mtd: rawnand: arasan: Add new Arasan NAND controller
authorMiquel Raynal <miquel.raynal@bootlin.com>
Tue, 19 May 2020 07:45:48 +0000 (09:45 +0200)
committerMiquel Raynal <miquel.raynal@bootlin.com>
Sun, 24 May 2020 20:34:55 +0000 (22:34 +0200)
Add the Arasan NAND controller driver. This brings only NAND
controller support. The ECC engine being a bit subtle, hardware ECC
support will be added in a second time.

This work is based on contributions from Naga Sureshkumar Relli.

Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Reviewed-by: Boris Brezillon <boris.brezillon@collabora.com>
Link: https://lore.kernel.org/linux-mtd/20200519074549.23673-8-miquel.raynal@bootlin.com
drivers/mtd/nand/raw/Kconfig
drivers/mtd/nand/raw/Makefile
drivers/mtd/nand/raw/arasan-nand-controller.c [new file with mode: 0644]

index 9b08a58..e2bc877 100644 (file)
@@ -453,6 +453,13 @@ config MTD_NAND_CADENCE
          Enable the driver for NAND flash on platforms using a Cadence NAND
          controller.
 
+config MTD_NAND_ARASAN
+       tristate "Support for Arasan NAND flash controller"
+       depends on HAS_IOMEM && HAS_DMA
+       help
+         Enables the driver for the Arasan NAND flash controller on
+         Zynq Ultrascale+ MPSoC.
+
 comment "Misc"
 
 config MTD_SM_COMMON
index a817052..2930f5b 100644 (file)
@@ -57,6 +57,7 @@ obj-$(CONFIG_MTD_NAND_TEGRA)          += tegra_nand.o
 obj-$(CONFIG_MTD_NAND_STM32_FMC2)      += stm32_fmc2_nand.o
 obj-$(CONFIG_MTD_NAND_MESON)           += meson_nand.o
 obj-$(CONFIG_MTD_NAND_CADENCE)         += cadence-nand-controller.o
+obj-$(CONFIG_MTD_NAND_ARASAN)          += arasan-nand-controller.o
 
 nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
 nand-objs += nand_onfi.o
diff --git a/drivers/mtd/nand/raw/arasan-nand-controller.c b/drivers/mtd/nand/raw/arasan-nand-controller.c
new file mode 100644 (file)
index 0000000..03d95ee
--- /dev/null
@@ -0,0 +1,955 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Arasan NAND Flash Controller Driver
+ *
+ * Copyright (C) 2014 - 2020 Xilinx, Inc.
+ * Author:
+ *   Miquel Raynal <miquel.raynal@bootlin.com>
+ * Original work (fully rewritten):
+ *   Punnaiah Choudary Kalluri <punnaia@xilinx.com>
+ *   Naga Sureshkumar Relli <nagasure@xilinx.com>
+ */
+
+#include <linux/bitfield.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/iopoll.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+
+#define PKT_REG                                0x00
+#define   PKT_SIZE(x)                  FIELD_PREP(GENMASK(10, 0), (x))
+#define   PKT_STEPS(x)                 FIELD_PREP(GENMASK(23, 12), (x))
+
+#define MEM_ADDR1_REG                  0x04
+
+#define MEM_ADDR2_REG                  0x08
+#define   ADDR2_STRENGTH(x)            FIELD_PREP(GENMASK(27, 25), (x))
+#define   ADDR2_CS(x)                  FIELD_PREP(GENMASK(31, 30), (x))
+
+#define CMD_REG                                0x0C
+#define   CMD_1(x)                     FIELD_PREP(GENMASK(7, 0), (x))
+#define   CMD_2(x)                     FIELD_PREP(GENMASK(15, 8), (x))
+#define   CMD_PAGE_SIZE(x)             FIELD_PREP(GENMASK(25, 23), (x))
+#define   CMD_DMA_ENABLE               BIT(27)
+#define   CMD_NADDRS(x)                        FIELD_PREP(GENMASK(30, 28), (x))
+#define   CMD_ECC_ENABLE               BIT(31)
+
+#define PROG_REG                       0x10
+#define   PROG_PGRD                    BIT(0)
+#define   PROG_ERASE                   BIT(2)
+#define   PROG_STATUS                  BIT(3)
+#define   PROG_PGPROG                  BIT(4)
+#define   PROG_RDID                    BIT(6)
+#define   PROG_RDPARAM                 BIT(7)
+#define   PROG_RST                     BIT(8)
+#define   PROG_GET_FEATURE             BIT(9)
+#define   PROG_SET_FEATURE             BIT(10)
+
+#define INTR_STS_EN_REG                        0x14
+#define INTR_SIG_EN_REG                        0x18
+#define INTR_STS_REG                   0x1C
+#define   WRITE_READY                  BIT(0)
+#define   READ_READY                   BIT(1)
+#define   XFER_COMPLETE                        BIT(2)
+#define   DMA_BOUNDARY                 BIT(6)
+#define   EVENT_MASK                   GENMASK(7, 0)
+
+#define READY_STS_REG                  0x20
+
+#define DMA_ADDR0_REG                  0x50
+#define DMA_ADDR1_REG                  0x24
+
+#define FLASH_STS_REG                  0x28
+
+#define DATA_PORT_REG                  0x30
+
+#define ECC_CONF_REG                   0x34
+#define   ECC_CONF_COL(x)              FIELD_PREP(GENMASK(15, 0), (x))
+#define   ECC_CONF_LEN(x)              FIELD_PREP(GENMASK(26, 16), (x))
