difference_type,
- typename PointerT = typename std::conditional<
+ typename PointerT = std::conditional_t<
std::is_same<T, typename std::iterator_traits<
WrappedIteratorT>::value_type>::value,
- typename std::iterator_traits<WrappedIteratorT>::pointer, T *>::type,
- typename ReferenceT = typename std::conditional<
+ typename std::iterator_traits<WrappedIteratorT>::pointer, T *>,
+ typename ReferenceT = std::conditional_t<
std::is_same<T, typename std::iterator_traits<
WrappedIteratorT>::value_type>::value,
- typename std::iterator_traits<WrappedIteratorT>::reference, T &>::type>
+ typename std::iterator_traits<WrappedIteratorT>::reference, T &>>
class iterator_adaptor_base
: public iterator_facade_base<DerivedT, IteratorCategoryT, T,
DifferenceTypeT, PointerT, ReferenceT> {
/// using iterator = pointee_iterator<SmallVectorImpl<T *>::iterator>;
/// \endcode
template <typename WrappedIteratorT,
- typename T = typename std::remove_reference<
- decltype(**std::declval<WrappedIteratorT>())>::type>
+ typename T = std::remove_reference_t<decltype(
+ **std::declval<WrappedIteratorT>())>>
struct pointee_iterator
: iterator_adaptor_base<
pointee_iterator<WrappedIteratorT, T>, WrappedIteratorT,
}
template <typename WrappedIteratorT,
- typename T1 = typename std::remove_reference<decltype(**std::declval<WrappedIteratorT>())>::type,
- typename T2 = typename std::add_pointer<T1>::type>
-using raw_pointer_iterator = pointer_iterator<pointee_iterator<WrappedIteratorT, T1>, T2>;
+ typename T1 = std::remove_reference_t<decltype(
+ **std::declval<WrappedIteratorT>())>,
+ typename T2 = std::add_pointer_t<T1>>
+using raw_pointer_iterator =
+ pointer_iterator<pointee_iterator<WrappedIteratorT, T1>, T2>;
// Wrapper iterator over iterator ItType, adding DataRef to the type of ItType,
// to create NodeRef = std::pair<InnerTypeOfItType, DataRef>.
template <bool IsConst>
class block_iterator_wrapper
: public df_iterator<
- typename std::conditional<IsConst, const BlockT, BlockT>::type *> {
+ std::conditional_t<IsConst, const BlockT, BlockT> *> {
using super =
- df_iterator<
- typename std::conditional<IsConst, const BlockT, BlockT>::type *>;
+ df_iterator<std::conditional_t<IsConst, const BlockT, BlockT> *>;
public:
using Self = block_iterator_wrapper<IsConst>;
template <class Tr>
void RegionInfoBase<Tr>::scanForRegions(FuncT &F, BBtoBBMap *ShortCut) {
- using FuncPtrT = typename std::add_pointer<FuncT>::type;
+ using FuncPtrT = std::add_pointer_t<FuncT>;
BlockT *entry = GraphTraits<FuncPtrT>::getEntryNode(&F);
DomTreeNodeT *N = DT->getNode(entry);
template <class Tr>
void RegionInfoBase<Tr>::calculate(FuncT &F) {
- using FuncPtrT = typename std::add_pointer<FuncT>::type;
+ using FuncPtrT = std::add_pointer_t<FuncT>;
// ShortCut a function where for every BB the exit of the largest region
// starting with BB is stored. These regions can be threated as single BBS.
/// dumping functions above, these format unknown enumerator values as
/// DW_TYPE_unknown_1234 (e.g. DW_TAG_unknown_ffff).
template <typename Enum>
-struct format_provider<
- Enum, typename std::enable_if<dwarf::EnumTraits<Enum>::value>::type> {
+struct format_provider<Enum, std::enable_if_t<dwarf::EnumTraits<Enum>::value>> {
static void format(const Enum &E, raw_ostream &OS, StringRef Style) {
StringRef Str = dwarf::EnumTraits<Enum>::StringFn(E);
if (Str.empty()) {
// if the Seg is lower find first segment that is above Idx using binary
// search
if (Seg->end <= *Idx) {
- Seg = std::upper_bound(++Seg, EndSeg, *Idx,
- [=](typename std::remove_reference<decltype(*Idx)>::type V,
- const typename std::remove_reference<decltype(*Seg)>::type &S) {
- return V < S.end;
- });
+ Seg = std::upper_bound(
+ ++Seg, EndSeg, *Idx,
+ [=](std::remove_reference_t<decltype(*Idx)> V,
+ const std::remove_reference_t<decltype(*Seg)> &S) {
+ return V < S.end;
+ });
if (Seg == EndSeg)
break;
}
template <class OtherTy>
MachineInstrBundleIterator(
const MachineInstrBundleIterator<OtherTy, IsReverse> &I,
- typename std::enable_if<std::is_convertible<OtherTy *, Ty *>::value,
- void *>::type = nullptr)
+ std::enable_if_t<std::is_convertible<OtherTy *, Ty *>::value, void *> =
+ nullptr)
: MII(I.getInstrIterator()) {}
MachineInstrBundleIterator() : MII(nullptr) {}
if (!isStreaming() && sizeof(Value) > maxFieldLength())
return make_error<CodeViewError>(cv_error_code::insufficient_buffer);
- using U = typename std::underlying_type<T>::type;
+ using U = std::underlying_type_t<T>;
U X;
if (isWriting() || isStreaming())
/// Casts the given address to a callable function pointer. This operation
/// will perform pointer signing for platforms that require it (e.g. arm64e).
template <typename T> T jitTargetAddressToFunction(JITTargetAddress Addr) {
- static_assert(
- std::is_pointer<T>::value &&
- std::is_function<typename std::remove_pointer<T>::type>::value,
- "T must be a function pointer type");
+ static_assert(std::is_pointer<T>::value &&
+ std::is_function<std::remove_pointer_t<T>>::value,
+ "T must be a function pointer type");
return jitTargetAddressToPointer<T>(Addr);
}
/// If Body returns true then the element just passed in is removed from the
/// set. If Body returns false then the element is retained.
template <typename BodyFn>
- auto forEachWithRemoval(BodyFn &&Body) -> typename std::enable_if<
+ auto forEachWithRemoval(BodyFn &&Body) -> std::enable_if_t<
std::is_same<decltype(Body(std::declval<const SymbolStringPtr &>(),
std::declval<SymbolLookupFlags>())),
- bool>::value>::type {
+ bool>::value> {
UnderlyingVector::size_type I = 0;
while (I != Symbols.size()) {
const auto &Name = Symbols[I].first;
/// returns true then the element just passed in is removed from the set. If
/// Body returns false then the element is retained.
template <typename BodyFn>
- auto forEachWithRemoval(BodyFn &&Body) -> typename std::enable_if<
+ auto forEachWithRemoval(BodyFn &&Body) -> std::enable_if_t<
std::is_same<decltype(Body(std::declval<const SymbolStringPtr &>(),
std::declval<SymbolLookupFlags>())),
Expected<bool>>::value,
- Error>::type {
+ Error> {
UnderlyingVector::size_type I = 0;
while (I != Symbols.size()) {
const auto &Name = Symbols[I].first;
/// function objects.
template <typename GetResponsibilitySetFn, typename LookupFn>
std::unique_ptr<LambdaSymbolResolver<
- typename std::remove_cv<
- typename std::remove_reference<GetResponsibilitySetFn>::type>::type,
- typename std::remove_cv<
- typename std::remove_reference<LookupFn>::type>::type>>
+ std::remove_cv_t<std::remove_reference_t<GetResponsibilitySetFn>>,
+ std::remove_cv_t<std::remove_reference_t<LookupFn>>>>
createSymbolResolver(GetResponsibilitySetFn &&GetResponsibilitySet,
LookupFn &&Lookup) {
using LambdaSymbolResolverImpl = LambdaSymbolResolver<
- typename std::remove_cv<
- typename std::remove_reference<GetResponsibilitySetFn>::type>::type,
- typename std::remove_cv<
- typename std::remove_reference<LookupFn>::type>::type>;
+ std::remove_cv_t<std::remove_reference_t<GetResponsibilitySetFn>>,
+ std::remove_cv_t<std::remove_reference_t<LookupFn>>>;
return std::make_unique<LambdaSymbolResolverImpl>(
std::forward<GetResponsibilitySetFn>(GetResponsibilitySet),
std::forward<LookupFn>(Lookup));
template <typename ChannelT>
class SerializationTraits<
ChannelT, remote::DirectBufferWriter, remote::DirectBufferWriter,
- typename std::enable_if<
- std::is_base_of<RawByteChannel, ChannelT>::value>::type> {
+ std::enable_if_t<std::is_base_of<RawByteChannel, ChannelT>::value>> {
public:
static Error serialize(ChannelT &C, const remote::DirectBufferWriter &DBW) {
if (auto EC = serializeSeq(C, DBW.getDst()))
SymbolLookup(std::move(SymbolLookup)),
EHFramesRegister(std::move(EHFramesRegister)),
EHFramesDeregister(std::move(EHFramesDeregister)) {
- using ThisT = typename std::remove_reference<decltype(*this)>::type;
+ using ThisT = std::remove_reference_t<decltype(*this)>;
addHandler<exec::CallIntVoid>(*this, &ThisT::handleCallIntVoid);
addHandler<exec::CallMain>(*this, &ThisT::handleCallMain);
addHandler<exec::CallVoidVoid>(*this, &ThisT::handleCallVoidVoid);
///
/// template <DerivedChannelT>
/// class SerializationTraits<DerivedChannelT, bool,
-/// typename std::enable_if<
+/// std::enable_if_t<
/// std::is_base_of<VirtChannel, DerivedChannel>::value
-/// >::type> {
+/// >> {
/// public:
/// static const char* getName() { ... };
/// }
template <typename CArgT>
static Error serialize(ChannelT &C, CArgT &&CArg) {
- return SerializationTraits<ChannelT, ArgT,
- typename std::decay<CArgT>::type>::
- serialize(C, std::forward<CArgT>(CArg));
+ return SerializationTraits<ChannelT, ArgT, std::decay_t<CArgT>>::serialize(
+ C, std::forward<CArgT>(CArg));
}
template <typename CArgT>
static Error serialize(ChannelT &C, CArgT &&CArg,
CArgTs &&... CArgs) {
if (auto Err =
- SerializationTraits<ChannelT, ArgT, typename std::decay<CArgT>::type>::
- serialize(C, std::forward<CArgT>(CArg)))
+ SerializationTraits<ChannelT, ArgT, std::decay_t<CArgT>>::serialize(
+ C, std::forward<CArgT>(CArg)))
return Err;
if (auto Err = SequenceTraits<ChannelT>::emitSeparator(C))
return Err;
template <typename ChannelT, typename... ArgTs>
Error serializeSeq(ChannelT &C, ArgTs &&... Args) {
- return SequenceSerialization<ChannelT, typename std::decay<ArgTs>::type...>::
- serialize(C, std::forward<ArgTs>(Args)...);
+ return SequenceSerialization<ChannelT, std::decay_t<ArgTs>...>::serialize(
+ C, std::forward<ArgTs>(Args)...);
}
template <typename ChannelT, typename... ArgTs>
/// This specialization of RPCFunctionIdAllocator provides a default
/// implementation for integral types.
