Convert tabs to spaces.
authorRob Landley <rob@landley.net>
Sat, 13 Apr 2013 01:12:02 +0000 (20:12 -0500)
committerRob Landley <rob@landley.net>
Sat, 13 Apr 2013 01:12:02 +0000 (20:12 -0500)
toys/pending/xzcat.c

index 5e96cf6..5d69087 100644 (file)
@@ -47,9 +47,9 @@ config XZCAT
  * so that is the default.
  */
 enum xz_mode {
-       XZ_SINGLE,
-       XZ_PREALLOC,
-       XZ_DYNALLOC
+  XZ_SINGLE,
+  XZ_PREALLOC,
+  XZ_DYNALLOC
 };
 
 /**
@@ -103,15 +103,15 @@ enum xz_mode {
  * is used instead of XZ_BUF_ERROR.
  */
 enum xz_ret {
-       XZ_OK,
-       XZ_STREAM_END,
-       XZ_UNSUPPORTED_CHECK,
-       XZ_MEM_ERROR,
-       XZ_MEMLIMIT_ERROR,
-       XZ_FORMAT_ERROR,
-       XZ_OPTIONS_ERROR,
-       XZ_DATA_ERROR,
-       XZ_BUF_ERROR
+  XZ_OK,
+  XZ_STREAM_END,
+  XZ_UNSUPPORTED_CHECK,
+  XZ_MEM_ERROR,
+  XZ_MEMLIMIT_ERROR,
+  XZ_FORMAT_ERROR,
+  XZ_OPTIONS_ERROR,
+  XZ_DATA_ERROR,
+  XZ_BUF_ERROR
 };
 
 /**
@@ -131,13 +131,13 @@ enum xz_ret {
  * the variables in_pos and out_pos are modified by the XZ code.
  */
 struct xz_buf {
-       const uint8_t *in;
-       size_t in_pos;
-       size_t in_size;
+  const uint8_t *in;
+  size_t in_pos;
+  size_t in_size;
 
-       uint8_t *out;
-       size_t out_pos;
-       size_t out_size;
+  uint8_t *out;
+  size_t out_pos;
+  size_t out_size;
 };
 
 /**
@@ -239,14 +239,14 @@ static uint32_t xz_crc32_table[256];
 
 uint32_t xz_crc32(const uint8_t *buf, size_t size, uint32_t crc)
 {
-       crc = ~crc;
+  crc = ~crc;
 
-       while (size != 0) {
-               crc = xz_crc32_table[*buf++ ^ (crc & 0xFF)] ^ (crc >> 8);
-               --size;
-       }
+  while (size != 0) {
+    crc = xz_crc32_table[*buf++ ^ (crc & 0xFF)] ^ (crc >> 8);
+    --size;
+  }
 
-       return ~crc;
+  return ~crc;
 }
 
 /*
@@ -257,21 +257,21 @@ static uint64_t xz_crc64_table[256];
 
 void xz_crc64_init(void)
 {
-       const uint64_t poly = 0xC96C5795D7870F42ULL;
+  const uint64_t poly = 0xC96C5795D7870F42ULL;
 
-       uint32_t i;
-       uint32_t j;
-       uint64_t r;
+  uint32_t i;
+  uint32_t j;
+  uint64_t r;
 
-       for (i = 0; i < 256; ++i) {
-               r = i;
-               for (j = 0; j < 8; ++j)
-                       r = (r >> 1) ^ (poly & ~((r & 1) - 1));
+  for (i = 0; i < 256; ++i) {
+    r = i;
+    for (j = 0; j < 8; ++j)
+      r = (r >> 1) ^ (poly & ~((r & 1) - 1));
 
-               xz_crc64_table[i] = r;
-       }
+    xz_crc64_table[i] = r;
+  }
 
-       return;
+  return;
 }
 
 /*
@@ -281,14 +281,14 @@ void xz_crc64_init(void)
  */
 uint64_t xz_crc64(const uint8_t *buf, size_t size, uint64_t crc)
 {
-       crc = ~crc;
+  crc = ~crc;
 
-       while (size != 0) {
-               crc = xz_crc64_table[*buf++ ^ (crc & 0xFF)] ^ (crc >> 8);
-               --size;
-       }
+  while (size != 0) {
+    crc = xz_crc64_table[*buf++ ^ (crc & 0xFF)] ^ (crc >> 8);
+    --size;
+  }
 
-       return ~crc;
+  return ~crc;
 }
 
 // END xz.h
@@ -298,95 +298,95 @@ static uint8_t out[BUFSIZ];
 
 void xzcat_main(void)
 {
-       struct xz_buf b;
-       struct xz_dec *s;
-       enum xz_ret ret;
-       const char *msg;
-
-       crc_init(xz_crc32_table, 1);
-       xz_crc64_init();
-
-       /*
-        * Support up to 64 MiB dictionary. The actually needed memory
-        * is allocated once the headers have been parsed.
-        */
-       s = xz_dec_init(XZ_DYNALLOC, 1 << 26);
-       if (s == NULL) {
-               msg = "Memory allocation failed\n";
-               goto error;
-       }
-
-       b.in = in;
-       b.in_pos = 0;
-       b.in_size = 0;
-       b.out = out;
-       b.out_pos = 0;
-       b.out_size = BUFSIZ;
-
-       for (;;) {
-               if (b.in_pos == b.in_size) {
-                       b.in_size = fread(in, 1, sizeof(in), stdin);
-                       b.in_pos = 0;
-               }
-
-               ret = xz_dec_run(s, &b);
-
-               if (b.out_pos == sizeof(out)) {
-                       if (fwrite(out, 1, b.out_pos, stdout) != b.out_pos) {
-                               msg = "Write error\n";
-                               goto error;
-                       }
-
-                       b.out_pos = 0;
-               }
-
-               if (ret == XZ_OK)
-                       continue;
-
-               if (ret == XZ_UNSUPPORTED_CHECK)
-                       continue;
-
-               if (fwrite(out, 1, b.out_pos, stdout) != b.out_pos
-                               || fclose(stdout)) {
-                       msg = "Write error\n";
-                       goto error;
-               }
-
-               switch (ret) {
-               case XZ_STREAM_END:
-                       xz_dec_end(s);
-                       return;
-
-               case XZ_MEM_ERROR:
-                       msg = "Memory allocation failed\n";
-                       goto error;
-
-               case XZ_MEMLIMIT_ERROR:
-                       msg = "Memory usage limit reached\n";
-                       goto error;
-
-               case XZ_FORMAT_ERROR:
-                       msg = "Not a .xz file\n";
-                       goto error;
-
-               case XZ_OPTIONS_ERROR:
-                       msg = "Unsupported options in the .xz headers\n";
-                       goto error;
-
-               case XZ_DATA_ERROR:
-               case XZ_BUF_ERROR:
-                       msg = "File is corrupt\n";
-                       goto error;
-
-               default:
-                       msg = "Bug!\n";
-                       goto error;
-               }
-       }
+  struct xz_buf b;
+  struct xz_dec *s;
+  enum xz_ret ret;
+  const char *msg;
+
+  crc_init(xz_crc32_table, 1);
+  xz_crc64_init();
+
+  /*
+   * Support up to 64 MiB dictionary. The actually needed memory
+   * is allocated once the headers have been parsed.
+   */
+  s = xz_dec_init(XZ_DYNALLOC, 1 << 26);
+  if (s == NULL) {
+    msg = "Memory allocation failed\n";
+    goto error;
+  }
+
+  b.in = in;
+  b.in_pos = 0;
+  b.in_size = 0;
+  b.out = out;
+  b.out_pos = 0;
+  b.out_size = BUFSIZ;
+
+  for (;;) {
+    if (b.in_pos == b.in_size) {
+      b.in_size = fread(in, 1, sizeof(in), stdin);
+      b.in_pos = 0;
+    }
+
+    ret = xz_dec_run(s, &b);
+
+    if (b.out_pos == sizeof(out)) {
+      if (fwrite(out, 1, b.out_pos, stdout) != b.out_pos) {
+        msg = "Write error\n";
+        goto error;
+      }
+
+      b.out_pos = 0;
+    }
+
+    if (ret == XZ_OK)
+      continue;
+
+    if (ret == XZ_UNSUPPORTED_CHECK)
+      continue;
+
+    if (fwrite(out, 1, b.out_pos, stdout) != b.out_pos
+        || fclose(stdout)) {
+      msg = "Write error\n";
+      goto error;
+    }
+
+    switch (ret) {
+    case XZ_STREAM_END:
+      xz_dec_end(s);
+      return;
+
+    case XZ_MEM_ERROR:
+      msg = "Memory allocation failed\n";
+      goto error;
+
+    case XZ_MEMLIMIT_ERROR:
+      msg = "Memory usage limit reached\n";
+      goto error;
+
+    case XZ_FORMAT_ERROR:
+      msg = "Not a .xz file\n";
+      goto error;
+
+    case XZ_OPTIONS_ERROR:
+      msg = "Unsupported options in the .xz headers\n";
+      goto error;
+
+    case XZ_DATA_ERROR:
+    case XZ_BUF_ERROR:
+      msg = "File is corrupt\n";
+      goto error;
+
+    default:
+      msg = "Bug!\n";
+      goto error;
+    }
+  }
 
 error:
-       xz_dec_end(s);
-       error_exit("%s", msg);
+  xz_dec_end(s);
+  error_exit("%s", msg);
 }
 
 // BEGIN xz_private.h
@@ -416,40 +416,40 @@ error:
 #ifndef get_unaligned_le32
 static inline uint32_t get_unaligned_le32(const uint8_t *buf)
 {
-       return (uint32_t)buf[0]
-                       | ((uint32_t)buf[1] << 8)
-                       | ((uint32_t)buf[2] << 16)
-                       | ((uint32_t)buf[3] << 24);
+  return (uint32_t)buf[0]
+      | ((uint32_t)buf[1] << 8)
+      | ((uint32_t)buf[2] << 16)
+      | ((uint32_t)buf[3] << 24);
 }
 #endif
 
 #ifndef get_unaligned_be32
 static inline uint32_t get_unaligned_be32(const uint8_t *buf)
 {
-       return (uint32_t)(buf[0] << 24)
-                       | ((uint32_t)buf[1] << 16)
-                       | ((uint32_t)buf[2] << 8)
-                       | (uint32_t)buf[3];
+  return (uint32_t)(buf[0] << 24)
+      | ((uint32_t)buf[1] << 16)
+      | ((uint32_t)buf[2] << 8)
+      | (uint32_t)buf[3];
 }
 #endif
 
 #ifndef put_unaligned_le32
 static inline void put_unaligned_le32(uint32_t val, uint8_t *buf)
 {
-       buf[0] = (uint8_t)val;
-       buf[1] = (uint8_t)(val >> 8);
-       buf[2] = (uint8_t)(val >> 16);
-       buf[3] = (uint8_t)(val >> 24);
+  buf[0] = (uint8_t)val;
+  buf[1] = (uint8_t)(val >> 8);
+  buf[2] = (uint8_t)(val >> 16);
+  buf[3] = (uint8_t)(val >> 24);
 }
 #endif
 
 #ifndef put_unaligned_be32
 static inline void put_unaligned_be32(uint32_t val, uint8_t *buf)
 {
-       buf[0] = (uint8_t)(val >> 24);
-       buf[1] = (uint8_t)(val >> 16);
-       buf[2] = (uint8_t)(val >> 8);
-       buf[3] = (uint8_t)val;
+  buf[0] = (uint8_t)(val >> 24);
+  buf[1] = (uint8_t)(val >> 16);
+  buf[2] = (uint8_t)(val >> 8);
+  buf[3] = (uint8_t)val;
 }
 #endif
 
@@ -506,9 +506,9 @@ static inline void put_unaligned_be32(uint32_t val, uint8_t *buf)
  */
 #ifndef XZ_DEC_BCJ
 #      if defined(XZ_DEC_X86) || defined(XZ_DEC_POWERPC) \
-                       || defined(XZ_DEC_IA64) || defined(XZ_DEC_ARM) \
-                       || defined(XZ_DEC_ARM) || defined(XZ_DEC_ARMTHUMB) \
-                       || defined(XZ_DEC_SPARC)
+      || defined(XZ_DEC_IA64) || defined(XZ_DEC_ARM) \
+      || defined(XZ_DEC_ARM) || defined(XZ_DEC_ARMTHUMB) \
+      || defined(XZ_DEC_SPARC)
 #              define XZ_DEC_BCJ
 #      endif
 #endif
@@ -518,7 +518,7 @@ static inline void put_unaligned_be32(uint32_t val, uint8_t *buf)
  * before calling xz_dec_lzma2_run().
  */
 struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode,
-                                                  uint32_t dict_max);
+               uint32_t dict_max);
 
 /*
  * Decode the LZMA2 properties (one byte) and reset the decoder. Return
@@ -527,11 +527,11 @@ struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode,
  * decoder doesn't support.
  */
 enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s,
-                                        uint8_t props);
+           uint8_t props);
 
 /* Decode raw LZMA2 stream from b->in to b->out. */
 enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
-                                      struct xz_buf *b);
+               struct xz_buf *b);
 
 #ifdef XZ_DEC_BCJ
 /*
@@ -554,8 +554,8 @@ enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id);
  * must be called directly.
  */
 enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s,
-                                    struct xz_dec_lzma2 *lzma2,
-                                    struct xz_buf *b);
+             struct xz_dec_lzma2 *lzma2,
+             struct xz_buf *b);
 #endif
 
 // END "xz_private.h"
@@ -571,62 +571,62 @@ enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s,
 #ifdef XZ_DEC_BCJ
 
 struct xz_dec_bcj {
-       /* Type of the BCJ filter being used */
-       enum {
-               BCJ_X86 = 4,        /* x86 or x86-64 */
-               BCJ_POWERPC = 5,    /* Big endian only */
-               BCJ_IA64 = 6,       /* Big or little endian */
-               BCJ_ARM = 7,        /* Little endian only */
-               BCJ_ARMTHUMB = 8,   /* Little endian only */
-               BCJ_SPARC = 9       /* Big or little endian */
-       } type;
-
-       /*
-        * Return value of the next filter in the chain. We need to preserve
-        * this information across calls, because we must not call the next
-        * filter anymore once it has returned XZ_STREAM_END.
-        */
-       enum xz_ret ret;
-
-       /* True if we are operating in single-call mode. */
-       int single_call;
-
-       /*
-        * Absolute position relative to the beginning of the uncompressed
-        * data (in a single .xz Block). We care only about the lowest 32
-        * bits so this doesn't need to be uint64_t even with big files.
-        */
-       uint32_t pos;
-
-       /* x86 filter state */
-       uint32_t x86_prev_mask;
-
-       /* Temporary space to hold the variables from struct xz_buf */
-       uint8_t *out;
-       size_t out_pos;
-       size_t out_size;
-
-       struct {
-               /* Amount of already filtered data in the beginning of buf */
-               size_t filtered;
-
-               /* Total amount of data currently stored in buf  */
-               size_t size;
-
-               /*
-                * Buffer to hold a mix of filtered and unfiltered data. This
-                * needs to be big enough to hold Alignment + 2 * Look-ahead:
-                *
-                * Type         Alignment   Look-ahead
-                * x86              1           4
-                * PowerPC          4           0
-                * IA-64           16           0
-                * ARM              4           0
-                * ARM-Thumb        2           2
-                * SPARC            4           0
-                */
-               uint8_t buf[16];
-       } temp;
+  /* Type of the BCJ filter being used */
+  enum {
+    BCJ_X86 = 4,        /* x86 or x86-64 */
+    BCJ_POWERPC = 5,    /* Big endian only */
+    BCJ_IA64 = 6,       /* Big or little endian */
+    BCJ_ARM = 7,        /* Little endian only */
+    BCJ_ARMTHUMB = 8,   /* Little endian only */
+    BCJ_SPARC = 9       /* Big or little endian */
+  } type;
+
+  /*
+   * Return value of the next filter in the chain. We need to preserve
+   * this information across calls, because we must not call the next
+   * filter anymore once it has returned XZ_STREAM_END.
+   */
+  enum xz_ret ret;
+
+  /* True if we are operating in single-call mode. */
+  int single_call;
+
+  /*
+   * Absolute position relative to the beginning of the uncompressed
+   * data (in a single .xz Block). We care only about the lowest 32
+   * bits so this doesn't need to be uint64_t even with big files.
+   */
+  uint32_t pos;
+
+  /* x86 filter state */
+  uint32_t x86_prev_mask;
+
+  /* Temporary space to hold the variables from struct xz_buf */
+  uint8_t *out;
+  size_t out_pos;
+  size_t out_size;
+
+  struct {
+    /* Amount of already filtered data in the beginning of buf */
+    size_t filtered;
+
+    /* Total amount of data currently stored in buf  */
+    size_t size;
+
+    /*
+     * Buffer to hold a mix of filtered and unfiltered data. This
+     * needs to be big enough to hold Alignment + 2 * Look-ahead:
+     *
+     * Type         Alignment   Look-ahead
+     * x86              1           4
+     * PowerPC          4           0
+     * IA-64           16           0
+     * ARM              4           0
+     * ARM-Thumb        2           2
+     * SPARC            4           0
+     */
+    uint8_t buf[16];
+  } temp;
 };
 
 #ifdef XZ_DEC_X86
@@ -636,255 +636,255 @@ struct xz_dec_bcj {
  */
 static inline int bcj_x86_test_msbyte(uint8_t b)
 {
-       return b == 0x00 || b == 0xFF;
+  return b == 0x00 || b == 0xFF;
 }
 
 static size_t bcj_x86(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
 {
-       static const int mask_to_allowed_status[8]
-               = { 1,1,1,0,1,0,0,0 };
-
-       static const uint8_t mask_to_bit_num[8] = { 0, 1, 2, 2, 3, 3, 3, 3 };
-
-       size_t i;
-       size_t prev_pos = (size_t)-1;
-       uint32_t prev_mask = s->x86_prev_mask;
-       uint32_t src;
-       uint32_t dest;
-       uint32_t j;
-       uint8_t b;
-
-       if (size <= 4)
-               return 0;
-
-       size -= 4;
-       for (i = 0; i < size; ++i) {
-               if ((buf[i] & 0xFE) != 0xE8)
-                       continue;
-
-               prev_pos = i - prev_pos;
-               if (prev_pos > 3) {
-                       prev_mask = 0;
-               } else {
-                       prev_mask = (prev_mask << (prev_pos - 1)) & 7;
-                       if (prev_mask != 0) {
-                               b = buf[i + 4 - mask_to_bit_num[prev_mask]];
-                               if (!mask_to_allowed_status[prev_mask]
-                                               || bcj_x86_test_msbyte(b)) {
-                                       prev_pos = i;
-                                       prev_mask = (prev_mask << 1) | 1;
-                                       continue;
-                               }
-                       }
-               }
-
-               prev_pos = i;
-
-               if (bcj_x86_test_msbyte(buf[i + 4])) {
-                       src = get_unaligned_le32(buf + i + 1);
-                       for (;;) {
-                               dest = src - (s->pos + (uint32_t)i + 5);
-                               if (prev_mask == 0)
-                                       break;
-
-                               j = mask_to_bit_num[prev_mask] * 8;
-                               b = (uint8_t)(dest >> (24 - j));
-                               if (!bcj_x86_test_msbyte(b))
-                                       break;
-
-                               src = dest ^ (((uint32_t)1 << (32 - j)) - 1);
-                       }
-
-                       dest &= 0x01FFFFFF;
-                       dest |= (uint32_t)0 - (dest & 0x01000000);
-                       put_unaligned_le32(dest, buf + i + 1);
-                       i += 4;
-               } else {
-                       prev_mask = (prev_mask << 1) | 1;
-               }
-       }
-
-       prev_pos = i - prev_pos;
-       s->x86_prev_mask = prev_pos > 3 ? 0 : prev_mask << (prev_pos - 1);
-       return i;
+  static const int mask_to_allowed_status[8]
+    = { 1,1,1,0,1,0,0,0 };
+
+  static const uint8_t mask_to_bit_num[8] = { 0, 1, 2, 2, 3, 3, 3, 3 };
+
+  size_t i;
+  size_t prev_pos = (size_t)-1;
+  uint32_t prev_mask = s->x86_prev_mask;
+  uint32_t src;
+  uint32_t dest;
+  uint32_t j;
+  uint8_t b;
+
+  if (size <= 4)
+    return 0;
+
+  size -= 4;
+  for (i = 0; i < size; ++i) {
+    if ((buf[i] & 0xFE) != 0xE8)
+      continue;
+
+    prev_pos = i - prev_pos;
+    if (prev_pos > 3) {
+      prev_mask = 0;
+    } else {
+      prev_mask = (prev_mask << (prev_pos - 1)) & 7;
+      if (prev_mask != 0) {
+        b = buf[i + 4 - mask_to_bit_num[prev_mask]];
+        if (!mask_to_allowed_status[prev_mask]
+            || bcj_x86_test_msbyte(b)) {
+          prev_pos = i;
+          prev_mask = (prev_mask << 1) | 1;
+          continue;
+        }
+      }
+    }
+
+    prev_pos = i;
+
+    if (bcj_x86_test_msbyte(buf[i + 4])) {
+      src = get_unaligned_le32(buf + i + 1);
+      for (;;) {
+        dest = src - (s->pos + (uint32_t)i + 5);
+        if (prev_mask == 0)
+          break;
+
+        j = mask_to_bit_num[prev_mask] * 8;
+        b = (uint8_t)(dest >> (24 - j));
+        if (!bcj_x86_test_msbyte(b))
+          break;
+
+        src = dest ^ (((uint32_t)1 << (32 - j)) - 1);
+      }
+
+      dest &= 0x01FFFFFF;
+      dest |= (uint32_t)0 - (dest & 0x01000000);
+      put_unaligned_le32(dest, buf + i + 1);
+      i += 4;
+    } else {
+      prev_mask = (prev_mask << 1) | 1;
+    }
+  }
+
+  prev_pos = i - prev_pos;
+  s->x86_prev_mask = prev_pos > 3 ? 0 : prev_mask << (prev_pos - 1);
+  return i;
 }
 #endif
 
