#include "SkBitmap.h"
#include "SkColor.h"
#include "SkColorPriv.h"
+#include "SkData.h"
+#include "SkFlate.h"
#include "SkPDFCatalog.h"
#include "SkRect.h"
#include "SkStream.h"
#include "SkString.h"
#include "SkUnPreMultiply.h"
-namespace {
+static const int kNoColorTransform = 0;
-void extractImageData(const SkBitmap& bitmap, const SkIRect& srcRect,
- SkStream** imageData, SkStream** alphaData) {
- SkMemoryStream* image = NULL;
- SkMemoryStream* alpha = NULL;
- bool hasAlpha = false;
- bool isTransparent = false;
+static bool skip_compression(SkPDFCatalog* catalog) {
+ return SkToBool(catalog->getDocumentFlags() &
+ SkPDFDocument::kFavorSpeedOverSize_Flags);
+}
- bitmap.lockPixels();
+static size_t get_uncompressed_size(const SkBitmap& bitmap,
+ const SkIRect& srcRect) {
switch (bitmap.getConfig()) {
- case SkBitmap::kIndex8_Config: {
- const int rowBytes = srcRect.width();
- image = new SkMemoryStream(rowBytes * srcRect.height());
- uint8_t* dst = (uint8_t*)image->getMemoryBase();
- for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
- memcpy(dst, bitmap.getAddr8(srcRect.fLeft, y), rowBytes);
- dst += rowBytes;
+ case SkBitmap::kIndex8_Config:
+ return srcRect.width() * srcRect.height();
+ case SkBitmap::kARGB_4444_Config:
+ return ((srcRect.width() * 3 + 1) / 2) * srcRect.height();
+ case SkBitmap::kRGB_565_Config:
+ return srcRect.width() * 3 * srcRect.height();
+ case SkBitmap::kARGB_8888_Config:
+ return srcRect.width() * 3 * srcRect.height();
+ case SkBitmap::kA1_Config:
+ case SkBitmap::kA8_Config:
+ return 1;
+ default:
+ SkASSERT(false);
+ return 0;
+ }
+}
+
+static SkStream* extract_index8_image(const SkBitmap& bitmap,
+ const SkIRect& srcRect) {
+ const int rowBytes = srcRect.width();
+ SkStream* stream = SkNEW_ARGS(SkMemoryStream,
+ (get_uncompressed_size(bitmap, srcRect)));
+ uint8_t* dst = (uint8_t*)stream->getMemoryBase();
+
+ for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
+ memcpy(dst, bitmap.getAddr8(srcRect.fLeft, y), rowBytes);
+ dst += rowBytes;
+ }
+ return stream;
+}
+
+static SkStream* extract_argb4444_data(const SkBitmap& bitmap,
+ const SkIRect& srcRect,
+ bool extractAlpha,
+ bool* isOpaque,
+ bool* isTransparent) {
+ SkStream* stream;
+ uint8_t* dst = NULL;
+ if (extractAlpha) {
+ const int alphaRowBytes = (srcRect.width() + 1) / 2;
+ stream = SkNEW_ARGS(SkMemoryStream,
+ (alphaRowBytes * srcRect.height()));
+ } else {
+ stream = SkNEW_ARGS(SkMemoryStream,
+ (get_uncompressed_size(bitmap, srcRect)));
+ }
+ dst = (uint8_t*)stream->getMemoryBase();
+
+ for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
+ uint16_t* src = bitmap.getAddr16(0, y);
+ int x;
+ for (x = srcRect.fLeft; x + 1 < srcRect.fRight; x += 2) {
+ if (extractAlpha) {
+ dst[0] = (SkGetPackedA4444(src[x]) << 4) |
+ SkGetPackedA4444(src[x + 1]);
+ *isOpaque &= dst[0] == SK_AlphaOPAQUE;
+ *isTransparent &= dst[0] == SK_AlphaTRANSPARENT;
+ dst++;
+ } else {
+ dst[0] = (SkGetPackedR4444(src[x]) << 4) |
+ SkGetPackedG4444(src[x]);
+ dst[1] = (SkGetPackedB4444(src[x]) << 4) |
+ SkGetPackedR4444(src[x + 1]);
+ dst[2] = (SkGetPackedG4444(src[x + 1]) << 4) |
+ SkGetPackedB4444(src[x + 1]);
+ dst += 3;
}
- break;
}