template <typename T>
-class RPCFunctionIdAllocator<
- T, typename std::enable_if<std::is_integral<T>::value>::type> {
+class RPCFunctionIdAllocator<T, std::enable_if_t<std::is_integral<T>::value>> {
public:
static T getInvalidId() { return T(0); }
static T getResponseId() { return T(1); }
template <typename RetT, typename... ArgTs>
class FunctionArgsTuple<RetT(ArgTs...)> {
public:
- using Type = std::tuple<typename std::decay<
- typename std::remove_reference<ArgTs>::type>::type...>;
+ using Type = std::tuple<std::decay_t<std::remove_reference_t<ArgTs>>...>;
};
// ResultTraits provides typedefs and utilities specific to the return type
};
template <typename ResponseHandlerT, typename... ArgTs>
-class AsyncHandlerTraits<Error(ResponseHandlerT, ArgTs...)> :
- public AsyncHandlerTraits<Error(typename std::decay<ResponseHandlerT>::type,
- ArgTs...)> {};
+class AsyncHandlerTraits<Error(ResponseHandlerT, ArgTs...)>
+ : public AsyncHandlerTraits<Error(std::decay_t<ResponseHandlerT>,
+ ArgTs...)> {};
// This template class provides utilities related to RPC function handlers.
// The base case applies to non-function types (the template class is
// Call the given handler with the given arguments.
template <typename HandlerT>
- static typename std::enable_if<
- std::is_void<typename HandlerTraits<HandlerT>::ReturnType>::value,
- Error>::type
+ static std::enable_if_t<
+ std::is_void<typename HandlerTraits<HandlerT>::ReturnType>::value, Error>
run(HandlerT &Handler, ArgTs &&... Args) {
Handler(std::move(Args)...);
return Error::success();
}
template <typename HandlerT, typename... TArgTs>
- static typename std::enable_if<
+ static std::enable_if_t<
!std::is_void<typename HandlerTraits<HandlerT>::ReturnType>::value,
- typename HandlerTraits<HandlerT>::ReturnType>::type
+ typename HandlerTraits<HandlerT>::ReturnType>
run(HandlerT &Handler, TArgTs... Args) {
return Handler(std::move(Args)...);
}
using S = SerializationTraits<ChannelT, WireT, ConcreteT>;
template <typename T>
- static std::true_type
- check(typename std::enable_if<
- std::is_same<decltype(T::serialize(std::declval<ChannelT &>(),
- std::declval<const ConcreteT &>())),
- Error>::value,
- void *>::type);
+ static std::true_type check(
+ std::enable_if_t<std::is_same<decltype(T::serialize(
+ std::declval<ChannelT &>(),
+ std::declval<const ConcreteT &>())),
+ Error>::value,
+ void *>);
template <typename> static std::false_type check(...);
template <typename T>
static std::true_type
- check(typename std::enable_if<
- std::is_same<decltype(T::deserialize(std::declval<ChannelT &>(),
- std::declval<ConcreteT &>())),
- Error>::value,
- void *>::type);
+ check(std::enable_if_t<
+ std::is_same<decltype(T::deserialize(std::declval<ChannelT &>(),
+ std::declval<ConcreteT &>())),
+ Error>::value,
+ void *>);
template <typename> static std::false_type check(...);
template <typename ChannelT, typename T>
class SerializationTraits<
ChannelT, T, T,
- typename std::enable_if<
+ std::enable_if_t<
std::is_base_of<RawByteChannel, ChannelT>::value &&
(std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value ||
std::is_same<T, uint16_t>::value || std::is_same<T, int16_t>::value ||
std::is_same<T, uint32_t>::value || std::is_same<T, int32_t>::value ||
std::is_same<T, uint64_t>::value || std::is_same<T, int64_t>::value ||
- std::is_same<T, char>::value)>::type> {
+ std::is_same<T, char>::value)>> {
public:
static Error serialize(ChannelT &C, T V) {
support::endian::byte_swap<T, support::big>(V);
};
template <typename ChannelT>
-class SerializationTraits<ChannelT, bool, bool,
- typename std::enable_if<std::is_base_of<
- RawByteChannel, ChannelT>::value>::type> {
+class SerializationTraits<
+ ChannelT, bool, bool,
+ std::enable_if_t<std::is_base_of<RawByteChannel, ChannelT>::value>> {
public:
static Error serialize(ChannelT &C, bool V) {
uint8_t Tmp = V ? 1 : 0;
};
template <typename ChannelT>
-class SerializationTraits<ChannelT, std::string, StringRef,
- typename std::enable_if<std::is_base_of<
- RawByteChannel, ChannelT>::value>::type> {
+class SerializationTraits<
+ ChannelT, std::string, StringRef,
+ std::enable_if_t<std::is_base_of<RawByteChannel, ChannelT>::value>> {
public:
/// RPC channel serialization for std::strings.
static Error serialize(RawByteChannel &C, StringRef S) {
};
template <typename ChannelT, typename T>
-class SerializationTraits<ChannelT, std::string, T,
- typename std::enable_if<
- std::is_base_of<RawByteChannel, ChannelT>::value &&
- (std::is_same<T, const char*>::value ||
- std::is_same<T, char*>::value)>::type> {
+class SerializationTraits<
+ ChannelT, std::string, T,
+ std::enable_if_t<std::is_base_of<RawByteChannel, ChannelT>::value &&
+ (std::is_same<T, const char *>::value ||
+ std::is_same<T, char *>::value)>> {
public:
static Error serialize(RawByteChannel &C, const char *S) {
return SerializationTraits<ChannelT, std::string, StringRef>::serialize(C,
};
template <typename ChannelT>
-class SerializationTraits<ChannelT, std::string, std::string,
- typename std::enable_if<std::is_base_of<
- RawByteChannel, ChannelT>::value>::type> {
+class SerializationTraits<
+ ChannelT, std::string, std::string,
+ std::enable_if_t<std::is_base_of<RawByteChannel, ChannelT>::value>> {
public:
/// RPC channel serialization for std::strings.
static Error serialize(RawByteChannel &C, const std::string &S) {
/// elements, which may each be weighted to be more likely choices.
template <typename T, typename GenT> class ReservoirSampler {
GenT &RandGen;
- typename std::remove_const<T>::type Selection = {};
+ std::remove_const_t<T> Selection = {};
uint64_t TotalWeight = 0;
public:
};
template <typename GenT, typename RangeT,
- typename ElT = typename std::remove_reference<
- decltype(*std::begin(std::declval<RangeT>()))>::type>
+ typename ElT = std::remove_reference_t<
+ decltype(*std::begin(std::declval<RangeT>()))>>
ReservoirSampler<ElT, GenT> makeSampler(GenT &RandGen, RangeT &&Items) {
ReservoirSampler<ElT, GenT> RS(RandGen);
RS.sample(Items);
static Constant *get(StructType *T, ArrayRef<Constant*> V);
template <typename... Csts>
- static typename std::enable_if<are_base_of<Constant, Csts...>::value,
- Constant *>::type
+ static std::enable_if_t<are_base_of<Constant, Csts...>::value, Constant *>
get(StructType *T, Csts *... Vs) {
SmallVector<Constant *, 8> Values({Vs...});
return get(T, Values);
StringRef Name, bool isPacked = false);
static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements);
template <class... Tys>
- static typename std::enable_if<are_base_of<Type, Tys...>::value,
- StructType *>::type
+ static std::enable_if_t<are_base_of<Type, Tys...>::value, StructType *>
create(StringRef Name, Type *elt1, Tys *... elts) {
assert(elt1 && "Cannot create a struct type with no elements with this");
SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
/// specifying the elements as arguments. Note that this method always returns
/// a non-packed struct, and requires at least one element type.
template <class... Tys>
- static typename std::enable_if<are_base_of<Type, Tys...>::value,
- StructType *>::type
+ static std::enable_if_t<are_base_of<Type, Tys...>::value, StructType *>
get(Type *elt1, Tys *... elts) {
assert(elt1 && "Cannot create a struct type with no elements with this");
LLVMContext &Ctx = elt1->getContext();
void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
template <typename... Tys>
- typename std::enable_if<are_base_of<Type, Tys...>::value, void>::type
+ std::enable_if_t<are_base_of<Type, Tys...>::value, void>
setBody(Type *elt1, Tys *... elts) {
assert(elt1 && "Cannot create a struct type with no elements with this");
SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
template <class RemarkT>
RemarkT &
operator<<(RemarkT &R,
- typename std::enable_if<
+ std::enable_if_t<
std::is_base_of<DiagnosticInfoOptimizationBase, RemarkT>::value,
- StringRef>::type S) {
+ StringRef>
+ S) {
R.insert(S);
return R;
}
template <class RemarkT>
RemarkT &
operator<<(RemarkT &&R,
- typename std::enable_if<
+ std::enable_if_t<
std::is_base_of<DiagnosticInfoOptimizationBase, RemarkT>::value,
- StringRef>::type S) {
+ StringRef>
+ S) {
R.insert(S);
return R;
}
template <class RemarkT>
RemarkT &
operator<<(RemarkT &R,
- typename std::enable_if<
+ std::enable_if_t<
std::is_base_of<DiagnosticInfoOptimizationBase, RemarkT>::value,
- DiagnosticInfoOptimizationBase::Argument>::type A) {
+ DiagnosticInfoOptimizationBase::Argument>
+ A) {
R.insert(A);
return R;
}
template <class RemarkT>
RemarkT &
operator<<(RemarkT &&R,
- typename std::enable_if<
+ std::enable_if_t<
std::is_base_of<DiagnosticInfoOptimizationBase, RemarkT>::value,
- DiagnosticInfoOptimizationBase::Argument>::type A) {
+ DiagnosticInfoOptimizationBase::Argument>
+ A) {
R.insert(A);
return R;
}
template <class RemarkT>
RemarkT &
operator<<(RemarkT &R,
- typename std::enable_if<
+ std::enable_if_t<
std::is_base_of<DiagnosticInfoOptimizationBase, RemarkT>::value,
- DiagnosticInfoOptimizationBase::setIsVerbose>::type V) {
+ DiagnosticInfoOptimizationBase::setIsVerbose>
+ V) {
R.insert(V);
return R;
}
template <class RemarkT>
RemarkT &
operator<<(RemarkT &&R,
- typename std::enable_if<
+ std::enable_if_t<
std::is_base_of<DiagnosticInfoOptimizationBase, RemarkT>::value,
- DiagnosticInfoOptimizationBase::setIsVerbose>::type V) {
+ DiagnosticInfoOptimizationBase::setIsVerbose>
+ V) {
R.insert(V);
return R;
}
template <class RemarkT>
RemarkT &
operator<<(RemarkT &R,
- typename std::enable_if<
+ std::enable_if_t<
std::is_base_of<DiagnosticInfoOptimizationBase, RemarkT>::value,
- DiagnosticInfoOptimizationBase::setExtraArgs>::type EA) {
+ DiagnosticInfoOptimizationBase::setExtraArgs>
+ EA) {
R.insert(EA);
return R;
}
/// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
/// type \c X.