+#define   ECC_CONF_BCH_EN              BIT(27)
+
+#define ECC_ERR_CNT_REG                        0x38
+#define   GET_PKT_ERR_CNT(x)           FIELD_GET(GENMASK(7, 0), (x))
+#define   GET_PAGE_ERR_CNT(x)          FIELD_GET(GENMASK(16, 8), (x))
+
+#define ECC_SP_REG                     0x3C
+#define   ECC_SP_CMD1(x)               FIELD_PREP(GENMASK(7, 0), (x))
+#define   ECC_SP_CMD2(x)               FIELD_PREP(GENMASK(15, 8), (x))
+#define   ECC_SP_ADDRS(x)              FIELD_PREP(GENMASK(30, 28), (x))
+
+#define ECC_1ERR_CNT_REG               0x40
+#define ECC_2ERR_CNT_REG               0x44
+
+#define DATA_INTERFACE_REG             0x6C
+#define   DIFACE_SDR_MODE(x)           FIELD_PREP(GENMASK(2, 0), (x))
+#define   DIFACE_DDR_MODE(x)           FIELD_PREP(GENMASK(5, 3), (X))
+#define   DIFACE_SDR                   0
+#define   DIFACE_NVDDR                 BIT(9)
+
+#define ANFC_MAX_CS                    2
+#define ANFC_DFLT_TIMEOUT_US           1000000
+#define ANFC_MAX_CHUNK_SIZE            SZ_1M
+#define ANFC_MAX_PARAM_SIZE            SZ_4K
+#define ANFC_MAX_STEPS                 SZ_2K
+#define ANFC_MAX_PKT_SIZE              (SZ_2K - 1)
+#define ANFC_MAX_ADDR_CYC              5U
+#define ANFC_RSVD_ECC_BYTES            21
+
+#define ANFC_XLNX_SDR_DFLT_CORE_CLK    100000000
+#define ANFC_XLNX_SDR_HS_CORE_CLK      80000000
+
+/**
+ * struct anfc_op - Defines how to execute an operation
+ * @pkt_reg: Packet register
+ * @addr1_reg: Memory address 1 register
+ * @addr2_reg: Memory address 2 register
+ * @cmd_reg: Command register
+ * @prog_reg: Program register
+ * @steps: Number of "packets" to read/write
+ * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
+ * @len: Data transfer length
+ * @read: Data transfer direction from the controller point of view
+ */
+struct anfc_op {
+       u32 pkt_reg;
+       u32 addr1_reg;
+       u32 addr2_reg;
+       u32 cmd_reg;
+       u32 prog_reg;
+       int steps;
+       unsigned int rdy_timeout_ms;
+       unsigned int len;
+       bool read;
+       u8 *buf;
+};
+
+/**
+ * struct anand - Defines the NAND chip related information
+ * @node:              Used to store NAND chips into a list
+ * @chip:              NAND chip information structure
+ * @cs:                        Chip select line
+ * @rb:                        Ready-busy line
+ * @page_sz:           Register value of the page_sz field to use
+ * @clk:               Expected clock frequency to use
+ * @timings:           Data interface timing mode to use
+ * @ecc_conf:          Hardware ECC configuration value
+ * @strength:          Register value of the ECC strength
+ * @raddr_cycles:      Row address cycle information
+ * @caddr_cycles:      Column address cycle information
+ */
+struct anand {
+       struct list_head node;
+       struct nand_chip chip;
+       unsigned int cs;
+       unsigned int rb;
+       unsigned int page_sz;
+       unsigned long clk;
+       u32 timings;
+       u32 ecc_conf;
+       u32 strength;
+       u16 raddr_cycles;
+       u16 caddr_cycles;
+};
+
+/**
+ * struct arasan_nfc - Defines the Arasan NAND flash controller driver instance
+ * @dev:               Pointer to the device structure
+ * @base:              Remapped register area
+ * @controller_clk:            Pointer to the system clock
+ * @bus_clk:           Pointer to the flash clock
+ * @controller:                Base controller structure
+ * @chips:             List of all NAND chips attached to the controller
+ * @assigned_cs:       Bitmask describing already assigned CS lines
+ * @cur_clk:           Current clock rate
+ */
+struct arasan_nfc {
+       struct device *dev;
+       void __iomem *base;
+       struct clk *controller_clk;
+       struct clk *bus_clk;
+       struct nand_controller controller;
+       struct list_head chips;
+       unsigned long assigned_cs;
+       unsigned int cur_clk;
+};
+
+static struct anand *to_anand(struct nand_chip *nand)
+{
+       return container_of(nand, struct anand, chip);
+}
+
+static struct arasan_nfc *to_anfc(struct nand_controller *ctrl)
+{
+       return container_of(ctrl, struct arasan_nfc, controller);
+}
+
+static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event)
+{
+       u32 val;
+       int ret;
+
+       ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val,
+                                        val & event, 0,
+                                        ANFC_DFLT_TIMEOUT_US);
+       if (ret) {
+               dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event);
+               return -ETIMEDOUT;
+       }
+