 #ifdef XZ_DEC_POWERPC
 static size_t bcj_powerpc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
 {
-       size_t i;
-       uint32_t instr;
+  size_t i;
+  uint32_t instr;
 
-       for (i = 0; i + 4 <= size; i += 4) {
-               instr = get_unaligned_be32(buf + i);
-               if ((instr & 0xFC000003) == 0x48000001) {
-                       instr &= 0x03FFFFFC;
-                       instr -= s->pos + (uint32_t)i;
-                       instr &= 0x03FFFFFC;
-                       instr |= 0x48000001;
-                       put_unaligned_be32(instr, buf + i);
-               }
-       }
+  for (i = 0; i + 4 <= size; i += 4) {
+    instr = get_unaligned_be32(buf + i);
+    if ((instr & 0xFC000003) == 0x48000001) {
+      instr &= 0x03FFFFFC;
+      instr -= s->pos + (uint32_t)i;
+      instr &= 0x03FFFFFC;
+      instr |= 0x48000001;
+      put_unaligned_be32(instr, buf + i);
+    }
+  }
 
-       return i;
+  return i;
 }
 #endif
 
 #ifdef XZ_DEC_IA64
 static size_t bcj_ia64(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
 {
-       static const uint8_t branch_table[32] = {
-               0, 0, 0, 0, 0, 0, 0, 0,
-               0, 0, 0, 0, 0, 0, 0, 0,
-               4, 4, 6, 6, 0, 0, 7, 7,
-               4, 4, 0, 0, 4, 4, 0, 0
-       };
-
-       /*
-        * The local variables take a little bit stack space, but it's less
-        * than what LZMA2 decoder takes, so it doesn't make sense to reduce
-        * stack usage here without doing that for the LZMA2 decoder too.
-        */
-
-       /* Loop counters */
-       size_t i;
-       size_t j;
-
-       /* Instruction slot (0, 1, or 2) in the 128-bit instruction word */
-       uint32_t slot;
-
-       /* Bitwise offset of the instruction indicated by slot */
-       uint32_t bit_pos;
-
-       /* bit_pos split into byte and bit parts */
-       uint32_t byte_pos;
-       uint32_t bit_res;
-
-       /* Address part of an instruction */
-       uint32_t addr;
-
-       /* Mask used to detect which instructions to convert */
-       uint32_t mask;
-
-       /* 41-bit instruction stored somewhere in the lowest 48 bits */
-       uint64_t instr;
-
-       /* Instruction normalized with bit_res for easier manipulation */
-       uint64_t norm;
-
-       for (i = 0; i + 16 <= size; i += 16) {
-               mask = branch_table[buf[i] & 0x1F];
-               for (slot = 0, bit_pos = 5; slot < 3; ++slot, bit_pos += 41) {
-                       if (((mask >> slot) & 1) == 0)
-                               continue;
-
-                       byte_pos = bit_pos >> 3;
-                       bit_res = bit_pos & 7;
-                       instr = 0;
-                       for (j = 0; j < 6; ++j)
-                               instr |= (uint64_t)(buf[i + j + byte_pos])
-                                               << (8 * j);
-
-                       norm = instr >> bit_res;
-
-                       if (((norm >> 37) & 0x0F) == 0x05
-                                       && ((norm >> 9) & 0x07) == 0) {
-                               addr = (norm >> 13) & 0x0FFFFF;
-                               addr |= ((uint32_t)(norm >> 36) & 1) << 20;
-                               addr <<= 4;
-                               addr -= s->pos + (uint32_t)i;
-                               addr >>= 4;
-
-                               norm &= ~((uint64_t)0x8FFFFF << 13);
-                               norm |= (uint64_t)(addr & 0x0FFFFF) << 13;
-                               norm |= (uint64_t)(addr & 0x100000)
-                                               << (36 - 20);
-
-                               instr &= (1 << bit_res) - 1;
-                               instr |= norm << bit_res;
-
-                               for (j = 0; j < 6; j++)
-                                       buf[i + j + byte_pos]
-                                               = (uint8_t)(instr >> (8 * j));
-                       }
-               }
-       }
-
-       return i;
+  static const uint8_t branch_table[32] = {
+    0, 0, 0, 0, 0, 0, 0, 0,
+    0, 0, 0, 0, 0, 0, 0, 0,
+    4, 4, 6, 6, 0, 0, 7, 7,
+    4, 4, 0, 0, 4, 4, 0, 0
+  };
+
+  /*
+   * The local variables take a little bit stack space, but it's less
+   * than what LZMA2 decoder takes, so it doesn't make sense to reduce
+   * stack usage here without doing that for the LZMA2 decoder too.
+   */
+
+  /* Loop counters */
+  size_t i;
+  size_t j;
+
+  /* Instruction slot (0, 1, or 2) in the 128-bit instruction word */
+  uint32_t slot;
+
+  /* Bitwise offset of the instruction indicated by slot */
+  uint32_t bit_pos;
+
+  /* bit_pos split into byte and bit parts */
+  uint32_t byte_pos;
+  uint32_t bit_res;
+
+  /* Address part of an instruction */
+  uint32_t addr;
+
+  /* Mask used to detect which instructions to convert */
+  uint32_t mask;
+
+  /* 41-bit instruction stored somewhere in the lowest 48 bits */
+  uint64_t instr;
+
+  /* Instruction normalized with bit_res for easier manipulation */
+  uint64_t norm;
+
+  for (i = 0; i + 16 <= size; i += 16) {
+    mask = branch_table[buf[i] & 0x1F];
+    for (slot = 0, bit_pos = 5; slot < 3; ++slot, bit_pos += 41) {
+      if (((mask >> slot) & 1) == 0)
+        continue;
+
+      byte_pos = bit_pos >> 3;
+      bit_res = bit_pos & 7;
+      instr = 0;
+      for (j = 0; j < 6; ++j)
+        instr |= (uint64_t)(buf[i + j + byte_pos])
+            << (8 * j);
+
+      norm = instr >> bit_res;
+
+      if (((norm >> 37) & 0x0F) == 0x05
+          && ((norm >> 9) & 0x07) == 0) {
+        addr = (norm >> 13) & 0x0FFFFF;
+        addr |= ((uint32_t)(norm >> 36) & 1) << 20;
+        addr <<= 4;
+        addr -= s->pos + (uint32_t)i;
+        addr >>= 4;
+
+        norm &= ~((uint64_t)0x8FFFFF << 13);
+        norm |= (uint64_t)(addr & 0x0FFFFF) << 13;
+        norm |= (uint64_t)(addr & 0x100000)
+            << (36 - 20);
+
+        instr &= (1 << bit_res) - 1;
+        instr |= norm << bit_res;
+
+        for (j = 0; j < 6; j++)
+          buf[i + j + byte_pos]
+            = (uint8_t)(instr >> (8 * j));
+      }
+    }
+  }
+
+  return i;
 }
 #endif
 
 #ifdef XZ_DEC_ARM
 static size_t bcj_arm(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
 {
-       size_t i;
-       uint32_t addr;
+  size_t i;
+  uint32_t addr;
 
-       for (i = 0; i + 4 <= size; i += 4) {
-               if (buf[i + 3] == 0xEB) {
-                       addr = (uint32_t)buf[i] | ((uint32_t)buf[i + 1] << 8)
-                                       | ((uint32_t)buf[i + 2] << 16);
-                       addr <<= 2;
-                       addr -= s->pos + (uint32_t)i + 8;
-                       addr >>= 2;
-                       buf[i] = (uint8_t)addr;
-                       buf[i + 1] = (uint8_t)(addr >> 8);
-                       buf[i + 2] = (uint8_t)(addr >> 16);
-               }
-       }
+  for (i = 0; i + 4 <= size; i += 4) {
+    if (buf[i + 3] == 0xEB) {
+      addr = (uint32_t)buf[i] | ((uint32_t)buf[i + 1] << 8)
+          | ((uint32_t)buf[i + 2] << 16);
+      addr <<= 2;
+      addr -= s->pos + (uint32_t)i + 8;
+      addr >>= 2;
+      buf[i] = (uint8_t)addr;
+      buf[i + 1] = (uint8_t)(addr >> 8);
+      buf[i + 2] = (uint8_t)(addr >> 16);
+    }
+  }
 
-       return i;
+  return i;
 }
 #endif
 
 #ifdef XZ_DEC_ARMTHUMB
 static size_t bcj_armthumb(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
 {
-       size_t i;
-       uint32_t addr;
-
-       for (i = 0; i + 4 <= size; i += 2) {
-               if ((buf[i + 1] & 0xF8) == 0xF0
-                               && (buf[i + 3] & 0xF8) == 0xF8) {
-                       addr = (((uint32_t)buf[i + 1] & 0x07) << 19)
-                                       | ((uint32_t)buf[i] << 11)
-                                       | (((uint32_t)buf[i + 3] & 0x07) << 8)
-                                       | (uint32_t)buf[i + 2];
-                       addr <<= 1;
-                       addr -= s->pos + (uint32_t)i + 4;
-                       addr >>= 1;
-                       buf[i + 1] = (uint8_t)(0xF0 | ((addr >> 19) & 0x07));
-                       buf[i] = (uint8_t)(addr >> 11);
-                       buf[i + 3] = (uint8_t)(0xF8 | ((addr >> 8) & 0x07));
-                       buf[i + 2] = (uint8_t)addr;
-                       i += 2;
-               }
-       }
-
-       return i;
+  size_t i;
+  uint32_t addr;
+
+  for (i = 0; i + 4 <= size; i += 2) {
+    if ((buf[i + 1] & 0xF8) == 0xF0
+        && (buf[i + 3] & 0xF8) == 0xF8) {
+      addr = (((uint32_t)buf[i + 1] & 0x07) << 19)
+          | ((uint32_t)buf[i] << 11)
+          | (((uint32_t)buf[i + 3] & 0x07) << 8)
+          | (uint32_t)buf[i + 2];
+      addr <<= 1;
+      addr -= s->pos + (uint32_t)i + 4;
+      addr >>= 1;
+      buf[i + 1] = (uint8_t)(0xF0 | ((addr >> 19) & 0x07));
+      buf[i] = (uint8_t)(addr >> 11);
+      buf[i + 3] = (uint8_t)(0xF8 | ((addr >> 8) & 0x07));
+      buf[i + 2] = (uint8_t)addr;
+      i += 2;
+    }
+  }
+
+  return i;
 }
 #endif
 
 #ifdef XZ_DEC_SPARC
 static size_t bcj_sparc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
 {
-       size_t i;
-       uint32_t instr;
+  size_t i;
+  uint32_t instr;
 
-       for (i = 0; i + 4 <= size; i += 4) {
-               instr = get_unaligned_be32(buf + i);
-               if ((instr >> 22) == 0x100 || (instr >> 22) == 0x1FF) {
-                       instr <<= 2;
-                       instr -= s->pos + (uint32_t)i;
-                       instr >>= 2;
-                       instr = ((uint32_t)0x40000000 - (instr & 0x400000))
-                                       | 0x40000000 | (instr & 0x3FFFFF);
-                       put_unaligned_be32(instr, buf + i);
-               }
-       }
+  for (i = 0; i + 4 <= size; i += 4) {
+    instr = get_unaligned_be32(buf + i);
+    if ((instr >> 22) == 0x100 || (instr >> 22) == 0x1FF) {
+      instr <<= 2;
+      instr -= s->pos + (uint32_t)i;
+      instr >>= 2;
+      instr = ((uint32_t)0x40000000 - (instr & 0x400000))
+          | 0x40000000 | (instr & 0x3FFFFF);
+      put_unaligned_be32(instr, buf + i);
+    }
+  }
 
-       return i;
+  return i;
 }
 #endif
 
@@ -897,52 +897,52 @@ static size_t bcj_sparc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
  * avoid pointers to static data (at least on x86).
  */
 static void bcj_apply(struct xz_dec_bcj *s,
-                     uint8_t *buf, size_t *pos, size_t size)
+          uint8_t *buf, size_t *pos, size_t size)
 {
-       size_t filtered;
+  size_t filtered;
 
-       buf += *pos;
-       size -= *pos;
+  buf += *pos;
+  size -= *pos;
 
-       switch (s->type) {
+  switch (s->type) {
 #ifdef XZ_DEC_X86
-       case BCJ_X86:
-               filtered = bcj_x86(s, buf, size);
-               break;
+  case BCJ_X86:
+    filtered = bcj_x86(s, buf, size);
+    break;
 #endif
 #ifdef XZ_DEC_POWERPC
-       case BCJ_POWERPC:
-               filtered = bcj_powerpc(s, buf, size);
-               break;
+  case BCJ_POWERPC:
+    filtered = bcj_powerpc(s, buf, size);
+    break;
 #endif
 #ifdef XZ_DEC_IA64
-       case BCJ_IA64:
-               filtered = bcj_ia64(s, buf, size);
-               break;
+  case BCJ_IA64:
+    filtered = bcj_ia64(s, buf, size);
+    break;
 #endif
 #ifdef XZ_DEC_ARM
-       case BCJ_ARM:
-               filtered = bcj_arm(s, buf, size);
-               break;
+  case BCJ_ARM:
+    filtered = bcj_arm(s, buf, size);
+    break;
 #endif
 #ifdef XZ_DEC_ARMTHUMB
-       case BCJ_ARMTHUMB:
-               filtered = bcj_armthumb(s, buf, size);
-               break;
+  case BCJ_ARMTHUMB:
+    filtered = bcj_armthumb(s, buf, size);
+    break;
 #endif
 #ifdef XZ_DEC_SPARC
-       case BCJ_SPARC:
-               filtered = bcj_sparc(s, buf, size);
-               break;
+  case BCJ_SPARC:
+    filtered = bcj_sparc(s, buf, size);
+    break;
 #endif
-       default:
-               /* Never reached but silence compiler warnings. */
-               filtered = 0;
-               break;
-       }
+  default:
+    /* Never reached but silence compiler warnings. */
+    filtered = 0;
+    break;
+  }
 
-       *pos += filtered;
-       s->pos += filtered;
+  *pos += filtered;
+  s->pos += filtered;
 }
 
 /*
@@ -952,15 +952,15 @@ static void bcj_apply(struct xz_dec_bcj *s,
  */
 static void bcj_flush(struct xz_dec_bcj *s, struct xz_buf *b)
 {
-       size_t copy_size;
+  size_t copy_size;
 
-       copy_size = min_t(size_t, s->temp.filtered, b->out_size - b->out_pos);
-       memcpy(b->out + b->out_pos, s->temp.buf, copy_size);
-       b->out_pos += copy_size;
+  copy_size = min_t(size_t, s->temp.filtered, b->out_size - b->out_pos);
+  memcpy(b->out + b->out_pos, s->temp.buf, copy_size);
+  b->out_pos += copy_size;
 
-       s->temp.filtered -= copy_size;
-       s->temp.size -= copy_size;
-       memmove(s->temp.buf, s->temp.buf + copy_size, s->temp.size);
+  s->temp.filtered -= copy_size;
+  s->temp.size -= copy_size;
+  memmove(s->temp.buf, s->temp.buf + copy_size, s->temp.size);
 }
 