template <class X, class Y>
-inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, bool>::type
+inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, bool>
hasa(Y &&MD) {
assert(MD && "Null pointer sent into hasa");
if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
return false;
}
template <class X, class Y>
-inline
- typename std::enable_if<detail::IsValidReference<X, Y &>::value, bool>::type
- hasa(Y &MD) {
+inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, bool>
+hasa(Y &MD) {
return hasa(&MD);
}
///
/// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
template <class X, class Y>
-inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
+inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
extract(Y &&MD) {
return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
}
template <class X, class Y>
-inline
- typename std::enable_if<detail::IsValidReference<X, Y &>::value, X *>::type
- extract(Y &MD) {
+inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, X *>
+extract(Y &MD) {
return extract(&MD);
}
/// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
/// from \c MD, allowing \c MD to be null.
template <class X, class Y>
-inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
+inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
extract_or_null(Y &&MD) {
if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
return cast<X>(V->getValue());
/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
/// Value it does contain is of the wrong subclass.
template <class X, class Y>
-inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
+inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
dyn_extract(Y &&MD) {
if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
return dyn_cast<X>(V->getValue());
/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
/// Value it does contain is of the wrong subclass, allowing \c MD to be null.
template <class X, class Y>
-inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
+inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
dyn_extract_or_null(Y &&MD) {
if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
return dyn_cast<X>(V->getValue());
/// Try to create a uniqued version of \c N -- in place, if possible -- and
/// return it. If \c N cannot be uniqued, return a distinct node instead.
template <class T>
- static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
+ static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
return cast<T>(N.release()->replaceWithPermanentImpl());
}
///
/// \pre N does not self-reference.
template <class T>
- static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
+ static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
return cast<T>(N.release()->replaceWithUniquedImpl());
}
/// Create a distinct version of \c N -- in place, if possible -- and return
/// it. Takes ownership of the temporary node.
template <class T>
- static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
+ static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
return cast<T>(N.release()->replaceWithDistinctImpl());
}
template <class U>
MDTupleTypedArrayWrapper(
const MDTupleTypedArrayWrapper<U> &Other,
- typename std::enable_if<std::is_convertible<U *, T *>::value>::type * =
- nullptr)
+ std::enable_if_t<std::is_convertible<U *, T *>::value> * = nullptr)
: N(Other.get()) {}
template <class U>
explicit MDTupleTypedArrayWrapper(
const MDTupleTypedArrayWrapper<U> &Other,
- typename std::enable_if<!std::is_convertible<U *, T *>::value>::type * =
- nullptr)
+ std::enable_if_t<!std::is_convertible<U *, T *>::value> * = nullptr)
: N(Other.get()) {}
explicit operator bool() const { return get(); }
friend struct DenseMapInfo<ValueMapCallbackVH>;
using ValueMapT = ValueMap<KeyT, ValueT, Config>;
- using KeySansPointerT = typename std::remove_pointer<KeyT>::type;
+ using KeySansPointerT = std::remove_pointer_t<KeyT>;
ValueMapT *Map;
static const endianness TargetEndianness = E;
static const bool Is64Bits = Is64;
- using uint = typename std::conditional<Is64, uint64_t, uint32_t>::type;
+ using uint = std::conditional_t<Is64, uint64_t, uint32_t>;
using Ehdr = Elf_Ehdr_Impl<ELFType<E, Is64>>;
using Shdr = Elf_Shdr_Impl<ELFType<E, Is64>>;
using Sym = Elf_Sym_Impl<ELFType<E, Is64>>;
struct Elf_Dyn_Impl : Elf_Dyn_Base<ELFT> {
using Elf_Dyn_Base<ELFT>::d_tag;
using Elf_Dyn_Base<ELFT>::d_un;
- using intX_t = typename std::conditional<ELFT::Is64Bits,
- int64_t, int32_t>::type;
- using uintX_t = typename std::conditional<ELFT::Is64Bits,
- uint64_t, uint32_t>::type;
+ using intX_t = std::conditional_t<ELFT::Is64Bits, int64_t, int32_t>;
+ using uintX_t = std::conditional_t<ELFT::Is64Bits, uint64_t, uint32_t>;
intX_t getTag() const { return d_tag; }
uintX_t getVal() const { return d_un.d_val; }
uintX_t getPtr() const { return d_un.d_ptr; }
/// Deallocate space for a sequence of objects without constructing them.
template <typename T>
- typename std::enable_if<
- !std::is_same<typename std::remove_cv<T>::type, void>::value, void>::type
+ std::enable_if_t<!std::is_same<std::remove_cv_t<T>, void>::value, void>
Deallocate(T *Ptr, size_t Num = 1) {
Deallocate(static_cast<const void *>(Ptr), Num * sizeof(T));
}
template <typename T> Error readEnum(T &Dest) {
static_assert(std::is_enum<T>::value,
"Cannot call readEnum with non-enum value!");
- typename std::underlying_type<T>::type N;
+ std::underlying_type_t<T> N;
if (auto EC = readInteger(N))
return EC;
Dest = static_cast<T>(N);
static_assert(std::is_enum<T>::value,
"Cannot call writeEnum with non-Enum type");
- using U = typename std::underlying_type<T>::type;
+ using U = std::underlying_type_t<T>;
return writeInteger<U>(static_cast<U>(Num));
}
/// Always allow upcasts, and perform no dynamic check for them.
template <typename To, typename From>
-struct isa_impl<
- To, From, typename std::enable_if<std::is_base_of<To, From>::value>::type> {
+struct isa_impl<To, From, std::enable_if_t<std::is_base_of<To, From>::value>> {
static inline bool doit(const From &) { return true; }
};
struct cast_retty_impl<To, std::unique_ptr<From>> {
private:
using PointerType = typename cast_retty_impl<To, From *>::ret_type;
- using ResultType = typename std::remove_pointer<PointerType>::type;
+ using ResultType = std::remove_pointer_t<PointerType>;
public:
using ret_type = std::unique_ptr<ResultType>;
// cast<Instruction>(myVal)->getParent()
//
template <class X, class Y>
-inline typename std::enable_if<!is_simple_type<Y>::value,
- typename cast_retty<X, const Y>::ret_type>::type
+inline std::enable_if_t<!is_simple_type<Y>::value,
+ typename cast_retty<X, const Y>::ret_type>
cast(const Y &Val) {
assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!");
return cast_convert_val<
// accepted.
//
template <class X, class Y>
-LLVM_NODISCARD inline
- typename std::enable_if<!is_simple_type<Y>::value,
- typename cast_retty<X, const Y>::ret_type>::type
- cast_or_null(const Y &Val) {
+LLVM_NODISCARD inline std::enable_if_t<
+ !is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>
+cast_or_null(const Y &Val) {
if (!Val)
return nullptr;
assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!");
}
template <class X, class Y>
-LLVM_NODISCARD inline
- typename std::enable_if<!is_simple_type<Y>::value,
- typename cast_retty<X, Y>::ret_type>::type
- cast_or_null(Y &Val) {
+LLVM_NODISCARD inline std::enable_if_t<!is_simple_type<Y>::value,
+ typename cast_retty<X, Y>::ret_type>
+cast_or_null(Y &Val) {
if (!Val)
return nullptr;
assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!");
//
template <class X, class Y>
-LLVM_NODISCARD inline
- typename std::enable_if<!is_simple_type<Y>::value,
- typename cast_retty<X, const Y>::ret_type>::type
- dyn_cast(const Y &Val) {
+LLVM_NODISCARD inline std::enable_if_t<
+ !is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>
+dyn_cast(const Y &Val) {
return isa<X>(Val) ? cast<X>(Val) : nullptr;
}
// value is accepted.
//
template <class X, class Y>
-LLVM_NODISCARD inline
- typename std::enable_if<!is_simple_type<Y>::value,
- typename cast_retty<X, const Y>::ret_type>::type
- dyn_cast_or_null(const Y &Val) {
+LLVM_NODISCARD inline std::enable_if_t<
+ !is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>
+dyn_cast_or_null(const Y &Val) {
return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
}
template <class X, class Y>
-LLVM_NODISCARD inline
- typename std::enable_if<!is_simple_type<Y>::value,
- typename cast_retty<X, Y>::ret_type>::type
- dyn_cast_or_null(Y &Val) {
+LLVM_NODISCARD inline std::enable_if_t<!is_simple_type<Y>::value,
+ typename cast_retty<X, Y>::ret_type>
+dyn_cast_or_null(Y &Val) {
return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
}
/// \p RHS.