- case SkBitmap::kARGB_4444_Config: {
- isTransparent = true;
- const int rowBytes = (srcRect.width() * 3 + 1) / 2;
- const int alphaRowBytes = (srcRect.width() + 1) / 2;
- image = new SkMemoryStream(rowBytes * srcRect.height());
- alpha = new SkMemoryStream(alphaRowBytes * srcRect.height());
- uint8_t* dst = (uint8_t*)image->getMemoryBase();
- uint8_t* alphaDst = (uint8_t*)alpha->getMemoryBase();
- for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
- uint16_t* src = bitmap.getAddr16(0, y);
- int x;
- for (x = srcRect.fLeft; x + 1 < srcRect.fRight; x += 2) {
- dst[0] = (SkGetPackedR4444(src[x]) << 4) |
- SkGetPackedG4444(src[x]);
- dst[1] = (SkGetPackedB4444(src[x]) << 4) |
- SkGetPackedR4444(src[x + 1]);
- dst[2] = (SkGetPackedG4444(src[x + 1]) << 4) |
- SkGetPackedB4444(src[x + 1]);
- dst += 3;
- alphaDst[0] = (SkGetPackedA4444(src[x]) << 4) |
- SkGetPackedA4444(src[x + 1]);
- if (alphaDst[0] != 0xFF) {
- hasAlpha = true;
- }
- if (alphaDst[0]) {
- isTransparent = false;
- }
- alphaDst++;
- }
- if (srcRect.width() & 1) {
- dst[0] = (SkGetPackedR4444(src[x]) << 4) |
- SkGetPackedG4444(src[x]);
- dst[1] = (SkGetPackedB4444(src[x]) << 4);
- dst += 2;
- alphaDst[0] = (SkGetPackedA4444(src[x]) << 4);
- if (alphaDst[0] != 0xF0) {
- hasAlpha = true;
- }
- if (alphaDst[0] & 0xF0) {
- isTransparent = false;
- }
- alphaDst++;
- }
+ if (srcRect.width() & 1) {
+ if (extractAlpha) {
+ dst[0] = (SkGetPackedA4444(src[x]) << 4);
+ *isOpaque &= dst[0] == (SK_AlphaOPAQUE & 0xF0);
+ *isTransparent &= dst[0] == (SK_AlphaTRANSPARENT & 0xF0);
+ dst++;
+
+ } else {
+ dst[0] = (SkGetPackedR4444(src[x]) << 4) |
+ SkGetPackedG4444(src[x]);
+ dst[1] = (SkGetPackedB4444(src[x]) << 4);
+ dst += 2;
}
- break;
}
- case SkBitmap::kRGB_565_Config: {
- const int rowBytes = srcRect.width() * 3;
- image = new SkMemoryStream(rowBytes * srcRect.height());
- uint8_t* dst = (uint8_t*)image->getMemoryBase();
- for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
- uint16_t* src = bitmap.getAddr16(0, y);
- for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
- dst[0] = SkGetPackedR16(src[x]);
- dst[1] = SkGetPackedG16(src[x]);
- dst[2] = SkGetPackedB16(src[x]);
- dst += 3;
- }
+ }
+ return stream;
+}
+
+static SkStream* extract_rgb565_image(const SkBitmap& bitmap,
+ const SkIRect& srcRect) {
+ SkStream* stream = SkNEW_ARGS(SkMemoryStream,
+ (get_uncompressed_size(bitmap,
+ srcRect)));
+ uint8_t* dst = (uint8_t*)stream->getMemoryBase();
+ for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
+ uint16_t* src = bitmap.getAddr16(0, y);
+ for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
+ dst[0] = SkGetPackedR16(src[x]);
+ dst[1] = SkGetPackedG16(src[x]);
+ dst[2] = SkGetPackedB16(src[x]);
+ dst += 3;
+ }
+ }
+ return stream;
+}
+
+static SkStream* extract_argb8888_data(const SkBitmap& bitmap,
+ const SkIRect& srcRect,
+ bool extractAlpha,
+ bool* isOpaque,
+ bool* isTransparent) {
+ SkStream* stream;
+ if (extractAlpha) {
+ stream = SkNEW_ARGS(SkMemoryStream,
+ (srcRect.width() * srcRect.height()));
+ } else {
+ stream = SkNEW_ARGS(SkMemoryStream,
+ (get_uncompressed_size(bitmap, srcRect)));
+ }
+ uint8_t* dst = (uint8_t*)stream->getMemoryBase();
+