 /*
@@ -969,160 +969,160 @@ static void bcj_flush(struct xz_dec_bcj *s, struct xz_buf *b)
  * some buffering.
  */
 enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s,
-                                    struct xz_dec_lzma2 *lzma2,
-                                    struct xz_buf *b)
-{
-       size_t out_start;
-
-       /*
-        * Flush pending already filtered data to the output buffer. Return
-        * immediatelly if we couldn't flush everything, or if the next
-        * filter in the chain had already returned XZ_STREAM_END.
-        */
-       if (s->temp.filtered > 0) {
-               bcj_flush(s, b);
-               if (s->temp.filtered > 0)
-                       return XZ_OK;
-
-               if (s->ret == XZ_STREAM_END)
-                       return XZ_STREAM_END;
-       }
-
-       /*
-        * If we have more output space than what is currently pending in
-        * temp, copy the unfiltered data from temp to the output buffer
-        * and try to fill the output buffer by decoding more data from the
-        * next filter in the chain. Apply the BCJ filter on the new data
-        * in the output buffer. If everything cannot be filtered, copy it
-        * to temp and rewind the output buffer position accordingly.
-        *
-        * This needs to be always run when temp.size == 0 to handle a special
-        * case where the output buffer is full and the next filter has no
-        * more output coming but hasn't returned XZ_STREAM_END yet.
-        */
-       if (s->temp.size < b->out_size - b->out_pos || s->temp.size == 0) {
-               out_start = b->out_pos;
-               memcpy(b->out + b->out_pos, s->temp.buf, s->temp.size);
-               b->out_pos += s->temp.size;
-
-               s->ret = xz_dec_lzma2_run(lzma2, b);
-               if (s->ret != XZ_STREAM_END
-                               && (s->ret != XZ_OK || s->single_call))
-                       return s->ret;
-
-               bcj_apply(s, b->out, &out_start, b->out_pos);
-
-               /*
-                * As an exception, if the next filter returned XZ_STREAM_END,
-                * we can do that too, since the last few bytes that remain
-                * unfiltered are meant to remain unfiltered.
-                */
-               if (s->ret == XZ_STREAM_END)
-                       return XZ_STREAM_END;
-
-               s->temp.size = b->out_pos - out_start;
-               b->out_pos -= s->temp.size;
-               memcpy(s->temp.buf, b->out + b->out_pos, s->temp.size);
-
-               /*
-                * If there wasn't enough input to the next filter to fill
-                * the output buffer with unfiltered data, there's no point
-                * to try decoding more data to temp.
-                */
-               if (b->out_pos + s->temp.size < b->out_size)
-                       return XZ_OK;
-       }
-
-       /*
-        * We have unfiltered data in temp. If the output buffer isn't full
-        * yet, try to fill the temp buffer by decoding more data from the
-        * next filter. Apply the BCJ filter on temp. Then we hopefully can
-        * fill the actual output buffer by copying filtered data from temp.
-        * A mix of filtered and unfiltered data may be left in temp; it will
-        * be taken care on the next call to this function.
-        */
-       if (b->out_pos < b->out_size) {
-               /* Make b->out{,_pos,_size} temporarily point to s->temp. */
-               s->out = b->out;
-               s->out_pos = b->out_pos;
-               s->out_size = b->out_size;
-               b->out = s->temp.buf;
-               b->out_pos = s->temp.size;
-               b->out_size = sizeof(s->temp.buf);
-
-               s->ret = xz_dec_lzma2_run(lzma2, b);
-
-               s->temp.size = b->out_pos;
-               b->out = s->out;
-               b->out_pos = s->out_pos;
-               b->out_size = s->out_size;
-
-               if (s->ret != XZ_OK && s->ret != XZ_STREAM_END)
-                       return s->ret;
-
-               bcj_apply(s, s->temp.buf, &s->temp.filtered, s->temp.size);
-
-               /*
-                * If the next filter returned XZ_STREAM_END, we mark that
-                * everything is filtered, since the last unfiltered bytes
-                * of the stream are meant to be left as is.
-                */
-               if (s->ret == XZ_STREAM_END)
-                       s->temp.filtered = s->temp.size;
-
-               bcj_flush(s, b);
-               if (s->temp.filtered > 0)
-                       return XZ_OK;
-       }
-
-       return s->ret;
+             struct xz_dec_lzma2 *lzma2,
+             struct xz_buf *b)
+{
+  size_t out_start;
+
+  /*
+   * Flush pending already filtered data to the output buffer. Return
+   * immediatelly if we couldn't flush everything, or if the next
+   * filter in the chain had already returned XZ_STREAM_END.
+   */
+  if (s->temp.filtered > 0) {
+    bcj_flush(s, b);
+    if (s->temp.filtered > 0)
+      return XZ_OK;
+
+    if (s->ret == XZ_STREAM_END)
+      return XZ_STREAM_END;
+  }
+
+  /*
+   * If we have more output space than what is currently pending in
+   * temp, copy the unfiltered data from temp to the output buffer
+   * and try to fill the output buffer by decoding more data from the
+   * next filter in the chain. Apply the BCJ filter on the new data
+   * in the output buffer. If everything cannot be filtered, copy it
+   * to temp and rewind the output buffer position accordingly.
+   *
+   * This needs to be always run when temp.size == 0 to handle a special
+   * case where the output buffer is full and the next filter has no
+   * more output coming but hasn't returned XZ_STREAM_END yet.
+   */
+  if (s->temp.size < b->out_size - b->out_pos || s->temp.size == 0) {
+    out_start = b->out_pos;
+    memcpy(b->out + b->out_pos, s->temp.buf, s->temp.size);
+    b->out_pos += s->temp.size;
+
+    s->ret = xz_dec_lzma2_run(lzma2, b);
+    if (s->ret != XZ_STREAM_END
+        && (s->ret != XZ_OK || s->single_call))
+      return s->ret;
+
+    bcj_apply(s, b->out, &out_start, b->out_pos);
+
+    /*
+     * As an exception, if the next filter returned XZ_STREAM_END,
+     * we can do that too, since the last few bytes that remain
+     * unfiltered are meant to remain unfiltered.
+     */
+    if (s->ret == XZ_STREAM_END)
+      return XZ_STREAM_END;
+
+    s->temp.size = b->out_pos - out_start;
+    b->out_pos -= s->temp.size;
+    memcpy(s->temp.buf, b->out + b->out_pos, s->temp.size);
+
+    /*
+     * If there wasn't enough input to the next filter to fill
+     * the output buffer with unfiltered data, there's no point
+     * to try decoding more data to temp.
+     */
+    if (b->out_pos + s->temp.size < b->out_size)
+      return XZ_OK;
+  }
+
+  /*
+   * We have unfiltered data in temp. If the output buffer isn't full
+   * yet, try to fill the temp buffer by decoding more data from the
+   * next filter. Apply the BCJ filter on temp. Then we hopefully can
+   * fill the actual output buffer by copying filtered data from temp.
+   * A mix of filtered and unfiltered data may be left in temp; it will
+   * be taken care on the next call to this function.
+   */
+  if (b->out_pos < b->out_size) {
+    /* Make b->out{,_pos,_size} temporarily point to s->temp. */
+    s->out = b->out;
+    s->out_pos = b->out_pos;
+    s->out_size = b->out_size;
+    b->out = s->temp.buf;
+    b->out_pos = s->temp.size;
+    b->out_size = sizeof(s->temp.buf);
+
+    s->ret = xz_dec_lzma2_run(lzma2, b);
+
+    s->temp.size = b->out_pos;
+    b->out = s->out;
+    b->out_pos = s->out_pos;
+    b->out_size = s->out_size;
+
+    if (s->ret != XZ_OK && s->ret != XZ_STREAM_END)
+      return s->ret;
+
+    bcj_apply(s, s->temp.buf, &s->temp.filtered, s->temp.size);
+
+    /*
+     * If the next filter returned XZ_STREAM_END, we mark that
+     * everything is filtered, since the last unfiltered bytes
+     * of the stream are meant to be left as is.
+     */
+    if (s->ret == XZ_STREAM_END)
+      s->temp.filtered = s->temp.size;
+
+    bcj_flush(s, b);
+    if (s->temp.filtered > 0)
+      return XZ_OK;
+  }
+
+  return s->ret;
 }
 
 struct xz_dec_bcj *xz_dec_bcj_create(int single_call)
 {
-       struct xz_dec_bcj *s = malloc(sizeof(*s));
-       if (s != NULL)
-               s->single_call = single_call;
+  struct xz_dec_bcj *s = malloc(sizeof(*s));
+  if (s != NULL)
+    s->single_call = single_call;
 
-       return s;
+  return s;
 }
 
 enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id)
 {
-       switch (id) {
+  switch (id) {
 #ifdef XZ_DEC_X86
-       case BCJ_X86:
+  case BCJ_X86:
 #endif
 #ifdef XZ_DEC_POWERPC
-       case BCJ_POWERPC:
+  case BCJ_POWERPC:
 #endif
 #ifdef XZ_DEC_IA64
-       case BCJ_IA64:
+  case BCJ_IA64:
 #endif
 #ifdef XZ_DEC_ARM
-       case BCJ_ARM:
+  case BCJ_ARM:
 #endif
 #ifdef XZ_DEC_ARMTHUMB
-       case BCJ_ARMTHUMB:
+  case BCJ_ARMTHUMB:
 #endif
 #ifdef XZ_DEC_SPARC
-       case BCJ_SPARC:
+  case BCJ_SPARC:
 #endif
-               break;
+    break;
 
-       default:
-               /* Unsupported Filter ID */
-               return XZ_OPTIONS_ERROR;
-       }
+  default:
+    /* Unsupported Filter ID */
+    return XZ_OPTIONS_ERROR;
+  }
 
-       s->type = id;
-       s->ret = XZ_OK;
-       s->pos = 0;
-       s->x86_prev_mask = 0;
-       s->temp.filtered = 0;
-       s->temp.size = 0;
+  s->type = id;
+  s->ret = XZ_OK;
+  s->pos = 0;
+  s->x86_prev_mask = 0;
+  s->temp.filtered = 0;
+  s->temp.size = 0;
 
-       return XZ_OK;
+  return XZ_OK;
 }
 
 #endif
@@ -1167,18 +1167,18 @@ enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id)
  * either short or long repeated match, and NONLIT means any non-literal.
  */
 enum lzma_state {
-       STATE_LIT_LIT,
-       STATE_MATCH_LIT_LIT,
-       STATE_REP_LIT_LIT,
-       STATE_SHORTREP_LIT_LIT,
-       STATE_MATCH_LIT,
-       STATE_REP_LIT,
-       STATE_SHORTREP_LIT,
-       STATE_LIT_MATCH,
-       STATE_LIT_LONGREP,
-       STATE_LIT_SHORTREP,
-       STATE_NONLIT_MATCH,
-       STATE_NONLIT_REP
+  STATE_LIT_LIT,
+  STATE_MATCH_LIT_LIT,
+  STATE_REP_LIT_LIT,
+  STATE_SHORTREP_LIT_LIT,
+  STATE_MATCH_LIT,
+  STATE_REP_LIT,
+  STATE_SHORTREP_LIT,
+  STATE_LIT_MATCH,
+  STATE_LIT_LONGREP,
+  STATE_LIT_SHORTREP,
+  STATE_NONLIT_MATCH,
+  STATE_NONLIT_REP
 };
 
 /* Total number of states */
@@ -1190,36 +1190,36 @@ enum lzma_state {
 /* Indicate that the latest symbol was a literal. */
 static inline void lzma_state_literal(enum lzma_state *state)
 {
-       if (*state <= STATE_SHORTREP_LIT_LIT)
-               *state = STATE_LIT_LIT;
-       else if (*state <= STATE_LIT_SHORTREP)
-               *state -= 3;
-       else
-               *state -= 6;
+  if (*state <= STATE_SHORTREP_LIT_LIT)
+    *state = STATE_LIT_LIT;
+  else if (*state <= STATE_LIT_SHORTREP)
+    *state -= 3;
+  else
+    *state -= 6;
 }
 
 /* Indicate that the latest symbol was a match. */
 static inline void lzma_state_match(enum lzma_state *state)
 {
-       *state = *state < LIT_STATES ? STATE_LIT_MATCH : STATE_NONLIT_MATCH;
+  *state = *state < LIT_STATES ? STATE_LIT_MATCH : STATE_NONLIT_MATCH;
 }
 
 /* Indicate that the latest state was a long repeated match. */
 static inline void lzma_state_long_rep(enum lzma_state *state)
 {
-       *state = *state < LIT_STATES ? STATE_LIT_LONGREP : STATE_NONLIT_REP;
+  *state = *state < LIT_STATES ? STATE_LIT_LONGREP : STATE_NONLIT_REP;
 }
 
 /* Indicate that the latest symbol was a short match. */
 static inline void lzma_state_short_rep(enum lzma_state *state)
 {
-       *state = *state < LIT_STATES ? STATE_LIT_SHORTREP : STATE_NONLIT_REP;
+  *state = *state < LIT_STATES ? STATE_LIT_SHORTREP : STATE_NONLIT_REP;
 }
 
 /* Test if the previous symbol was a literal. */
 static inline int lzma_state_is_literal(enum lzma_state state)
 {
-       return state < LIT_STATES;
+  return state < LIT_STATES;
 }
 
 /* Each literal coder is divided in three sections:
@@ -1273,8 +1273,8 @@ static inline int lzma_state_is_literal(enum lzma_state state)
  */
 static inline uint32_t lzma_get_dist_state(uint32_t len)
 {
-       return len < DIST_STATES + MATCH_LEN_MIN
-                       ? len - MATCH_LEN_MIN : DIST_STATES - 1;
+  return len < DIST_STATES + MATCH_LEN_MIN
+      ? len - MATCH_LEN_MIN : DIST_STATES - 1;
 }
 
 /*
@@ -1362,237 +1362,237 @@ static inline uint32_t lzma_get_dist_state(uint32_t len)
  * buffer directly.
  */
 struct dictionary {
-       /* Beginning of the history buffer */
-       uint8_t *buf;
-
-       /* Old position in buf (before decoding more data) */
-       size_t start;
-
-       /* Position in buf */
-       size_t pos;
-
-       /*
-        * How full dictionary is. This is used to detect corrupt input that
-        * would read beyond the beginning of the uncompressed stream.
-        */
-       size_t full;
-
-       /* Write limit; we don't write to buf[limit] or later bytes. */
-       size_t limit;
-
-       /*
-        * End of the dictionary buffer. In multi-call mode, this is
-        * the same as the dictionary size. In single-call mode, this
-        * indicates the size of the output buffer.
-        */
-       size_t end;
-
-       /*
-        * Size of the dictionary as specified in Block Header. This is used
-        * together with "full" to detect corrupt input that would make us
-        * read beyond the beginning of the uncompressed stream.
-        */
-       uint32_t size;
-
-       /*
-        * Maximum allowed dictionary size in multi-call mode.
-        * This is ignored in single-call mode.
-        */
-       uint32_t size_max;
-
-       /*
-        * Amount of memory currently allocated for the dictionary.
-        * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC,
-        * size_max is always the same as the allocated size.)
-        */
-       uint32_t allocated;
-
-       /* Operation mode */
-       enum xz_mode mode;
+  /* Beginning of the history buffer */
+  uint8_t *buf;
+
+  /* Old position in buf (before decoding more data) */
+  size_t start;
+
+  /* Position in buf */
+  size_t pos;
+
+  /*
+   * How full dictionary is. This is used to detect corrupt input that
+   * would read beyond the beginning of the uncompressed stream.
+   */
+  size_t full;
+
+  /* Write limit; we don't write to buf[limit] or later bytes. */
+  size_t limit;
+
+  /*
+   * End of the dictionary buffer. In multi-call mode, this is
+   * the same as the dictionary size. In single-call mode, this
+   * indicates the size of the output buffer.
+   */
+  size_t end;
+
+  /*
+   * Size of the dictionary as specified in Block Header. This is used
+   * together with "full" to detect corrupt input that would make us
+   * read beyond the beginning of the uncompressed stream.
+   */
+  uint32_t size;
+
+  /*
+   * Maximum allowed dictionary size in multi-call mode.
+   * This is ignored in single-call mode.
+   */
+  uint32_t size_max;
+
+  /*
+   * Amount of memory currently allocated for the dictionary.
+   * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC,
+   * size_max is always the same as the allocated size.)
+   */
+  uint32_t allocated;
+
+  /* Operation mode */
+  enum xz_mode mode;
 };
 
 /* Range decoder */
 struct rc_dec {
-       uint32_t range;
-       uint32_t code;
-
-       /*
-        * Number of initializing bytes remaining to be read
-        * by rc_read_init().
-        */
-       uint32_t init_bytes_left;
-
-       /*
-        * Buffer from which we read our input. It can be either
-        * temp.buf or the caller-provided input buffer.
-        */
-       const uint8_t *in;
-       size_t in_pos;
-       size_t in_limit;
+  uint32_t range;
+  uint32_t code;
+
+  /*
+   * Number of initializing bytes remaining to be read
+   * by rc_read_init().
+   */
+  uint32_t init_bytes_left;
+
+  /*
+   * Buffer from which we read our input. It can be either
+   * temp.buf or the caller-provided input buffer.
+   */
+  const uint8_t *in;
+  size_t in_pos;
+  size_t in_limit;
 };
 
 /* Probabilities for a length decoder. */
 struct lzma_len_dec {
-       /* Probability of match length being at least 10 */
-       uint16_t choice;
+  /* Probability of match length being at least 10 */
+  uint16_t choice;
 
-       /* Probability of match length being at least 18 */
-       uint16_t choice2;
+  /* Probability of match length being at least 18 */
+  uint16_t choice2;
 
-       /* Probabilities for match lengths 2-9 */
-       uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
+  /* Probabilities for match lengths 2-9 */
+  uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
 
-       /* Probabilities for match lengths 10-17 */
-       uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
+  /* Probabilities for match lengths 10-17 */
+  uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
 
-       /* Probabilities for match lengths 18-273 */
-       uint16_t high[LEN_HIGH_SYMBOLS];
+  /* Probabilities for match lengths 18-273 */
+  uint16_t high[LEN_HIGH_SYMBOLS];
 };
 
 struct lzma_dec {
-       /* Distances of latest four matches */
-       uint32_t rep0;
-       uint32_t rep1;
-       uint32_t rep2;
-       uint32_t rep3;
-
-       /* Types of the most recently seen LZMA symbols */
-       enum lzma_state state;
-
-       /*
-        * Length of a match. This is updated so that dict_repeat can
-        * be called again to finish repeating the whole match.
-        */
-       uint32_t len;
-
-       /*
-        * LZMA properties or related bit masks (number of literal
-        * context bits, a mask dervied from the number of literal
-        * position bits, and a mask dervied from the number
-        * position bits)
-        */
-       uint32_t lc;
-       uint32_t literal_pos_mask; /* (1 << lp) - 1 */
-       uint32_t pos_mask;         /* (1 << pb) - 1 */
-
-       /* If 1, it's a match. Otherwise it's a single 8-bit literal. */
-       uint16_t is_match[STATES][POS_STATES_MAX];
-
-       /* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
-       uint16_t is_rep[STATES];
-
-       /*
-        * If 0, distance of a repeated match is rep0.
-        * Otherwise check is_rep1.
-        */
-       uint16_t is_rep0[STATES];
-
-       /*
-        * If 0, distance of a repeated match is rep1.
-        * Otherwise check is_rep2.
-        */
-       uint16_t is_rep1[STATES];
-
-       /* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
-       uint16_t is_rep2[STATES];
-
-       /*
-        * If 1, the repeated match has length of one byte. Otherwise
-        * the length is decoded from rep_len_decoder.
-        */
-       uint16_t is_rep0_long[STATES][POS_STATES_MAX];
-
-       /*
-        * Probability tree for the highest two bits of the match
-        * distance. There is a separate probability tree for match
-        * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
-        */
-       uint16_t dist_slot[DIST_STATES][DIST_SLOTS];
-
-       /*
-        * Probility trees for additional bits for match distance
-        * when the distance is in the range [4, 127].
-        */
-       uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END];
-
-       /*
-        * Probability tree for the lowest four bits of a match
-        * distance that is equal to or greater than 128.
-        */
-       uint16_t dist_align[ALIGN_SIZE];
-
-       /* Length of a normal match */
-       struct lzma_len_dec match_len_dec;
-
-       /* Length of a repeated match */
-       struct lzma_len_dec rep_len_dec;
-
-       /* Probabilities of literals */
-       uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
+  /* Distances of latest four matches */
+  uint32_t rep0;
+  uint32_t rep1;
+  uint32_t rep2;
+  uint32_t rep3;
+
+  /* Types of the most recently seen LZMA symbols */
+  enum lzma_state state;
+
+  /*
+   * Length of a match. This is updated so that dict_repeat can
+   * be called again to finish repeating the whole match.
+   */
+  uint32_t len;
+
+  /*
+   * LZMA properties or related bit masks (number of literal
+   * context bits, a mask dervied from the number of literal
+   * position bits, and a mask dervied from the number
+   * position bits)
+   */
+  uint32_t lc;
+  uint32_t literal_pos_mask; /* (1 << lp) - 1 */
+  uint32_t pos_mask;         /* (1 << pb) - 1 */
+
+  /* If 1, it's a match. Otherwise it's a single 8-bit literal. */
+  uint16_t is_match[STATES][POS_STATES_MAX];
+
+  /* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
+  uint16_t is_rep[STATES];
+
+  /*
+   * If 0, distance of a repeated match is rep0.
+   * Otherwise check is_rep1.
+   */
+  uint16_t is_rep0[STATES];
+
+  /*
+   * If 0, distance of a repeated match is rep1.
+   * Otherwise check is_rep2.
+   */
+  uint16_t is_rep1[STATES];
+
+  /* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
+  uint16_t is_rep2[STATES];
+
+  /*
+   * If 1, the repeated match has length of one byte. Otherwise
+   * the length is decoded from rep_len_decoder.
+   */
+  uint16_t is_rep0_long[STATES][POS_STATES_MAX];
+
+  /*
+   * Probability tree for the highest two bits of the match
+   * distance. There is a separate probability tree for match
+   * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
+   */
+  uint16_t dist_slot[DIST_STATES][DIST_SLOTS];
+
+  /*
+   * Probility trees for additional bits for match distance
+   * when the distance is in the range [4, 127].
+   */
+  uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END];
+
+  /*
+   * Probability tree for the lowest four bits of a match
+   * distance that is equal to or greater than 128.
+   */
+  uint16_t dist_align[ALIGN_SIZE];
+
+  /* Length of a normal match */
+  struct lzma_len_dec match_len_dec;
+
+  /* Length of a repeated match */
+  struct lzma_len_dec rep_len_dec;
+
+  /* Probabilities of literals */
+  uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
 };
 