/// \return Empty optional if the operation overflows, or result otherwise.
template <typename T, typename F>
-typename std::enable_if<std::is_integral<T>::value && sizeof(T) * 8 <= 64,
- llvm::Optional<T>>::type
+std::enable_if_t<std::is_integral<T>::value && sizeof(T) * 8 <= 64,
+ llvm::Optional<T>>
checkedOp(T LHS, T RHS, F Op, bool Signed = true) {
llvm::APInt ALHS(/*BitSize=*/sizeof(T) * 8, LHS, Signed);
llvm::APInt ARHS(/*BitSize=*/sizeof(T) * 8, RHS, Signed);
/// \return Optional of sum if no signed overflow occurred,
/// \c None otherwise.
template <typename T>
-typename std::enable_if<std::is_signed<T>::value, llvm::Optional<T>>::type
+std::enable_if_t<std::is_signed<T>::value, llvm::Optional<T>>
checkedAdd(T LHS, T RHS) {
return checkedOp(LHS, RHS, &llvm::APInt::sadd_ov);
}
/// \return Optional of sum if no signed overflow occurred,
/// \c None otherwise.
template <typename T>
-typename std::enable_if<std::is_signed<T>::value, llvm::Optional<T>>::type
+std::enable_if_t<std::is_signed<T>::value, llvm::Optional<T>>
checkedSub(T LHS, T RHS) {
return checkedOp(LHS, RHS, &llvm::APInt::ssub_ov);
}
/// \return Optional of product if no signed overflow occurred,
/// \c None otherwise.
template <typename T>
-typename std::enable_if<std::is_signed<T>::value, llvm::Optional<T>>::type
+std::enable_if_t<std::is_signed<T>::value, llvm::Optional<T>>
checkedMul(T LHS, T RHS) {
return checkedOp(LHS, RHS, &llvm::APInt::smul_ov);
}
/// \return Optional of result if no signed overflow occurred,
/// \c None otherwise.
template <typename T>
-typename std::enable_if<std::is_signed<T>::value, llvm::Optional<T>>::type
+std::enable_if_t<std::is_signed<T>::value, llvm::Optional<T>>
checkedMulAdd(T A, T B, T C) {
if (auto Product = checkedMul(A, B))
return checkedAdd(*Product, C);
/// \return Optional of sum if no unsigned overflow occurred,
/// \c None otherwise.
template <typename T>
-typename std::enable_if<std::is_unsigned<T>::value, llvm::Optional<T>>::type
+std::enable_if_t<std::is_unsigned<T>::value, llvm::Optional<T>>
checkedAddUnsigned(T LHS, T RHS) {
return checkedOp(LHS, RHS, &llvm::APInt::uadd_ov, /*Signed=*/false);
}
/// \return Optional of product if no unsigned overflow occurred,
/// \c None otherwise.
template <typename T>
-typename std::enable_if<std::is_unsigned<T>::value, llvm::Optional<T>>::type
+std::enable_if_t<std::is_unsigned<T>::value, llvm::Optional<T>>
checkedMulUnsigned(T LHS, T RHS) {
return checkedOp(LHS, RHS, &llvm::APInt::umul_ov, /*Signed=*/false);
}
/// \return Optional of result if no unsigned overflow occurred,
/// \c None otherwise.
template <typename T>
-typename std::enable_if<std::is_unsigned<T>::value, llvm::Optional<T>>::type
+std::enable_if_t<std::is_unsigned<T>::value, llvm::Optional<T>>
checkedMulAddUnsigned(T A, T B, T C) {
if (auto Product = checkedMulUnsigned(A, B))
return checkedAddUnsigned(*Product, C);
struct format_provider<std::chrono::duration<Rep, Period>> {
private:
typedef std::chrono::duration<Rep, Period> Dur;
- typedef typename std::conditional<
- std::chrono::treat_as_floating_point<Rep>::value, double, intmax_t>::type
+ typedef std::conditional_t<std::chrono::treat_as_floating_point<Rep>::value,
+ double, intmax_t>
InternalRep;
template <typename AsPeriod> static InternalRep getAs(const Dur &D) {
template <typename R, typename C, typename... Args>
struct callback_traits<R (C::*)(Args...) const> {
using result_type = R;
- using arg_type = typename std::tuple_element<0, std::tuple<Args...>>::type;
+ using arg_type = std::tuple_element_t<0, std::tuple<Args...>>;
static_assert(sizeof...(Args) == 1, "callback function must have one and only one parameter");
static_assert(std::is_same<result_type, void>::value,
"callback return type must be void");
- static_assert(
- std::is_lvalue_reference<arg_type>::value &&
- std::is_const<typename std::remove_reference<arg_type>::type>::value,
- "callback arg_type must be a const lvalue reference");
+ static_assert(std::is_lvalue_reference<arg_type>::value &&
+ std::is_const<std::remove_reference_t<arg_type>>::value,
+ "callback arg_type must be a const lvalue reference");
};
} // namespace detail
}
}
- template <class T, class = typename std::enable_if<
- std::is_assignable<T&, T>::value>::type>
+ template <class T,
+ class = std::enable_if_t<std::is_assignable<T &, T>::value>>
void setDefaultImpl() {
const OptionValue<DataType> &V = this->getDefault();
if (V.hasValue())
this->setValue(V.getValue());
}
- template <class T, class = typename std::enable_if<
- !std::is_assignable<T&, T>::value>::type>
+ template <class T,
+ class = std::enable_if_t<!std::is_assignable<T &, T>::value>>
void setDefaultImpl(...) {}
void setDefault() override { setDefaultImpl<DataType>(); }
}
template <typename value_type>
-using make_unsigned_t = typename std::make_unsigned<value_type>::type;
+using make_unsigned_t = std::make_unsigned_t<value_type>;
/// Read a value of a particular endianness from memory, for a location
/// that starts at the given bit offset within the first byte.
static const bool isRef = std::is_reference<T>::value;
- using wrap = std::reference_wrapper<typename std::remove_reference<T>::type>;
+ using wrap = std::reference_wrapper<std::remove_reference_t<T>>;
using error_type = std::unique_ptr<ErrorInfoBase>;
public:
- using storage_type = typename std::conditional<isRef, wrap, T>::type;
+ using storage_type = std::conditional_t<isRef, wrap, T>;
using value_type = T;
private:
- using reference = typename std::remove_reference<T>::type &;
- using const_reference = const typename std::remove_reference<T>::type &;
- using pointer = typename std::remove_reference<T>::type *;
- using const_pointer = const typename std::remove_reference<T>::type *;
+ using reference = std::remove_reference_t<T> &;
+ using const_reference = const std::remove_reference_t<T> &;
+ using pointer = std::remove_reference_t<T> *;
+ using const_pointer = const std::remove_reference_t<T> *;
public:
/// Create an Expected<T> error value from the given Error.
/// must be convertible to T.
template <typename OtherT>
Expected(OtherT &&Val,
- typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
- * = nullptr)
+ std::enable_if_t<std::is_convertible<OtherT, T>::value> * = nullptr)
: HasError(false)
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
// Expected is unchecked upon construction in Debug builds.
- , Unchecked(true)
+ ,
+ Unchecked(true)
#endif
{
new (getStorage()) storage_type(std::forward<OtherT>(Val));
/// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
/// must be convertible to T.
template <class OtherT>
- Expected(Expected<OtherT> &&Other,
- typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
- * = nullptr) {
+ Expected(
+ Expected<OtherT> &&Other,
+ std::enable_if_t<std::is_convertible<OtherT, T>::value> * = nullptr) {
moveConstruct(std::move(Other));
}
template <class OtherT>
explicit Expected(
Expected<OtherT> &&Other,
- typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
- nullptr) {
+ std::enable_if_t<!std::is_convertible<OtherT, T>::value> * = nullptr) {
moveConstruct(std::move(Other));
}
static const bool isRef = std::is_reference<T>::value;
- using wrap = std::reference_wrapper<typename std::remove_reference<T>::type>;
+ using wrap = std::reference_wrapper<std::remove_reference_t<T>>;
public:
- using storage_type = typename std::conditional<isRef, wrap, T>::type;
+ using storage_type = std::conditional_t<isRef, wrap, T>;
private:
- using reference = typename std::remove_reference<T>::type &;
- using const_reference = const typename std::remove_reference<T>::type &;
- using pointer = typename std::remove_reference<T>::type *;
- using const_pointer = const typename std::remove_reference<T>::type *;
+ using reference = std::remove_reference_t<T> &;
+ using const_reference = const std::remove_reference_t<T> &;
+ using pointer = std::remove_reference_t<T> *;
+ using const_pointer = const std::remove_reference_t<T> *;
public:
template <class E>
ErrorOr(E ErrorCode,
- typename std::enable_if<std::is_error_code_enum<E>::value ||
- std::is_error_condition_enum<E>::value,
- void *>::type = nullptr)
+ std::enable_if_t<std::is_error_code_enum<E>::value ||
+ std::is_error_condition_enum<E>::value,
+ void *> = nullptr)
: HasError(true) {
new (getErrorStorage()) std::error_code(make_error_code(ErrorCode));
}
template <class OtherT>
ErrorOr(OtherT &&Val,
- typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
- * = nullptr)
+ std::enable_if_t<std::is_convertible<OtherT, T>::value> * = nullptr)
: HasError(false) {
new (getStorage()) storage_type(std::forward<OtherT>(Val));
}
}
template <class OtherT>
- ErrorOr(
- const ErrorOr<OtherT> &Other,
- typename std::enable_if<std::is_convertible<OtherT, T>::value>::type * =
- nullptr) {
+ ErrorOr(const ErrorOr<OtherT> &Other,
+ std::enable_if_t<std::is_convertible<OtherT, T>::value> * = nullptr) {
copyConstruct(Other);
}
template <class OtherT>
explicit ErrorOr(
const ErrorOr<OtherT> &Other,
- typename std::enable_if<
- !std::is_convertible<OtherT, const T &>::value>::type * = nullptr) {
+ std::enable_if_t<!std::is_convertible<OtherT, const T &>::value> * =
+ nullptr) {
copyConstruct(Other);
}
}
template <class OtherT>
- ErrorOr(
- ErrorOr<OtherT> &&Other,
- typename std::enable_if<std::is_convertible<OtherT, T>::value>::type * =
- nullptr) {
+ ErrorOr(ErrorOr<OtherT> &&Other,
+ std::enable_if_t<std::is_convertible<OtherT, T>::value> * = nullptr) {
moveConstruct(std::move(Other));
}
template <class OtherT>
explicit ErrorOr(
ErrorOr<OtherT> &&Other,
- typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
- nullptr) {
+ std::enable_if_t<!std::is_convertible<OtherT, T>::value> * = nullptr) {
moveConstruct(std::move(Other));
}
};
template <class T, class E>
-typename std::enable_if<std::is_error_code_enum<E>::value ||
- std::is_error_condition_enum<E>::value,
- bool>::type
+std::enable_if_t<std::is_error_code_enum<E>::value ||
+ std::is_error_condition_enum<E>::value,
+ bool>
operator==(const ErrorOr<T> &Err, E Code) {
return Err.getError() == Code;
}
template <typename T>
struct format_provider<
- T, typename std::enable_if<detail::use_integral_formatter<T>::value>::type>
+ T, std::enable_if_t<detail::use_integral_formatter<T>::value>>
: public detail::HelperFunctions {
private:
public:
/// cases indicates the minimum number of nibbles to print.
template <typename T>
struct format_provider<
- T, typename std::enable_if<detail::use_pointer_formatter<T>::value>::type>
+ T, std::enable_if_t<detail::use_pointer_formatter<T>::value>>
: public detail::HelperFunctions {
private:
public:
template <typename T>
struct format_provider<
- T, typename std::enable_if<detail::use_string_formatter<T>::value>::type> {
+ T, std::enable_if_t<detail::use_string_formatter<T>::value>> {
static void format(const T &V, llvm::raw_ostream &Stream, StringRef Style) {
size_t N = StringRef::npos;
if (!Style.empty() && Style.getAsInteger(10, N)) {
/// character. Otherwise, it is treated as an integer options string.