+ for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
+ uint32_t* src = bitmap.getAddr32(0, y);
+ for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
+ if (extractAlpha) {
+ dst[0] = SkGetPackedA32(src[x]);
+ *isOpaque &= dst[0] == SK_AlphaOPAQUE;
+ *isTransparent &= dst[0] == SK_AlphaTRANSPARENT;
+ dst++;
+ } else {
+ dst[0] = SkGetPackedR32(src[x]);
+ dst[1] = SkGetPackedG32(src[x]);
+ dst[2] = SkGetPackedB32(src[x]);
+ dst += 3;
}
- break;
}
- case SkBitmap::kARGB_8888_Config: {
- isTransparent = true;
- const int rowBytes = srcRect.width() * 3;
- image = new SkMemoryStream(rowBytes * srcRect.height());
- alpha = new SkMemoryStream(srcRect.width() * srcRect.height());
- uint8_t* dst = (uint8_t*)image->getMemoryBase();
- uint8_t* alphaDst = (uint8_t*)alpha->getMemoryBase();
- for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
- uint32_t* src = bitmap.getAddr32(0, y);
- for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
- dst[0] = SkGetPackedR32(src[x]);
- dst[1] = SkGetPackedG32(src[x]);
- dst[2] = SkGetPackedB32(src[x]);
- dst += 3;
- alphaDst[0] = SkGetPackedA32(src[x]);
- if (alphaDst[0] != 0xFF) {
- hasAlpha = true;
- }
- if (alphaDst[0]) {
- isTransparent = false;
- }
- alphaDst++;
- }
+ }
+ return stream;
+}
+
+static SkStream* extract_a1_alpha(const SkBitmap& bitmap,
+ const SkIRect& srcRect,
+ bool* isOpaque,
+ bool* isTransparent) {
+ const int alphaRowBytes = (srcRect.width() + 7) / 8;
+ SkStream* stream = SkNEW_ARGS(SkMemoryStream,
+ (alphaRowBytes * srcRect.height()));
+ uint8_t* alphaDst = (uint8_t*)stream->getMemoryBase();
+
+ int offset1 = srcRect.fLeft % 8;
+ int offset2 = 8 - offset1;
+
+ for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
+ uint8_t* src = bitmap.getAddr1(0, y);
+ // This may read up to one byte after src, but the
+ // potentially invalid bits are never used for computation.
+ for (int x = srcRect.fLeft; x < srcRect.fRight; x += 8) {
+ if (offset1) {
+ alphaDst[0] = src[x / 8] << offset1 |
+ src[x / 8 + 1] >> offset2;
+ } else {
+ alphaDst[0] = src[x / 8];
}
- break;
+ if (x + 7 < srcRect.fRight) {
+ *isOpaque &= alphaDst[0] == SK_AlphaOPAQUE;
+ *isTransparent &= alphaDst[0] == SK_AlphaTRANSPARENT;
+ }
+ alphaDst++;
+ }
+ // Calculate the mask of bits we're interested in within the
+ // last byte of alphaDst.
+ // width mod 8 == 1 -> 0x80 ... width mod 8 == 7 -> 0xFE
+ uint8_t mask = ~((1 << (8 - (srcRect.width() % 8))) - 1);
+ if (srcRect.width() % 8) {
+ *isOpaque &= (alphaDst[-1] & mask) == (SK_AlphaOPAQUE & mask);
+ *isTransparent &=
+ (alphaDst[-1] & mask) == (SK_AlphaTRANSPARENT & mask);
}
- case SkBitmap::kA1_Config: {
- isTransparent = true;
- image = new SkMemoryStream(1);
- ((uint8_t*)image->getMemoryBase())[0] = 0;
-
- const int alphaRowBytes = (srcRect.width() + 7) / 8;
- alpha = new SkMemoryStream(alphaRowBytes * srcRect.height());
- uint8_t* alphaDst = (uint8_t*)alpha->getMemoryBase();
- int offset1 = srcRect.fLeft % 8;
- int offset2 = 8 - offset1;
- for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
- uint8_t* src = bitmap.getAddr1(0, y);
- // This may read up to one byte after src, but the potentially
- // invalid bits are never used for computation.