+       writel_relaxed(event, nfc->base + INTR_STS_REG);
+
+       return 0;
+}
+
+static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip,
+                           unsigned int timeout_ms)
+{
+       struct anand *anand = to_anand(chip);
+       u32 val;
+       int ret;
+
+       /* There is no R/B interrupt, we must poll a register */
+       ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val,
+                                        val & BIT(anand->rb),
+                                        1, timeout_ms * 1000);
+       if (ret) {
+               dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n",
+                       readl_relaxed(nfc->base + READY_STS_REG));
+               return -ETIMEDOUT;
+       }
+
+       return 0;
+}
+
+static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
+{
+       writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG);
+       writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG);
+       writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG);
+       writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG);
+       writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG);
+}
+
+static int anfc_pkt_len_config(unsigned int len, unsigned int *steps,
+                              unsigned int *pktsize)
+{
+       unsigned int nb, sz;
+
+       for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) {
+               sz = len / nb;
+               if (sz <= ANFC_MAX_PKT_SIZE)
+                       break;
+       }
+
+       if (sz * nb != len)
+               return -ENOTSUPP;
+
+       if (steps)
+               *steps = nb;
+
+       if (pktsize)
+               *pktsize = sz;
+
+       return 0;
+}
+
+/* NAND framework ->exec_op() hooks and related helpers */
+static int anfc_parse_instructions(struct nand_chip *chip,
+                                  const struct nand_subop *subop,
+                                  struct anfc_op *nfc_op)
+{
+       struct anand *anand = to_anand(chip);
+       const struct nand_op_instr *instr = NULL;
+       bool first_cmd = true;
+       unsigned int op_id;
+       int ret, i;
+
+       memset(nfc_op, 0, sizeof(*nfc_op));
+       nfc_op->addr2_reg = ADDR2_CS(anand->cs);
+       nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz);
+
+       for (op_id = 0; op_id < subop->ninstrs; op_id++) {
+               unsigned int offset, naddrs, pktsize;
+               const u8 *addrs;
+               u8 *buf;
+
+               instr = &subop->instrs[op_id];
+
+               switch (instr->type) {
+               case NAND_OP_CMD_INSTR:
+                       if (first_cmd)
+                               nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode);
+                       else
+                               nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode);
+
+                       first_cmd = false;
+                       break;
+
+               case NAND_OP_ADDR_INSTR:
+                       offset = nand_subop_get_addr_start_off(subop, op_id);
+                       naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
+                       addrs = &instr->ctx.addr.addrs[offset];
+                       nfc_op->cmd_reg |= CMD_NADDRS(naddrs);
+
+                       for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) {
+                               if (i < 4)
+                                       nfc_op->addr1_reg |= (u32)addrs[i] << i * 8;
+                               else
+                                       nfc_op->addr2_reg |= addrs[i];
+                       }
+
+                       break;
+               case NAND_OP_DATA_IN_INSTR:
+                       nfc_op->read = true;
+                       fallthrough;
+               case NAND_OP_DATA_OUT_INSTR:
+                       offset = nand_subop_get_data_start_off(subop, op_id);
+                       buf = instr->ctx.data.buf.in;
+                       nfc_op->buf = &buf[offset];
+                       nfc_op->len = nand_subop_get_data_len(subop, op_id);
+                       ret = anfc_pkt_len_config(nfc_op->len, &nfc_op->steps,
+                                                 &pktsize);
+                       if (ret)
+                               return ret;
+
+                       /*
+                        * Number of DATA cycles must be aligned on 4, this
+                        * means the controller might read/write more than
+                        * requested. This is harmless most of the time as extra