 struct lzma2_dec {
-       /* Position in xz_dec_lzma2_run(). */
-       enum lzma2_seq {
-               SEQ_CONTROL,
-               SEQ_UNCOMPRESSED_1,
-               SEQ_UNCOMPRESSED_2,
-               SEQ_COMPRESSED_0,
-               SEQ_COMPRESSED_1,
-               SEQ_PROPERTIES,
-               SEQ_LZMA_PREPARE,
-               SEQ_LZMA_RUN,
-               SEQ_COPY
-       } sequence;
-
-       /* Next position after decoding the compressed size of the chunk. */
-       enum lzma2_seq next_sequence;
-
-       /* Uncompressed size of LZMA chunk (2 MiB at maximum) */
-       uint32_t uncompressed;
-
-       /*
-        * Compressed size of LZMA chunk or compressed/uncompressed
-        * size of uncompressed chunk (64 KiB at maximum)
-        */
-       uint32_t compressed;
-
-       /*
-        * True if dictionary reset is needed. This is false before
-        * the first chunk (LZMA or uncompressed).
-        */
-       int need_dict_reset;
-
-       /*
-        * True if new LZMA properties are needed. This is false
-        * before the first LZMA chunk.
-        */
-       int need_props;
+  /* Position in xz_dec_lzma2_run(). */
+  enum lzma2_seq {
+    SEQ_CONTROL,
+    SEQ_UNCOMPRESSED_1,
+    SEQ_UNCOMPRESSED_2,
+    SEQ_COMPRESSED_0,
+    SEQ_COMPRESSED_1,
+    SEQ_PROPERTIES,
+    SEQ_LZMA_PREPARE,
+    SEQ_LZMA_RUN,
+    SEQ_COPY
+  } sequence;
+
+  /* Next position after decoding the compressed size of the chunk. */
+  enum lzma2_seq next_sequence;
+
+  /* Uncompressed size of LZMA chunk (2 MiB at maximum) */
+  uint32_t uncompressed;
+
+  /*
+   * Compressed size of LZMA chunk or compressed/uncompressed
+   * size of uncompressed chunk (64 KiB at maximum)
+   */
+  uint32_t compressed;
+
+  /*
+   * True if dictionary reset is needed. This is false before
+   * the first chunk (LZMA or uncompressed).
+   */
+  int need_dict_reset;
+
+  /*
+   * True if new LZMA properties are needed. This is false
+   * before the first LZMA chunk.
+   */
+  int need_props;
 };
 
 struct xz_dec_lzma2 {
-       /*
-        * The order below is important on x86 to reduce code size and
-        * it shouldn't hurt on other platforms. Everything up to and
-        * including lzma.pos_mask are in the first 128 bytes on x86-32,
-        * which allows using smaller instructions to access those
-        * variables. On x86-64, fewer variables fit into the first 128
-        * bytes, but this is still the best order without sacrificing
-        * the readability by splitting the structures.
-        */
-       struct rc_dec rc;
-       struct dictionary dict;
-       struct lzma2_dec lzma2;
-       struct lzma_dec lzma;
-
-       /*
-        * Temporary buffer which holds small number of input bytes between
-        * decoder calls. See lzma2_lzma() for details.
-        */
-       struct {
-               uint32_t size;
-               uint8_t buf[3 * LZMA_IN_REQUIRED];
-       } temp;
+  /*
+   * The order below is important on x86 to reduce code size and
+   * it shouldn't hurt on other platforms. Everything up to and
+   * including lzma.pos_mask are in the first 128 bytes on x86-32,
+   * which allows using smaller instructions to access those
+   * variables. On x86-64, fewer variables fit into the first 128
+   * bytes, but this is still the best order without sacrificing
+   * the readability by splitting the structures.
+   */
+  struct rc_dec rc;
+  struct dictionary dict;
+  struct lzma2_dec lzma2;
+  struct lzma_dec lzma;
+
+  /*
+   * Temporary buffer which holds small number of input bytes between
+   * decoder calls. See lzma2_lzma() for details.
+   */
+  struct {
+    uint32_t size;
+    uint8_t buf[3 * LZMA_IN_REQUIRED];
+  } temp;
 };
 
 /**************
@@ -1605,30 +1605,30 @@ struct xz_dec_lzma2 {
  */
 static void dict_reset(struct dictionary *dict, struct xz_buf *b)
 {
-       if (DEC_IS_SINGLE(dict->mode)) {
-               dict->buf = b->out + b->out_pos;
-               dict->end = b->out_size - b->out_pos;
-       }
+  if (DEC_IS_SINGLE(dict->mode)) {
+    dict->buf = b->out + b->out_pos;
+    dict->end = b->out_size - b->out_pos;
+  }
 
-       dict->start = 0;
-       dict->pos = 0;
-       dict->limit = 0;
-       dict->full = 0;
+  dict->start = 0;
+  dict->pos = 0;
+  dict->limit = 0;
+  dict->full = 0;
 }
 
 /* Set dictionary write limit */
 static void dict_limit(struct dictionary *dict, size_t out_max)
 {
-       if (dict->end - dict->pos <= out_max)
-               dict->limit = dict->end;
-       else
-               dict->limit = dict->pos + out_max;
+  if (dict->end - dict->pos <= out_max)
+    dict->limit = dict->end;
+  else
+    dict->limit = dict->pos + out_max;
 }
 
 /* Return true if at least one byte can be written into the dictionary. */
 static inline int dict_has_space(const struct dictionary *dict)
 {
-       return dict->pos < dict->limit;
+  return dict->pos < dict->limit;
 }
 
 /*
@@ -1639,12 +1639,12 @@ static inline int dict_has_space(const struct dictionary *dict)
  */
 static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist)
 {
-       size_t offset = dict->pos - dist - 1;
+  size_t offset = dict->pos - dist - 1;
 
-       if (dist >= dict->pos)
-               offset += dict->end;
+  if (dist >= dict->pos)
+    offset += dict->end;
 
-       return dict->full > 0 ? dict->buf[offset] : 0;
+  return dict->full > 0 ? dict->buf[offset] : 0;
 }
 
 /*
@@ -1652,10 +1652,10 @@ static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist)
  */
 static inline void dict_put(struct dictionary *dict, uint8_t byte)
 {
-       dict->buf[dict->pos++] = byte;
+  dict->buf[dict->pos++] = byte;
 
-       if (dict->full < dict->pos)
-               dict->full = dict->pos;
+  if (dict->full < dict->pos)
+    dict->full = dict->pos;
 }
 
 /*
@@ -1665,66 +1665,66 @@ static inline void dict_put(struct dictionary *dict, uint8_t byte)
  */
 static int dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist)
 {
-       size_t back;
-       uint32_t left;
+  size_t back;
+  uint32_t left;
 
-       if (dist >= dict->full || dist >= dict->size) return 0;
+  if (dist >= dict->full || dist >= dict->size) return 0;
 
-       left = min_t(size_t, dict->limit - dict->pos, *len);
-       *len -= left;
+  left = min_t(size_t, dict->limit - dict->pos, *len);
+  *len -= left;
 
-       back = dict->pos - dist - 1;
-       if (dist >= dict->pos)
-               back += dict->end;
+  back = dict->pos - dist - 1;
+  if (dist >= dict->pos)
+    back += dict->end;
 
-       do {
-               dict->buf[dict->pos++] = dict->buf[back++];
-               if (back == dict->end)
-                       back = 0;
-       } while (--left > 0);
+  do {
+    dict->buf[dict->pos++] = dict->buf[back++];
+    if (back == dict->end)
+      back = 0;
+  } while (--left > 0);
 
-       if (dict->full < dict->pos)
-               dict->full = dict->pos;
+  if (dict->full < dict->pos)
+    dict->full = dict->pos;
 
-       return 1;
+  return 1;
 }
 
 /* Copy uncompressed data as is from input to dictionary and output buffers. */
 static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b,
-                             uint32_t *left)
+            uint32_t *left)
 {
-       size_t copy_size;
+  size_t copy_size;
 
-       while (*left > 0 && b->in_pos < b->in_size
-                       && b->out_pos < b->out_size) {
-               copy_size = min(b->in_size - b->in_pos,
-                               b->out_size - b->out_pos);
-               if (copy_size > dict->end - dict->pos)
-                       copy_size = dict->end - dict->pos;
-               if (copy_size > *left)
-                       copy_size = *left;
+  while (*left > 0 && b->in_pos < b->in_size
+      && b->out_pos < b->out_size) {
+    copy_size = min(b->in_size - b->in_pos,
+        b->out_size - b->out_pos);
+    if (copy_size > dict->end - dict->pos)
+      copy_size = dict->end - dict->pos;
+    if (copy_size > *left)
+      copy_size = *left;
 
-               *left -= copy_size;
+    *left -= copy_size;
 
-               memcpy(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
-               dict->pos += copy_size;
+    memcpy(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
+    dict->pos += copy_size;
 
-               if (dict->full < dict->pos)
-                       dict->full = dict->pos;
+    if (dict->full < dict->pos)
+      dict->full = dict->pos;
 
-               if (DEC_IS_MULTI(dict->mode)) {
-                       if (dict->pos == dict->end)
-                               dict->pos = 0;
+    if (DEC_IS_MULTI(dict->mode)) {
+      if (dict->pos == dict->end)
+        dict->pos = 0;
 
-                       memcpy(b->out + b->out_pos, b->in + b->in_pos,
-                                       copy_size);
-               }
+      memcpy(b->out + b->out_pos, b->in + b->in_pos,
+          copy_size);
+    }
 
-               dict->start = dict->pos;
+    dict->start = dict->pos;
 
-               b->out_pos += copy_size;
-               b->in_pos += copy_size;
-       }
+    b->out_pos += copy_size;
+    b->in_pos += copy_size;
+  }
 }
 
 /*
@@ -1734,19 +1734,19 @@ static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b,
  */
 static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b)
 {
-       size_t copy_size = dict->pos - dict->start;
+  size_t copy_size = dict->pos - dict->start;
 
-       if (DEC_IS_MULTI(dict->mode)) {
-               if (dict->pos == dict->end)
-                       dict->pos = 0;
+  if (DEC_IS_MULTI(dict->mode)) {
+    if (dict->pos == dict->end)
+      dict->pos = 0;
 
-               memcpy(b->out + b->out_pos, dict->buf + dict->start,
-                               copy_size);
-       }
+    memcpy(b->out + b->out_pos, dict->buf + dict->start,
+        copy_size);
+  }
 
-       dict->start = dict->pos;
-       b->out_pos += copy_size;
-       return copy_size;
+  dict->start = dict->pos;
+  b->out_pos += copy_size;
+  return copy_size;
 }
 
 /*****************
@@ -1756,9 +1756,9 @@ static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b)
 /* Reset the range decoder. */
 static void rc_reset(struct rc_dec *rc)
 {
-       rc->range = (uint32_t)-1;
-       rc->code = 0;
-       rc->init_bytes_left = RC_INIT_BYTES;
+  rc->range = (uint32_t)-1;
+  rc->code = 0;
+  rc->init_bytes_left = RC_INIT_BYTES;
 }
 
 /*
@@ -1767,20 +1767,20 @@ static void rc_reset(struct rc_dec *rc)
  */
 static int rc_read_init(struct rc_dec *rc, struct xz_buf *b)
 {
-       while (rc->init_bytes_left > 0) {
-               if (b->in_pos == b->in_size) return 0;
+  while (rc->init_bytes_left > 0) {
+    if (b->in_pos == b->in_size) return 0;
 
-               rc->code = (rc->code << 8) + b->in[b->in_pos++];
-               --rc->init_bytes_left;
-       }
+    rc->code = (rc->code << 8) + b->in[b->in_pos++];
+    --rc->init_bytes_left;
+  }
 
-       return 1;
+  return 1;
 }
 
 /* Return true if there may not be enough input for the next decoding loop. */
 static inline int rc_limit_exceeded(const struct rc_dec *rc)
 {
-       return rc->in_pos > rc->in_limit;
+  return rc->in_pos > rc->in_limit;
 }
 
 /*
@@ -1789,16 +1789,16 @@ static inline int rc_limit_exceeded(const struct rc_dec *rc)
  */
 static inline int rc_is_finished(const struct rc_dec *rc)
 {
-       return rc->code == 0;
+  return rc->code == 0;
 }
 
 /* Read the next input byte if needed. */
 static inline void rc_normalize(struct rc_dec *rc)
 {
-       if (rc->range < RC_TOP_VALUE) {
-               rc->range <<= RC_SHIFT_BITS;
-               rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++];
-       }
+  if (rc->range < RC_TOP_VALUE) {
+    rc->range <<= RC_SHIFT_BITS;
+    rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++];
+  }
 }
 
 /*
@@ -1814,72 +1814,72 @@ static inline void rc_normalize(struct rc_dec *rc)
  */
 static inline int rc_bit(struct rc_dec *rc, uint16_t *prob)
 {
-       uint32_t bound;
-       int bit;
+  uint32_t bound;
+  int bit;
 
-       rc_normalize(rc);
-       bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob;
-       if (rc->code < bound) {
-               rc->range = bound;
-               *prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS;
-               bit = 0;
-       } else {
-               rc->range -= bound;
-               rc->code -= bound;
-               *prob -= *prob >> RC_MOVE_BITS;
-               bit = 1;
-       }
+  rc_normalize(rc);
+  bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob;
+  if (rc->code < bound) {
+    rc->range = bound;
+    *prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS;
+    bit = 0;
+  } else {
+    rc->range -= bound;
+    rc->code -= bound;
+    *prob -= *prob >> RC_MOVE_BITS;
+    bit = 1;
+  }
 
-       return bit;
+  return bit;
 }
 
 /* Decode a bittree starting from the most significant bit. */
 static inline uint32_t rc_bittree(struct rc_dec *rc,
-                                          uint16_t *probs, uint32_t limit)
+             uint16_t *probs, uint32_t limit)
 {
-       uint32_t symbol = 1;
+  uint32_t symbol = 1;
 
-       do {
-               if (rc_bit(rc, &probs[symbol]))
-                       symbol = (symbol << 1) + 1;
-               else
-                       symbol <<= 1;
-       } while (symbol < limit);
+  do {
+    if (rc_bit(rc, &probs[symbol]))
+      symbol = (symbol << 1) + 1;
+    else
+      symbol <<= 1;
+  } while (symbol < limit);
 
-       return symbol;
+  return symbol;
 }
 
 /* Decode a bittree starting from the least significant bit. */
 static inline void rc_bittree_reverse(struct rc_dec *rc,
-                                              uint16_t *probs,
-                                              uint32_t *dest, uint32_t limit)
+                 uint16_t *probs,
+                 uint32_t *dest, uint32_t limit)
 {
-       uint32_t symbol = 1;
-       uint32_t i = 0;
+  uint32_t symbol = 1;
+  uint32_t i = 0;
 
-       do {
-               if (rc_bit(rc, &probs[symbol])) {
-                       symbol = (symbol << 1) + 1;
-                       *dest += 1 << i;
-               } else {
-                       symbol <<= 1;
-               }
-       } while (++i < limit);
+  do {
+    if (rc_bit(rc, &probs[symbol])) {
+      symbol = (symbol << 1) + 1;
+      *dest += 1 << i;
+    } else {
+      symbol <<= 1;
+    }
+  } while (++i < limit);
 }
 
 /* Decode direct bits (fixed fifty-fifty probability) */
 static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit)
 {
-       uint32_t mask;
+  uint32_t mask;
 
-       do {
-               rc_normalize(rc);
-               rc->range >>= 1;
-               rc->code -= rc->range;
-               mask = (uint32_t)0 - (rc->code >> 31);
-               rc->code += rc->range & mask;
-               *dest = (*dest << 1) + (mask + 1);
-       } while (--limit > 0);
+  do {
+    rc_normalize(rc);
+    rc->range >>= 1;
+    rc->code -= rc->range;
+    mask = (uint32_t)0 - (rc->code >> 31);
+    rc->code += rc->range & mask;
+    *dest = (*dest << 1) + (mask + 1);
+  } while (--limit > 0);
 }
 
 /********
@@ -1889,114 +1889,114 @@ static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit)
 /* Get pointer to literal coder probability array. */
 static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s)
 {
-       uint32_t prev_byte = dict_get(&s->dict, 0);
-       uint32_t low = prev_byte >> (8 - s->lzma.lc);
-       uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc;
-       return s->lzma.literal[low + high];
+  uint32_t prev_byte = dict_get(&s->dict, 0);
+  uint32_t low = prev_byte >> (8 - s->lzma.lc);
+  uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc;
+  return s->lzma.literal[low + high];
 }
 
 /* Decode a literal (one 8-bit byte) */
 static void lzma_literal(struct xz_dec_lzma2 *s)
 {
-       uint16_t *probs;
-       uint32_t symbol;
-       uint32_t match_byte;
-       uint32_t match_bit;
-       uint32_t offset;
-       uint32_t i;
-
-       probs = lzma_literal_probs(s);
-
-       if (lzma_state_is_literal(s->lzma.state)) {
-               symbol = rc_bittree(&s->rc, probs, 0x100);
-       } else {
-               symbol = 1;
-               match_byte = dict_get(&s->dict, s->lzma.rep0) << 1;
-               offset = 0x100;
-
-               do {
-                       match_bit = match_byte & offset;
-                       match_byte <<= 1;
-                       i = offset + match_bit + symbol;
-
-                       if (rc_bit(&s->rc, &probs[i])) {
-                               symbol = (symbol << 1) + 1;
-                               offset &= match_bit;
-                       } else {
-                               symbol <<= 1;
-                               offset &= ~match_bit;
-                       }
-               } while (symbol < 0x100);
-       }
-
-       dict_put(&s->dict, (uint8_t)symbol);
-       lzma_state_literal(&s->lzma.state);
+  uint16_t *probs;
+  uint32_t symbol;
+  uint32_t match_byte;
+  uint32_t match_bit;
+  uint32_t offset;
+  uint32_t i;
+
+  probs = lzma_literal_probs(s);
+
+  if (lzma_state_is_literal(s->lzma.state)) {
+    symbol = rc_bittree(&s->rc, probs, 0x100);
+  } else {
+    symbol = 1;
+    match_byte = dict_get(&s->dict, s->lzma.rep0) << 1;
+    offset = 0x100;
+
+    do {
+      match_bit = match_byte & offset;
+      match_byte <<= 1;
+      i = offset + match_bit + symbol;
+
+      if (rc_bit(&s->rc, &probs[i])) {
+        symbol = (symbol << 1) + 1;
+        offset &= match_bit;
+      } else {
+        symbol <<= 1;
+        offset &= ~match_bit;
+      }
+    } while (symbol < 0x100);
+  }
+
+  dict_put(&s->dict, (uint8_t)symbol);
+  lzma_state_literal(&s->lzma.state);
 }
 