- for (int x = srcRect.fLeft; x < srcRect.fRight; x += 8) {
- if (offset1) {
- alphaDst[0] = src[x / 8] << offset1 |
- src[x / 8 + 1] >> offset2;
- } else {
- alphaDst[0] = src[x / 8];
- }
- if (x + 7 < srcRect.fRight && alphaDst[0] != 0xFF) {
- hasAlpha = true;
- }
- if (x + 7 < srcRect.fRight && alphaDst[0]) {
- isTransparent = false;
- }
- alphaDst++;
- }
- // Calculate the mask of bits we're interested in within the
- // last byte of alphaDst.
- // width mod 8 == 1 -> 0x80 ... width mod 8 == 7 -> 0xFE
- uint8_t mask = ~((1 << (8 - (srcRect.width() % 8))) - 1);
- if (srcRect.width() % 8 && (alphaDst[-1] & mask) != mask) {
- hasAlpha = true;
- }
- if (srcRect.width() % 8 && (alphaDst[-1] & mask)) {
- isTransparent = false;
- }
+ }
+ return stream;
+}
+
+static SkStream* extract_a8_alpha(const SkBitmap& bitmap,
+ const SkIRect& srcRect,
+ bool* isOpaque,
+ bool* isTransparent) {
+ const int alphaRowBytes = srcRect.width();
+ SkStream* stream = SkNEW_ARGS(SkMemoryStream,
+ (alphaRowBytes * srcRect.height()));
+ uint8_t* alphaDst = (uint8_t*)stream->getMemoryBase();
+
+ for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
+ uint8_t* src = bitmap.getAddr8(0, y);
+ for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
+ alphaDst[0] = src[x];
+ *isOpaque &= alphaDst[0] == SK_AlphaOPAQUE;
+ *isTransparent &= alphaDst[0] == SK_AlphaTRANSPARENT;
+ alphaDst++;
+ }
+ }
+ return stream;
+}
+
+static SkStream* create_black_image() {
+ SkStream* stream = SkNEW_ARGS(SkMemoryStream, (1));
+ ((uint8_t*)stream->getMemoryBase())[0] = 0;
+ return stream;
+}
+
+/**
+ * Extract either the color or image data from a SkBitmap into a SkStream.
+ * @param bitmap Bitmap to extract data from.
+ * @param srcRect Region in the bitmap to extract.
+ * @param extractAlpha Set to true to extract the alpha data or false to
+ * extract the color data.
+ * @param isTransparent Pointer to a bool to output whether the alpha is
+ * completely transparent. May be NULL. Only valid when
+ * extractAlpha == true.
+ * @return Unencoded image data, or NULL if either data was not
+ * available or alpha data was requested but the image was
+ * entirely transparent or opaque.
+ */
+static SkStream* extract_image_data(const SkBitmap& bitmap,
+ const SkIRect& srcRect,
+ bool extractAlpha, bool* isTransparent) {
+ SkBitmap::Config config = bitmap.config();
+ if (extractAlpha && (config == SkBitmap::kIndex8_Config ||
+ config == SkBitmap::kRGB_565_Config)) {
+ if (isTransparent != NULL) {
+ *isTransparent = false;
+ }
+ return NULL;
+ }
+ bool isOpaque = true;
+ bool transparent = extractAlpha;
+ SkStream* stream = NULL;
+
+ bitmap.lockPixels();
+ switch (config) {
+ case SkBitmap::kIndex8_Config:
+ if (!extractAlpha) {
+ stream = extract_index8_image(bitmap, srcRect);
}
break;
- }
- case SkBitmap::kA8_Config: {
- isTransparent = true;
- image = new SkMemoryStream(1);
- ((uint8_t*)image->getMemoryBase())[0] = 0;
-
- const int alphaRowBytes = srcRect.width();
- alpha = new SkMemoryStream(alphaRowBytes * srcRect.height());
- uint8_t* alphaDst = (uint8_t*)alpha->getMemoryBase();
- for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
- uint8_t* src = bitmap.getAddr8(0, y);
- for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
- alphaDst[0] = src[x];
- if (alphaDst[0] != 0xFF) {
- hasAlpha = true;
- }
- if (alphaDst[0]) {
- isTransparent = false;
- }
- alphaDst++;
- }
+ case SkBitmap::kARGB_4444_Config:
+ stream = extract_argb4444_data(bitmap, srcRect, extractAlpha,
+ &isOpaque, &transparent);
+ break;
+ case SkBitmap::kRGB_565_Config:
+ if (!extractAlpha) {
+ stream = extract_rgb565_image(bitmap, srcRect);