+                        * DATA are discarded in the write path and read pointer
+                        * adjusted in the read path.
+                        *
+                        * FIXME: The core should mark operations where
+                        * reading/writing more is allowed so the exec_op()
+                        * implementation can take the right decision when the
+                        * alignment constraint is not met: adjust the number of
+                        * DATA cycles when it's allowed, reject the operation
+                        * otherwise.
+                        */
+                       nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) |
+                                          PKT_STEPS(nfc_op->steps);
+                       break;
+               case NAND_OP_WAITRDY_INSTR:
+                       nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
+                       break;
+               }
+       }
+
+       return 0;
+}
+
+static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
+{
+       unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps;
+       unsigned int last_len = nfc_op->len % 4;
+       unsigned int offset, dir;
+       u8 *buf = nfc_op->buf;
+       int ret, i;
+
+       for (i = 0; i < nfc_op->steps; i++) {
+               dir = nfc_op->read ? READ_READY : WRITE_READY;
+               ret = anfc_wait_for_event(nfc, dir);
+               if (ret) {
+                       dev_err(nfc->dev, "PIO %s ready signal not received\n",
+                               nfc_op->read ? "Read" : "Write");
+                       return ret;
+               }
+
+               offset = i * (dwords * 4);
+               if (nfc_op->read)
+                       ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
+                                    dwords);
+               else
+                       iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
+                                     dwords);
+       }
+
+       if (last_len) {
+               u32 remainder;
+
+               offset = nfc_op->len - last_len;
+
+               if (nfc_op->read) {
+                       remainder = readl_relaxed(nfc->base + DATA_PORT_REG);
+                       memcpy(&buf[offset], &remainder, last_len);
+               } else {
+                       memcpy(&remainder, &buf[offset], last_len);
+                       writel_relaxed(remainder, nfc->base + DATA_PORT_REG);
+               }
+       }
+
+       return anfc_wait_for_event(nfc, XFER_COMPLETE);
+}
+
+static int anfc_misc_data_type_exec(struct nand_chip *chip,
+                                   const struct nand_subop *subop,
+                                   u32 prog_reg)
+{
+       struct arasan_nfc *nfc = to_anfc(chip->controller);
+       struct anfc_op nfc_op = {};
+       int ret;
+
+       ret = anfc_parse_instructions(chip, subop, &nfc_op);
+       if (ret)
+               return ret;
+
+       nfc_op.prog_reg = prog_reg;
+       anfc_trigger_op(nfc, &nfc_op);
+
+       if (nfc_op.rdy_timeout_ms) {
+               ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
+               if (ret)
+                       return ret;
+       }
+
+       return anfc_rw_pio_op(nfc, &nfc_op);
+}
+
+static int anfc_param_read_type_exec(struct nand_chip *chip,
+                                    const struct nand_subop *subop)
+{
+       return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM);
+}
+
+static int anfc_data_read_type_exec(struct nand_chip *chip,
+                                   const struct nand_subop *subop)
+{
+       return anfc_misc_data_type_exec(chip, subop, PROG_PGRD);
+}
+
+static int anfc_param_write_type_exec(struct nand_chip *chip,
+                                     const struct nand_subop *subop)
+{
+       return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE);
+}
+
+static int anfc_data_write_type_exec(struct nand_chip *chip,
+                                    const struct nand_subop *subop)
+{
+       return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG);
+}
+
+static int anfc_misc_zerolen_type_exec(struct nand_chip *chip,
+                                      const struct nand_subop *subop,
+                                      u32 prog_reg)
+{
+       struct arasan_nfc *nfc = to_anfc(chip->controller);
+       struct anfc_op nfc_op = {};
+       int ret;
+
+       ret = anfc_parse_instructions(chip, subop, &nfc_op);
+       if (ret)
+               return ret;
+
+       nfc_op.prog_reg = prog_reg;
+       anfc_trigger_op(nfc, &nfc_op);
+