 /* Decode the length of the match into s->lzma.len. */
 static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l,
-                    uint32_t pos_state)
-{
-       uint16_t *probs;
-       uint32_t limit;
-
-       if (!rc_bit(&s->rc, &l->choice)) {
-               probs = l->low[pos_state];
-               limit = LEN_LOW_SYMBOLS;
-               s->lzma.len = MATCH_LEN_MIN;
-       } else {
-               if (!rc_bit(&s->rc, &l->choice2)) {
-                       probs = l->mid[pos_state];
-                       limit = LEN_MID_SYMBOLS;
-                       s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS;
-               } else {
-                       probs = l->high;
-                       limit = LEN_HIGH_SYMBOLS;
-                       s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS
-                                       + LEN_MID_SYMBOLS;
-               }
-       }
-
-       s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit;
+         uint32_t pos_state)
+{
+  uint16_t *probs;
+  uint32_t limit;
+
+  if (!rc_bit(&s->rc, &l->choice)) {
+    probs = l->low[pos_state];
+    limit = LEN_LOW_SYMBOLS;
+    s->lzma.len = MATCH_LEN_MIN;
+  } else {
+    if (!rc_bit(&s->rc, &l->choice2)) {
+      probs = l->mid[pos_state];
+      limit = LEN_MID_SYMBOLS;
+      s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS;
+    } else {
+      probs = l->high;
+      limit = LEN_HIGH_SYMBOLS;
+      s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS
+          + LEN_MID_SYMBOLS;
+    }
+  }
+
+  s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit;
 }
 
 /* Decode a match. The distance will be stored in s->lzma.rep0. */
 static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
 {
-       uint16_t *probs;
-       uint32_t dist_slot;
-       uint32_t limit;
+  uint16_t *probs;
+  uint32_t dist_slot;
+  uint32_t limit;
 
-       lzma_state_match(&s->lzma.state);
+  lzma_state_match(&s->lzma.state);
 
-       s->lzma.rep3 = s->lzma.rep2;
-       s->lzma.rep2 = s->lzma.rep1;
-       s->lzma.rep1 = s->lzma.rep0;
+  s->lzma.rep3 = s->lzma.rep2;
+  s->lzma.rep2 = s->lzma.rep1;
+  s->lzma.rep1 = s->lzma.rep0;
 
-       lzma_len(s, &s->lzma.match_len_dec, pos_state);
+  lzma_len(s, &s->lzma.match_len_dec, pos_state);
 
-       probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)];
-       dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS;
+  probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)];
+  dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS;
 
-       if (dist_slot < DIST_MODEL_START) {
-               s->lzma.rep0 = dist_slot;
-       } else {
-               limit = (dist_slot >> 1) - 1;
-               s->lzma.rep0 = 2 + (dist_slot & 1);
+  if (dist_slot < DIST_MODEL_START) {
+    s->lzma.rep0 = dist_slot;
+  } else {
+    limit = (dist_slot >> 1) - 1;
+    s->lzma.rep0 = 2 + (dist_slot & 1);
 
-               if (dist_slot < DIST_MODEL_END) {
-                       s->lzma.rep0 <<= limit;
-                       probs = s->lzma.dist_special + s->lzma.rep0
-                                       - dist_slot - 1;
-                       rc_bittree_reverse(&s->rc, probs,
-                                       &s->lzma.rep0, limit);
-               } else {
-                       rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS);
-                       s->lzma.rep0 <<= ALIGN_BITS;
-                       rc_bittree_reverse(&s->rc, s->lzma.dist_align,
-                                       &s->lzma.rep0, ALIGN_BITS);
-               }
-       }
+    if (dist_slot < DIST_MODEL_END) {
+      s->lzma.rep0 <<= limit;
+      probs = s->lzma.dist_special + s->lzma.rep0
+          - dist_slot - 1;
+      rc_bittree_reverse(&s->rc, probs,
+          &s->lzma.rep0, limit);
+    } else {
+      rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS);
+      s->lzma.rep0 <<= ALIGN_BITS;
+      rc_bittree_reverse(&s->rc, s->lzma.dist_align,
+          &s->lzma.rep0, ALIGN_BITS);
+    }
+  }
 }
 
 /*
@@ -2005,77 +2005,77 @@ static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
  */
 static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
 {
-       uint32_t tmp;
-
-       if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) {
-               if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[
-                               s->lzma.state][pos_state])) {
-                       lzma_state_short_rep(&s->lzma.state);
-                       s->lzma.len = 1;
-                       return;
-               }
-       } else {
-               if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) {
-                       tmp = s->lzma.rep1;
-               } else {
-                       if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) {
-                               tmp = s->lzma.rep2;
-                       } else {
-                               tmp = s->lzma.rep3;
-                               s->lzma.rep3 = s->lzma.rep2;
-                       }
-
-                       s->lzma.rep2 = s->lzma.rep1;
-               }
-
-               s->lzma.rep1 = s->lzma.rep0;
-               s->lzma.rep0 = tmp;
-       }
-
-       lzma_state_long_rep(&s->lzma.state);
-       lzma_len(s, &s->lzma.rep_len_dec, pos_state);
+  uint32_t tmp;
+
+  if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) {
+    if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[
+        s->lzma.state][pos_state])) {
+      lzma_state_short_rep(&s->lzma.state);
+      s->lzma.len = 1;
+      return;
+    }
+  } else {
+    if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) {
+      tmp = s->lzma.rep1;
+    } else {
+      if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) {
+        tmp = s->lzma.rep2;
+      } else {
+        tmp = s->lzma.rep3;
+        s->lzma.rep3 = s->lzma.rep2;
+      }
+
+      s->lzma.rep2 = s->lzma.rep1;
+    }
+
+    s->lzma.rep1 = s->lzma.rep0;
+    s->lzma.rep0 = tmp;
+  }
+
+  lzma_state_long_rep(&s->lzma.state);
+  lzma_len(s, &s->lzma.rep_len_dec, pos_state);
 }
 
 /* LZMA decoder core */
 static int lzma_main(struct xz_dec_lzma2 *s)
 {
-       uint32_t pos_state;
-
-       /*
-        * If the dictionary was reached during the previous call, try to
-        * finish the possibly pending repeat in the dictionary.
-        */
-       if (dict_has_space(&s->dict) && s->lzma.len > 0)
-               dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0);
-
-       /*
-        * Decode more LZMA symbols. One iteration may consume up to
-        * LZMA_IN_REQUIRED - 1 bytes.
-        */
-       while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) {
-               pos_state = s->dict.pos & s->lzma.pos_mask;
-
-               if (!rc_bit(&s->rc, &s->lzma.is_match[
-                               s->lzma.state][pos_state])) {
-                       lzma_literal(s);
-               } else {
-                       if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state]))
-                               lzma_rep_match(s, pos_state);
-                       else
-                               lzma_match(s, pos_state);
-
-                       if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0))
-                               return 0;
-               }
-       }
-
-       /*
-        * Having the range decoder always normalized when we are outside
-        * this function makes it easier to correctly handle end of the chunk.
-        */
-       rc_normalize(&s->rc);
-
-       return 1;
+  uint32_t pos_state;
+
+  /*
+   * If the dictionary was reached during the previous call, try to
+   * finish the possibly pending repeat in the dictionary.
+   */
+  if (dict_has_space(&s->dict) && s->lzma.len > 0)
+    dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0);
+
+  /*
+   * Decode more LZMA symbols. One iteration may consume up to
+   * LZMA_IN_REQUIRED - 1 bytes.
+   */
+  while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) {
+    pos_state = s->dict.pos & s->lzma.pos_mask;
+
+    if (!rc_bit(&s->rc, &s->lzma.is_match[
+        s->lzma.state][pos_state])) {
+      lzma_literal(s);
+    } else {
+      if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state]))
+        lzma_rep_match(s, pos_state);
+      else
+        lzma_match(s, pos_state);
+
+      if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0))
+        return 0;
+    }
+  }
+
+  /*
+   * Having the range decoder always normalized when we are outside
+   * this function makes it easier to correctly handle end of the chunk.
+   */
+  rc_normalize(&s->rc);
+
+  return 1;
 }
 
 /*
@@ -2084,29 +2084,29 @@ static int lzma_main(struct xz_dec_lzma2 *s)
  */
 static void lzma_reset(struct xz_dec_lzma2 *s)
 {
-       uint16_t *probs;
-       size_t i;
+  uint16_t *probs;
+  size_t i;
 
-       s->lzma.state = STATE_LIT_LIT;
-       s->lzma.rep0 = 0;
-       s->lzma.rep1 = 0;
-       s->lzma.rep2 = 0;
-       s->lzma.rep3 = 0;
+  s->lzma.state = STATE_LIT_LIT;
+  s->lzma.rep0 = 0;
+  s->lzma.rep1 = 0;
+  s->lzma.rep2 = 0;
+  s->lzma.rep3 = 0;
 
-       /*
-        * All probabilities are initialized to the same value. This hack
-        * makes the code smaller by avoiding a separate loop for each
-        * probability array.
-        *
-        * This could be optimized so that only that part of literal
-        * probabilities that are actually required. In the common case
-        * we would write 12 KiB less.
-        */
-       probs = s->lzma.is_match[0];
-       for (i = 0; i < PROBS_TOTAL; ++i)
-               probs[i] = RC_BIT_MODEL_TOTAL / 2;
+  /*
+   * All probabilities are initialized to the same value. This hack
+   * makes the code smaller by avoiding a separate loop for each
+   * probability array.
+   *
+   * This could be optimized so that only that part of literal
+   * probabilities that are actually required. In the common case
+   * we would write 12 KiB less.
+   */
+  probs = s->lzma.is_match[0];
+  for (i = 0; i < PROBS_TOTAL; ++i)
+    probs[i] = RC_BIT_MODEL_TOTAL / 2;
 
-       rc_reset(&s->rc);
+  rc_reset(&s->rc);
 }
 
 /*
@@ -2116,33 +2116,33 @@ static void lzma_reset(struct xz_dec_lzma2 *s)
  */
 static int lzma_props(struct xz_dec_lzma2 *s, uint8_t props)
 {
-       if (props > (4 * 5 + 4) * 9 + 8)
-               return 0;
+  if (props > (4 * 5 + 4) * 9 + 8)
+    return 0;
 
-       s->lzma.pos_mask = 0;
-       while (props >= 9 * 5) {
-               props -= 9 * 5;
-               ++s->lzma.pos_mask;
-       }
+  s->lzma.pos_mask = 0;
+  while (props >= 9 * 5) {
+    props -= 9 * 5;
+    ++s->lzma.pos_mask;
+  }
 
-       s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1;
+  s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1;
 
-       s->lzma.literal_pos_mask = 0;
-       while (props >= 9) {
-               props -= 9;
-               ++s->lzma.literal_pos_mask;
-       }
+  s->lzma.literal_pos_mask = 0;
+  while (props >= 9) {
+    props -= 9;
+    ++s->lzma.literal_pos_mask;
+  }
 
-       s->lzma.lc = props;
+  s->lzma.lc = props;
 
-       if (s->lzma.lc + s->lzma.literal_pos_mask > 4)
-               return 0;
+  if (s->lzma.lc + s->lzma.literal_pos_mask > 4)
+    return 0;
 
-       s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1;
+  s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1;
 
-       lzma_reset(s);
+  lzma_reset(s);
 
-       return 1;
+  return 1;
 }
 
 /*********
@@ -2163,82 +2163,82 @@ static int lzma_props(struct xz_dec_lzma2 *s, uint8_t props)
  */
 static int lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b)
 {
-       size_t in_avail;
-       uint32_t tmp;
+  size_t in_avail;
+  uint32_t tmp;
 
-       in_avail = b->in_size - b->in_pos;
-       if (s->temp.size > 0 || s->lzma2.compressed == 0) {
-               tmp = 2 * LZMA_IN_REQUIRED - s->temp.size;
-               if (tmp > s->lzma2.compressed - s->temp.size)
-                       tmp = s->lzma2.compressed - s->temp.size;
-               if (tmp > in_avail)
-                       tmp = in_avail;
+  in_avail = b->in_size - b->in_pos;
+  if (s->temp.size > 0 || s->lzma2.compressed == 0) {
+    tmp = 2 * LZMA_IN_REQUIRED - s->temp.size;
+    if (tmp > s->lzma2.compressed - s->temp.size)
+      tmp = s->lzma2.compressed - s->temp.size;
+    if (tmp > in_avail)
+      tmp = in_avail;
 
-               memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp);
+    memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp);
 
-               if (s->temp.size + tmp == s->lzma2.compressed) {
-                       memset(s->temp.buf + s->temp.size + tmp, 0,
-                                       sizeof(s->temp.buf)
-                                               - s->temp.size - tmp);
-                       s->rc.in_limit = s->temp.size + tmp;
-               } else if (s->temp.size + tmp < LZMA_IN_REQUIRED) {
-                       s->temp.size += tmp;
-                       b->in_pos += tmp;
-                       return 1;
-               } else {
-                       s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED;
-               }
+    if (s->temp.size + tmp == s->lzma2.compressed) {
+      memset(s->temp.buf + s->temp.size + tmp, 0,
+          sizeof(s->temp.buf)
+            - s->temp.size - tmp);
+      s->rc.in_limit = s->temp.size + tmp;
+    } else if (s->temp.size + tmp < LZMA_IN_REQUIRED) {
+      s->temp.size += tmp;
+      b->in_pos += tmp;
+      return 1;
+    } else {
+      s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED;
+    }
 
-               s->rc.in = s->temp.buf;
-               s->rc.in_pos = 0;
+    s->rc.in = s->temp.buf;
+    s->rc.in_pos = 0;
 
-               if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp)
-                       return 0;
+    if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp)
+      return 0;
 
-               s->lzma2.compressed -= s->rc.in_pos;
+    s->lzma2.compressed -= s->rc.in_pos;
 
-               if (s->rc.in_pos < s->temp.size) {
-                       s->temp.size -= s->rc.in_pos;
-                       memmove(s->temp.buf, s->temp.buf + s->rc.in_pos,
-                                       s->temp.size);
-                       return 1;
-               }
+    if (s->rc.in_pos < s->temp.size) {
+      s->temp.size -= s->rc.in_pos;
+      memmove(s->temp.buf, s->temp.buf + s->rc.in_pos,
+          s->temp.size);
+      return 1;
+    }
 
-               b->in_pos += s->rc.in_pos - s->temp.size;
-               s->temp.size = 0;
-       }
+    b->in_pos += s->rc.in_pos - s->temp.size;
+    s->temp.size = 0;
+  }
 
-       in_avail = b->in_size - b->in_pos;
-       if (in_avail >= LZMA_IN_REQUIRED) {
-               s->rc.in = b->in;
-               s->rc.in_pos = b->in_pos;
+  in_avail = b->in_size - b->in_pos;
+  if (in_avail >= LZMA_IN_REQUIRED) {
+    s->rc.in = b->in;
+    s->rc.in_pos = b->in_pos;
 
-               if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED)
-                       s->rc.in_limit = b->in_pos + s->lzma2.compressed;
-               else
-                       s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED;
+    if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED)
+      s->rc.in_limit = b->in_pos + s->lzma2.compressed;
+    else
+      s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED;
 
-               if (!lzma_main(s))
-                       return 0;
+    if (!lzma_main(s))
+      return 0;
 
-               in_avail = s->rc.in_pos - b->in_pos;
-               if (in_avail > s->lzma2.compressed) return 0;
+    in_avail = s->rc.in_pos - b->in_pos;
+    if (in_avail > s->lzma2.compressed) return 0;
 
-               s->lzma2.compressed -= in_avail;
-               b->in_pos = s->rc.in_pos;
-       }
+    s->lzma2.compressed -= in_avail;
+    b->in_pos = s->rc.in_pos;
+  }
 
-       in_avail = b->in_size - b->in_pos;
-       if (in_avail < LZMA_IN_REQUIRED) {
-               if (in_avail > s->lzma2.compressed)
-                       in_avail = s->lzma2.compressed;
+  in_avail = b->in_size - b->in_pos;
+  if (in_avail < LZMA_IN_REQUIRED) {
+    if (in_avail > s->lzma2.compressed)
+      in_avail = s->lzma2.compressed;
 
-               memcpy(s->temp.buf, b->in + b->in_pos, in_avail);
-               s->temp.size = in_avail;
-               b->in_pos += in_avail;
-       }
+    memcpy(s->temp.buf, b->in + b->in_pos, in_avail);
+    s->temp.size = in_avail;
+    b->in_pos += in_avail;
+  }
 