+ }
+ break;
+ case SkBitmap::kARGB_8888_Config:
+ stream = extract_argb8888_data(bitmap, srcRect, extractAlpha,
+ &isOpaque, &transparent);
+ break;
+ case SkBitmap::kA1_Config:
+ if (!extractAlpha) {
+ stream = create_black_image();
+ } else {
+ stream = extract_a1_alpha(bitmap, srcRect,
+ &isOpaque, &transparent);
+ }
+ break;
+ case SkBitmap::kA8_Config:
+ if (!extractAlpha) {
+ stream = create_black_image();
+ } else {
+ stream = extract_a8_alpha(bitmap, srcRect,
+ &isOpaque, &transparent);
}
break;
- }
default:
SkASSERT(false);
}
bitmap.unlockPixels();
- if (isTransparent) {
- SkSafeUnref(image);
- } else {
- *imageData = image;
+ if (isTransparent != NULL) {
+ *isTransparent = transparent;
}
-
- if (isTransparent || !hasAlpha) {
- SkSafeUnref(alpha);
- } else {
- *alphaData = alpha;
+ if (extractAlpha && (transparent || isOpaque)) {
+ SkSafeUnref(stream);
+ return NULL;
}
+ return stream;
}
-SkPDFArray* makeIndexedColorSpace(SkColorTable* table) {
+static SkPDFArray* make_indexed_color_space(SkColorTable* table) {
SkPDFArray* result = new SkPDFArray();
result->reserve(4);
result->appendName("Indexed");
return result;
}
-}; // namespace
-
// static
SkPDFImage* SkPDFImage::CreateImage(const SkBitmap& bitmap,
const SkIRect& srcRect,
return NULL;
}
- SkStream* imageData = NULL;
- SkStream* alphaData = NULL;
- extractImageData(bitmap, srcRect, &imageData, &alphaData);
- SkAutoUnref unrefImageData(imageData);
- SkAutoUnref unrefAlphaData(alphaData);
- if (!imageData) {
- SkASSERT(!alphaData);
+ bool isTransparent = false;
+ SkAutoTUnref<SkStream> alphaData;
+ if (!bitmap.isOpaque()) {
+ // Note that isOpaque is not guaranteed to return false for bitmaps
+ // with alpha support but a completely opaque alpha channel,
+ // so alphaData may still be NULL if we have a completely opaque
+ // (or transparent) bitmap.
+ alphaData.reset(
+ extract_image_data(bitmap, srcRect, true, &isTransparent));
+ }
+ if (isTransparent) {
return NULL;
}
- SkPDFImage* image =
- SkNEW_ARGS(SkPDFImage, (imageData, bitmap, srcRect, false, encoder));
-
- if (alphaData != NULL) {
- // Don't try to use DCT compression with alpha because alpha is small
- // anyway and it could lead to artifacts.
- image->addSMask(SkNEW_ARGS(SkPDFImage, (alphaData, bitmap, srcRect, true, NULL)))->unref();
+ SkPDFImage* image = SkNEW_ARGS(SkPDFImage, (NULL, bitmap,
+ false, srcRect, encoder));
+ if (alphaData.get() != NULL) {
+ SkAutoTUnref<SkPDFImage> mask(
+ SkNEW_ARGS(SkPDFImage, (alphaData.get(), bitmap,
+ true, srcRect, NULL)));
+ image->addSMask(mask);
}
+
return image;
}
GetResourcesHelper(&fResources, knownResourceObjects, newResourceObjects);
}
-SkPDFImage::SkPDFImage(SkStream* imageData,
+SkPDFImage::SkPDFImage(SkStream* stream,
const SkBitmap& bitmap,
+ bool isAlpha,
const SkIRect& srcRect,
- bool doingAlpha,
EncodeToDCTStream encoder)
- : SkPDFImageStream(imageData, bitmap, srcRect, encoder) {
- SkBitmap::Config config = bitmap.getConfig();
- bool alphaOnly = (config == SkBitmap::kA1_Config ||
- config == SkBitmap::kA8_Config);
+ : fBitmap(bitmap),
+ fIsAlpha(isAlpha),
+ fSrcRect(srcRect),
+ fEncoder(encoder) {
+
+ if (stream != NULL) {
+ setData(stream);
+ fStreamValid = true;
+ } else {
+ fStreamValid = false;
+ }
+
+ SkBitmap::Config config = fBitmap.getConfig();
insertName("Type", "XObject");
insertName("Subtype", "Image");
- if (!doingAlpha && alphaOnly) {
+ bool alphaOnly = (config == SkBitmap::kA1_Config ||
+ config == SkBitmap::kA8_Config);
+
+ if (!isAlpha && alphaOnly) {
// For alpha only images, we stretch a single pixel of black for
// the color/shape part.