///
template <typename T>
-struct format_provider<
- T, typename std::enable_if<detail::use_char_formatter<T>::value>::type> {
+struct format_provider<T,
+ std::enable_if_t<detail::use_char_formatter<T>::value>> {
static void format(const char &V, llvm::raw_ostream &Stream,
StringRef Style) {
if (Style.empty())
/// else.
template <typename T>
-struct format_provider<
- T, typename std::enable_if<detail::use_double_formatter<T>::value>::type>
+struct format_provider<T,
+ std::enable_if_t<detail::use_double_formatter<T>::value>>
: public detail::HelperFunctions {
static void format(const T &V, llvm::raw_ostream &Stream, StringRef Style) {
FloatStyle S;
explicit provider_format_adapter(T &&Item) : Item(std::forward<T>(Item)) {}
void format(llvm::raw_ostream &S, StringRef Options) override {
- format_provider<typename std::decay<T>::type>::format(Item, S, Options);
+ format_provider<std::decay_t<T>>::format(Item, S, Options);
}
};
//
template <class T> class has_FormatProvider {
public:
- using Decayed = typename std::decay<T>::type;
+ using Decayed = std::decay_t<T>;
typedef void (*Signature_format)(const Decayed &, llvm::raw_ostream &,
StringRef);
// Test if raw_ostream& << T -> raw_ostream& is findable via ADL.
template <class T> class has_StreamOperator {
public:
- using ConstRefT = const typename std::decay<T>::type &;
+ using ConstRefT = const std::decay_t<T> &;
template <typename U>
- static char test(typename std::enable_if<
- std::is_same<decltype(std::declval<llvm::raw_ostream &>()
- << std::declval<U>()),
- llvm::raw_ostream &>::value,
- int *>::type);
+ static char test(
+ std::enable_if_t<std::is_same<decltype(std::declval<llvm::raw_ostream &>()
+ << std::declval<U>()),
+ llvm::raw_ostream &>::value,
+ int *>);
template <typename U> static double test(...);
struct uses_format_member
: public std::integral_constant<
bool,
- std::is_base_of<format_adapter,
- typename std::remove_reference<T>::type>::value> {};
+ std::is_base_of<format_adapter, std::remove_reference_t<T>>::value> {
+};
// Simple template that decides whether a type T should use the format_provider
// based format() invocation. The member function takes priority, so this test
};
template <typename T>
-typename std::enable_if<uses_format_member<T>::value, T>::type
+std::enable_if_t<uses_format_member<T>::value, T>
build_format_adapter(T &&Item) {
return std::forward<T>(Item);
}
template <typename T>
-typename std::enable_if<uses_format_provider<T>::value,
- provider_format_adapter<T>>::type
+std::enable_if_t<uses_format_provider<T>::value, provider_format_adapter<T>>
build_format_adapter(T &&Item) {
return provider_format_adapter<T>(std::forward<T>(Item));
}
template <typename T>
-typename std::enable_if<uses_stream_operator<T>::value,
- stream_operator_format_adapter<T>>::type
+std::enable_if_t<uses_stream_operator<T>::value,
+ stream_operator_format_adapter<T>>
build_format_adapter(T &&Item) {
// If the caller passed an Error by value, then stream_operator_format_adapter
// would be responsible for consuming it.
// Make the caller opt into this by calling fmt_consume().
static_assert(
- !std::is_same<llvm::Error, typename std::remove_cv<T>::type>::value,
+ !std::is_same<llvm::Error, std::remove_cv_t<T>>::value,
"llvm::Error-by-value must be wrapped in fmt_consume() for formatv");
return stream_operator_format_adapter<T>(std::forward<T>(Item));
}
template <typename T>
-typename std::enable_if<uses_missing_provider<T>::value,
- missing_format_adapter<T>>::type
+std::enable_if_t<uses_missing_provider<T>::value, missing_format_adapter<T>>
build_format_adapter(T &&Item) {
return missing_format_adapter<T>();
}
using ParentPtr = decltype(std::declval<NodeT *>()->getParent());
static_assert(std::is_pointer<ParentPtr>::value,
"Currently NodeT's parent must be a pointer type");
- using ParentType = typename std::remove_pointer<ParentPtr>::type;
+ using ParentType = std::remove_pointer_t<ParentPtr>;
static constexpr bool IsPostDominator = IsPostDom;
using UpdateType = cfg::Update<NodePtr>;
template <class NodeTy, bool IsPostDom> class IDFCalculatorBase {
public:
using OrderedNodeTy =
- typename std::conditional<IsPostDom, Inverse<NodeTy *>, NodeTy *>::type;
+ std::conditional_t<IsPostDom, Inverse<NodeTy *>, NodeTy *>;
using ChildrenGetterTy =
IDFCalculatorDetail::ChildrenGetterTy<NodeTy, IsPostDom>;
Value(std::nullptr_t) : Type(T_Null) {}
// Boolean (disallow implicit conversions).
// (The last template parameter is a dummy to keep templates distinct.)
- template <
- typename T,
- typename = typename std::enable_if<std::is_same<T, bool>::value>::type,
- bool = false>
+ template <typename T,
+ typename = std::enable_if_t<std::is_same<T, bool>::value>,
+ bool = false>
Value(T B) : Type(T_Boolean) {
create<bool>(B);
}
// Integers (except boolean). Must be non-narrowing convertible to int64_t.
- template <
- typename T,
- typename = typename std::enable_if<std::is_integral<T>::value>::type,
- typename = typename std::enable_if<!std::is_same<T, bool>::value>::type>
+ template <typename T, typename = std::enable_if_t<std::is_integral<T>::value>,
+ typename = std::enable_if_t<!std::is_same<T, bool>::value>>
Value(T I) : Type(T_Integer) {
create<int64_t>(int64_t{I});
}
// Floating point. Must be non-narrowing convertible to double.
template <typename T,
- typename =
- typename std::enable_if<std::is_floating_point<T>::value>::type,
+ typename = std::enable_if_t<std::is_floating_point<T>::value>,
double * = nullptr>
Value(T D) : Type(T_Double) {
create<double>(double{D});
template <typename OtherT>
MSVCPExpected(
OtherT &&Val,
- typename std::enable_if<std::is_convertible<OtherT, T>::value>::type * =
- nullptr)
+ std::enable_if_t<std::is_convertible<OtherT, T>::value> * = nullptr)
: Expected<T>(std::move(Val)) {}
template <class OtherT>
MSVCPExpected(
Expected<OtherT> &&Other,
- typename std::enable_if<std::is_convertible<OtherT, T>::value>::type * =
- nullptr)
+ std::enable_if_t<std::is_convertible<OtherT, T>::value> * = nullptr)
: Expected<T>(std::move(Other)) {}
template <class OtherT>
explicit MSVCPExpected(
Expected<OtherT> &&Other,
- typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
- nullptr)
+ std::enable_if_t<!std::is_convertible<OtherT, T>::value> * = nullptr)
: Expected<T>(std::move(Other)) {}
};
/// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
/// left too many places.
template <unsigned N>
-constexpr inline typename std::enable_if<(N < 64), bool>::type
-isUInt(uint64_t X) {
+constexpr inline std::enable_if_t<(N < 64), bool> isUInt(uint64_t X) {
static_assert(N > 0, "isUInt<0> doesn't make sense");
return X < (UINT64_C(1) << (N));
}
template <unsigned N>
-constexpr inline typename std::enable_if<N >= 64, bool>::type
-isUInt(uint64_t X) {
+constexpr inline std::enable_if_t<N >= 64, bool> isUInt(uint64_t X) {
return true;
}
/// Subtract two unsigned integers, X and Y, of type T and return the absolute
/// value of the result.
template <typename T>
-typename std::enable_if<std::is_unsigned<T>::value, T>::type
-AbsoluteDifference(T X, T Y) {
+std::enable_if_t<std::is_unsigned<T>::value, T> AbsoluteDifference(T X, T Y) {
return std::max(X, Y) - std::min(X, Y);
}
/// maximum representable value of T on overflow. ResultOverflowed indicates if
/// the result is larger than the maximum representable value of type T.
template <typename T>
-typename std::enable_if<std::is_unsigned<T>::value, T>::type
+std::enable_if_t<std::is_unsigned<T>::value, T>
SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
bool Dummy;
bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
/// maximum representable value of T on overflow. ResultOverflowed indicates if
/// the result is larger than the maximum representable value of type T.
template <typename T>
-typename std::enable_if<std::is_unsigned<T>::value, T>::type
+std::enable_if_t<std::is_unsigned<T>::value, T>
SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
bool Dummy;
bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
/// overflow. ResultOverflowed indicates if the result is larger than the
/// maximum representable value of type T.
template <typename T>
-typename std::enable_if<std::is_unsigned<T>::value, T>::type
+std::enable_if_t<std::is_unsigned<T>::value, T>
SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) {
bool Dummy;
bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
/// Add two signed integers, computing the two's complement truncated result,
/// returning true if overflow occured.
template <typename T>
-typename std::enable_if<std::is_signed<T>::value, T>::type
-AddOverflow(T X, T Y, T &Result) {
+std::enable_if_t<std::is_signed<T>::value, T> AddOverflow(T X, T Y, T &Result) {
#if __has_builtin(__builtin_add_overflow)
return __builtin_add_overflow(X, Y, &Result);
#else
// Perform the unsigned addition.
- using U = typename std::make_unsigned<T>::type;
+ using U = std::make_unsigned_t<T>;
const U UX = static_cast<U>(X);
const U UY = static_cast<U>(Y);
const U UResult = UX + UY;
/// Subtract two signed integers, computing the two's complement truncated
/// result, returning true if an overflow ocurred.
template <typename T>
-typename std::enable_if<std::is_signed<T>::value, T>::type
-SubOverflow(T X, T Y, T &Result) {
+std::enable_if_t<std::is_signed<T>::value, T> SubOverflow(T X, T Y, T &Result) {
#if __has_builtin(__builtin_sub_overflow)
return __builtin_sub_overflow(X, Y, &Result);
#else
// Perform the unsigned addition.