-       return 1;
+  return 1;
 }
 
 /*
@@ -2246,237 +2246,237 @@ static int lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b)
  * decoding or copying of uncompressed chunks to other functions.
  */
 enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
-                                      struct xz_buf *b)
-{
-       uint32_t tmp;
-
-       while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) {
-               switch (s->lzma2.sequence) {
-               case SEQ_CONTROL:
-                       /*
-                        * LZMA2 control byte
-                        *
-                        * Exact values:
-                        *   0x00   End marker
-                        *   0x01   Dictionary reset followed by
-                        *          an uncompressed chunk
-                        *   0x02   Uncompressed chunk (no dictionary reset)
-                        *
-                        * Highest three bits (s->control & 0xE0):
-                        *   0xE0   Dictionary reset, new properties and state
-                        *          reset, followed by LZMA compressed chunk
-                        *   0xC0   New properties and state reset, followed
-                        *          by LZMA compressed chunk (no dictionary
-                        *          reset)
-                        *   0xA0   State reset using old properties,
-                        *          followed by LZMA compressed chunk (no
-                        *          dictionary reset)
-                        *   0x80   LZMA chunk (no dictionary or state reset)
-                        *
-                        * For LZMA compressed chunks, the lowest five bits
-                        * (s->control & 1F) are the highest bits of the
-                        * uncompressed size (bits 16-20).
-                        *
-                        * A new LZMA2 stream must begin with a dictionary
-                        * reset. The first LZMA chunk must set new
-                        * properties and reset the LZMA state.
-                        *
-                        * Values that don't match anything described above
-                        * are invalid and we return XZ_DATA_ERROR.
-                        */
-                       tmp = b->in[b->in_pos++];
-
-                       if (tmp == 0x00)
-                               return XZ_STREAM_END;
-
-                       if (tmp >= 0xE0 || tmp == 0x01) {
-                               s->lzma2.need_props = 1;
-                               s->lzma2.need_dict_reset = 0;
-                               dict_reset(&s->dict, b);
-                       } else if (s->lzma2.need_dict_reset) {
-                               return XZ_DATA_ERROR;
-                       }
-
-                       if (tmp >= 0x80) {
-                               s->lzma2.uncompressed = (tmp & 0x1F) << 16;
-                               s->lzma2.sequence = SEQ_UNCOMPRESSED_1;
-
-                               if (tmp >= 0xC0) {
-                                       /*
-                                        * When there are new properties,
-                                        * state reset is done at
-                                        * SEQ_PROPERTIES.
-                                        */
-                                       s->lzma2.need_props = 0;
-                                       s->lzma2.next_sequence
-                                                       = SEQ_PROPERTIES;
-
-                               } else if (s->lzma2.need_props) {
-                                       return XZ_DATA_ERROR;
-
-                               } else {
-                                       s->lzma2.next_sequence
-                                                       = SEQ_LZMA_PREPARE;
-                                       if (tmp >= 0xA0)
-                                               lzma_reset(s);
-                               }
-                       } else {
-                               if (tmp > 0x02)
-                                       return XZ_DATA_ERROR;
-
-                               s->lzma2.sequence = SEQ_COMPRESSED_0;
-                               s->lzma2.next_sequence = SEQ_COPY;
-                       }
-
-                       break;
-
-               case SEQ_UNCOMPRESSED_1:
-                       s->lzma2.uncompressed
-                                       += (uint32_t)b->in[b->in_pos++] << 8;
-                       s->lzma2.sequence = SEQ_UNCOMPRESSED_2;
-                       break;
-
-               case SEQ_UNCOMPRESSED_2:
-                       s->lzma2.uncompressed
-                                       += (uint32_t)b->in[b->in_pos++] + 1;
-                       s->lzma2.sequence = SEQ_COMPRESSED_0;
-                       break;
-
-               case SEQ_COMPRESSED_0:
-                       s->lzma2.compressed
-                                       = (uint32_t)b->in[b->in_pos++] << 8;
-                       s->lzma2.sequence = SEQ_COMPRESSED_1;
-                       break;
-
-               case SEQ_COMPRESSED_1:
-                       s->lzma2.compressed
-                                       += (uint32_t)b->in[b->in_pos++] + 1;
-                       s->lzma2.sequence = s->lzma2.next_sequence;
-                       break;
-
-               case SEQ_PROPERTIES:
-                       if (!lzma_props(s, b->in[b->in_pos++]))
-                               return XZ_DATA_ERROR;
-
-                       s->lzma2.sequence = SEQ_LZMA_PREPARE;
-
-               case SEQ_LZMA_PREPARE:
-                       if (s->lzma2.compressed < RC_INIT_BYTES)
-                               return XZ_DATA_ERROR;
-
-                       if (!rc_read_init(&s->rc, b))
-                               return XZ_OK;
-
-                       s->lzma2.compressed -= RC_INIT_BYTES;
-                       s->lzma2.sequence = SEQ_LZMA_RUN;
-
-               case SEQ_LZMA_RUN:
-                       /*
-                        * Set dictionary limit to indicate how much we want
-                        * to be encoded at maximum. Decode new data into the
-                        * dictionary. Flush the new data from dictionary to
-                        * b->out. Check if we finished decoding this chunk.
-                        * In case the dictionary got full but we didn't fill
-                        * the output buffer yet, we may run this loop
-                        * multiple times without changing s->lzma2.sequence.
-                        */
-                       dict_limit(&s->dict, min_t(size_t,
-                                       b->out_size - b->out_pos,
-                                       s->lzma2.uncompressed));
-                       if (!lzma2_lzma(s, b))
-                               return XZ_DATA_ERROR;
-
-                       s->lzma2.uncompressed -= dict_flush(&s->dict, b);
-
-                       if (s->lzma2.uncompressed == 0) {
-                               if (s->lzma2.compressed > 0 || s->lzma.len > 0
-                                               || !rc_is_finished(&s->rc))
-                                       return XZ_DATA_ERROR;
-
-                               rc_reset(&s->rc);
-                               s->lzma2.sequence = SEQ_CONTROL;
-
-                       } else if (b->out_pos == b->out_size
-                                       || (b->in_pos == b->in_size
-                                               && s->temp.size
-                                               < s->lzma2.compressed)) {
-                               return XZ_OK;
-                       }
-
-                       break;
-
-               case SEQ_COPY:
-                       dict_uncompressed(&s->dict, b, &s->lzma2.compressed);
-                       if (s->lzma2.compressed > 0)
-                               return XZ_OK;
-
-                       s->lzma2.sequence = SEQ_CONTROL;
-                       break;
-               }
-       }
-
-       return XZ_OK;
+               struct xz_buf *b)
+{
+  uint32_t tmp;
+
+  while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) {
+    switch (s->lzma2.sequence) {
+    case SEQ_CONTROL:
+      /*
+       * LZMA2 control byte
+       *
+       * Exact values:
+       *   0x00   End marker
+       *   0x01   Dictionary reset followed by
+       *          an uncompressed chunk
+       *   0x02   Uncompressed chunk (no dictionary reset)
+       *
+       * Highest three bits (s->control & 0xE0):
+       *   0xE0   Dictionary reset, new properties and state
+       *          reset, followed by LZMA compressed chunk
+       *   0xC0   New properties and state reset, followed
+       *          by LZMA compressed chunk (no dictionary
+       *          reset)
+       *   0xA0   State reset using old properties,
+       *          followed by LZMA compressed chunk (no
+       *          dictionary reset)
+       *   0x80   LZMA chunk (no dictionary or state reset)
+       *
+       * For LZMA compressed chunks, the lowest five bits
+       * (s->control & 1F) are the highest bits of the
+       * uncompressed size (bits 16-20).
+       *
+       * A new LZMA2 stream must begin with a dictionary
+       * reset. The first LZMA chunk must set new
+       * properties and reset the LZMA state.
+       *
+       * Values that don't match anything described above
+       * are invalid and we return XZ_DATA_ERROR.
+       */
+      tmp = b->in[b->in_pos++];
+
+      if (tmp == 0x00)
+        return XZ_STREAM_END;
+
+      if (tmp >= 0xE0 || tmp == 0x01) {
+        s->lzma2.need_props = 1;
+        s->lzma2.need_dict_reset = 0;
+        dict_reset(&s->dict, b);
+      } else if (s->lzma2.need_dict_reset) {
+        return XZ_DATA_ERROR;
+      }
+
+      if (tmp >= 0x80) {
+        s->lzma2.uncompressed = (tmp & 0x1F) << 16;
+        s->lzma2.sequence = SEQ_UNCOMPRESSED_1;
+
+        if (tmp >= 0xC0) {
+          /*
+           * When there are new properties,
+           * state reset is done at
+           * SEQ_PROPERTIES.
+           */
+          s->lzma2.need_props = 0;
+          s->lzma2.next_sequence
+              = SEQ_PROPERTIES;
+
+        } else if (s->lzma2.need_props) {
+          return XZ_DATA_ERROR;
+
+        } else {
+          s->lzma2.next_sequence
+              = SEQ_LZMA_PREPARE;
+          if (tmp >= 0xA0)
+            lzma_reset(s);
+        }
+      } else {
+        if (tmp > 0x02)
+          return XZ_DATA_ERROR;
+
+        s->lzma2.sequence = SEQ_COMPRESSED_0;
+        s->lzma2.next_sequence = SEQ_COPY;
+      }
+
+      break;
+
+    case SEQ_UNCOMPRESSED_1:
+      s->lzma2.uncompressed
+          += (uint32_t)b->in[b->in_pos++] << 8;
+      s->lzma2.sequence = SEQ_UNCOMPRESSED_2;
+      break;
+
+    case SEQ_UNCOMPRESSED_2:
+      s->lzma2.uncompressed
+          += (uint32_t)b->in[b->in_pos++] + 1;
+      s->lzma2.sequence = SEQ_COMPRESSED_0;
+      break;
+
+    case SEQ_COMPRESSED_0:
+      s->lzma2.compressed
+          = (uint32_t)b->in[b->in_pos++] << 8;
+      s->lzma2.sequence = SEQ_COMPRESSED_1;
+      break;
+
+    case SEQ_COMPRESSED_1:
+      s->lzma2.compressed
+          += (uint32_t)b->in[b->in_pos++] + 1;
+      s->lzma2.sequence = s->lzma2.next_sequence;
+      break;
+
+    case SEQ_PROPERTIES:
+      if (!lzma_props(s, b->in[b->in_pos++]))
+        return XZ_DATA_ERROR;
+
+      s->lzma2.sequence = SEQ_LZMA_PREPARE;
+
+    case SEQ_LZMA_PREPARE:
+      if (s->lzma2.compressed < RC_INIT_BYTES)
+        return XZ_DATA_ERROR;
+
+      if (!rc_read_init(&s->rc, b))
+        return XZ_OK;
+
+      s->lzma2.compressed -= RC_INIT_BYTES;
+      s->lzma2.sequence = SEQ_LZMA_RUN;
+
+    case SEQ_LZMA_RUN:
+      /*
+       * Set dictionary limit to indicate how much we want
+       * to be encoded at maximum. Decode new data into the
+       * dictionary. Flush the new data from dictionary to
+       * b->out. Check if we finished decoding this chunk.
+       * In case the dictionary got full but we didn't fill
+       * the output buffer yet, we may run this loop
+       * multiple times without changing s->lzma2.sequence.
+       */
+      dict_limit(&s->dict, min_t(size_t,
+          b->out_size - b->out_pos,
+          s->lzma2.uncompressed));
+      if (!lzma2_lzma(s, b))
+        return XZ_DATA_ERROR;
+
+      s->lzma2.uncompressed -= dict_flush(&s->dict, b);
+
+      if (s->lzma2.uncompressed == 0) {
+        if (s->lzma2.compressed > 0 || s->lzma.len > 0
+            || !rc_is_finished(&s->rc))
+          return XZ_DATA_ERROR;
+
+        rc_reset(&s->rc);
+        s->lzma2.sequence = SEQ_CONTROL;
+
+      } else if (b->out_pos == b->out_size
+          || (b->in_pos == b->in_size
+            && s->temp.size
+            < s->lzma2.compressed)) {
+        return XZ_OK;
+      }
+
+      break;
+
+    case SEQ_COPY:
+      dict_uncompressed(&s->dict, b, &s->lzma2.compressed);
+      if (s->lzma2.compressed > 0)
+        return XZ_OK;
+
+      s->lzma2.sequence = SEQ_CONTROL;
+      break;
+    }
+  }
+
+  return XZ_OK;
 }
 
 struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode,
-                                                  uint32_t dict_max)
+               uint32_t dict_max)
 {
-       struct xz_dec_lzma2 *s = malloc(sizeof(*s));
-       if (s == NULL)
-               return NULL;
+  struct xz_dec_lzma2 *s = malloc(sizeof(*s));
+  if (s == NULL)
+    return NULL;
 
-       s->dict.mode = mode;
-       s->dict.size_max = dict_max;
+  s->dict.mode = mode;
+  s->dict.size_max = dict_max;
 
-       if (DEC_IS_PREALLOC(mode)) {
-               s->dict.buf = malloc(dict_max);
-               if (s->dict.buf == NULL) {
-                       free(s);
-                       return NULL;
-               }
-       } else if (DEC_IS_DYNALLOC(mode)) {
-               s->dict.buf = NULL;
-               s->dict.allocated = 0;
-       }
+  if (DEC_IS_PREALLOC(mode)) {
+    s->dict.buf = malloc(dict_max);
+    if (s->dict.buf == NULL) {
+      free(s);
+      return NULL;
+    }
+  } else if (DEC_IS_DYNALLOC(mode)) {
+    s->dict.buf = NULL;
+    s->dict.allocated = 0;
+  }
 
-       return s;
+  return s;
 }
 
 enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props)
 {
-       /* This limits dictionary size to 3 GiB to keep parsing simpler. */
-       if (props > 39)
-               return XZ_OPTIONS_ERROR;
+  /* This limits dictionary size to 3 GiB to keep parsing simpler. */
+  if (props > 39)
+    return XZ_OPTIONS_ERROR;
 
-       s->dict.size = 2 + (props & 1);
-       s->dict.size <<= (props >> 1) + 11;
+  s->dict.size = 2 + (props & 1);
+  s->dict.size <<= (props >> 1) + 11;
 
-       if (DEC_IS_MULTI(s->dict.mode)) {
-               if (s->dict.size > s->dict.size_max)
-                       return XZ_MEMLIMIT_ERROR;
+  if (DEC_IS_MULTI(s->dict.mode)) {
+    if (s->dict.size > s->dict.size_max)
+      return XZ_MEMLIMIT_ERROR;
 
-               s->dict.end = s->dict.size;
+    s->dict.end = s->dict.size;
 
-               if (DEC_IS_DYNALLOC(s->dict.mode)) {
-                       if (s->dict.allocated < s->dict.size) {
-                               free(s->dict.buf);
-                               s->dict.buf = malloc(s->dict.size);
-                               if (s->dict.buf == NULL) {
-                                       s->dict.allocated = 0;
-                                       return XZ_MEM_ERROR;
-                               }
-                       }
-               }
-       }
+    if (DEC_IS_DYNALLOC(s->dict.mode)) {
+      if (s->dict.allocated < s->dict.size) {
+        free(s->dict.buf);
+        s->dict.buf = malloc(s->dict.size);
+        if (s->dict.buf == NULL) {
+          s->dict.allocated = 0;
+          return XZ_MEM_ERROR;
+        }
+      }
+    }
+  }
 
-       s->lzma.len = 0;
+  s->lzma.len = 0;
 
-       s->lzma2.sequence = SEQ_CONTROL;
-       s->lzma2.need_dict_reset = 1;
+  s->lzma2.sequence = SEQ_CONTROL;
+  s->lzma2.need_dict_reset = 1;
 
-       s->temp.size = 0;
+  s->temp.size = 0;
 
-       return XZ_OK;
+  return XZ_OK;
 }
 
 /*
@@ -2522,10 +2522,10 @@ typedef uint64_t vli_type;
 
 /* Integrity Check types */
 enum xz_check {
-       XZ_CHECK_NONE = 0,
-       XZ_CHECK_CRC32 = 1,
-       XZ_CHECK_CRC64 = 4,
-       XZ_CHECK_SHA256 = 10
+  XZ_CHECK_NONE = 0,
+  XZ_CHECK_CRC32 = 1,
+  XZ_CHECK_CRC64 = 4,
+  XZ_CHECK_SHA256 = 10
 };
 
 /* Maximum possible Check ID */
@@ -2536,138 +2536,138 @@ enum xz_check {
 
 /* Hash used to validate the Index field */
 struct xz_dec_hash {
-       vli_type unpadded;
-       vli_type uncompressed;
-       uint32_t crc32;
+  vli_type unpadded;
+  vli_type uncompressed;
+  uint32_t crc32;
 };
 
 struct xz_dec {
-       /* Position in dec_main() */
-       enum {
-               SEQ_STREAM_HEADER,
-               SEQ_BLOCK_START,
-               SEQ_BLOCK_HEADER,
-               SEQ_BLOCK_UNCOMPRESS,
-               SEQ_BLOCK_PADDING,
-               SEQ_BLOCK_CHECK,
-               SEQ_INDEX,
-               SEQ_INDEX_PADDING,
-               SEQ_INDEX_CRC32,
-               SEQ_STREAM_FOOTER
-       } sequence;
-
-       /* Position in variable-length integers and Check fields */
-       uint32_t pos;
-
-       /* Variable-length integer decoded by dec_vli() */
-       vli_type vli;
-
-       /* Saved in_pos and out_pos */
-       size_t in_start;
-       size_t out_start;
-
-       /* CRC32 or CRC64 value in Block or CRC32 value in Index */
-       uint64_t crc;
-
-       /* Type of the integrity check calculated from uncompressed data */
-       enum xz_check check_type;
-
-       /* Operation mode */
-       enum xz_mode mode;
-
-       /*
-        * True if the next call to xz_dec_run() is allowed to return
-        * XZ_BUF_ERROR.
-        */
-       int allow_buf_error;
-
-       /* Information stored in Block Header */
-       struct {
-               /*
-                * Value stored in the Compressed Size field, or
-                * VLI_UNKNOWN if Compressed Size is not present.
-                */
-               vli_type compressed;
-
-               /*
-                * Value stored in the Uncompressed Size field, or
-                * VLI_UNKNOWN if Uncompressed Size is not present.
-                */
-               vli_type uncompressed;
-
-               /* Size of the Block Header field */
-               uint32_t size;
-       } block_header;
-
-       /* Information collected when decoding Blocks */
-       struct {
-               /* Observed compressed size of the current Block */
-               vli_type compressed;
-
-               /* Observed uncompressed size of the current Block */
-               vli_type uncompressed;
-
-               /* Number of Blocks decoded so far */
-               vli_type count;
-
-               /*
-                * Hash calculated from the Block sizes. This is used to
-                * validate the Index field.
-                */
-               struct xz_dec_hash hash;
-       } block;
-
-       /* Variables needed when verifying the Index field */
-       struct {
-               /* Position in dec_index() */
-               enum {
-                       SEQ_INDEX_COUNT,
-                       SEQ_INDEX_UNPADDED,
-                       SEQ_INDEX_UNCOMPRESSED
-               } sequence;
-
-               /* Size of the Index in bytes */
-               vli_type size;
-
-               /* Number of Records (matches block.count in valid files) */
-               vli_type count;
-
-               /*
-                * Hash calculated from the Records (matches block.hash in
-                * valid files).
-                */
-               struct xz_dec_hash hash;
-       } index;
-
-       /*
-        * Temporary buffer needed to hold Stream Header, Block Header,
-        * and Stream Footer. The Block Header is the biggest (1 KiB)
-        * so we reserve space according to that. buf[] has to be aligned
-        * to a multiple of four bytes; the size_t variables before it
-        * should guarantee this.
-        */
-       struct {
-               size_t pos;
-               size_t size;
-               uint8_t buf[1024];
-       } temp;
-
-       struct xz_dec_lzma2 *lzma2;
+  /* Position in dec_main() */
+  enum {
+    SEQ_STREAM_HEADER,
+    SEQ_BLOCK_START,
+    SEQ_BLOCK_HEADER,
+    SEQ_BLOCK_UNCOMPRESS,
+    SEQ_BLOCK_PADDING,
+    SEQ_BLOCK_CHECK,
+    SEQ_INDEX,
+    SEQ_INDEX_PADDING,
+    SEQ_INDEX_CRC32,
+    SEQ_STREAM_FOOTER
+  } sequence;
+
+  /* Position in variable-length integers and Check fields */
+  uint32_t pos;
+
+  /* Variable-length integer decoded by dec_vli() */
+  vli_type vli;
+
+  /* Saved in_pos and out_pos */
+  size_t in_start;
+  size_t out_start;
+
+  /* CRC32 or CRC64 value in Block or CRC32 value in Index */
+  uint64_t crc;
+
+  /* Type of the integrity check calculated from uncompressed data */
+  enum xz_check check_type;
+
+  /* Operation mode */
+  enum xz_mode mode;
+
+  /*
+   * True if the next call to xz_dec_run() is allowed to return
+   * XZ_BUF_ERROR.
+   */
+  int allow_buf_error;
+
+  /* Information stored in Block Header */
+  struct {
+    /*
+     * Value stored in the Compressed Size field, or
+     * VLI_UNKNOWN if Compressed Size is not present.
+     */
+    vli_type compressed;
+
+    /*
+     * Value stored in the Uncompressed Size field, or
+     * VLI_UNKNOWN if Uncompressed Size is not present.
+     */
+    vli_type uncompressed;
+
+    /* Size of the Block Header field */
+    uint32_t size;
+  } block_header;
+
+  /* Information collected when decoding Blocks */
+  struct {
+    /* Observed compressed size of the current Block */
+    vli_type compressed;
+
+    /* Observed uncompressed size of the current Block */
+    vli_type uncompressed;
+
+    /* Number of Blocks decoded so far */
+    vli_type count;
+
+    /*
+     * Hash calculated from the Block sizes. This is used to
+     * validate the Index field.
+     */
+    struct xz_dec_hash hash;
+  } block;
+
+  /* Variables needed when verifying the Index field */
+  struct {
+    /* Position in dec_index() */
+    enum {
+      SEQ_INDEX_COUNT,
+      SEQ_INDEX_UNPADDED,
+      SEQ_INDEX_UNCOMPRESSED
+    } sequence;
+
+    /* Size of the Index in bytes */
+    vli_type size;
+
+    /* Number of Records (matches block.count in valid files) */
+    vli_type count;
+
+    /*
+     * Hash calculated from the Records (matches block.hash in
+     * valid files).
+     */
+    struct xz_dec_hash hash;
+  } index;
+
+  /*
+   * Temporary buffer needed to hold Stream Header, Block Header,
+   * and Stream Footer. The Block Header is the biggest (1 KiB)
+   * so we reserve space according to that. buf[] has to be aligned
+   * to a multiple of four bytes; the size_t variables before it
+   * should guarantee this.
+   */
+  struct {
+    size_t pos;
+    size_t size;
+    uint8_t buf[1024];
+  } temp;
+
+  struct xz_dec_lzma2 *lzma2;
 