+       ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
+       if (ret)
+               return ret;
+
+       if (nfc_op.rdy_timeout_ms)
+               ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
+
+       return ret;
+}
+
+static int anfc_status_type_exec(struct nand_chip *chip,
+                                const struct nand_subop *subop)
+{
+       struct arasan_nfc *nfc = to_anfc(chip->controller);
+       u32 tmp;
+       int ret;
+
+       /* See anfc_check_op() for details about this constraint */
+       if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS)
+               return -ENOTSUPP;
+
+       ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS);
+       if (ret)
+               return ret;
+
+       tmp = readl_relaxed(nfc->base + FLASH_STS_REG);
+       memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1);
+
+       return 0;
+}
+
+static int anfc_reset_type_exec(struct nand_chip *chip,
+                               const struct nand_subop *subop)
+{
+       return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST);
+}
+
+static int anfc_erase_type_exec(struct nand_chip *chip,
+                               const struct nand_subop *subop)
+{
+       return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE);
+}
+
+static int anfc_wait_type_exec(struct nand_chip *chip,
+                              const struct nand_subop *subop)
+{
+       struct arasan_nfc *nfc = to_anfc(chip->controller);
+       struct anfc_op nfc_op = {};
+       int ret;
+
+       ret = anfc_parse_instructions(chip, subop, &nfc_op);
+       if (ret)
+               return ret;
+
+       return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
+}
+
+static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER(
+       NAND_OP_PARSER_PATTERN(
+               anfc_param_read_type_exec,
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
+               NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
+               NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
+       NAND_OP_PARSER_PATTERN(
+               anfc_param_write_type_exec,
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
+               NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)),
+       NAND_OP_PARSER_PATTERN(
+               anfc_data_read_type_exec,
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
+               NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)),
+       NAND_OP_PARSER_PATTERN(
+               anfc_data_write_type_exec,
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
+               NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE),
+               NAND_OP_PARSER_PAT_CMD_ELEM(false)),
+       NAND_OP_PARSER_PATTERN(
+               anfc_reset_type_exec,
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+       NAND_OP_PARSER_PATTERN(
+               anfc_erase_type_exec,
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+       NAND_OP_PARSER_PATTERN(
+               anfc_status_type_exec,
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
+       NAND_OP_PARSER_PATTERN(
+               anfc_wait_type_exec,
+               NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+       );
+
+static int anfc_select_target(struct nand_chip *chip, int target)
+{
+       struct anand *anand = to_anand(chip);
+       struct arasan_nfc *nfc = to_anfc(chip->controller);
+       int ret;
+
+       /* Update the controller timings and the potential ECC configuration */
+       writel_relaxed(anand->timings, nfc->base + DATA_INTERFACE_REG);
+
+       /* Update clock frequency */
+       if (nfc->cur_clk != anand->clk) {
+               clk_disable_unprepare(nfc->controller_clk);
+               ret = clk_set_rate(nfc->controller_clk, anand->clk);
+               if (ret) {
+                       dev_err(nfc->dev, "Failed to change clock rate\n");
+                       return ret;
+               }
+
+               ret = clk_prepare_enable(nfc->controller_clk);
+               if (ret) {
+                       dev_err(nfc->dev,
+                               "Failed to re-enable the controller clock\n");
+                       return ret;
+               }
+
+               nfc->cur_clk = anand->clk;
+       }
+
+       return 0;
+}
+
+static int anfc_check_op(struct nand_chip *chip,
+                        const struct nand_operation *op)
+{
+       const struct nand_op_instr *instr;
+       int op_id;
+
+       /*
+        * The controller abstracts all the NAND operations and do not support
+        * data only operations.