- using U = typename std::make_unsigned<T>::type;
+ using U = std::make_unsigned_t<T>;
const U UX = static_cast<U>(X);
const U UY = static_cast<U>(Y);
const U UResult = UX - UY;
#endif
}
-
/// Multiply two signed integers, computing the two's complement truncated
/// result, returning true if an overflow ocurred.
template <typename T>
-typename std::enable_if<std::is_signed<T>::value, T>::type
-MulOverflow(T X, T Y, T &Result) {
+std::enable_if_t<std::is_signed<T>::value, T> MulOverflow(T X, T Y, T &Result) {
// Perform the unsigned multiplication on absolute values.
- using U = typename std::make_unsigned<T>::type;
+ using U = std::make_unsigned_t<T>;
const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X);
const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y);
const U UResult = UX * UY;
}
template <typename T>
-inline typename std::enable_if<std::is_enum<T>::value, T>::type
-getSwappedBytes(T C) {
+inline std::enable_if_t<std::is_enum<T>::value, T> getSwappedBytes(T C) {
return static_cast<T>(
- getSwappedBytes(static_cast<typename std::underlying_type<T>::type>(C)));
+ getSwappedBytes(static_cast<std::underlying_type_t<T>>(C)));
}
template<typename T>
// type-specialized domain (before type erasure) and then erase this into a
// std::function.
template <typename Callable> struct Task {
- using ResultTy = typename std::result_of<Callable()>::type;
+ using ResultTy = std::result_of_t<Callable()>;
explicit Task(Callable C, TaskQueue &Parent)
: C(std::move(C)), P(std::make_shared<std::promise<ResultTy>>()),
Parent(&Parent) {}
/// used to wait for the task (and all previous tasks that have not yet
/// completed) to finish.
template <typename Callable>
- std::future<typename std::result_of<Callable()>::type> async(Callable &&C) {
+ std::future<std::result_of_t<Callable()>> async(Callable &&C) {
#if !LLVM_ENABLE_THREADS
static_assert(false,
"TaskQueue requires building with LLVM_ENABLE_THREADS!");
#endif
Task<Callable> T{std::move(C), *this};
- using ResultTy = typename std::result_of<Callable()>::type;
+ using ResultTy = std::result_of_t<Callable()>;
std::future<ResultTy> F = T.P->get_future();
{
std::lock_guard<std::mutex> Lock(QueueLock);
/// used in the class; they are supplied here redundantly only so
/// that it's clear what the counts are counting in callers.
template <typename... Tys>
- static constexpr typename std::enable_if<
- std::is_same<Foo<TrailingTys...>, Foo<Tys...>>::value, size_t>::type
+ static constexpr std::enable_if_t<
+ std::is_same<Foo<TrailingTys...>, Foo<Tys...>>::value, size_t>
additionalSizeToAlloc(typename trailing_objects_internal::ExtractSecondType<
TrailingTys, size_t>::type... Counts) {
return ParentType::additionalSizeToAllocImpl(0, Counts...);
/// additionalSizeToAlloc, except it *does* include the size of the base
/// object.
template <typename... Tys>
- static constexpr typename std::enable_if<
- std::is_same<Foo<TrailingTys...>, Foo<Tys...>>::value, size_t>::type
+ static constexpr std::enable_if_t<
+ std::is_same<Foo<TrailingTys...>, Foo<Tys...>>::value, size_t>
totalSizeToAlloc(typename trailing_objects_internal::ExtractSecondType<
TrailingTys, size_t>::type... Counts) {
return sizeof(BaseTy) + ParentType::additionalSizeToAllocImpl(0, Counts...);
}
template <typename T, typename Context>
- typename std::enable_if<has_SequenceTraits<T>::value, void>::type
+ std::enable_if_t<has_SequenceTraits<T>::value, void>
mapOptionalWithContext(const char *Key, T &Val, Context &Ctx) {
// omit key/value instead of outputting empty sequence
if (this->canElideEmptySequence() && !(Val.begin() != Val.end()))
}
template <typename T, typename Context>
- typename std::enable_if<!has_SequenceTraits<T>::value, void>::type
+ std::enable_if_t<!has_SequenceTraits<T>::value, void>
mapOptionalWithContext(const char *Key, T &Val, Context &Ctx) {
this->processKey(Key, Val, false, Ctx);
}
} // end namespace detail
template <typename T>
-typename std::enable_if<has_ScalarEnumerationTraits<T>::value, void>::type
+std::enable_if_t<has_ScalarEnumerationTraits<T>::value, void>
yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
io.beginEnumScalar();
ScalarEnumerationTraits<T>::enumeration(io, Val);
}
template <typename T>
-typename std::enable_if<has_ScalarBitSetTraits<T>::value, void>::type
+std::enable_if_t<has_ScalarBitSetTraits<T>::value, void>
yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
bool DoClear;
if ( io.beginBitSetScalar(DoClear) ) {
}
template <typename T>
-typename std::enable_if<has_ScalarTraits<T>::value, void>::type
-yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
+std::enable_if_t<has_ScalarTraits<T>::value, void> yamlize(IO &io, T &Val, bool,
+ EmptyContext &Ctx) {
if ( io.outputting() ) {
std::string Storage;
raw_string_ostream Buffer(Storage);
}
template <typename T>
-typename std::enable_if<has_BlockScalarTraits<T>::value, void>::type
+std::enable_if_t<has_BlockScalarTraits<T>::value, void>
yamlize(IO &YamlIO, T &Val, bool, EmptyContext &Ctx) {
if (YamlIO.outputting()) {
std::string Storage;
}
template <typename T>
-typename std::enable_if<has_TaggedScalarTraits<T>::value, void>::type
+std::enable_if_t<has_TaggedScalarTraits<T>::value, void>
yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
if (io.outputting()) {
std::string ScalarStorage, TagStorage;
}
template <typename T, typename Context>
-typename std::enable_if<validatedMappingTraits<T, Context>::value, void>::type
+std::enable_if_t<validatedMappingTraits<T, Context>::value, void>
yamlize(IO &io, T &Val, bool, Context &Ctx) {
if (has_FlowTraits<MappingTraits<T>>::value)
io.beginFlowMapping();
}
template <typename T, typename Context>
-typename std::enable_if<unvalidatedMappingTraits<T, Context>::value, void>::type
+std::enable_if_t<unvalidatedMappingTraits<T, Context>::value, void>
yamlize(IO &io, T &Val, bool, Context &Ctx) {
if (has_FlowTraits<MappingTraits<T>>::value) {
io.beginFlowMapping();
}
template <typename T>
-typename std::enable_if<has_CustomMappingTraits<T>::value, void>::type
+std::enable_if_t<has_CustomMappingTraits<T>::value, void>
yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
if ( io.outputting() ) {
io.beginMapping();
}
template <typename T>
-typename std::enable_if<has_PolymorphicTraits<T>::value, void>::type
+std::enable_if_t<has_PolymorphicTraits<T>::value, void>
yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
switch (io.outputting() ? PolymorphicTraits<T>::getKind(Val)
: io.getNodeKind()) {
}
template <typename T>
-typename std::enable_if<missingTraits<T, EmptyContext>::value, void>::type
+std::enable_if_t<missingTraits<T, EmptyContext>::value, void>
yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)];
}
template <typename T, typename Context>
-typename std::enable_if<has_SequenceTraits<T>::value, void>::type
+std::enable_if_t<has_SequenceTraits<T>::value, void>
yamlize(IO &io, T &Seq, bool, Context &Ctx) {
if ( has_FlowTraits< SequenceTraits<T>>::value ) {
unsigned incnt = io.beginFlowSequence();
// type. This way endian aware types are supported whenever the traits are
// defined for the underlying type.
template <typename value_type, support::endianness endian, size_t alignment>
-struct ScalarTraits<
- support::detail::packed_endian_specific_integral<value_type, endian,
- alignment>,
- typename std::enable_if<has_ScalarTraits<value_type>::value>::type> {
+struct ScalarTraits<support::detail::packed_endian_specific_integral<
+ value_type, endian, alignment>,
+ std::enable_if_t<has_ScalarTraits<value_type>::value>> {
using endian_type =
support::detail::packed_endian_specific_integral<value_type, endian,
alignment>;
struct ScalarEnumerationTraits<
support::detail::packed_endian_specific_integral<value_type, endian,
alignment>,
- typename std::enable_if<
- has_ScalarEnumerationTraits<value_type>::value>::type> {
+ std::enable_if_t<has_ScalarEnumerationTraits<value_type>::value>> {
using endian_type =
support::detail::packed_endian_specific_integral<value_type, endian,
alignment>;
struct ScalarBitSetTraits<
support::detail::packed_endian_specific_integral<value_type, endian,
alignment>,
- typename std::enable_if<has_ScalarBitSetTraits<value_type>::value>::type> {
+ std::enable_if_t<has_ScalarBitSetTraits<value_type>::value>> {
using endian_type =
support::detail::packed_endian_specific_integral<value_type, endian,
alignment>;
// Define non-member operator>> so that Input can stream in a document list.
template <typename T>
-inline
-typename std::enable_if<has_DocumentListTraits<T>::value, Input &>::type
+inline std::enable_if_t<has_DocumentListTraits<T>::value, Input &>
operator>>(Input &yin, T &docList) {
int i = 0;
EmptyContext Ctx;
// Define non-member operator>> so that Input can stream in a map as a document.
template <typename T>
-inline typename std::enable_if<has_MappingTraits<T, EmptyContext>::value,
- Input &>::type
+inline std::enable_if_t<has_MappingTraits<T, EmptyContext>::value, Input &>
operator>>(Input &yin, T &docMap) {
EmptyContext Ctx;
yin.setCurrentDocument();
// Define non-member operator>> so that Input can stream in a sequence as
// a document.
template <typename T>
-inline
-typename std::enable_if<has_SequenceTraits<T>::value, Input &>::type
+inline std::enable_if_t<has_SequenceTraits<T>::value, Input &>
operator>>(Input &yin, T &docSeq) {
EmptyContext Ctx;
if (yin.setCurrentDocument())
// Define non-member operator>> so that Input can stream in a block scalar.
template <typename T>
-inline
-typename std::enable_if<has_BlockScalarTraits<T>::value, Input &>::type
+inline std::enable_if_t<has_BlockScalarTraits<T>::value, Input &>
operator>>(Input &In, T &Val) {
EmptyContext Ctx;
if (In.setCurrentDocument())
// Define non-member operator>> so that Input can stream in a string map.
template <typename T>
-inline
-typename std::enable_if<has_CustomMappingTraits<T>::value, Input &>::type
+inline std::enable_if_t<has_CustomMappingTraits<T>::value, Input &>
operator>>(Input &In, T &Val) {
EmptyContext Ctx;
if (In.setCurrentDocument())
// Define non-member operator>> so that Input can stream in a polymorphic type.