 #ifdef XZ_DEC_BCJ
-       struct xz_dec_bcj *bcj;
-       int bcj_active;
+  struct xz_dec_bcj *bcj;
+  int bcj_active;
 #endif
 };
 
 /* Sizes of the Check field with different Check IDs */
 static const uint8_t check_sizes[16] = {
-       0,
-       4, 4, 4,
-       8, 8, 8,
-       16, 16, 16,
-       32, 32, 32,
-       64, 64, 64
+  0,
+  4, 4, 4,
+  8, 8, 8,
+  16, 16, 16,
+  32, 32, 32,
+  64, 64, 64
 };
 
 /*
@@ -2678,51 +2678,51 @@ static const uint8_t check_sizes[16] = {
  */
 static int fill_temp(struct xz_dec *s, struct xz_buf *b)
 {
-       size_t copy_size = min_t(size_t,
-                       b->in_size - b->in_pos, s->temp.size - s->temp.pos);
+  size_t copy_size = min_t(size_t,
+      b->in_size - b->in_pos, s->temp.size - s->temp.pos);
 
-       memcpy(s->temp.buf + s->temp.pos, b->in + b->in_pos, copy_size);
-       b->in_pos += copy_size;
-       s->temp.pos += copy_size;
+  memcpy(s->temp.buf + s->temp.pos, b->in + b->in_pos, copy_size);
+  b->in_pos += copy_size;
+  s->temp.pos += copy_size;
 
-       if (s->temp.pos == s->temp.size) {
-               s->temp.pos = 0;
-               return 1;
-       }
+  if (s->temp.pos == s->temp.size) {
+    s->temp.pos = 0;
+    return 1;
+  }
 
-       return 0;
+  return 0;
 }
 
 /* Decode a variable-length integer (little-endian base-128 encoding) */
 static enum xz_ret dec_vli(struct xz_dec *s, const uint8_t *in,
-                          size_t *in_pos, size_t in_size)
+         size_t *in_pos, size_t in_size)
 {
-       uint8_t byte;
+  uint8_t byte;
 
-       if (s->pos == 0)
-               s->vli = 0;
+  if (s->pos == 0)
+    s->vli = 0;
 
-       while (*in_pos < in_size) {
-               byte = in[*in_pos];
-               ++*in_pos;
+  while (*in_pos < in_size) {
+    byte = in[*in_pos];
+    ++*in_pos;
 
-               s->vli |= (vli_type)(byte & 0x7F) << s->pos;
+    s->vli |= (vli_type)(byte & 0x7F) << s->pos;
 
-               if ((byte & 0x80) == 0) {
-                       /* Don't allow non-minimal encodings. */
-                       if (byte == 0 && s->pos != 0)
-                               return XZ_DATA_ERROR;
+    if ((byte & 0x80) == 0) {
+      /* Don't allow non-minimal encodings. */
+      if (byte == 0 && s->pos != 0)
+        return XZ_DATA_ERROR;
 
-                       s->pos = 0;
-                       return XZ_STREAM_END;
-               }
+      s->pos = 0;
+      return XZ_STREAM_END;
+    }
 
-               s->pos += 7;
-               if (s->pos == 7 * VLI_BYTES_MAX)
-                       return XZ_DATA_ERROR;
-       }
+    s->pos += 7;
+    if (s->pos == 7 * VLI_BYTES_MAX)
+      return XZ_DATA_ERROR;
+  }
 
-       return XZ_OK;
+  return XZ_OK;
 }
 
 /*
@@ -2739,70 +2739,70 @@ static enum xz_ret dec_vli(struct xz_dec *s, const uint8_t *in,
  */
 static enum xz_ret dec_block(struct xz_dec *s, struct xz_buf *b)
 {
-       enum xz_ret ret;
+  enum xz_ret ret;
 
-       s->in_start = b->in_pos;
-       s->out_start = b->out_pos;
+  s->in_start = b->in_pos;
+  s->out_start = b->out_pos;
 
 #ifdef XZ_DEC_BCJ
-       if (s->bcj_active)
-               ret = xz_dec_bcj_run(s->bcj, s->lzma2, b);
-       else
+  if (s->bcj_active)
+    ret = xz_dec_bcj_run(s->bcj, s->lzma2, b);
+  else
 #endif
-               ret = xz_dec_lzma2_run(s->lzma2, b);
+    ret = xz_dec_lzma2_run(s->lzma2, b);
 
-       s->block.compressed += b->in_pos - s->in_start;
-       s->block.uncompressed += b->out_pos - s->out_start;
+  s->block.compressed += b->in_pos - s->in_start;
+  s->block.uncompressed += b->out_pos - s->out_start;
 
-       /*
-        * There is no need to separately check for VLI_UNKNOWN, since
-        * the observed sizes are always smaller than VLI_UNKNOWN.
-        */
-       if (s->block.compressed > s->block_header.compressed
-                       || s->block.uncompressed
-                               > s->block_header.uncompressed)
-               return XZ_DATA_ERROR;
+  /*
+   * There is no need to separately check for VLI_UNKNOWN, since
+   * the observed sizes are always smaller than VLI_UNKNOWN.
+   */
+  if (s->block.compressed > s->block_header.compressed
+      || s->block.uncompressed
+        > s->block_header.uncompressed)
+    return XZ_DATA_ERROR;
 
-       if (s->check_type == XZ_CHECK_CRC32)
-               s->crc = xz_crc32(b->out + s->out_start,
-                               b->out_pos - s->out_start, s->crc);
-       else if (s->check_type == XZ_CHECK_CRC64)
-               s->crc = xz_crc64(b->out + s->out_start,
-                               b->out_pos - s->out_start, s->crc);
+  if (s->check_type == XZ_CHECK_CRC32)
+    s->crc = xz_crc32(b->out + s->out_start,
+        b->out_pos - s->out_start, s->crc);
+  else if (s->check_type == XZ_CHECK_CRC64)
+    s->crc = xz_crc64(b->out + s->out_start,
+        b->out_pos - s->out_start, s->crc);
 
-       if (ret == XZ_STREAM_END) {
-               if (s->block_header.compressed != VLI_UNKNOWN
-                               && s->block_header.compressed
-                                       != s->block.compressed)
-                       return XZ_DATA_ERROR;
+  if (ret == XZ_STREAM_END) {
+    if (s->block_header.compressed != VLI_UNKNOWN
+        && s->block_header.compressed
+          != s->block.compressed)
+      return XZ_DATA_ERROR;
 
-               if (s->block_header.uncompressed != VLI_UNKNOWN
-                               && s->block_header.uncompressed
-                                       != s->block.uncompressed)
-                       return XZ_DATA_ERROR;
+    if (s->block_header.uncompressed != VLI_UNKNOWN
+        && s->block_header.uncompressed
+          != s->block.uncompressed)
+      return XZ_DATA_ERROR;
 
-               s->block.hash.unpadded += s->block_header.size
-                               + s->block.compressed;
+    s->block.hash.unpadded += s->block_header.size
+        + s->block.compressed;
 
-               s->block.hash.unpadded += check_sizes[s->check_type];
+    s->block.hash.unpadded += check_sizes[s->check_type];
 
-               s->block.hash.uncompressed += s->block.uncompressed;
-               s->block.hash.crc32 = xz_crc32(
-                               (const uint8_t *)&s->block.hash,
-                               sizeof(s->block.hash), s->block.hash.crc32);
+    s->block.hash.uncompressed += s->block.uncompressed;
+    s->block.hash.crc32 = xz_crc32(
+        (const uint8_t *)&s->block.hash,
+        sizeof(s->block.hash), s->block.hash.crc32);
 
-               ++s->block.count;
-       }
+    ++s->block.count;
+  }
 
-       return ret;
+  return ret;
 }
 
 /* Update the Index size and the CRC32 value. */
 static void index_update(struct xz_dec *s, const struct xz_buf *b)
 {
-       size_t in_used = b->in_pos - s->in_start;
-       s->index.size += in_used;
-       s->crc = xz_crc32(b->in + s->in_start, in_used, s->crc);
+  size_t in_used = b->in_pos - s->in_start;
+  s->index.size += in_used;
+  s->crc = xz_crc32(b->in + s->in_start, in_used, s->crc);
 }
 
 /*
@@ -2815,48 +2815,48 @@ static void index_update(struct xz_dec *s, const struct xz_buf *b)
  */
 static enum xz_ret dec_index(struct xz_dec *s, struct xz_buf *b)
 {
-       enum xz_ret ret;
-
-       do {
-               ret = dec_vli(s, b->in, &b->in_pos, b->in_size);
-               if (ret != XZ_STREAM_END) {
-                       index_update(s, b);
-                       return ret;
-               }
-
-               switch (s->index.sequence) {
-               case SEQ_INDEX_COUNT:
-                       s->index.count = s->vli;
-
-                       /*
-                        * Validate that the Number of Records field
-                        * indicates the same number of Records as
-                        * there were Blocks in the Stream.
-                        */
-                       if (s->index.count != s->block.count)
-                               return XZ_DATA_ERROR;
-
-                       s->index.sequence = SEQ_INDEX_UNPADDED;
-                       break;
-
-               case SEQ_INDEX_UNPADDED:
-                       s->index.hash.unpadded += s->vli;
-                       s->index.sequence = SEQ_INDEX_UNCOMPRESSED;
-                       break;
-
-               case SEQ_INDEX_UNCOMPRESSED:
-                       s->index.hash.uncompressed += s->vli;
-                       s->index.hash.crc32 = xz_crc32(
-                                       (const uint8_t *)&s->index.hash,
-                                       sizeof(s->index.hash),
-                                       s->index.hash.crc32);
-                       --s->index.count;
-                       s->index.sequence = SEQ_INDEX_UNPADDED;
-                       break;
-               }
-       } while (s->index.count > 0);
-
-       return XZ_STREAM_END;
+  enum xz_ret ret;
+
+  do {
+    ret = dec_vli(s, b->in, &b->in_pos, b->in_size);
+    if (ret != XZ_STREAM_END) {
+      index_update(s, b);
+      return ret;
+    }
+
+    switch (s->index.sequence) {
+    case SEQ_INDEX_COUNT:
+      s->index.count = s->vli;
+
+      /*
+       * Validate that the Number of Records field
+       * indicates the same number of Records as
+       * there were Blocks in the Stream.
+       */
+      if (s->index.count != s->block.count)
+        return XZ_DATA_ERROR;
+
+      s->index.sequence = SEQ_INDEX_UNPADDED;
+      break;
+
+    case SEQ_INDEX_UNPADDED:
+      s->index.hash.unpadded += s->vli;
+      s->index.sequence = SEQ_INDEX_UNCOMPRESSED;
+      break;
+
+    case SEQ_INDEX_UNCOMPRESSED:
+      s->index.hash.uncompressed += s->vli;
+      s->index.hash.crc32 = xz_crc32(
+          (const uint8_t *)&s->index.hash,
+          sizeof(s->index.hash),
+          s->index.hash.crc32);
+      --s->index.count;
+      s->index.sequence = SEQ_INDEX_UNPADDED;
+      break;
+    }
+  } while (s->index.count > 0);
+
+  return XZ_STREAM_END;
 }
 
 /*
@@ -2865,23 +2865,23 @@ static enum xz_ret dec_index(struct xz_dec *s, struct xz_buf *b)
  * The "bits" argument allows using the same code for both CRC32 and CRC64.
  */
 static enum xz_ret crc_validate(struct xz_dec *s, struct xz_buf *b,
-                               uint32_t bits)
+        uint32_t bits)
 {
-       do {
-               if (b->in_pos == b->in_size)
-                       return XZ_OK;
+  do {
+    if (b->in_pos == b->in_size)
+      return XZ_OK;
 
-               if (((s->crc >> s->pos) & 0xFF) != b->in[b->in_pos++])
-                       return XZ_DATA_ERROR;
+    if (((s->crc >> s->pos) & 0xFF) != b->in[b->in_pos++])
+      return XZ_DATA_ERROR;
 
-               s->pos += 8;
+    s->pos += 8;
 
-       } while (s->pos < bits);
+  } while (s->pos < bits);
 
-       s->crc = 0;
-       s->pos = 0;
+  s->crc = 0;
+  s->pos = 0;
 
-       return XZ_STREAM_END;
+  return XZ_STREAM_END;
 }
 
 /*
@@ -2890,338 +2890,338 @@ static enum xz_ret crc_validate(struct xz_dec *s, struct xz_buf *b,
  */
 static int check_skip(struct xz_dec *s, struct xz_buf *b)
 {
-       while (s->pos < check_sizes[s->check_type]) {
-               if (b->in_pos == b->in_size) return 0;
+  while (s->pos < check_sizes[s->check_type]) {
+    if (b->in_pos == b->in_size) return 0;
 
-               ++b->in_pos;
-               ++s->pos;
-       }
+    ++b->in_pos;
+    ++s->pos;
+  }
 
-       s->pos = 0;
+  s->pos = 0;
 
-       return 1;
+  return 1;
 }
 
 /* Decode the Stream Header field (the first 12 bytes of the .xz Stream). */
 static enum xz_ret dec_stream_header(struct xz_dec *s)
 {
-       if (!memeq(s->temp.buf, HEADER_MAGIC, HEADER_MAGIC_SIZE))
-               return XZ_FORMAT_ERROR;
+  if (!memeq(s->temp.buf, HEADER_MAGIC, HEADER_MAGIC_SIZE))
+    return XZ_FORMAT_ERROR;
 
-       if (xz_crc32(s->temp.buf + HEADER_MAGIC_SIZE, 2, 0)
-                       != get_le32(s->temp.buf + HEADER_MAGIC_SIZE + 2))
-               return XZ_DATA_ERROR;
+  if (xz_crc32(s->temp.buf + HEADER_MAGIC_SIZE, 2, 0)
+      != get_le32(s->temp.buf + HEADER_MAGIC_SIZE + 2))
+    return XZ_DATA_ERROR;
 
-       if (s->temp.buf[HEADER_MAGIC_SIZE] != 0)
-               return XZ_OPTIONS_ERROR;
+  if (s->temp.buf[HEADER_MAGIC_SIZE] != 0)
+    return XZ_OPTIONS_ERROR;
 
-       /*
-        * Of integrity checks, we support none (Check ID = 0),
-        * CRC32 (Check ID = 1), and optionally CRC64 (Check ID = 4).
-        * However, if XZ_DEC_ANY_CHECK is defined, we will accept other
-        * check types too, but then the check won't be verified and
-        * a warning (XZ_UNSUPPORTED_CHECK) will be given.
-        */
-       s->check_type = s->temp.buf[HEADER_MAGIC_SIZE + 1];
+  /*
+   * Of integrity checks, we support none (Check ID = 0),
+   * CRC32 (Check ID = 1), and optionally CRC64 (Check ID = 4).
+   * However, if XZ_DEC_ANY_CHECK is defined, we will accept other
+   * check types too, but then the check won't be verified and
+   * a warning (XZ_UNSUPPORTED_CHECK) will be given.
+   */
+  s->check_type = s->temp.buf[HEADER_MAGIC_SIZE + 1];
 
-       if (s->check_type > XZ_CHECK_MAX)
-               return XZ_OPTIONS_ERROR;
+  if (s->check_type > XZ_CHECK_MAX)
+    return XZ_OPTIONS_ERROR;
 
-       if (s->check_type > XZ_CHECK_CRC32 && !IS_CRC64(s->check_type))
-               return XZ_UNSUPPORTED_CHECK;
+  if (s->check_type > XZ_CHECK_CRC32 && !IS_CRC64(s->check_type))
+    return XZ_UNSUPPORTED_CHECK;
 
-       return XZ_OK;
+  return XZ_OK;
 }
 
 /* Decode the Stream Footer field (the last 12 bytes of the .xz Stream) */
 static enum xz_ret dec_stream_footer(struct xz_dec *s)
 {
-       if (!memeq(s->temp.buf + 10, FOOTER_MAGIC, FOOTER_MAGIC_SIZE))
-               return XZ_DATA_ERROR;
+  if (!memeq(s->temp.buf + 10, FOOTER_MAGIC, FOOTER_MAGIC_SIZE))
+    return XZ_DATA_ERROR;
 
-       if (xz_crc32(s->temp.buf + 4, 6, 0) != get_le32(s->temp.buf))
-               return XZ_DATA_ERROR;
+  if (xz_crc32(s->temp.buf + 4, 6, 0) != get_le32(s->temp.buf))
+    return XZ_DATA_ERROR;
 
-       /*
-        * Validate Backward Size. Note that we never added the size of the
-        * Index CRC32 field to s->index.size, thus we use s->index.size / 4
-        * instead of s->index.size / 4 - 1.
-        */
-       if ((s->index.size >> 2) != get_le32(s->temp.buf + 4))
-               return XZ_DATA_ERROR;
+  /*
+   * Validate Backward Size. Note that we never added the size of the
+   * Index CRC32 field to s->index.size, thus we use s->index.size / 4
+   * instead of s->index.size / 4 - 1.
+   */
+  if ((s->index.size >> 2) != get_le32(s->temp.buf + 4))
+    return XZ_DATA_ERROR;
 
-       if (s->temp.buf[8] != 0 || s->temp.buf[9] != s->check_type)
-               return XZ_DATA_ERROR;
+  if (s->temp.buf[8] != 0 || s->temp.buf[9] != s->check_type)
+    return XZ_DATA_ERROR;
 
-       /*
-        * Use XZ_STREAM_END instead of XZ_OK to be more convenient
-        * for the caller.
-        */
-       return XZ_STREAM_END;
+  /*
+   * Use XZ_STREAM_END instead of XZ_OK to be more convenient
+   * for the caller.
+   */
+  return XZ_STREAM_END;
 }
 
 /* Decode the Block Header and initialize the filter chain. */
 static enum xz_ret dec_block_header(struct xz_dec *s)
 {
-       enum xz_ret ret;
+  enum xz_ret ret;
 
-       /*
-        * Validate the CRC32. We know that the temp buffer is at least
-        * eight bytes so this is safe.
-        */
-       s->temp.size -= 4;
-       if (xz_crc32(s->temp.buf, s->temp.size, 0)
-                       != get_le32(s->temp.buf + s->temp.size))
-               return XZ_DATA_ERROR;
+  /*
+   * Validate the CRC32. We know that the temp buffer is at least
+   * eight bytes so this is safe.
+   */
+  s->temp.size -= 4;
+  if (xz_crc32(s->temp.buf, s->temp.size, 0)
+      != get_le32(s->temp.buf + s->temp.size))
+    return XZ_DATA_ERROR;
 
-       s->temp.pos = 2;
+  s->temp.pos = 2;
 