+        *
+        * TODO: The nand_op_parser framework should be extended to
+        * support custom checks on DATA instructions.
+        */
+       for (op_id = 0; op_id < op->ninstrs; op_id++) {
+               instr = &op->instrs[op_id];
+
+               switch (instr->type) {
+               case NAND_OP_ADDR_INSTR:
+                       if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC)
+                               return -ENOTSUPP;
+
+                       break;
+               case NAND_OP_DATA_IN_INSTR:
+               case NAND_OP_DATA_OUT_INSTR:
+                       if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE)
+                               return -ENOTSUPP;
+
+                       if (anfc_pkt_len_config(instr->ctx.data.len, 0, 0))
+                               return -ENOTSUPP;
+
+                       break;
+               default:
+                       break;
+               }
+       }
+
+       /*
+        * The controller does not allow to proceed with a CMD+DATA_IN cycle
+        * manually on the bus by reading data from the data register. Instead,
+        * the controller abstract a status read operation with its own status
+        * register after ordering a read status operation. Hence, we cannot
+        * support any CMD+DATA_IN operation other than a READ STATUS.
+        *
+        * TODO: The nand_op_parser() framework should be extended to describe
+        * fixed patterns instead of open-coding this check here.
+        */
+       if (op->ninstrs == 2 &&
+           op->instrs[0].type == NAND_OP_CMD_INSTR &&
+           op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS &&
+           op->instrs[1].type == NAND_OP_DATA_IN_INSTR)
+               return -ENOTSUPP;
+
+       return nand_op_parser_exec_op(chip, &anfc_op_parser, op, true);
+}
+
+static int anfc_exec_op(struct nand_chip *chip,
+                       const struct nand_operation *op,
+                       bool check_only)
+{
+       int ret;
+
+       if (check_only)
+               return anfc_check_op(chip, op);
+
+       ret = anfc_select_target(chip, op->cs);
+       if (ret)
+               return ret;
+
+       return nand_op_parser_exec_op(chip, &anfc_op_parser, op, check_only);
+}
+
+static int anfc_setup_data_interface(struct nand_chip *chip, int target,
+                                    const struct nand_data_interface *conf)
+{
+       struct anand *anand = to_anand(chip);
+       struct arasan_nfc *nfc = to_anfc(chip->controller);
+       struct device_node *np = nfc->dev->of_node;
+
+       if (target < 0)
+               return 0;
+
+       anand->timings = DIFACE_SDR | DIFACE_SDR_MODE(conf->timings.mode);
+       anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK;
+
+       /*
+        * Due to a hardware bug in the ZynqMP SoC, SDR timing modes 0-1 work
+        * with f > 90MHz (default clock is 100MHz) but signals are unstable
+        * with higher modes. Hence we decrease a little bit the clock rate to
+        * 80MHz when using modes 2-5 with this SoC.