template <typename T>
-inline typename std::enable_if<has_PolymorphicTraits<T>::value, Input &>::type
+inline std::enable_if_t<has_PolymorphicTraits<T>::value, Input &>
operator>>(Input &In, T &Val) {
EmptyContext Ctx;
if (In.setCurrentDocument())
// Provide better error message about types missing a trait specialization
template <typename T>
-inline typename std::enable_if<missingTraits<T, EmptyContext>::value,
- Input &>::type
+inline std::enable_if_t<missingTraits<T, EmptyContext>::value, Input &>
operator>>(Input &yin, T &docSeq) {
char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)];
return yin;
// Define non-member operator<< so that Output can stream out document list.
template <typename T>
-inline
-typename std::enable_if<has_DocumentListTraits<T>::value, Output &>::type
+inline std::enable_if_t<has_DocumentListTraits<T>::value, Output &>
operator<<(Output &yout, T &docList) {
EmptyContext Ctx;
yout.beginDocuments();
// Define non-member operator<< so that Output can stream out a map.
template <typename T>
-inline typename std::enable_if<has_MappingTraits<T, EmptyContext>::value,
- Output &>::type
+inline std::enable_if_t<has_MappingTraits<T, EmptyContext>::value, Output &>
operator<<(Output &yout, T &map) {
EmptyContext Ctx;
yout.beginDocuments();
// Define non-member operator<< so that Output can stream out a sequence.
template <typename T>
-inline
-typename std::enable_if<has_SequenceTraits<T>::value, Output &>::type
+inline std::enable_if_t<has_SequenceTraits<T>::value, Output &>
operator<<(Output &yout, T &seq) {
EmptyContext Ctx;
yout.beginDocuments();
// Define non-member operator<< so that Output can stream out a block scalar.
template <typename T>
-inline
-typename std::enable_if<has_BlockScalarTraits<T>::value, Output &>::type
+inline std::enable_if_t<has_BlockScalarTraits<T>::value, Output &>
operator<<(Output &Out, T &Val) {
EmptyContext Ctx;
Out.beginDocuments();
// Define non-member operator<< so that Output can stream out a string map.
template <typename T>
-inline
-typename std::enable_if<has_CustomMappingTraits<T>::value, Output &>::type
+inline std::enable_if_t<has_CustomMappingTraits<T>::value, Output &>
operator<<(Output &Out, T &Val) {
EmptyContext Ctx;
Out.beginDocuments();
// Define non-member operator<< so that Output can stream out a polymorphic
// type.
template <typename T>
-inline typename std::enable_if<has_PolymorphicTraits<T>::value, Output &>::type
+inline std::enable_if_t<has_PolymorphicTraits<T>::value, Output &>
operator<<(Output &Out, T &Val) {
EmptyContext Ctx;
Out.beginDocuments();
// Provide better error message about types missing a trait specialization
template <typename T>
-inline typename std::enable_if<missingTraits<T, EmptyContext>::value,
- Output &>::type
+inline std::enable_if_t<missingTraits<T, EmptyContext>::value, Output &>
operator<<(Output &yout, T &seq) {
char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)];
return yout;
// If T has SequenceElementTraits, then vector<T> and SmallVector<T, N> have
// SequenceTraits that do the obvious thing.
template <typename T>
-struct SequenceTraits<std::vector<T>,
- typename std::enable_if<CheckIsBool<
- SequenceElementTraits<T>::flow>::value>::type>
+struct SequenceTraits<
+ std::vector<T>,
+ std::enable_if_t<CheckIsBool<SequenceElementTraits<T>::flow>::value>>
: SequenceTraitsImpl<std::vector<T>, SequenceElementTraits<T>::flow> {};
template <typename T, unsigned N>
-struct SequenceTraits<SmallVector<T, N>,
- typename std::enable_if<CheckIsBool<
- SequenceElementTraits<T>::flow>::value>::type>
+struct SequenceTraits<
+ SmallVector<T, N>,
+ std::enable_if_t<CheckIsBool<SequenceElementTraits<T>::flow>::value>>
: SequenceTraitsImpl<SmallVector<T, N>, SequenceElementTraits<T>::flow> {};
template <typename T>
-struct SequenceTraits<SmallVectorImpl<T>,
- typename std::enable_if<CheckIsBool<
- SequenceElementTraits<T>::flow>::value>::type>
+struct SequenceTraits<
+ SmallVectorImpl<T>,
+ std::enable_if_t<CheckIsBool<SequenceElementTraits<T>::flow>::value>>
: SequenceTraitsImpl<SmallVectorImpl<T>, SequenceElementTraits<T>::flow> {};
// Sequences of fundamental types use flow formatting.
template <typename T>
-struct SequenceElementTraits<
- T, typename std::enable_if<std::is_fundamental<T>::value>::type> {
+struct SequenceElementTraits<T,
+ std::enable_if_t<std::is_fundamental<T>::value>> {
static const bool flow = true;
};
/// Call the appropriate insertion operator, given an rvalue reference to a
/// raw_ostream object and return a stream of the same type as the argument.
template <typename OStream, typename T>
-typename std::enable_if<!std::is_reference<OStream>::value &&
- std::is_base_of<raw_ostream, OStream>::value,
- OStream &&>::type
+std::enable_if_t<!std::is_reference<OStream>::value &&
+ std::is_base_of<raw_ostream, OStream>::value,
+ OStream &&>
operator<<(OStream &&OS, const T &Value) {
OS << Value;
return std::move(OS);
/// Also note that enum classes aren't implicitly convertible to integral types,
/// the value may therefore need to be explicitly converted before being used.
template <typename T> class is_integral_or_enum {
- using UnderlyingT = typename std::remove_reference<T>::type;
+ using UnderlyingT = std::remove_reference_t<T>;
public:
static const bool value =
template <typename T>
struct add_lvalue_reference_if_not_pointer<
- T, typename std::enable_if<std::is_pointer<T>::value>::type> {
+ T, std::enable_if_t<std::is_pointer<T>::value>> {
using type = T;
};
struct add_const_past_pointer { using type = const T; };
template <typename T>
-struct add_const_past_pointer<
- T, typename std::enable_if<std::is_pointer<T>::value>::type> {
- using type = const typename std::remove_pointer<T>::type *;
+struct add_const_past_pointer<T, std::enable_if_t<std::is_pointer<T>::value>> {
+ using type = const std::remove_pointer_t<T> *;
};
template <typename T, typename Enable = void>
using type = const T &;
};
template <typename T>
-struct const_pointer_or_const_ref<
- T, typename std::enable_if<std::is_pointer<T>::value>::type> {
+struct const_pointer_or_const_ref<T,
+ std::enable_if_t<std::is_pointer<T>::value>> {
using type = typename add_const_past_pointer<T>::type;
};
/// set.
template <bool IsConst, bool IsOut,
typename BaseIt = typename NeighborSetT::const_iterator,
- typename T = typename std::conditional<IsConst, const EdgeValueType,
- EdgeValueType>::type>
+ typename T =
+ std::conditional_t<IsConst, const EdgeValueType, EdgeValueType>>
class NeighborEdgeIteratorT
: public iterator_adaptor_base<
NeighborEdgeIteratorT<IsConst, IsOut>, BaseIt,
typename std::iterator_traits<BaseIt>::iterator_category, T> {
using InternalEdgeMapT =
- typename std::conditional<IsConst, const EdgeMapT, EdgeMapT>::type;
+ std::conditional_t<IsConst, const EdgeMapT, EdgeMapT>;
friend class NeighborEdgeIteratorT<false, IsOut, BaseIt, EdgeValueType>;
friend class NeighborEdgeIteratorT<true, IsOut, BaseIt,
public:
template <bool IsConstDest,
- typename = typename std::enable_if<IsConstDest && !IsConst>::type>
+ typename = std::enable_if<IsConstDest && !IsConst>>
operator NeighborEdgeIteratorT<IsConstDest, IsOut, BaseIt,
const EdgeValueType>() const {
return NeighborEdgeIteratorT<IsConstDest, IsOut, BaseIt,
public:
using iterator = NeighborEdgeIteratorT<isConst, isOut>;
using const_iterator = NeighborEdgeIteratorT<true, isOut>;
- using GraphT = typename std::conditional<isConst, const Graph, Graph>::type;
+ using GraphT = std::conditional_t<isConst, const Graph, Graph>;
using InternalEdgeMapT =
- typename std::conditional<isConst, const EdgeMapT, EdgeMapT>::type;
+ std::conditional_t<isConst, const EdgeMapT, EdgeMapT>;
private:
InternalEdgeMapT &M;
/// the number of elements in the range and whether the range is empty.
template <bool isConst> class VertexView {
public:
- using iterator = typename std::conditional<isConst, ConstVertexIterator,
- VertexIterator>::type;
+ using iterator =
+ std::conditional_t<isConst, ConstVertexIterator, VertexIterator>;
using const_iterator = ConstVertexIterator;
- using GraphT = typename std::conditional<isConst, const Graph, Graph>::type;
+ using GraphT = std::conditional_t<isConst, const Graph, Graph>;
private:
GraphT &G;
/// the number of elements in the range and whether the range is empty.
template <bool isConst> class EdgeView {
public:
- using iterator = typename std::conditional<isConst, ConstEdgeIterator,
- EdgeIterator>::type;
+ using iterator =
+ std::conditional_t<isConst, ConstEdgeIterator, EdgeIterator>;
using const_iterator = ConstEdgeIterator;
- using GraphT = typename std::conditional<isConst, const Graph, Graph>::type;
+ using GraphT = std::conditional_t<isConst, const Graph, Graph>;
private:
GraphT &G;
// Overload used when T is exactly 'bool', not merely convertible to 'bool'.
