----------------------------------------
Legacy I/O port and ISA memory resources are also provided in sysfs if the
-underlying platform supports them. They're located in the PCI class heirarchy,
+underlying platform supports them. They're located in the PCI class hierarchy,
e.g.
/sys/class/pci_bus/0000:17/
in arch/sh/kernel/ directly, with board-specific headers ending up in
include/asm-sh/. For the new kernel, things are broken out by board type,
companion chip type, and CPU type. Looking at a tree view of this directory
-heirarchy looks like the following:
+hierarchy looks like the following:
Board-specific code:
member itself.
There are a few things that each board is required to have, both in the
-arch/sh/boards and the include/asm-sh/ heirarchy. In order to better
+arch/sh/boards and the include/asm-sh/ hierarchy. In order to better
explain this, we use some examples for adding an imaginary board. For
setup code, we're required at the very least to provide definitions for
get_system_type() and platform_setup(). For our imaginary board, this
* characteristics relative to its multiple connections. We ignore
* this for now. We also assume that all cpu and memory sets have
* their distances represented at a common level. This won't be
- * true for heirarchical NUMA.
+ * true for hierarchical NUMA.
*
* In any case the ibm,associativity-reference-points should give
* the correct depth for a normal NUMA system.
fetunesettings.parameters.inversion = INVERSION_AUTO;
}
if (fe->ops.info.type == FE_OFDM) {
- /* without hierachical coding code_rate_LP is irrelevant,
+ /* without hierarchical coding code_rate_LP is irrelevant,
* so we tolerate the otherwise invalid FEC_NONE setting */
if (fepriv->parameters.u.ofdm.hierarchy_information == HIERARCHY_NONE &&
fepriv->parameters.u.ofdm.code_rate_LP == FEC_NONE)
default:
return -EINVAL;
}
- deb_setf("hierachy: ");
+ deb_setf("hierarchy: ");
switch (ofdm->hierarchy_information) {
case HIERARCHY_NONE:
deb_setf("none ");
struct mutex rpc_mutex; /*
* only one thread could do
* recovery on the same
- * root port hierachy
+ * root port hierarchy
*/
wait_queue_head_t wait_release;
};
/*
* Note: in the target show function we recognize when the remote
- * port is in the heirarchy and do not allow the driver to get
+ * port is in the hierarchy and do not allow the driver to get
* involved in sysfs functions. The driver only gets involved if
* it's the "old" style that doesn't use rports.
*/
EXPORT_SYMBOL(sas_phy_alloc);
/**
- * sas_phy_add -- add a SAS PHY to the device hierachy
+ * sas_phy_add -- add a SAS PHY to the device hierarchy
* @phy: The PHY to be added
*
* Publishes a SAS PHY to the rest of the system.
EXPORT_SYMBOL(sas_expander_alloc);
/**
- * sas_rphy_add -- add a SAS remote PHY to the device hierachy
+ * sas_rphy_add -- add a SAS remote PHY to the device hierarchy
* @rphy: The remote PHY to be added
*
* Publishes a SAS remote PHY to the rest of the system.
The CIFS VFS support for Linux supports many advanced network filesystem
-features such as heirarchical dfs like namespace, hardlinks, locking and more.
+features such as hierarchical dfs like namespace, hardlinks, locking and more.
It was designed to comply with the SNIA CIFS Technical Reference (which
supersedes the 1992 X/Open SMB Standard) as well as to perform best practice
practical interoperability with Windows 2000, Windows XP, Samba and equivalent
BUG();
}
- /* Assume a directory heirarchy thusly:
+ /* Assume a directory hierarchy thusly:
* a/b/c
* a/d
* a,b,c, and d are all directories.
#define PAL_CACHE_FLUSH 1 /* flush i/d cache */
#define PAL_CACHE_INFO 2 /* get detailed i/d cache info */
#define PAL_CACHE_INIT 3 /* initialize i/d cache */
-#define PAL_CACHE_SUMMARY 4 /* get summary of cache heirarchy */
+#define PAL_CACHE_SUMMARY 4 /* get summary of cache hierarchy */
#define PAL_MEM_ATTRIB 5 /* list supported memory attributes */
#define PAL_PTCE_INFO 6 /* purge TLB info */
#define PAL_VM_INFO 7 /* return supported virtual memory features */
*/
#define PAL_STATUS_REQUIRES_MEMORY (-9) /* Call requires PAL memory buffer */
-/* Processor cache level in the heirarchy */
+/* Processor cache level in the hierarchy */
typedef u64 pal_cache_level_t;
#define PAL_CACHE_LEVEL_L0 0 /* L0 */
#define PAL_CACHE_LEVEL_L1 1 /* L1 */
#define PAL_CACHE_LEVEL_L2 2 /* L2 */
-/* Processor cache type at a particular level in the heirarchy */
+/* Processor cache type at a particular level in the hierarchy */
typedef u64 pal_cache_type_t;
#define PAL_CACHE_TYPE_INSTRUCTION 1 /* Instruction cache */
#define PAL_CACHE_PROT_METHOD_ECC 3 /* ECC protection */
-/* Processor cache line identification in the heirarchy */
+/* Processor cache line identification in the hierarchy */
typedef union pal_cache_line_id_u {
u64 pclid_data;
struct {
u64 cache_type : 8, /* 7-0 cache type */
level : 8, /* 15-8 level of the
* cache in the
- * heirarchy.
+ * hierarchy.
*/
way : 8, /* 23-16 way in the set
*/
u64 cache_type : 8, /* 7-0 cache type */
level : 8, /* 15-8 level of the
* cache in the
- * heirarchy.
+ * hierarchy.
*/
way : 8, /* 23-16 way in the set
*/
return iprv.status;
}
-/* Return summary information about the heirarchy of caches controlled by the processor */
+/* Return summary information about the hierarchy of caches controlled by the processor */
static inline s64
ia64_pal_cache_summary (u64 *cache_levels, u64 *unique_caches)
{