+        */
+       if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") &&
+           conf->timings.mode >= 2)
+               anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK;
+
+       return 0;
+}
+
+static int anfc_attach_chip(struct nand_chip *chip)
+{
+       struct anand *anand = to_anand(chip);
+       struct arasan_nfc *nfc = to_anfc(chip->controller);
+       struct mtd_info *mtd = nand_to_mtd(chip);
+       int ret = 0;
+
+       if (mtd->writesize <= SZ_512)
+               anand->caddr_cycles = 1;
+       else
+               anand->caddr_cycles = 2;
+
+       if (chip->options & NAND_ROW_ADDR_3)
+               anand->raddr_cycles = 3;
+       else
+               anand->raddr_cycles = 2;
+
+       switch (mtd->writesize) {
+       case 512:
+               anand->page_sz = 0;
+               break;
+       case 1024:
+               anand->page_sz = 5;
+               break;
+       case 2048:
+               anand->page_sz = 1;
+               break;
+       case 4096:
+               anand->page_sz = 2;
+               break;
+       case 8192:
+               anand->page_sz = 3;
+               break;
+       case 16384:
+               anand->page_sz = 4;
+               break;
+       default:
+               return -EINVAL;
+       }
+
+       /* These hooks are valid for all ECC providers */
+       chip->ecc.read_page_raw = nand_monolithic_read_page_raw;
+       chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
+
+       switch (chip->ecc.mode) {
+       case NAND_ECC_NONE:
+       case NAND_ECC_SOFT:
+       case NAND_ECC_ON_DIE:
+               break;
+       case NAND_ECC_HW:
+       default:
+               dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
+                       chip->ecc.mode);
+               return -EINVAL;
+       }
+
+       return ret;
+}
+
+static const struct nand_controller_ops anfc_ops = {
+       .exec_op = anfc_exec_op,
+       .setup_data_interface = anfc_setup_data_interface,
+       .attach_chip = anfc_attach_chip,
+};
+
+static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np)
+{
+       struct anand *anand;
+       struct nand_chip *chip;
+       struct mtd_info *mtd;
+       int cs, rb, ret;
+
+       anand = devm_kzalloc(nfc->dev, sizeof(*anand), GFP_KERNEL);
+       if (!anand)
+               return -ENOMEM;
+
+       /* We do not support multiple CS per chip yet */
+       if (of_property_count_elems_of_size(np, "reg", sizeof(u32)) != 1) {
+               dev_err(nfc->dev, "Invalid reg property\n");
+               return -EINVAL;
+       }
+
+       ret = of_property_read_u32(np, "reg", &cs);
+       if (ret)
+               return ret;
+
+       ret = of_property_read_u32(np, "nand-rb", &rb);
+       if (ret)
+               return ret;
+
+       if (cs >= ANFC_MAX_CS || rb >= ANFC_MAX_CS) {
+               dev_err(nfc->dev, "Wrong CS %d or RB %d\n", cs, rb);
+               return -EINVAL;
+       }
+
+       if (test_and_set_bit(cs, &nfc->assigned_cs)) {
+               dev_err(nfc->dev, "Already assigned CS %d\n", cs);
+               return -EINVAL;
+       }
+
+       anand->cs = cs;
+       anand->rb = rb;
+
+       chip = &anand->chip;
+       mtd = nand_to_mtd(chip);
+       mtd->dev.parent = nfc->dev;
+       chip->controller = &nfc->controller;
+       chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
+                       NAND_USES_DMA;
+
+       nand_set_flash_node(chip, np);
+       if (!mtd->name) {
+               dev_err(nfc->dev, "NAND label property is mandatory\n");
+               return -EINVAL;
+       }
+
+       ret = nand_scan(chip, 1);
+       if (ret) {
+               dev_err(nfc->dev, "Scan operation failed\n");
+               return ret;
+       }
+
+       ret = mtd_device_register(mtd, NULL, 0);
+       if (ret) {
+               nand_cleanup(chip);
+               return ret;
+       }
+