void print(bool B) { printStr(B ? "true" : "false"); }
- template <class T>
- typename std::enable_if<std::is_unsigned<T>::value>::type print(T N) {
+ template <class T> std::enable_if_t<std::is_unsigned<T>::value> print(T N) {
fprintf(stderr, "%llu", (unsigned long long)N);
}
- template <class T>
- typename std::enable_if<std::is_signed<T>::value>::type print(T N) {
+ template <class T> std::enable_if_t<std::is_signed<T>::value> print(T N) {
fprintf(stderr, "%lld", (long long)N);
}
void operator()(StringView Str) {
ID.AddString(llvm::StringRef(Str.begin(), Str.size()));
}
- template<typename T>
- typename std::enable_if<std::is_integral<T>::value ||
- std::is_enum<T>::value>::type
+ template <typename T>
+ std::enable_if_t<std::is_integral<T>::value || std::is_enum<T>::value>
operator()(T V) {
ID.AddInteger((unsigned long long)V);
}
IntegerStyle Style) {
static_assert(std::is_signed<T>::value, "Value is not signed!");
- using UnsignedT = typename std::make_unsigned<T>::type;
+ using UnsignedT = std::make_unsigned_t<T>;
if (N >= 0) {
write_unsigned(S, static_cast<UnsignedT>(N), MinDigits, Style);
return false;
int64_t Val = MCE->getValue();
- int64_t SVal = typename std::make_signed<T>::type(Val);
- int64_t UVal = typename std::make_unsigned<T>::type(Val);
+ int64_t SVal = std::make_signed_t<T>(Val);
+ int64_t UVal = std::make_unsigned_t<T>(Val);
if (Val != SVal && Val != UVal)
return false;
if (!isShiftedImm() && (!isImm() || !isa<MCConstantExpr>(getImm())))
return DiagnosticPredicateTy::NoMatch;
- bool IsByte =
- std::is_same<int8_t, typename std::make_signed<T>::type>::value;
+ bool IsByte = std::is_same<int8_t, std::make_signed_t<T>>::value;
if (auto ShiftedImm = getShiftedVal<8>())
if (!(IsByte && ShiftedImm->second) &&
AArch64_AM::isSVECpyImm<T>(uint64_t(ShiftedImm->first)
if (!isShiftedImm() && (!isImm() || !isa<MCConstantExpr>(getImm())))
return DiagnosticPredicateTy::NoMatch;
- bool IsByte =
- std::is_same<int8_t, typename std::make_signed<T>::type>::value;
+ bool IsByte = std::is_same<int8_t, std::make_signed_t<T>>::value;
if (auto ShiftedImm = getShiftedVal<8>())
if (!(IsByte && ShiftedImm->second) &&
AArch64_AM::isSVEAddSubImm<T>(ShiftedImm->first
void addLogicalImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
- typename std::make_unsigned<T>::type Val = MCE->getValue();
+ std::make_unsigned_t<T> Val = MCE->getValue();
uint64_t encoding = AArch64_AM::encodeLogicalImmediate(Val, sizeof(T) * 8);
Inst.addOperand(MCOperand::createImm(encoding));
}
void addLogicalImmNotOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
- typename std::make_unsigned<T>::type Val = ~MCE->getValue();
+ std::make_unsigned_t<T> Val = ~MCE->getValue();
uint64_t encoding = AArch64_AM::encodeLogicalImmediate(Val, sizeof(T) * 8);
Inst.addOperand(MCOperand::createImm(encoding));
}
bool IsImm8 = int8_t(Imm) == Imm;
bool IsImm16 = int16_t(Imm & ~0xff) == Imm;
- if (std::is_same<int8_t, typename std::make_signed<T>::type>::value)
+ if (std::is_same<int8_t, std::make_signed_t<T>>::value)
return IsImm8 || uint8_t(Imm) == Imm;
- if (std::is_same<int16_t, typename std::make_signed<T>::type>::value)
+ if (std::is_same<int16_t, std::make_signed_t<T>>::value)
return IsImm8 || IsImm16 || uint16_t(Imm & ~0xff) == Imm;
return IsImm8 || IsImm16;
/// Returns true if Imm is valid for ADD/SUB.
template <typename T>
static inline bool isSVEAddSubImm(int64_t Imm) {
- bool IsInt8t =
- std::is_same<int8_t, typename std::make_signed<T>::type>::value;
+ bool IsInt8t = std::is_same<int8_t, std::make_signed_t<T>>::value;
return uint8_t(Imm) == Imm || (!IsInt8t && uint16_t(Imm & ~0xff) == Imm);
}
template <typename T>
void AArch64InstPrinter::printImmSVE(T Value, raw_ostream &O) {
- typename std::make_unsigned<T>::type HexValue = Value;
+ std::make_unsigned_t<T> HexValue = Value;
if (getPrintImmHex())
O << '#' << formatHex((uint64_t)HexValue);
void AArch64InstPrinter::printSVELogicalImm(const MCInst *MI, unsigned OpNum,
const MCSubtargetInfo &STI,
raw_ostream &O) {
- typedef typename std::make_signed<T>::type SignedT;
- typedef typename std::make_unsigned<T>::type UnsignedT;
+ typedef std::make_signed_t<T> SignedT;
+ typedef std::make_unsigned_t<T> UnsignedT;
uint64_t Val = MI->getOperand(OpNum).getImm();
UnsignedT PrintVal = AArch64_AM::decodeLogicalImmediate(Val, 64);
template <size_t Index> struct IndexedWriter {
template <
class Tuple,
- typename std::enable_if<
- (Index <
- std::tuple_size<typename std::remove_reference<Tuple>::type>::value),
- int>::type = 0>
+ std::enable_if_t<(Index <
+ std::tuple_size<std::remove_reference_t<Tuple>>::value),
+ int> = 0>
static size_t write(support::endian::Writer &OS, Tuple &&T) {
OS.write(std::get<Index>(T));
return sizeof(std::get<Index>(T)) + IndexedWriter<Index + 1>::write(OS, T);
template <
class Tuple,
- typename std::enable_if<
- (Index >=
- std::tuple_size<typename std::remove_reference<Tuple>::type>::value),
- int>::type = 0>
+ std::enable_if_t<(Index >=
+ std::tuple_size<std::remove_reference_t<Tuple>>::value),
+ int> = 0>
static size_t write(support::endian::Writer &OS, Tuple &&) {
return 0;
}
/// any valid pointer it owns unless that pointer is explicitly released using
/// the release() member function.
template <typename T>
-using CFReleaser =
- std::unique_ptr<typename std::remove_pointer<T>::type,
- CFDeleter<typename std::remove_pointer<T>::type>>;
+using CFReleaser = std::unique_ptr<std::remove_pointer_t<T>,
+ CFDeleter<std::remove_pointer_t<T>>>;
/// RAII wrapper around CFBundleRef.
class CFString : public CFReleaser<CFStringRef> {
return Ret;
template <typename T> std::string formatUnknownEnum(T Value) {
- return formatv("unknown ({0})",
- static_cast<typename std::underlying_type<T>::type>(Value))
+ return formatv("unknown ({0})", static_cast<std::underlying_type_t<T>>(Value))
.str();
}
TrieNode<T> *
mergeTrieNodes(const TrieNode<T> &Left, const TrieNode<T> &Right,
/*Non-deduced pointer type for nullptr compatibility*/
- typename std::remove_reference<TrieNode<T> *>::type NewParent,
+ std::remove_reference_t<TrieNode<T> *> NewParent,
std::forward_list<TrieNode<T>> &NodeStore,
Callable &&MergeCallable) {
llvm::function_ref<T(const T &, const T &)> MergeFn(
private:
static T GetTestSet() {
- typename std::remove_const<T>::type Set;
+ std::remove_const_t<T> Set;
Set.insert(0);
Set.insert(1);
Set.insert(2);
TYPED_TEST(MutableConstTest, ICmp) {
auto &IRB = PatternMatchTest::IRB;
- typedef typename std::tuple_element<0, TypeParam>::type ValueType;
- typedef typename std::tuple_element<1, TypeParam>::type InstructionType;
+ typedef std::tuple_element_t<0, TypeParam> ValueType;
+ typedef std::tuple_element_t<1, TypeParam> InstructionType;
Value *L = IRB.getInt32(1);
Value *R = IRB.getInt32(2);
private:
static T getTestGraph() {
using std::make_pair;
- typename std::remove_const<T>::type G;
+ std::remove_const_t<T> G;
G.insert(make_pair(1u, VAttr({3u})));
G.insert(make_pair(2u, VAttr({5u})));
G.insert(make_pair(3u, VAttr({7u})));
#ifdef BENCHMARK_HAS_CXX11
template <class Lambda>
internal::Benchmark* RegisterBenchmark(const char* name, Lambda&& fn) {
- using BenchType =
- internal::LambdaBenchmark<typename std::decay<Lambda>::type>;
+ using BenchType = internal::LambdaBenchmark<std::decay_t<Lambda>>;
return internal::RegisterBenchmarkInternal(
::new BenchType(name, std::forward<Lambda>(fn)));
}
return true;
}
-template <class Tp,
- class = typename std::enable_if<std::is_integral<Tp>::value>::type>
-bool GetSysctl(std::string const& Name, Tp* Out) {
+template <class Tp, class = std::enable_if_t<std::is_integral<Tp>::value>>
+bool GetSysctl(std::string const &Name, Tp *Out) {
*Out = 0;
auto Buff = GetSysctlImp(Name);
if (!Buff) return false;
typedef typename View::const_reference StlContainerReference;
typedef decltype(std::begin(
std::declval<StlContainerReference>())) StlContainerConstIterator;
- typedef typename std::remove_reference<decltype(
- *std::declval<StlContainerConstIterator &>())>::type Element;
+ typedef std::remove_reference_t<decltype(
+ *std::declval<StlContainerConstIterator &>())>
+ Element;
// Constructs the matcher from a sequence of element values or
// element matchers.
typedef typename View::const_reference StlContainerReference;
typedef decltype(std::begin(
std::declval<StlContainerReference>())) StlContainerConstIterator;
- typedef typename std::remove_reference<decltype(
- *std::declval<StlContainerConstIterator &>())>::type Element;
+ typedef std::remove_reference_t<decltype(
+ *std::declval<StlContainerConstIterator &>())>
+ Element;
// Constructs the matcher from a sequence of element values or
// element matchers.
typedef typename View::const_reference StlContainerReference;
typedef decltype(std::begin(
std::declval<StlContainerReference>())) StlContainerConstIterator;
- typedef typename std::remove_reference<decltype(
- *std::declval<StlContainerConstIterator &>())>::type Element;
+ typedef std::remove_reference_t<decltype(
+ *std::declval<StlContainerConstIterator &>())>
+ Element;
typedef ::std::vector<Matcher<const Element&> > MatcherVec;
MatcherVec matchers;
matchers.reserve(::testing::tuple_size<MatcherTuple>::value);
typedef typename View::const_reference StlContainerReference;
typedef decltype(std::begin(
std::declval<StlContainerReference>())) StlContainerConstIterator;
- typedef typename std::remove_reference<decltype(
- *std::declval<StlContainerConstIterator &>())>::type Element;
+ typedef std::remove_reference_t<decltype(
+ *std::declval<StlContainerConstIterator &>())>
+ Element;
typedef ::std::vector<Matcher<const Element&> > MatcherVec;
MatcherVec matchers;
matchers.reserve(::testing::tuple_size<MatcherTuple>::value);