-       /*
-        * Catch unsupported Block Flags. We support only one or two filters
-        * in the chain, so we catch that with the same test.
-        */
+  /*
+   * Catch unsupported Block Flags. We support only one or two filters
+   * in the chain, so we catch that with the same test.
+   */
 #ifdef XZ_DEC_BCJ
-       if (s->temp.buf[1] & 0x3E)
+  if (s->temp.buf[1] & 0x3E)
 #else
-       if (s->temp.buf[1] & 0x3F)
+  if (s->temp.buf[1] & 0x3F)
 #endif
-               return XZ_OPTIONS_ERROR;
-
-       /* Compressed Size */
-       if (s->temp.buf[1] & 0x40) {
-               if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
-                                       != XZ_STREAM_END)
-                       return XZ_DATA_ERROR;
-
-               s->block_header.compressed = s->vli;
-       } else {
-               s->block_header.compressed = VLI_UNKNOWN;
-       }
-
-       /* Uncompressed Size */
-       if (s->temp.buf[1] & 0x80) {
-               if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
-                               != XZ_STREAM_END)
-                       return XZ_DATA_ERROR;
-
-               s->block_header.uncompressed = s->vli;
-       } else {
-               s->block_header.uncompressed = VLI_UNKNOWN;
-       }
+    return XZ_OPTIONS_ERROR;
+
+  /* Compressed Size */
+  if (s->temp.buf[1] & 0x40) {
+    if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
+          != XZ_STREAM_END)
+      return XZ_DATA_ERROR;
+
+    s->block_header.compressed = s->vli;
+  } else {
+    s->block_header.compressed = VLI_UNKNOWN;
+  }
+
+  /* Uncompressed Size */
+  if (s->temp.buf[1] & 0x80) {
+    if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
+        != XZ_STREAM_END)
+      return XZ_DATA_ERROR;
+
+    s->block_header.uncompressed = s->vli;
+  } else {
+    s->block_header.uncompressed = VLI_UNKNOWN;
+  }
 
 #ifdef XZ_DEC_BCJ
-       /* If there are two filters, the first one must be a BCJ filter. */
-       s->bcj_active = s->temp.buf[1] & 0x01;
-       if (s->bcj_active) {
-               if (s->temp.size - s->temp.pos < 2)
-                       return XZ_OPTIONS_ERROR;
-
-               ret = xz_dec_bcj_reset(s->bcj, s->temp.buf[s->temp.pos++]);
-               if (ret != XZ_OK)
-                       return ret;
-
-               /*
-                * We don't support custom start offset,
-                * so Size of Properties must be zero.
-                */
-               if (s->temp.buf[s->temp.pos++] != 0x00)
-                       return XZ_OPTIONS_ERROR;
-       }
+  /* If there are two filters, the first one must be a BCJ filter. */
+  s->bcj_active = s->temp.buf[1] & 0x01;
+  if (s->bcj_active) {
+    if (s->temp.size - s->temp.pos < 2)
+      return XZ_OPTIONS_ERROR;
+
+    ret = xz_dec_bcj_reset(s->bcj, s->temp.buf[s->temp.pos++]);
+    if (ret != XZ_OK)
+      return ret;
+
+    /*
+     * We don't support custom start offset,
+     * so Size of Properties must be zero.
+     */
+    if (s->temp.buf[s->temp.pos++] != 0x00)
+      return XZ_OPTIONS_ERROR;
+  }
 #endif
 
-       /* Valid Filter Flags always take at least two bytes. */
-       if (s->temp.size - s->temp.pos < 2)
-               return XZ_DATA_ERROR;
+  /* Valid Filter Flags always take at least two bytes. */
+  if (s->temp.size - s->temp.pos < 2)
+    return XZ_DATA_ERROR;
 
-       /* Filter ID = LZMA2 */
-       if (s->temp.buf[s->temp.pos++] != 0x21)
-               return XZ_OPTIONS_ERROR;
+  /* Filter ID = LZMA2 */
+  if (s->temp.buf[s->temp.pos++] != 0x21)
+    return XZ_OPTIONS_ERROR;
 
-       /* Size of Properties = 1-byte Filter Properties */
-       if (s->temp.buf[s->temp.pos++] != 0x01)
-               return XZ_OPTIONS_ERROR;
+  /* Size of Properties = 1-byte Filter Properties */
+  if (s->temp.buf[s->temp.pos++] != 0x01)
+    return XZ_OPTIONS_ERROR;
 
-       /* Filter Properties contains LZMA2 dictionary size. */
-       if (s->temp.size - s->temp.pos < 1)
-               return XZ_DATA_ERROR;
+  /* Filter Properties contains LZMA2 dictionary size. */
+  if (s->temp.size - s->temp.pos < 1)
+    return XZ_DATA_ERROR;
 
-       ret = xz_dec_lzma2_reset(s->lzma2, s->temp.buf[s->temp.pos++]);
-       if (ret != XZ_OK)
-               return ret;
+  ret = xz_dec_lzma2_reset(s->lzma2, s->temp.buf[s->temp.pos++]);
+  if (ret != XZ_OK)
+    return ret;
 
-       /* The rest must be Header Padding. */
-       while (s->temp.pos < s->temp.size)
-               if (s->temp.buf[s->temp.pos++] != 0x00)
-                       return XZ_OPTIONS_ERROR;
+  /* The rest must be Header Padding. */
+  while (s->temp.pos < s->temp.size)
+    if (s->temp.buf[s->temp.pos++] != 0x00)
+      return XZ_OPTIONS_ERROR;
 
-       s->temp.pos = 0;
-       s->block.compressed = 0;
-       s->block.uncompressed = 0;
+  s->temp.pos = 0;
+  s->block.compressed = 0;
+  s->block.uncompressed = 0;
 
-       return XZ_OK;
+  return XZ_OK;
 }
 
 static enum xz_ret dec_main(struct xz_dec *s, struct xz_buf *b)
 {
-       enum xz_ret ret;
-
-       /*
-        * Store the start position for the case when we are in the middle
-        * of the Index field.
-        */
-       s->in_start = b->in_pos;
-
-       for (;;) {
-               switch (s->sequence) {
-               case SEQ_STREAM_HEADER:
-                       /*
-                        * Stream Header is copied to s->temp, and then
-                        * decoded from there. This way if the caller
-                        * gives us only little input at a time, we can
-                        * still keep the Stream Header decoding code
-                        * simple. Similar approach is used in many places
-                        * in this file.
-                        */
-                       if (!fill_temp(s, b))
-                               return XZ_OK;
-
-                       /*
-                        * If dec_stream_header() returns
-                        * XZ_UNSUPPORTED_CHECK, it is still possible
-                        * to continue decoding if working in multi-call
-                        * mode. Thus, update s->sequence before calling
-                        * dec_stream_header().
-                        */
-                       s->sequence = SEQ_BLOCK_START;
-
-                       ret = dec_stream_header(s);
-                       if (ret != XZ_OK)
-                               return ret;
-
-               case SEQ_BLOCK_START:
-                       /* We need one byte of input to continue. */
-                       if (b->in_pos == b->in_size)
-                               return XZ_OK;
-
-                       /* See if this is the beginning of the Index field. */
-                       if (b->in[b->in_pos] == 0) {
-                               s->in_start = b->in_pos++;
-                               s->sequence = SEQ_INDEX;
-                               break;
-                       }
-
-                       /*
-                        * Calculate the size of the Block Header and
-                        * prepare to decode it.
-                        */
-                       s->block_header.size
-                               = ((uint32_t)b->in[b->in_pos] + 1) * 4;
-
-                       s->temp.size = s->block_header.size;
-                       s->temp.pos = 0;
-                       s->sequence = SEQ_BLOCK_HEADER;
-
-               case SEQ_BLOCK_HEADER:
-                       if (!fill_temp(s, b))
-                               return XZ_OK;
-
-                       ret = dec_block_header(s);
-                       if (ret != XZ_OK)
-                               return ret;
-
-                       s->sequence = SEQ_BLOCK_UNCOMPRESS;
-
-               case SEQ_BLOCK_UNCOMPRESS:
-                       ret = dec_block(s, b);
-                       if (ret != XZ_STREAM_END)
-                               return ret;
-
-                       s->sequence = SEQ_BLOCK_PADDING;
-
-               case SEQ_BLOCK_PADDING:
-                       /*
-                        * Size of Compressed Data + Block Padding
-                        * must be a multiple of four. We don't need
-                        * s->block.compressed for anything else
-                        * anymore, so we use it here to test the size
-                        * of the Block Padding field.
-                        */
-                       while (s->block.compressed & 3) {
-                               if (b->in_pos == b->in_size)
-                                       return XZ_OK;
-
-                               if (b->in[b->in_pos++] != 0)
-                                       return XZ_DATA_ERROR;
-
-                               ++s->block.compressed;
-                       }
-
-                       s->sequence = SEQ_BLOCK_CHECK;
-
-               case SEQ_BLOCK_CHECK:
-                       if (s->check_type == XZ_CHECK_CRC32) {
-                               ret = crc_validate(s, b, 32);
-                               if (ret != XZ_STREAM_END)
-                                       return ret;
-                       }
-                       else if (IS_CRC64(s->check_type)) {
-                               ret = crc_validate(s, b, 64);
-                               if (ret != XZ_STREAM_END)
-                                       return ret;
-                       }
-                       else if (!check_skip(s, b)) {
-                               return XZ_OK;
-                       }
-
-                       s->sequence = SEQ_BLOCK_START;
-                       break;
-
-               case SEQ_INDEX:
-                       ret = dec_index(s, b);
-                       if (ret != XZ_STREAM_END)
-                               return ret;
-
-                       s->sequence = SEQ_INDEX_PADDING;
-
-               case SEQ_INDEX_PADDING:
-                       while ((s->index.size + (b->in_pos - s->in_start))
-                                       & 3) {
-                               if (b->in_pos == b->in_size) {
-                                       index_update(s, b);
-                                       return XZ_OK;
-                               }
-
-                               if (b->in[b->in_pos++] != 0)
-                                       return XZ_DATA_ERROR;
-                       }
-
-                       /* Finish the CRC32 value and Index size. */
-                       index_update(s, b);
-
-                       /* Compare the hashes to validate the Index field. */
-                       if (!memeq(&s->block.hash, &s->index.hash,
-                                       sizeof(s->block.hash)))
-                               return XZ_DATA_ERROR;
-
-                       s->sequence = SEQ_INDEX_CRC32;
-
-               case SEQ_INDEX_CRC32:
-                       ret = crc_validate(s, b, 32);
-                       if (ret != XZ_STREAM_END)
-                               return ret;
-
-                       s->temp.size = STREAM_HEADER_SIZE;
-                       s->sequence = SEQ_STREAM_FOOTER;
-
-               case SEQ_STREAM_FOOTER:
-                       if (!fill_temp(s, b))
-                               return XZ_OK;
-
-                       return dec_stream_footer(s);
-               }
-       }
-
-       /* Never reached */
+  enum xz_ret ret;
+
+  /*
+   * Store the start position for the case when we are in the middle
+   * of the Index field.
+   */
+  s->in_start = b->in_pos;
+
+  for (;;) {
+    switch (s->sequence) {
+    case SEQ_STREAM_HEADER:
+      /*
+       * Stream Header is copied to s->temp, and then
+       * decoded from there. This way if the caller
+       * gives us only little input at a time, we can
+       * still keep the Stream Header decoding code
+       * simple. Similar approach is used in many places
+       * in this file.
+       */
+      if (!fill_temp(s, b))
+        return XZ_OK;
+
+      /*
+       * If dec_stream_header() returns
+       * XZ_UNSUPPORTED_CHECK, it is still possible
+       * to continue decoding if working in multi-call
+       * mode. Thus, update s->sequence before calling
+       * dec_stream_header().
+       */
+      s->sequence = SEQ_BLOCK_START;
+
+      ret = dec_stream_header(s);
+      if (ret != XZ_OK)
+        return ret;
+
+    case SEQ_BLOCK_START:
+      /* We need one byte of input to continue. */
+      if (b->in_pos == b->in_size)
+        return XZ_OK;
+
+      /* See if this is the beginning of the Index field. */
+      if (b->in[b->in_pos] == 0) {
+        s->in_start = b->in_pos++;
+        s->sequence = SEQ_INDEX;
+        break;
+      }
+
+      /*
+       * Calculate the size of the Block Header and
+       * prepare to decode it.
+       */
+      s->block_header.size
+        = ((uint32_t)b->in[b->in_pos] + 1) * 4;
+
+      s->temp.size = s->block_header.size;
+      s->temp.pos = 0;
+      s->sequence = SEQ_BLOCK_HEADER;
+
+    case SEQ_BLOCK_HEADER:
+      if (!fill_temp(s, b))
+        return XZ_OK;
+
+      ret = dec_block_header(s);
+      if (ret != XZ_OK)
+        return ret;
+
+      s->sequence = SEQ_BLOCK_UNCOMPRESS;
+
+    case SEQ_BLOCK_UNCOMPRESS:
+      ret = dec_block(s, b);
+      if (ret != XZ_STREAM_END)
+        return ret;
+
+      s->sequence = SEQ_BLOCK_PADDING;
+
+    case SEQ_BLOCK_PADDING:
+      /*
+       * Size of Compressed Data + Block Padding
+       * must be a multiple of four. We don't need
+       * s->block.compressed for anything else
+       * anymore, so we use it here to test the size
+       * of the Block Padding field.
+       */
+      while (s->block.compressed & 3) {
+        if (b->in_pos == b->in_size)
+          return XZ_OK;
+
+        if (b->in[b->in_pos++] != 0)
+          return XZ_DATA_ERROR;
+
+        ++s->block.compressed;
+      }
+
+      s->sequence = SEQ_BLOCK_CHECK;
+
+    case SEQ_BLOCK_CHECK:
+      if (s->check_type == XZ_CHECK_CRC32) {
+        ret = crc_validate(s, b, 32);
+        if (ret != XZ_STREAM_END)
+          return ret;
+      }
+      else if (IS_CRC64(s->check_type)) {
+        ret = crc_validate(s, b, 64);
+        if (ret != XZ_STREAM_END)
+          return ret;
+      }
+      else if (!check_skip(s, b)) {
+        return XZ_OK;
+      }
+
+      s->sequence = SEQ_BLOCK_START;
+      break;
+
+    case SEQ_INDEX:
+      ret = dec_index(s, b);
+      if (ret != XZ_STREAM_END)
+        return ret;
+
+      s->sequence = SEQ_INDEX_PADDING;
+
+    case SEQ_INDEX_PADDING:
+      while ((s->index.size + (b->in_pos - s->in_start))
+          & 3) {
+        if (b->in_pos == b->in_size) {
+          index_update(s, b);
+          return XZ_OK;
+        }
+
+        if (b->in[b->in_pos++] != 0)
+          return XZ_DATA_ERROR;
+      }
+
+      /* Finish the CRC32 value and Index size. */
+      index_update(s, b);
+
+      /* Compare the hashes to validate the Index field. */
+      if (!memeq(&s->block.hash, &s->index.hash,
+          sizeof(s->block.hash)))
+        return XZ_DATA_ERROR;
+
+      s->sequence = SEQ_INDEX_CRC32;
+
+    case SEQ_INDEX_CRC32:
+      ret = crc_validate(s, b, 32);
+      if (ret != XZ_STREAM_END)
+        return ret;
+
+      s->temp.size = STREAM_HEADER_SIZE;
+      s->sequence = SEQ_STREAM_FOOTER;
+
+    case SEQ_STREAM_FOOTER:
+      if (!fill_temp(s, b))
+        return XZ_OK;
+
+      return dec_stream_footer(s);
+    }
+  }
+
+  /* Never reached */
 }
 
 /*
@@ -3251,92 +3251,92 @@ static enum xz_ret dec_main(struct xz_dec *s, struct xz_buf *b)
  */
 enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b)
 {
-       size_t in_start;
-       size_t out_start;
-       enum xz_ret ret;
+  size_t in_start;
+  size_t out_start;
+  enum xz_ret ret;
 
-       if (DEC_IS_SINGLE(s->mode))
-               xz_dec_reset(s);
+  if (DEC_IS_SINGLE(s->mode))
+    xz_dec_reset(s);
 
-       in_start = b->in_pos;
-       out_start = b->out_pos;
-       ret = dec_main(s, b);
+  in_start = b->in_pos;
+  out_start = b->out_pos;
+  ret = dec_main(s, b);
 
-       if (DEC_IS_SINGLE(s->mode)) {
-               if (ret == XZ_OK)
-                       ret = b->in_pos == b->in_size
-                                       ? XZ_DATA_ERROR : XZ_BUF_ERROR;
+  if (DEC_IS_SINGLE(s->mode)) {
+    if (ret == XZ_OK)
+      ret = b->in_pos == b->in_size
+          ? XZ_DATA_ERROR : XZ_BUF_ERROR;
 
-               if (ret != XZ_STREAM_END) {
-                       b->in_pos = in_start;
-                       b->out_pos = out_start;
-               }
+    if (ret != XZ_STREAM_END) {
+      b->in_pos = in_start;
+      b->out_pos = out_start;
+    }
 
-       } else if (ret == XZ_OK && in_start == b->in_pos
-                       && out_start == b->out_pos) {
-               if (s->allow_buf_error)
-                       ret = XZ_BUF_ERROR;
+  } else if (ret == XZ_OK && in_start == b->in_pos
+      && out_start == b->out_pos) {
+    if (s->allow_buf_error)
+      ret = XZ_BUF_ERROR;
 
-               s->allow_buf_error = 1;
-       } else {
-               s->allow_buf_error = 0;
-       }
+    s->allow_buf_error = 1;
+  } else {
+    s->allow_buf_error = 0;
+  }
 
-       return ret;
+  return ret;
 }
 
 struct xz_dec *xz_dec_init(enum xz_mode mode, uint32_t dict_max)
 {
-       struct xz_dec *s = malloc(sizeof(*s));
-       if (s == NULL)
-               return NULL;
+  struct xz_dec *s = malloc(sizeof(*s));
+  if (s == NULL)
+    return NULL;
 
-       s->mode = mode;
+  s->mode = mode;
 
 #ifdef XZ_DEC_BCJ
-       s->bcj = xz_dec_bcj_create(DEC_IS_SINGLE(mode));
-       if (s->bcj == NULL)
-               goto error_bcj;
+  s->bcj = xz_dec_bcj_create(DEC_IS_SINGLE(mode));
+  if (s->bcj == NULL)
+    goto error_bcj;
 #endif
 
-       s->lzma2 = xz_dec_lzma2_create(mode, dict_max);
-       if (s->lzma2 == NULL)
-               goto error_lzma2;
+  s->lzma2 = xz_dec_lzma2_create(mode, dict_max);
+  if (s->lzma2 == NULL)
+    goto error_lzma2;
 
-       xz_dec_reset(s);
-       return s;
+  xz_dec_reset(s);
+  return s;
 
 error_lzma2:
 #ifdef XZ_DEC_BCJ
-       free(s->bcj);
+  free(s->bcj);
 error_bcj:
 #endif
-       free(s);
-       return NULL;
+  free(s);
+  return NULL;
 }
 
 void xz_dec_reset(struct xz_dec *s)
 {
-       s->sequence = SEQ_STREAM_HEADER;
-       s->allow_buf_error = 0;
-       s->pos = 0;
-       s->crc = 0;
-       memset(&s->block, 0, sizeof(s->block));
-       memset(&s->index, 0, sizeof(s->index));
-       s->temp.pos = 0;
-       s->temp.size = STREAM_HEADER_SIZE;
+  s->sequence = SEQ_STREAM_HEADER;
+  s->allow_buf_error = 0;
+  s->pos = 0;
+  s->crc = 0;
+  memset(&s->block, 0, sizeof(s->block));
+  memset(&s->index, 0, sizeof(s->index));
+  s->temp.pos = 0;
+  s->temp.size = STREAM_HEADER_SIZE;
 }
 
 void xz_dec_end(struct xz_dec *s)
 {
-       if (s != NULL) {
-               if (DEC_IS_MULTI((s->lzma2)->dict.mode))
-                       free((s->lzma2)->dict.buf);
-               free(s->lzma2);
+  if (s != NULL) {
+    if (DEC_IS_MULTI((s->lzma2)->dict.mode))
+      free((s->lzma2)->dict.buf);
+    free(s->lzma2);
 
 #ifdef XZ_DEC_BCJ
-               free(s->bcj);
+    free(s->bcj);
 #endif
-               free(s);
-       }
+    free(s);
+  }
 }