+       list_add_tail(&anand->node, &nfc->chips);
+
+       return 0;
+}
+
+static void anfc_chips_cleanup(struct arasan_nfc *nfc)
+{
+       struct anand *anand, *tmp;
+       struct nand_chip *chip;
+       int ret;
+
+       list_for_each_entry_safe(anand, tmp, &nfc->chips, node) {
+               chip = &anand->chip;
+               ret = mtd_device_unregister(nand_to_mtd(chip));
+               WARN_ON(ret);
+               nand_cleanup(chip);
+               list_del(&anand->node);
+       }
+}
+
+static int anfc_chips_init(struct arasan_nfc *nfc)
+{
+       struct device_node *np = nfc->dev->of_node, *nand_np;
+       int nchips = of_get_child_count(np);
+       int ret;
+
+       if (!nchips || nchips > ANFC_MAX_CS) {
+               dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
+                       nchips);
+               return -EINVAL;
+       }
+
+       for_each_child_of_node(np, nand_np) {
+               ret = anfc_chip_init(nfc, nand_np);
+               if (ret) {
+                       of_node_put(nand_np);
+                       anfc_chips_cleanup(nfc);
+                       break;
+               }
+       }
+
+       return ret;
+}
+
+static void anfc_reset(struct arasan_nfc *nfc)
+{
+       /* Disable interrupt signals */
+       writel_relaxed(0, nfc->base + INTR_SIG_EN_REG);
+
+       /* Enable interrupt status */
+       writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG);
+}
+
+static int anfc_probe(struct platform_device *pdev)
+{
+       struct arasan_nfc *nfc;
+       int ret;
+
+       nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
+       if (!nfc)
+               return -ENOMEM;
+
+       nfc->dev = &pdev->dev;
+       nand_controller_init(&nfc->controller);
+       nfc->controller.ops = &anfc_ops;
+       INIT_LIST_HEAD(&nfc->chips);
+
+       nfc->base = devm_platform_ioremap_resource(pdev, 0);
+       if (IS_ERR(nfc->base))
+               return PTR_ERR(nfc->base);
+
+       anfc_reset(nfc);
+
+       nfc->controller_clk = devm_clk_get(&pdev->dev, "controller");
+       if (IS_ERR(nfc->controller_clk))
+               return PTR_ERR(nfc->controller_clk);
+
+       nfc->bus_clk = devm_clk_get(&pdev->dev, "bus");
+       if (IS_ERR(nfc->bus_clk))
+               return PTR_ERR(nfc->bus_clk);
+
+       ret = clk_prepare_enable(nfc->controller_clk);
+       if (ret)
+               return ret;
+
+       ret = clk_prepare_enable(nfc->bus_clk);
+       if (ret)
+               goto disable_controller_clk;
+
+       ret = anfc_chips_init(nfc);
+       if (ret)
+               goto disable_bus_clk;
+
+       platform_set_drvdata(pdev, nfc);
+
+       return 0;
+
+disable_bus_clk:
+       clk_disable_unprepare(nfc->bus_clk);
+
+disable_controller_clk:
+       clk_disable_unprepare(nfc->controller_clk);
+
+       return ret;
+}
+
+static int anfc_remove(struct platform_device *pdev)
+{
+       struct arasan_nfc *nfc = platform_get_drvdata(pdev);
+
+       anfc_chips_cleanup(nfc);
+
+       clk_disable_unprepare(nfc->bus_clk);
+       clk_disable_unprepare(nfc->controller_clk);
+
+       return 0;
+}
+
+static const struct of_device_id anfc_ids[] = {
+       {
+               .compatible = "xlnx,zynqmp-nand-controller",
+       },
+       {
+               .compatible = "arasan,nfc-v3p10",
+       },
+       {}
+};
+MODULE_DEVICE_TABLE(of, anfc_ids);
+
+static struct platform_driver anfc_driver = {
+       .driver = {
+               .name = "arasan-nand-controller",
+               .of_match_table = anfc_ids,
+       },
+       .probe = anfc_probe,
+       .remove = anfc_remove,
+};
+module_platform_driver(anfc_driver);
+
+MODULE_LICENSE("GPL v2");
+MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xilinx.com>");
+MODULE_AUTHOR("Naga Sureshkumar Relli <nagasure@xilinx.com>");
+MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
+MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");