SkAutoTUnref<SkPDFInt> one(new SkPDFInt(1));
insert("Width", one.get());
insert("Height", one.get());
} else {
- insertInt("Width", srcRect.width());
- insertInt("Height", srcRect.height());
+ insertInt("Width", fSrcRect.width());
+ insertInt("Height", fSrcRect.height());
}
- // if (!image mask) {
- if (doingAlpha || alphaOnly) {
+ if (isAlpha || alphaOnly) {
insertName("ColorSpace", "DeviceGray");
} else if (config == SkBitmap::kIndex8_Config) {
- SkAutoLockPixels alp(bitmap);
+ SkAutoLockPixels alp(fBitmap);
insert("ColorSpace",
- makeIndexedColorSpace(bitmap.getColorTable()))->unref();
+ make_indexed_color_space(fBitmap.getColorTable()))->unref();
} else {
insertName("ColorSpace", "DeviceRGB");
}
- // }
int bitsPerComp = 8;
if (config == SkBitmap::kARGB_4444_Config) {
bitsPerComp = 4;
- } else if (doingAlpha && config == SkBitmap::kA1_Config) {
+ } else if (isAlpha && config == SkBitmap::kA1_Config) {
bitsPerComp = 1;
}
insertInt("BitsPerComponent", bitsPerComp);
if (config == SkBitmap::kRGB_565_Config) {
+ SkASSERT(!isAlpha);
SkAutoTUnref<SkPDFInt> zeroVal(new SkPDFInt(0));
SkAutoTUnref<SkPDFScalar> scale5Val(
new SkPDFScalar(SkFloatToScalar(8.2258f))); // 255/2^5-1
insert("Decode", decodeValue.get());
}
}
+
+SkPDFImage::SkPDFImage(SkPDFImage& pdfImage)
+ : SkPDFStream(pdfImage),
+ fBitmap(pdfImage.fBitmap),
+ fIsAlpha(pdfImage.fIsAlpha),
+ fSrcRect(pdfImage.fSrcRect),
+ fEncoder(pdfImage.fEncoder),
+ fStreamValid(pdfImage.fStreamValid) {
+ // Nothing to do here - the image params are already copied in SkPDFStream's
+ // constructor, and the bitmap will be regenerated and encoded in
+ // populate.
+}
+
+bool SkPDFImage::populate(SkPDFCatalog* catalog) {
+ if (getState() == kUnused_State) {
+ // Initializing image data for the first time.
+ SkDynamicMemoryWStream dctCompressedWStream;
+ if (!skip_compression(catalog) && fEncoder &&
+ get_uncompressed_size(fBitmap, fSrcRect) > 1 &&
+ fEncoder(&dctCompressedWStream, fBitmap, fSrcRect) &&
+ dctCompressedWStream.getOffset() <
+ get_uncompressed_size(fBitmap, fSrcRect)) {
+ SkAutoTUnref<SkData> data(dctCompressedWStream.copyToData());
+ SkAutoTUnref<SkStream> stream(SkNEW_ARGS(SkMemoryStream, (data)));
+ setData(stream.get());
+
+ insertName("Filter", "DCTDecode");
+ insertInt("ColorTransform", kNoColorTransform);
+ insertInt("Length", getData()->getLength());
+ setState(kCompressed_State);
+ return true;
+ }
+ // Fallback method
+ if (!fStreamValid) {
+ SkAutoTUnref<SkStream> stream(
+ extract_image_data(fBitmap, fSrcRect, fIsAlpha, NULL));
+ setData(stream);
+ fStreamValid = true;
+ }
+ return INHERITED::populate(catalog);
+ } else if (getState() == kNoCompression_State &&
+ !skip_compression(catalog) &&
+ (SkFlate::HaveFlate() || fEncoder)) {
+ // Compression has not been requested when the stream was first created,
+ // but the new catalog wants it compressed.
+ if (!getSubstitute()) {
+ SkPDFStream* substitute = SkNEW_ARGS(SkPDFImage, (*this));
+ setSubstitute(substitute);
+ catalog->setSubstitute(this, substitute);
+ }
+ return false;
+ }
+ return true;
+}